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We derive the multipole moments of the Kerr-Newman-Unti-Tamburino (NUT) black hole spacetime
using the Geroch-Hansen formalism, even though the spacetime is not asymptotically flat. Intriguingly,
in the presence of the NUT charge, the absence of reflection symmetry about the equatorial plane leads
to mass and spin multipole moments of all orders, in stark contrast to Kerr-like spacetimes. This leads to a
drastic departure of the multipolar structure of a compact object with NUT charge, whose implications for
gravitational wave observations have been explored. Our analysis of multipole moments for the Kerr-NUT
spacetime is also in tune with the Thorne’s approach.
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I. INTRODUCTION

A gravitating system is most often characterized by its
multipole moments. These moments are intimately con-
nected with the intrinsic properties of the gravitating object
and hence make them very useful as well as important in
astrophysics. This is because determination of the multi-
pole moments will yield handful of information about the
nature and properties of the gravitating object. In particular,
the structure of the multipole moments can be used to
distinguish black holes from other compact objects, e.g.,
neutron stars and will provide an experimental verification
of the no-hair theorem [1,2].
Recent discovery of the gravitational waves [3–12]

has further boosted the research on multipole moments
of gravitating objects as they play a crucial role in proper
understanding of the gravitational wave observations. This
has resulted into a broad spectrum of works relating the
theoretical computation of multipole moments with obser-
vational aspects [13]. The theoretical backdrop for these
searches regarding multipole moments of gravitating
objects is primarily based on the works lead by Geroch
[14,15], Hansen [16], and Thorne [17]. These seminal
works prepare the ground for most of the recent works on
multipole moments of gravitating objects; see, e.g., [18,19].
Recently, the gravitational wave observations have brought
these multipole moments to the forefront of gravitational
wave astronomy, with direct observational implications
in the astrophysical as well as astronomical realms [20].
Possible implications of these multipole moments in the
upcoming Laser Interferometer Space Antenna have been

proposed in Refs. [21,22], while study of these moments
and their evolution during merger has been studied using
numerical relativity in [23,24]. On the theoretical side as
well, multipole moments of a gravitating object in higher
spacetime dimensions have been studied in [25], while
Refs. [26,27] discuss the formalism to obtain multipole
moments of a gravitating object in alternative theories of
gravity. In what follows, we will provide a brief introduc-
tion to the Geroch-Hansen and Thorne multipole moments,
which will be useful for our later purposes.
In the Newtonian theory, it is straightforward to define

the multipole moments of a mass distribution by expanding
its gravitational potential in an asymptotic series in the
inverse power of the radial distance from the gravitating
object. Various multipole moments of the mass distribution
can be read off from various powers of the radial distance
of the field point from the mass distribution. In this
Newtonian description, the key ingredient is the condition
of asymptotic flatness, i.e., the potential must vanish at a
field point, which is located at a large distance from the
source. An extension of the Newtonian description of
multipole moments to general relativity was a major
concern related to the lack of covariance in the definition
of multipole moments as well as a suitable implementation
of the asymptotic flatness. The notion of asymptotic flat-
ness can be imposed in a simple manner, by ensuring that
at spatial infinity, the metric gμν reduces to flat spacetime
metric ημν. However, the multipole moments can be defined
in a covariant manner in stationary spacetimes, which
inherit a timelike Killing vector field. The covariant
approach was first described by Geroch for static space-
times [15], and it was used to derive the associated
multipole moments. It was subsequently extended by
Hansen [16] for stationary spacetimes and thus
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collectively it is referred to as the Geroch-Hansen for-
malism. As the previous discussion suggests, the Geroch-
Hansen formalism applies to stationary spacetimes alone.
In generic circumstances, e.g., during the inspiral of two
compact objects, the stationarity assumption breaks down.
In this context, another approach to obtain the multipole
moments was proposed by Thorne in Ref. [17], where one
introduces a coordinate system known as asymptotically
Cartesian and mass centered (ACMC) and then expands
the metric elements in a power series in the distance of
the field point from the origin of the ACMC coordinate
system. Interestingly, as shown in Ref. [28], both the
Geroch-Hansen formalism and the Thorne formalism are
equivalent up to some normalization. While both these
formalisms predict identical results, there exist qualitative
differences between them. In particular, the moments
computed by the Geroch-Hansen formalism arise from
a generally covariant prescription, which is not the case
for the Thorne’s approach. On the other hand, the Geroch-
Hansen formalism applies to stationary spacetimes alone,
but Thorne’s approach is much more general than that. For
a general review on the multipole moments, we refer the
reader to [29].
In the present work, we attempt to obtain the multipole

moments of the Kerr-Newman-Unti-Tamburino (NUT)
spacetime, which is a vacuum solution of the Einstein’s
field equations and describes a stationary, axisymmetric,
and asymptotically nonflat spacetime [30], in the sense that
the metric for the Kerr-NUT spacetime cannot be reduced
to flat spacetime metric, asymptotically. There are two
major motivations to study this problem—first of all, we
would like to understand whether the nontrivial asymptotic
limit of the Kerr-NUT spacetime is a hindrance toward
application of the Geroch-Hansen multipole moments,
given that Kerr-NUT spacetime is stationary. Second, we
would like to explore the observational implications of the
NUT charge and the gravitational wave observations seems
to be the best avenue to probe the same. We will use some
intriguing structure, the multipole moments of a compact
object would inherit in the presence of a NUT charge,
which we will explicitly demonstrate using the Kerr-NUT
spacetime. So far, there are several attempts to look for an
avenue, where the very existence of the NUT charge can be
determined [31,32]; see also [33–35] and [36–38] for some
recent works. But none of these studies involved gravita-
tional wave observations and thus the results presented in
this work will provide a new insight into the problem. In the
present work, we aim to revisit the formalism developed in
[39,40], where several gravitational wave observables were
directly related to the multipole moments of the central
compact object during an inspiral phase, but in the context
of the Kerr-NUT spacetime. As we will see, the presence of
the NUT charge modifies the formalism significantly and
thus provides a very direct test to probe the NUT charge
using gravitational wave observations.

The paper is organized as follows: we start with a brief
introduction about the Kerr-NUT spacetime in Sec. II,
where we have expressed the Kerr-NUT metric in various
coordinate systems and have discussed the asymptotic
behavior of the same. Following this discussion, we have
worked out in detail the individual steps for the determi-
nation of the multipole moments and have derived the
moments of the Kerr-NUT black hole spacetime in Sec. III.
Application of these moments to gravitational wave
astronomy has been explored in Sec. IV. Finally, we
conclude with a discussion on our results. In addition,
we have also completed the discussion in the main text with
certain computations presented in the Appendixes.
Notations and conventions.—Throughout this paper,

we use the geometrical units, c ¼ 1 ¼ G for convenience.
Greek indices, μ; ν;… are used to denote four-dimensional
spacetime indices, while Roman indices a; b;… are used to
denote indices on the induced lower dimensional hyper-
surface. Further, we use mostly positive signature con-
vention, i.e., the flat spacetime metric is taken to
be ημν ¼ diagð−1; 1; 1; 1Þ.

II. STRUCTURE OF THE Kerr-NUT SPACETIME

In this section, we will discuss the geometrical structure
of the Kerr-NUT spacetime, which will be central to our
discussion of the multipole moments. The Kerr-NUT
spacetime can be expressed in several different coordinate
systems, one of which is of course the standard Boyer-
Lindquist coordinate system. In which, the line element for
the Kerr-NUT spacetime can be expressed as [30,41–46]

ds2 ¼ −
Δ
Σ2

ðdt − PdϕÞ2

þ sin2θ
Σ2

fðr2 þ a2 þ N2Þdϕ − adtg2

þ Σ2

Δ
dr2 þ Σ2dθ2; ð1Þ

where the quantities Δ, P, and Σ2 have the following
expressions:

Δ≡ r2 − 2Mrþ a2 − N2;

P≡ asin2θ − 2N cos θ;

Σ2 ≡ r2 þ ðN þ a cos θÞ2: ð2Þ

Here, M stands for the mass of the black hole, a is the
rotation parameter, and N corresponds to the NUT charge.
In the limit of vanishing NUT charge, the above metric
reduces to the Kerr spacetime and in the limit of vanishing
NUT charge and rotation parameter we get back the
Schwarzschild spacetime. As we will see in the later
sections, this metric will be central in our determination
of the multipole moments for the Kerr-NUT spacetime.
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We must emphasize that the Kerr-NUT spacetime in
Boyer-Lindquist coordinate system inherits an interesting
duality property [47]. The Kerr metric, obtained by sub-
stituting N ¼ 0 in the Kerr-NUT spacetime, is dual to the
metric obtained by substituting M ¼ 0 in (1), where the
duality implies the following transformation, M ↔ iN
and r ↔ ia cos θ. As we will see, even the multipole
moment analysis will respect this symmetry, thus depicting
another interesting aspect of the Kerr-NUT spacetime.
Note that the duality symmetry requires a nonzero rotation
parameter [48].
In describing the Kerr-NUT spacetime, it is also worth-

while to touch upon another useful coordinate system,
namely, the cylindrical polar coordinate system. In contrast
to the Boyer-Lindquist coordinate system ðt; r; θ;ϕÞ
depicted above, the cylindrical polar coordinate system
can be described using the ðt; ρ; z;ϕÞ coordinates, where t
and ϕ are identical to the respective coordinates in the
Boyer-Lindquist system. The other two coordinates ρ and z
are related to the Boyer-Lindquist coordinates r and θ,
through the following relation [49]:

ρ ¼
ffiffiffiffiffiffiffiffiffiffi
ΔðrÞ

p
sin θ; z ¼ ðr −MÞ cos θ; ð3Þ

where ΔðrÞ has been defined in (2). For a derivation of the
above coordinate transformation, see Appendix A. Using
the above coordinate transformations between the Boyer-
Lindquist coordinates ðr; θÞ and the cylindrical coordinates
ðρ; zÞ, we can write down the Kerr-NUT metric in the
cylindrical polar coordinate system, in which the line
element becomes

ds2 ¼ −Fðρ; zÞ½dt − ω̄ðρ; zÞdϕ�2

þ 1

Fðρ; zÞ ½e
2γðρ;zÞðdρ2 þ dz2Þ þ ρ2dϕ2�: ð4Þ

The above form of the Kerr-NUT line element involves
three functions, namely, Fðρ; zÞ, ω̄ðρ; zÞ, and γðρ; zÞ,
respectively. Each of these functions can be expressed in
terms of the quantities defined in (2) as

F ¼ Δ − a2sin2θ
Σ2

; ω̄ ¼ ΔP − aðr2 þ a2 þ N2Þsin2θ
Δ − a2sin2θ

;

e2γ ¼ Σ2

Δcos2θ þ ðr −MÞ2sin2θ : ð5Þ

For the determination of the energy loss through gravita-
tional radiation and also for finding out the characteristic
frequencies associated with the motion of the compact
object on the equatorial plane, during its inspiral around a
Kerr black hole, the above cylindrical coordinate system is
often employed. In addition, note that in the asymptotic
limit (i.e., r → ∞), these coordinates behave as normal
cylindrical coordinates, ρ → r sin θ and z → r cos θ,

respectively. This asymptotic structure of the cylindrical
coordinates will have implications in the subsequent
derivation of the multipole moment for the Kerr-NUT
black hole.
The singularity structure of the Kerr-NUT spacetime also

needs an adequate discussion. There is no singularity at
r ¼ 0, but there is a singularity on the axis of symmetry,
often referred to as the Misner string [50]. There are two
possible interpretations for this singular structure, the first
one is due to Misner [51] (see also [52,53]), where the
singularity can be avoided but at the cost of the introduction
of a periodic time coordinate. As a consequence, there exist
closed timelike curves through every event in the spacetime
and questions the causality structure of the spacetime. The
other interpretation, due to Bonnor [54] is more appealing
from the physical point of view, where the singularity
was attributed to a massless rotating rod. This is the
interpretation we provide to the metric considered here
as well. It is certainly possible to redistribute the singularity
over the axis by introducing certain additional parameters
in the problem, as advocated in [33]. But it will not affect
the results presented in this work, since our motivation was
to study multipole moments of this metric, which involves
behavior of the spacetime at a large distance, where the
nature of singularity does not play any significant role. This
is further supported by several recent works as well, where
various astrophysical properties of the NUT solution have
been studied in detail [35,38,45,55,56].
Let us now discuss another interesting and equally

intriguing feature of this metric, namely, the above line
element is asymptotically nonflat, since it cannot be
reduced to the flat spacetime metric ημν using any coor-
dinate transformation. This is clear from the asymptotic
(r → ∞) expression of (1), which takes the following
form:

ds2 ¼ −dt2
�
1þ 4N cosθ

dϕ
dt

�
þ dr2 þ r2ðdθ2 þ sin2θdϕ2Þ:

ð6Þ

The presence of the dtdϕ cross term gives rise to a
rotationlike effect at infinity and is solely dependent on
the NUT charge. Explicit computation of the Riemann
tensor components from (1) shows that asymptotically all
of them vanish asOð1=r3Þ as spatial infinity is approached,
but redefinition of t or ϕ cannot reduce (6) to a flat form
for the metric. This is why we cannot consider the NUT
charge as originating from a localized source embedded in
an originally flat spacetime [57]. The reason behind the
existence of the dtdϕ cross term in the asymptotic form for
the Kerr-NUT geometry is deeply rooted in the gravito-
magnetic origin of the NUT charge, while other parameters,
such as the mass or electric charge, give rise to gravitoe-
lectrical effects [41]. This also connects up well with the
duality symmetry between the gravitoelectric and the
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gravitomagnetic parts, in which the NUT charge is dual to
the mass parameter along with an exchange between radial
and angular coordinates [47]. Since the multipole structure
of a spacetime depends crucially on the nature of the metric
at asymptotic infinity, it remains to see whether the
available formalisms for determination of the multipole
moment is applicable in the present context. This is what
we explore in the next section.

III. MULTIPOLE MOMENTS OF
A Kerr-NUT BLACK HOLE

Having briefly reviewed the key ingredients and proper-
ties of a Kerr-NUT black hole, in this section we would like
to derive the multipole moments of a Kerr-NUT black hole,
where we revisit the mechanism to obtain the multipole
moments which are otherwise known for Kerr spacetime.
As we will see, for Kerr-NUT black hole, the multipole
moments can be expressed in a very compact form, akin to
the case of Kerr black hole, with several interesting
properties. These will be useful while discussing the
implications of a NUT charge for gravitational wave
astronomy. As in the case of a Kerr black hole, here also
the key steps to compute the multipole moments are as
follows: (i) deriving the twist potential for the Kerr-NUT
spacetime, (ii) projecting to a lower dimensional hyper-
surface, which is asymptotically flat, and (iii) hence
obtaining the Ernst potential leading to the multipole
moments. For clarity, we will present all these steps
explicitly in the ensuing discussion.

A. Deriving the twist potential

Since the Kerr-NUT black hole depicts a stationary
spacetime, there is a timelike Killing vector field
ξμðtÞ ≡ ð∂=∂tÞa associated with it. Using this timelike

Killing vector field, we can define two quantities, namely,
the norm λ and twist potential ω, which will be of
significant use lately in this paper. For the Kerr-NUT black
hole, the norm λ of the timelike Killing vector field ξμðtÞ is
given by

λ≡ ξμðtÞξ
ðtÞ
μ ¼ −gtt ¼

1

ρ2
½ΔðrÞ − a2sin2θ�; ð7Þ

where the function ΔðrÞ has been defined in (2) and
depends on all the “hairs” of the black hole, namely, the
mass M, the rotation parameter a, and the NUT charge N,
respectively. We will have several occasions to use this
norm in the subsequent sections. On the other hand, the
twist vector field ωμ is defined in terms of the Killing vector
field ξμðtÞ as follows:

ωμ ¼
ffiffiffiffiffiffi
−g

p
ϵμνρσξ

ν
ðtÞ∇ρξσðtÞ; ð8Þ

where∇ is the standard covariant derivative operator, ξμðtÞ is
the timelike killing vector field of the Kerr-NUT spacetime
defined earlier, and ϵμνρσ is the completely antisymmetric
Levi-Civita symbol, with ϵ0123 ¼ þ1. The twist potential ω
arises out of the twist vector defined above, such that
ωμ ≡∇μω. It is worthwhile to emphasize that even though
the vector ωμ can be defined in any spacetime having
timelike Killing vector field, the twist potential ω may not
exist. Since the existence of ω requires ωμ to be hyper-
surface orthogonal, which is not generically true. It follows
that for vacuum spacetimes, ωμ is indeed hypersurface
orthogonal and hence the twist potential is guaranteed to
exist (for a derivation, see B). Since the Kerr-NUT black
hole is also a vacuum solution of Einstein gravity, the twist
potential ω will exist and can be determined by an explicit
computation, presented below.
As an aside, let us briefly discuss why we are using the

Killing vector field ξμðtÞ ¼ ð∂=∂tÞμ rather than ξμH ¼
ð∂=∂tÞμ þ ΩHð∂=∂ϕÞμ, even though both are timelike in
the asymptotic region. This is intimately connected with the
fact that ξμðtÞ is not hypersurface orthogonal, while ξ

μ
H is. As a

consequence, by Frobenius theorem [58] it follows that

ξ½αH∇βξγ�H ¼ 0 and hence the twist vector field associated with
the Killing vector ξμH identically vanishes. Thus, in order to
have a nonzero twist vector field and hence a nonzero twist
potential, it is necessary to work with the Killing vector field
ξμðtÞ instead. In brief, ωα measures the failure of the Killing

vector field ξμðtÞ to become hypersurface orthogonal.
Returning back to the computation of the twist potential

in the Kerr-NUT black hole spacetime, we start by
explicitly evaluating the twist vector field ωα, defined
in (8). Among the four components, ωt and ωϕ identically
vanish. The vanishing of ωt is obvious from (8), as it
immediately follows from the antisymmetry of the Levi-
Civita symbol that ωαξ

α
ðtÞ ¼ 0. Furthermore, we also have

ωαð∂=∂ϕÞα ¼ 0, which follows from the result that ξμðtÞ and
ξμðϕÞ ≡ ð∂=∂ϕÞa are commuting Killing vector fields [58].

Among the other nonvanishing components of the twist
vector, the explicit expression for ωθ, in terms of the metric
components and their derivatives, takes the following form:

ωθ ¼ ∂θω ¼ ffiffiffiffiffiffi
−g

p
grrðgϕϕ∂rgtϕ þ gtϕ∂rgttÞ: ð9Þ

In the present context of the Kerr-NUT black hole space-
time, the expressions for ∂rgtϕ and ∂rgtt can be computed
in a straightforward manner from (1) and takes the
following form:

∂rgtϕ ¼ Σ−2½ð2r − 2MÞP − 2ar sin2 θ�
− 2rΣ−4½ΔP − a sin2 θðr2 þ a2 þ N2Þ�;

∂rgtt ¼ −Σ2ð2r − 2MÞ þ 2rΣ−4ðΔ − a2 sin2 θÞ: ð10Þ
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Substituting these expressions for ∂rgtϕ and ∂rgtt, along
with the rest of the metric components for the Kerr-NUT
metric, in (9), we obtain

ωθ ¼ Σ−4ðsin θÞ−1fðΔ − a2sin2θÞ½ð2r − 2MÞP − 2arsin2θ�
− ð2r − 2MÞ½ΔP − asin2θðr2 þ a2 þ N2Þ�g

¼ 2Ma sin θðr2 þ N2 − a2cos2θÞ
Σ4

þ 4aN sin θ
Σ4

ðr −MÞðN þ a cos θÞ: ð11Þ

Along identical lines, the expression for ωr can also be
computed in terms of the metric and its derivatives, yielding

ωr ¼ ∂rω ¼ −
ffiffiffiffiffiffi
−g

p
gθθfgϕϕ∂θgtϕ þ gtϕ∂θgttg: ð12Þ

For the Kerr-NUT black hole spacetime, the expressions for
∂θgtϕ and ∂θgtt take the following form:

∂θgtϕ ¼ sin θ
Σ2

½Δð2a cos θþ 2NÞ − 2a cos θðr2 þ a2 þ N2Þ
þ Σ−2f2aðN þ a cos θÞ
× ½ΔP − asin2θðr2 þ a2 þ N2Þ�g�;

∂θgtt ¼
sin θ
Σ2

�
2a2 cos θ −

a
Σ2

ðN þ a cos θÞðΔ − a2sin2θÞ
�
:

ð13Þ

Again, substituting the respective expressions for ∂θgtϕ,
∂θgtt and other metric elements, the expression for ωr in the
Kerr-NUT black hole spacetime takes the following form:

ωr ¼ ∂rω

¼ 1

Σ4
½4Marcosθ− 2Nðr2 − 2MrÞ þ 2NðNþ acosθÞ2�:

ð14Þ

As emphasized earlier, the Kerr-NUT spacetime being a
vacuum solution of the Einstein’s equations guarantees
the existence of a twist potential. Also, the solution being
stationary and axisymmetric demands ω ¼ ωðr; θÞ. Thus,
(11) and (14) provides the two partial differential equations
necessary to solve for ω. Solving these equations, we obtain
the following expression for the twist potential ω in the
Kerr-NUT spacetime:

ω ¼ −
2Ma cos θ

Σ2
þ 2Nðr −MÞ

Σ2
: ð15Þ

Note that in the limit of vanishing NUT charge (i.e.,
N ¼ 0), the twist potential presented above reduces to
the respective expression for the Kerr black hole [19], as
desired. Interestingly, even in the limit of vanishing rotation

parameter (i.e., a ¼ 0), the twist potential is nonzero and is
proportional to the NUT charge. This expression corre-
sponds to the twist potential for the Schwarzschild-NUT
spacetime, another vacuum solution to general relativity.
Interestingly, the twist potential with zero NUT charge is
related to the twist potential with zero mass through the
duality transformation, M ↔ iN and r ↔ ia cos θ, as one
can immediately check from (15). Thus, the twist potential
obeys the duality transformation property of the Kerr-NUT
spacetime. This finishes the first part of the story, as we
have derived the norm of the timelike Killing vector field
and the twist potential associated with it. It is now time to
introduce the metric on the lower dimensional manifold and
hence derive the conformal completion of the spatial sector.

B. Projecting to a lower dimensional manifold

As emphasized earlier, the four-dimensional Kerr-NUT
geometry is not asymptotically flat due to the nonvanishing
contribution of the gtϕ component from the NUT charge
at spatial infinity. Thus, at first sight, it may seem that the
Geroch-Hansen formalism will not be directly applicable.
However, as we will show, there exists a three-dimensional
manifold M3, which is asymptotically flat and is sufficient
to define the multipole structure of the spacetime through
the Geroch-Hansen formalism. In the following segments,
we will discuss this aspect in detail.
Let us start by introducing the projector hμν, such that

hμνξ
μ
ðtÞ ¼ 0, which can be expressed in terms of the back-

ground metric gμν as

hμν ¼ λgμν þ ξðtÞμ ξðtÞν : ð16Þ

One can easily verify that the components htt and htϕ of the
projector hμν identically vanish, while the spatial compo-
nents are nonzero and take the following forms:

hrr ¼
1

Δ
ðΔ − a2sin2θÞ; hθθ ¼ ðΔ − a2sin2θÞ;

hϕϕ ¼ Δsin2θ: ð17Þ

This suggests to define a three-dimensional manifold M3

with coordinates yi ¼ fr; θ;ϕg and metric hij ¼ hμνe
μ
i e

ν
j ,

where eμi ¼ ð∂xμ=∂yiÞ. Since the coordinates of the three-
dimensional manifold are same as the spatial coordinates of
the full spacetime, the metric hij of the three-dimensional
manifold is given by hij ¼ diagðhrr; hθθ; hϕϕÞ.
For applicability of the Geroch-Hansen formalism, we

need the metric hij to be asymptotically flat. This corre-
sponds to taking the limit r → ∞, which indeed reduces hij
to ηij, expressed in spherical polar coordinates. Thus,
the manifold M3 is asymptotically flat. Having identified
the asymptotic point PA, we define a new manifold
M3 ≡M3 ∪ PA. This should also define a new metric
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h̄ab on the three-manifold M̄3, such that h̄ab ¼ Ω2hab. The
conformal factor Ω must satisfy the three requirements,
Ω ¼ 0, D̄iΩ ¼ 0, and D̄iD̄jΩ ¼ 2h̄ij at the asymptotic
infinity, i.e., at the point PA. To summarize, we have to
reexpress the metric on the three-manifold in terms of new
coordinates, such that it becomes conformally equivalent to
another metric h̄ab, with the conformal factor satisfying the
properties mentioned above.
To see how this can be achieved in the present context of

Kerr-NUT black hole spacetime, it will turn out to be
advantageous to introduce a new radial coordinate R̄, which
is defined in terms of the old radial coordinate r through the
following differential equation:

dR̄
R̄

¼ −
drffiffiffiffiffiffiffiffiffiffi
ΔðrÞp ; ð18Þ

where ΔðrÞ has been defined in (2). Note that at large r,
ΔðrÞ ∼ r2 and hence simple integration of the above
differential equation will yield R̄ ∼ ð1=rÞ. Thus, the asymp-
totic point PA, located at r ¼ ∞, will map to R̄ ¼ 0 in the
new coordinate system. Furthermore, direct integration of
the above differential equation, for the Kerr-NUT black
hole spacetime, yields the following relation between the
old radial coordinate r and the new radial coordinate R̄:

r ¼ M þ 1

R̄
þ R̄

4
ðM2 − a2 þ N2Þ: ð19Þ

As noted earlier, in the limit of R̄ → 0, we obtain r → ∞.
The transformation from the ðr; θ;ϕÞ to ðR̄; θ;ϕÞ coordi-
nate system yields the following expression for the con-
formally equivalent metric h̄ab:

h̄ab ¼ Ω2h2ab ¼ diag:ð1; R̄2; R̄2 sin2 θe−2βÞ; ð20Þ

where the conformal factor Ω takes the following form:

Ω ¼ R̄2

��
1 −

1

4
ðM2 − a2 þ N2ÞR̄2

�
2

− a2R̄2sin2θ
�

−1=2
:

ð21Þ

In addition, the term expð2βÞ appearing in the conformally
equivalent metric h̄ab, presented in (20), has the following
expression in the new coordinate system:

e2β ¼ 1 − a2R̄2sin2θ

�
1 −

R̄2

4
ðM2 − a2 þ N2Þ

�−2
: ð22Þ

For our later computations, it will be advantageous to
express β itself in terms of the various parameters of the
Kerr-NUT black hole spacetime in the ðR̄; θ;ϕÞ coordinate
system, which after appropriate manipulations yield

β ¼ 1

2
ln

�
Δ̄ − a2sin2θ

Δ̄

�
;

Δ̄ ¼ 1

R̄2

�
1 −

R̄2

4
ðM2 − a2 þ N2Þ

�
2

: ð23Þ

Given the conformal factor in (21), it immediately follows
that both Ω and D̄iΩ identically vanish in the R̄ → 0 limit.
On the other hand, D̄R̄D̄R̄Ω is the only nonzero element of
D̄iD̄jΩ at the asymptotic point PA, which is consistent with
the R̄ → 0 limit of the metric h̄ab on the three-manifold.
Thus, we have derived the conformal factor and the con-
formally equivalent metric on the three-manifold which will
be used in the next section to derive the multipole moments.
Finally, it is necessary to consider the uniqueness of the

conformal factor. Since determination of the multipole
moments is intimately connected with the determination
of the conformal factor, any arbitrariness in the conformal
factor will most likely affect the multipole moments as
well. There is indeed some freedom left in the choice of the
conformal factor, as we will demonstrate below. Suppose,
we make a further conformal transformation, such that the
conformal factor scales as Ω → Ω̃ ¼ eκΩ, with κðPAÞ ¼ 0.
This immediately implies Ω̃ðPAÞ ¼ ΩðPAÞ. Using the
properties that Ω satisfies at the asymptotic infinity, it
follows that Ω̃ðPAÞ ¼ 0, as well as D̄iΩ̃ ¼ eκD̄iΩþ Ω̃D̄iκ
will vanish at PA. In addition, one can also demonstrate
that at the asymptotic infinity, i.e., at the point PA,
D̄iD̄jΩ̃ ¼ 2e2κh̄ij. Therefore, the rescaled conformal factor
Ω̃ is also a valid candidate to describe the asymptotic
structure at infinity. This arbitrariness in the determination
of the conformal factor also reflected in the evaluation of
the multipole moments and lies in the choice of the origin
of the coordinate system. This is an arbitrariness all
multipole analysis are plagued with. Often this can be
fixed by setting ∇aκ to some preassigned value at asymp-
totic infinity, then it follows that the multipole moments are
also fixed [59]. This is the route we will also take while
determining the multipole moments of the Kerr-NUT black
hole spacetime in the next section.

C. The multipole moments from recursion relation

In this section, we will derive the exact expressions for
the multipole moments associated with the Kerr-NUT black
hole spacetime using the results derived in the earlier
sections. Given the norm λ and twist potential ω associated
with the timelike geodesic ξaðtÞ, one introduces the scalar

potential Φ on the physical manifold, such that

Φ ¼ ΦM þ iΦJ; ΦM ¼ −
λ2 þ ω2 − 1

ð1þ λÞ2 þ ω2
;

ΦJ ¼ −
2ω

ð1þ λÞ2 þ ω2
; ð24Þ
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where ΦM is the source for the mass multipole moments
and ΦJ is the source of the current multipole moments. For
the Kerr-NUT black hole spacetime, expressions for λ and
ω can be found from (7) and (15), respectively. The above
structure of the potential Φ can actually be derived starting
from the complex Ernst potential ε, which in terms of the
norm λ and the twist potential ω, takes the following form:

ε≡ λþ iω: ð25Þ

Arising out of which is the potential Φ, expressed in terms
of the Ernst potential ε as

Φ≡ 1 − ε

1þ ε
; ð26Þ

whose real and imaginary parts are the potentials ΦM and
ΦJ, respectively. Given this potentialΦ, which is the analog
of the Newtonian potential in the nonrelativistic context,
one will be able to derive the multipole moments by taking
successive derivatives of Φ. Since these moments are
defined at the asymptotic point PA, it is instructive to
work with the unphysical metric h̄ab and the unphysical
scalar potential Φ̄, which is defined as Φ̄ ¼ Φ=

ffiffiffiffi
Ω

p
. Thus,

the Ernst potential in terms of the unphysical scalar
potential Φ̄ takes the following form:

ε ¼ 1 −Φ
1þΦ

¼ 1 −
ffiffiffiffi
Ω

p
Φ̄

1þ ffiffiffiffi
Ω

p
Φ

¼
1ffiffiffi
Ω

p − Φ̄
1ffiffiffi
Ω

p þ Φ̄
; ð27Þ

which will be useful for our later discussion connecting
multipole moments with gravitational waves.
Given the unphysical potential Φ̄, one can read off various

multipole moments as derivatives of Φ̄. The monopole term
P is a scalar and is simply the potential Φ̄ at the asymptotic
point PA. Rest of the moments are obtained by taking
derivative of the lower moments. In general, the multipole
moments are derived from the tensorial recursion relation,
which takes the following form:

P¼ Φ̄jPA
; Pa1 ¼ D̄a1ΦjPA

;

Pa1a2 ¼STF

�
D̄a1Pa2 −

1

2
R̄a1a2

�
;

Pa1a2���an ¼STF

�
D̄a1Pa2���an −

ðn−1Þð2n−3Þ
2

R̄a1a2Pa3���an

�
:

ð28Þ

Here, “STF” is the short-form for “symmetric trace free’
combination and R̄ab is the Ricci tensor for the unphysical
metric h̄ab. The above tensorial recursion relation provides
the multipole structure of a generic gravitational system.
However, for a stationary and axisymmetric configuration,
the moments can also be obtained from a scalar recursion

relation [59]. In the present case, it can be obtained from an
even simpler setting, i.e., by repeated differentiation of a
scalar function. We will describe the construction of this
scalar function for the Kerr-NUT black hole below.
Let us start by introducing two new coordinates z̄ and ρ̄

in terms of the ðR̄; θÞ coordinates of the unphysical metric
h̄ab, such that

z̄ ¼ R̄ cos θ; ρ̄ ¼ R̄ sin θ;

R̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄2 þ z̄2

q
; tan θ ¼ ρ̄

z̄
;

� ∂
∂z̄

�
a
¼ cos θ

� ∂
∂R̄

�
a
−
sin θ
R̄

� ∂
∂θ

�
a
; ð29Þ

� ∂
∂ρ̄

�
a
¼ sin θ

� ∂
∂R̄

�
a
þ cos θ

R̄

� ∂
∂θ

�
a
: ð30Þ

From the above coordinate transformation, one can con-
struct the following vector field:

ηa ¼
� ∂
∂z̄

�
a
− i

� ∂
∂ρ̄

�
a
¼ e−iθ

�� ∂
∂R̄

�
a
−

i
R̄

� ∂
∂θ

�
a
�
;

ð31Þ

which is null and is used to define the following
scalar quantity, related to the nth order tensor multipole
moment as

fn ¼ ηa1 � � � ηanPa1���an : ð32Þ

Since the Kerr-NUT spacetime is stationary and axisym-
metric, none of the tensors Pa1���an can depend on the time
or azimuthal coordinate ϕ. Thus, all these tensors are
functions of ðR̄; θÞ, which under the above coordinate
transformation becomes a function of z̄ and ρ̄, respectively.
Furthermore, the asymptotic point PA in the original Boyer-
Lindquist coordinate system for the Kerr-NUT black hole
spacetime corresponds to r → ∞. The same point in the
unphysical metric corresponds to the limit R̄ → 0 and in
the new ðz̄; ρ̄Þ coordinate system this translates into
z̄2 þ ρ̄2 → 0. Often, it is instructive to replace the above
limit by z̄ → Rc and ρ̄ → iRc, respectively, where Rc is a
constant and then taking the Rc → 0 limit. In particular, it is
useful to define ynðRcÞ≡ fnðz̄ → Rc; ρ̄ → iRcÞ. In terms
of this newly defined scalar function ynðRcÞ, the recursion
relation, presented in (28), takes the following form [59]:

yn ¼ y0n−1 − 2ðn− 1Þκ0Ayn−1 −
ðn− 1Þð2n− 3Þ

2
MðRcÞyn−2;

ð33Þ

where the function MðRcÞ is defined as
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MðRcÞ ¼ β00A − β0A
2 þ 2

Rc
β0A − κ00A þ κ0A

2: ð34Þ

Here “prime” denotes derivative with respect to Rc
and the nth order multipole moment is given by
mn ≡ ynð0Þ. Further, the quantity βA corresponds to
βA ≡ βðz̄ → Rc; ρ̄ → iRcÞ, where β is defined in (23).
Similarly, κA ¼ κðz̄ → Rc; ρ̄ → iRcÞ, where κ captures
the ambiguities in the conformal factor.
Exploiting these relations, one can construct a scalar

function, whose derivatives yield the multipole moments.
For this purpose, we choose a function κAðRcÞ, such that
MðRcÞ is set to zero. Thus, we need to make one more
conformal transformation, Ω̃ ¼ eκΩ, and hence the poten-
tial also gets rescaled, Φ̃ ¼ e−κ=2Φ̄, as well as the metric,
h̃ab ¼ e2κh̄ab. Then introducing a new coordinate ζ, which
in terms of Rc takes the form

ζðRcÞ ¼ Rc exp ½κAðRcÞ − βAðRcÞ�; ð35Þ

such that the scalar potential becomes Φ̃A ¼ Φ̃AðRcðζÞÞ.
The asymptotic limit corresponds to Rc → 0 and hence we
have ζ → 0 in that limit as well. Thus, all the multipole
moments are derived by taking successive derivatives of the
potential with respect to ζ and then taking the ζ → 0 limit,
which yields

Mn ≡ 2nn!
ð2nÞ!mn ¼

2nn!
ð2nÞ!

dnΦ̃
dζn

					
ζ→0

: ð36Þ

This is what we will derive next, in the context of Kerr-
NUT black hole spacetime, yielding its multipole moments.
It is worth emphasizing that the above definition of the
multipole moment is to reconcile the results with that
derived by Hansen for Kerr spacetime. It must also be
mentioned at this outset, since the structure of the multipole
moment depends on the asymptotic structure of the
spacetime, rather than near horizon or, near singularity
behavior, singularity in the Kerr-NUT spacetime will not
affect the computation presented here.
From the expression for the Ernst potential presented in

(25) above, we arrive at the following expression for the
potential Φ̄, in the unphysical metric h̄ab, in the Kerr-NUT
black hole spacetime:

Φ̄ ¼ 1

R̄

��
1 −

M2 − a2 þ N2

4
R̄2

�
2

− a2R̄2sin2θ

�
1=4

×

�
1 − λ − iω
1þ λþ iω

�
: ð37Þ

In arriving at the above expression, we have used the
expression for the conformal factor Ω as presented in (21).
On the other hand, using the expressions for the norm λ and

twist potential ω for the Kerr-NUT black hole, from (7) and
(15), respectively, one obtains the following expression:

1 − λ − iω
1þ λþ iω

¼ 2N2 þ 2aN cos θ þ 2Mrþ 2iðaM cos θ þ NM − NrÞ
2ðr2 þ a2cos2θÞ − 2Mr − 2iðaM cos θ þ NM − NrÞ :

ð38Þ

However, the above expression involving λ and ω is in
terms of the old radial coordinate r, which needs to be
converted to the new radial coordinate R̄, such that the
potential Φ̄ reads

Φ̄ ¼
�
A
B

���
1 −

M2 − a2 þ N2

4
R̄2

�
2

− a2R̄2sin2θ

�
1=4

;

ð39Þ

where A and B have the following expressions:

A ¼ N2R̄þ aNR̄ cos θ

þM
�
1þMR̄þ ðM2 − a2 þ N2Þ

4
R̄2

�
; ð40Þ

B ¼
�
1þMR̄þ ðM2 − a2 þ N2Þ

4
R̄2

�
2

−MR̄

�
1þMR̄þ ðM2 − a2 þ N2Þ

4
R̄2

�

þ a2R̄2cos2θ − iMR̄2ðN þ a cos θÞ

þ iNR̄

�
1þMR̄þ ðM2 − a2 þ N2Þ

4
R̄2

�
: ð41Þ

Even though the above expression for Φ̄ looks complicated,
as the earlier discussion shows, we actually require the
above potential in a certain limit, in which, as we will see
the above expression will simplify considerably. This is
facilitated by first introducing the new coordinates z̄ and ρ̄,
such that z̄ ¼ R̄ cos θ and ρ̄ ¼ R̄ sin θ. The asymptotic limit
to the point PA can be taken by simply substituting z̄ → Rc

and ρ̄ → iRc, such that we obtain R →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄2 þ Z̄2

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðiRcÞ2 þ ðRcÞ2
p

¼ 0. Under this limiting procedure, the
expression for Φ̄ can be simplified and we finally arrive at
the following expression for the potential Φ̄:

Φ̄AðRcÞ ¼ ðM − iNÞ 1þ iaRc

ð1þ a2R2
cÞ3=4

: ð42Þ

The above expression for the potential Φ̄A at the asymptotic
point can also be written in terms of the coordinate ζ,
defined in (35), which in the context of Kerr-NUT black
hole spacetime reads

SAJAL MUKHERJEE and SUMANTA CHAKRABORTY PHYS. REV. D 102, 124058 (2020)

124058-8



ζ ¼ Rc

1 − a2R2
c
: ð43Þ

As we have mentioned earlier, in this context, the multipole
moments can be derived using a single scalar function,
which in the present context reads

Φ̃A ¼ exp
�
−
κA
2

�
Φ̄A ¼ M − iNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2iaρ
p ; ð44Þ

where the quantity κA is defined as

κA ¼ − ln

�
1 − a2R2

c

1þ a2R2
c

�
: ð45Þ

Note that κ denotes the ambiguity in defining the multipole
moments and is fixed by setting the functionMðRcÞ to zero
in (34). Finally, the expression for the multipole moments
can be derived in terms of recursive derivatives of the above
scalar function Φ̃A and taking a cue from (36), we obtain

Mn ¼ ðM − iNÞðiaÞn: ð46Þ

Note that in the limit, N ¼ 0 ¼ a, we get back the result
that for Schwarzschild black hole, its mass determines all
the multipole moments. While for N ¼ 0, we get back
the Geroch-Hansen multipole moments for the Kerr black
hole. In addition, the above expression for the multipole
moment also satisfies the duality symmetry of the Kerr-
NUT spacetime, as MnðN ¼ 0Þ ↔ MnðM ¼ 0Þ, modulo a
sign, as we make the transformation, M ↔ iN. Thus, the
duality symmetry is preserved even at the level of multipole
moments of the Kerr-NUT spacetime. This shows the
correctness of the multipole moment expression derived
in (46). Further, the multipole moment presented in (46)
can be decomposed into mass and spin multipole moments,
i.e., Mn ¼ Mn þ iSn. Such that, M0 ¼ M, M1 ¼ Na,
M2 ¼ −Ma2,M3 ¼ −Na3, as well as S0 ¼ −N, S1 ¼ Ma,
S2 ¼ Na2, S3 ¼ −Ma3, and so on.
Let us point out another very interesting feature of the

multipole moment for the Kerr-NUT black hole spacetime.
Generically, the real part ofMn provides the mass multipole
moments and the imaginary part of Mn gives the current
multipole moments. For Kerr black hole, all the odd mass
multipole moments and even current multipole moments
identically vanish, while for Kerr-NUT black hole space-
time, due to the presence of the NUT charge, all mass
and current multipole moments are nonzero. As we will
observe, this drastically modifies the implications of these
multipole moments for gravitational wave astronomy. The
existence of mass and spin multipole moments at all orders
for Kerr-NUT black hole spacetime has to do with the
asymmetry of the Kerr-NUT solution about the equatorial
plane. This connection will become clearer as we discuss
the possible implications of our results on gravitational

wave astronomy and hence possible constraint on the
NUT charge.
In passing, we should point out that another attempt to

obtain the multipolar structure of the Kerr-NUT spacetime
was carried out in [34] (see also [33]). However, their
study uses a different formalism than the Geroch-Hansen
one, which has been employed here. Also their work never
discusses about the existence of the twist potential, the
asymptotically flat three-geometry, or the duality sym-
metry associated with the Kerr-NUT spacetime. In par-
ticular, it was not realized that even for asymptotically
nonflat spacetimes, such as Kerr-NUT, it is indeed
possible to employ the Geroch-Hansen formalism to
obtain the multipole moments, owing to asymptotic flat-
ness of the three-geometry. We must emphasize that none
of these interesting and important aspects of the Kerr-
NUT spacetime has been realized before. Furthermore, the
final expression for the multipole moments of the Kerr-
NUT black hole spacetime as obtained in [34] matches
with our study modulo a “-ve” sign, which appears due to
different metric convention.
Before concluding this section, let us briefly comment on

the possible connection of the multipole moments derived
earlier in this section with the Thorne’s multipole moment.
The main hurdle lies in the result that in the presence of a
NUT charge it is not possible to express the Kerr-NUT
metric as ημν asymptotically. Since the Thorne’s approach
in computing the multipole moments crucially hinges on
the asymptotic behavior of the metric, it needs to recon-
structed from scratch. However, as we have demonstrated
in Appendix C, expansion of the gtt and the gtϕ components
of the Kerr-NUT metric involves bothOð1=rÞ andOð1=r2Þ
terms. This is unlike the situation for the Kerr black hole,
where gtt does not involve Oð1=r2Þ term and gtϕ does not
involve Oð1=rÞ term. Thus, for the Kerr-NUT black hole
spacetime, both the mass and spin monopole moments exist
and they can be derived from theOð1=rÞ term of the gtt and
the gtϕ components, respectively. As one can immediately
verify from Appendix C, the monopole moments are
proportional to the mass M and the NUT charge N,
respectively. Similarly, there will be both mass and spin
dipole moments proportional to Ma and Na, respectively;
see Appendix C. These results are consistent with the
Geroch-Hansen formalism, as we can see by substituting
n ¼ 0 and n ¼ 1 in (46). Therefore, the Geroch-Hansen
and the Thorne’s approach provide identical expression for
the leading order multipole moments of the Kerr-NUT
black hole. To see the equivalence in general, one needs to
modify the Thorne’s approach by taking into account the
asymptotic structure of the Kerr-NUT spacetime, which we
leave for the future. This concludes our derivation of the
multipole moments for the Kerr-NUT spacetime, which we
will apply in the next section to understand possible
implication of the NUT charge in the gravitational wave
astronomy.
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IV. GRAVITATIONAL WAVE OBSERVABLES IN
TERMS OF THE MULTIPOLE MOMENTS OF

THE Kerr-NUT SPACETIME

The connection between the multipole moments and the
gravitational wave observables is a very intriguing one,
since it extends both ways. On one side, knowing the
multipole moments of a compact object one can predict
the observables associated with gravitational waves, while
on the other, the gravitational wave observables can tell us
about the multipole moments of a compact object. The
second approach is more useful and often tries to express
the gravitational wave observables in terms of the multipole
moments of the gravitational field. Since we have derived
all the multipole moments of the Kerr-NUT spacetime, it is
important to ask if we can get a handle on the numerical
estimation of the NUT charge á la gravitational wave
observations. To understand this, one may follow the
approach presented in [39], with two major differences.
As we will demonstrate, these two issues will be sufficient
enough to put some constraint on the NUT charge using the
geometry of the Kerr-NUT spacetime.
It is worthwhile to emphasize another interesting point

regarding the current analysis at this stage. The computa-
tion involving gravitational wave astronomy, as well as
computation of multipole moment, requires asymptotic
flatness, which at first sight does not seem to hold good
in Kerr-NUT spacetime. However, it is only the asymptotic
flatness on the induced metric on a t ¼ constant slice,
which matters for the multipole moment computation and
also for the gravitational wave astronomy, since it is only
the spatial part of the metric tensor which carries the
dynamical degrees of freedom for the gravitational field.
Thus, following Sec. III B, it is clear that the spatial sector
of the metric, or the induced metric on a t ¼ constant
Cauchy slice, is indeed asymptotically flat. Thus, the
gravitational degrees of freedom indeed propagate in an
asymptotically flat spacetime and hence can be used in the
study of the gravitational wave astronomy.
The analysis relating gravitational wave observables

with multipole moments serves several purposes; first of
all, it gives an idea about the first few multipole moment of
the compact object. More so, it provides a direct hint to the
validity of the no-hair theorem in case the compact object is
a black hole. However, most of the analysis in this direction
bears two crucial assumptions—(i) the gravitational field
produced by the compact object is reflection symmetric
about the equatorial plane and as a consequence odd mass
multipole moments and even current multipole moments
vanish and (ii) the inspiral phase can be approximated to be
a circular orbit on the equatorial plane. In addition, there are
other assumptions involving geodesic orbits, adiabatic
evolution, ignoring backreaction problem, etc. Even though
most of these assumptions are valid for Kerr-NUT space-
time, the two assumptions pointed out above does not
hold. Namely, the Kerr-NUT spacetime is not reflection

symmetric about the equatorial plane, as one can immedi-
ately check by substituting θ → ðπ=2Þ þ θ in (1). As a
consequence, there are odd mass multipole moments and
even current multipole moments in a Kerr-NUT spacetime;
see (46). This is a distinct signature of the NUT charge,
which must be looked for in the gravitational wave
observables. As a consequence, the recursion relation,
connecting multipole moments with gravitational wave
observables, gets modified. In addition, for Kerr-NUT
black hole spacetime, there exist no circular orbits on
the equatorial plane, again due to the very existence of
NUT charge. As we will see, this can severely constrain the
parameter space for the NUT charge if we want the
assumptions coined before to hold true.

A. Connecting multipole moments with observables:
Modified recursion relation

In this section, we will provide the connection between
the multipole moment structure derived in the previous
section with the gravitational wave observables, which we
will now introduce. This will provide an interesting avenue
to look for the NUT charge from gravitational wave
observations, through the multipolar structure of the central
massive object. We will first present these observables,
solely in the context of the Kerr-NUT geometry, before
commenting on the general structure through a modified
recursion relation.
We will provide three such observables, which are

intimately connected with the gravitational wave emission
from the inspiral of a compact object onto the central
massive object, which could be a Kerr-NUT black hole.
During the early phase of the inspiral, we can approximate
the in-falling object as one moving on an almost circular
orbit, with its radius decreasing gradually. In the absence
of tidal heating, the loss of energy due to the emission of
gravitational waves is solely determined by the rate of
change of conserved energy as the radius of the circular
orbit decreases. This is best demonstrated by the following
quantity [39]:

ΔEGW ¼ −Ωcirc
dEcirc

dΩcirc
;

Ecirc

m
¼ −gtt − gtϕΩcircffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − 2gtϕΩcirc − gϕϕΩ2
circ

q ; ð47Þ

where Ecirc is the energy of the inspiraling compact object
with mass m on a circular orbit, Ωcirc ¼ ðdϕ=dtÞ is the
angular frequency associated with the circular orbit, and
ΔEGW denotes the energy radiated away by the gravita-
tional waves. It must be noted that the use of Δ in the above
expression is to quantify the change in energy through
gravitational waves and has no connection with the grr
metric element of the Kerr-NUT spacetime.
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The other two observables are the precession frequencies
associated with—(i) departure of the orbit from being
circular and (ii) departure from the equatorial plane.
Both of these frequencies will influence the spectrum of
the emitted gravitational waves and hence will have direct
observable consequences. In terms of the metric elements
and the angular frequency of the circular orbit Ωcirc, the
precession frequencies can be expressed as

Ωp ¼ Ω −
�
−
gpp

2

�
ðgtt þ gtϕΩÞ2∂2

p

�
gϕϕ
ρ2

�

− 2ðgtt þ gtϕΩÞðgtϕ þ gϕϕΩÞ∂2
p

�
gtϕ
ρ2

�

þ ðgtϕ þ gϕϕΩÞ2∂2
p

�
gtt
ρ2

���
1=2

; ð48Þ

where p ¼ ðρ; zÞ or ðr; θÞ, depending on whether we are
using cylindrical coordinate system or Boyer-Lindquist
coordinate system, respectively. Note that the terms involv-
ing single derivative with respect to ρ and z as well as with
respect to r and θ are absent. This is due to the ρ → −ρ
symmetry, or in other words, θ → −θ symmetry of the
Kerr-NUT spacetime. It is worth emphasizing that these
frequencies make sense only for small perturbations around
the equatorial plane, i.e., for small values of z or, of
½θ − ðπ=2Þ�, respectively.
It is customary to express the above three observables—

(i) energy lost due to gravitational radiation ΔEGW,
(ii) precession frequencies Ωr, and (iii) Ωθ, as a power
series in the velocity of the compact object inspiraling
the central Kerr-NUT black hole. This is considered as a
post-Newtonian (henceforth referred to as PN) expansion
of these observables and can be achieved along the
following lines. First of all, the metric functions and their
derivatives can be expanded as a power series in ð1=rÞ and
as a consequence, the angular frequency Ωcirc can also
be expressed as a power series in ð1=rÞ, such that
Ωcirc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM=r3Þ

p
½1þOðr−1=2Þ�. This can be inverted,

yielding r as a function of the angular frequency Ωcirc.
Therefore, using the expansion of all the observables,
namely, ΔEGW, Ωr, and Ωθ, in powers of ð1=rÞ, one can
express these observables as a power series in the angular
frequency Ωcirc. This in turn can be converted to a power
series in the velocity of the inspiraling object, as Ωcirc ∼ v3

and hence the desired PN expansion of these observables
can be obtained.
In the PN expansion of the gravitational wave observ-

ables, each coefficient of the expansion depends crucially
on the multipole moments of the central massive object,
which the other compact object is inspiraling. This expan-
sion modifies significantly as the spacetime described by
the central massive object does not have reflection sym-
metry about the equatorial plane, as we will demonstrate

below by taking the central massive object to be described
by the Kerr-NUT geometry.
Using the metric elements of the Kerr-NUT spacetime

described in (1), the angular velocity of the circular orbit on
the equatorial plane can be immediately determined and
hence we can express the radial coordinate r in the Boyer-
Lindquist coordinate system as a power series in Ω, which
takes the following form:

r ¼
�

M
Ω2

circ

�
1=3

�
1þ

�
2N2

3M4=3

�
Ω2=3

circ

þ
�
−
2a
3

�
Ωcirc þOðΩ4=3

circÞ
�
: ð49Þ

Here, the first term yields the Keplarian contribution and
the other terms in the above expansion arise due to the
presence of the rotation and the NUT charge. Interestingly,
the NUT charge appears at a lower order than the rotation
and hence it seemingly provides a larger contribution to the
angular velocity. However, as we will see later, that is not
the case. Thus, using the above expansion of the radial
coordinate in terms of the angular velocity, we obtain the
following PN expansion for the observables ΔEGW, Ωr,
and Ωθ:

ΔEGW ¼ v2

3
þ
�
−
1

2
−
4ð−NÞ2
9M2

�
v4 þ 20ðaMÞ

9M2
v5

−
�
27

8
−
ð−Ma2Þ
M3

þ 2ð−NÞ2
M2

�
v6 þOðv7Þ; ð50Þ

Ωr

Ω
¼

�
3þ ð−NÞ2

M2

�
v2 −

4ðaMÞ
M2

v3

þ
�
9

2
−
19ð−NÞ4

M4
−
3ð−Ma2Þ
2M3

�
v4

−
�
−
10ðaNÞð−NÞ

3M3
þ 10ðaMÞ

M2

�
v5 þOðv6Þ; ð51Þ

Ωθ

Ω
¼ −

2ð−NÞ2
M2

v2 þ 2ðaMÞ
M2

v3

þ
�
22ð−NÞ4
3M4

þ 3ð−Ma2Þ
2M3

þ 8ð−NÞ2
M2

�
v4

þ 22ðaNÞð−NÞ
3M3

v5 þOðv6Þ: ð52Þ

In the above expression, interestingly, the contribution from
the NUT charge appears prior to the angular momentum
of the black hole for all the three observables. For example,
in the expression for energy radiated away by gravitational
waves, the NUT charge contributes in 2 PN order, while the
angular momentum starts contributing from the 2.5 PN
term. This suggest that the NUT charge will contribute at a
leading order compared to the angular momentum of the
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black hole and hence can be used to provide stringent
constraint on the NUT parameter. In particular, the 2 PN
and the 2.5 PN terms will become comparable, if the NUT
charge and the rotation parameter satisfy the following
relation: ðN=MÞ2 ∼ ða=MÞv. As we will show later, the
ratio (N=M) is always much smaller, compared to (a=M)
and hence the effect of rotation is always larger.
These expressions are in terms of the hairs of the Kerr-

NUT black hole spacetime. However, the hairs can be
identified with various orders of mass and spin multipole
moments of the Kerr-NUT black hole spacetime, starting
from (46). This provides the general PN expansion of the
observables associated with the gravitational wave emis-
sion from the inspiral of a compact object around a central
massive object, which is not reflection symmetric about the
equatorial plane as

ΔEGW ¼ v2

3
þ
�
−
1

2
−

4S20
9M2

�
v4 þ 20S1

9M2
v5

þ
�
−
27

8
þM2

M3
−
2S20
M2

�
v6 þOðv7Þ; ð53Þ

Ωr

Ω
¼

�
3þ S20

M2

�
v2 −

4S1
M2

v3 þ
�
9

2
−
19S40
M4

−
3M2

2M3

�
v4

þ
�
10S0M1

3M3
−
10S1
M2

�
v5 þOðv6Þ; ð54Þ

Ωθ

Ω
¼ −

2S20
M2

v2 þ 2S1
M2

v3 þ
�
22S40
3M4

þ 3M2

2M3
þ 8S20

M2

�
v4

þ 22S0M1

3M3
v5 þOðv6Þ: ð55Þ

Note that in the above expansion, both the even and
odd orders of mass and spin multipole moments are
present. In addition, if we set the odd mass multipole
moments and even spin multipole moments to be vanish-
ing, we get back the results presented in [39]. Thus, the
above PN expansion of the gravitational wave observ-
ables generalizes the earlier approaches significantly,
by incorporating mass and spin multipole moments of
all orders. Furthermore, the results presented above
are applicable for generic spacetime geometry, which
may or may not admit reflection symmetry about the
equatorial plane.
The above describes the observables associated with the

gravitational waves in the context of the Kerr-NUT black
hole spacetime. As we have observed, breaking of reflec-
tion symmetry has significant effect on the gravitational
wave observables. There are additional multipole moments
in these contexts, which can affect these observables
significantly. In what follows, we will briefly describe
the strategy one may follow in a generic context of which
Kerr-NUT spacetime is just a special case, where both mass

and current multipole moments have even as well as odd
sectors. To elaborate on this, we note that asymptotically, in
the limit of large r, the conformal factor takes the following
form, Ω ¼ r−2; see (19) and (21). In this limit, the
cylindrical coordinates ρ and z introduced in (4) can be
expressed as ρ ¼ r sin θ and z ¼ r cos θ, such that Ω ¼
ðρ2 þ z2Þ−1. Thus, the Ernst potential, defined in (27), can
be expressed in terms of the unphysical potential Φ̄ in the
following form:

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
− Φ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

þ Φ̄
: ð56Þ

As we have demonstrated earlier, various derivatives of the
function Φ̄ yield the multipole moments of various orders.
Also, the stationarity and axisymmetry of the problem
suggests that Φ̄ does not depend on t and ϕ, while it
depends only on the coordinates ρ and z. Since the
multipole moments are coefficients of various powers of
the radial coordinate, we may expand the unphysical
potential Φ̄ as

Φ̄ ¼
X
j;k

ajk
ρjzk

ðρ2 þ z2Þjþk ; ð57Þ

where j and k are both non-negative. Since θ → −θ is a
symmetry of the Kerr-NUT spacetime, as evident from the
metric depicted in (1), the above expansion should also be
invariant under ρ → −ρ. Since under the above trans-
formation of the angular coordinate θ, ρ → −ρ and z → z,
respectively. Thus, the index j should take only even
values. Since the Kerr-NUT spacetime has no reflection
symmetry about the equatorial plane, as described before,
the coefficients ajk have both real and imaginary parts for
even as well as odd values of the index k. This is in
striking contrast with the Kerr spacetime, where the
coefficients ajk are real for even k and are purely
imaginary for odd k. As we will see, this will have major
impact on the dependence of the gravitational wave
observables on the multipolar structure of the Kerr-
NUT spacetime.
Since we know the metric elements near and on the

equatorial plane, it is expected that the coefficients aj0 and
aj1 are well known. Given these coefficients, the rest of
them can be determined using a recursion relation. For an
even integer m, we assume that all the aj0 coefficients for
j ¼ 0; 2;…m and all the aj1 coefficients for j ¼
0; 2;…ðm − 2Þ are known. While for an odd integer m,
all the aj0 and aj1 coefficients with j ¼ 0; 2;…ðm − 1Þ are
known. Then all other coefficients ajk, for jþ k ≤ m can
be determined from the following recursion relation (for a
derivation, see Appendix E):
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ar;sþ2 ¼
1

ðsþ 1Þðsþ 2Þ
�
−ðrþ 2Þ2arþ2;s þ

X
akla�r−k−p;s−l−q½apþ2;q−2ðpþ 2Þðpþ 2 − 2kÞ

þ ap−2;qþ2ðqþ 2Þðqþ 1 − 2lÞ þ apqðp2 þ q2 − 4p − 5q − 2pk − 2ql − 2Þ�
�
: ð58Þ

Since the symmetry of the metric under the transformation
θ → −θ must be respected, the integers r, k, and p must
be even. In addition, we must have the following restric-
tions, 0 ≤ k ≤ r, 0 ≤ l ≤ ðsþ 1Þ, 0 ≤ p ≤ ðr − kÞ,
and −1 ≤ q ≤ ðs − lÞ. Using these restrictions, it follows
that the above recursion relation demands expressibility
of ar;sþ2 in terms of all the aj0 and aj−1;1 coefficients,
respectively.
The determination of the coefficients aj0 and aj1 follows

from the observables ΔEGW, Ωρ, and Ωz, respectively.
However, unlike the reflection symmetric case, here all the
coefficients will have both real and imaginary parts. Then
the multipole moments can be related to these coefficients
by various derivatives of the unphysical potential Φ̄. Here
also, we have

a0l ¼ Ml þ iSl þ lower order moments: ð59Þ

Note that in the reflection symmetric case, a0l is real for
even l and is purely imaginary for odd l. While in the
present context, a0l has both real and imaginary parts for
all possible values of l and is consistent with the earlier
discussions. Thus, the mass and spin multipole moments
exist at all orders. This finishes our discussion of relating
the gravitational wave observables with multipole moments
of the central massive object, which is not symmetric about
the equatorial plane, for an binary of incomparable masses.
We will now describe the constraints on the NUT charge
using the nonexistence of circular orbits on the equatorial
plane in the presence of NUT charge.

B. Circular orbits on the equatorial plane:
Constraints on the NUT charge

The formalism presented in the previous section helped
us to obtain the energy radiated in the form of gravitational
waves as well as the precession frequencies in the case of
an incomparable binary. As we have emphasized, there are
significant departures of these results from the standard
expectations (with the case of the Kerr black hole at the
back of the mind) due to the presence of the NUT charge.
This is because in the presence of the NUT charge, the mass
and the spin multipole moments of all orders are present.
This leads to additional terms in the gravitational wave
observables, e.g., energy radiated by the binary system,
which have direct observable consequences. However, one
crucial assumption that has gone into the above computa-
tion is that the orbits are (nearly) circular and confined on
the equatorial plane. This assumption is easily seen to be

valid in the case of Kerr spacetime; however, for the Kerr-
NUT geometry, this is no longer true. In particular, one can
demonstrate that for generic initial data, there are no
circular timelike geodesics that can exist on the equatorial
plane [35,38]. Therefore, the computation presented above,
without addressing this subtlety would be erroneous, which
we aim to address in this section.
Despite having several intriguing properties, thereby

modifying the multipole moments in a nontrivial manner,
the presence of the NUT charge also results into a
problematic feature regarding the orbital dynamics on
the equatorial plane. As it was pointed out in Ref. [35],
and later in Ref. [38], there exists no stable circular timelike
geodesic on the equatorial plane of a Kerr-NUT spacetime.
This becomes a major hindrance to extend the formalism
presented in [39], as it had been built upon the assumption
of existence of circular orbits on the equatorial plane. This
formalism proposed a unique mechanism to relate the
multipole moments with energy radiation and precession
frequencies—making it an important tool to investigate
evolution of a binary especially discussing extreme mass
ratio inspiral. However, the vast assumptions of equatorial
and circular geodesics make this formalism somewhat
restricted to realistic astrophysical events.
To understand the problem associated with the existence

of circular orbits on the equatorial plane, let us start by
assuming that such a circular orbit does exist. This implies
that the trajectory is given by r ¼ rc and θ ¼ ðπ=2Þ, where
rc is the radius of the circular orbit on the equatorial plane.
For the circular orbit to continue remain circular on the
equatorial plane, it is necessary that _r ¼ ̈r ¼ 0 as well as
_θ ¼ 0 ¼ θ̈. Here “dot” denotes the differentiation of the
geometrical quantity, with respect to the proper time τ. For
Kerr black hole, one can immediately check that these
conditions are identically satisfied. On the other hand, in
the presence of the NUT charge, the condition _θ ¼ 0
determines the Carter constant to be nonzero and equal
to N2; thus, following [38], one can immediately demon-
strate that θ̈ ≠ 0 (see Appendix D for a detailed derivation).
This implies that even if one starts with a planner orbit, the
particle will eventually move out of the equatorial plane at a
later instant of time in the presence of the NUT charge.
Therefore, timelike circular orbits are unlikely to appear on
the equatorial plane of the Kerr-NUT black hole. Even then
the calculation presented above makes complete sense.
This is because there are two time scales associated with
this problem—(i) the time in which the particle goes
sufficiently away from the equatorial plane and (ii) the

MULTIPOLE MOMENTS OF COMPACT OBJECTS WITH NUT … PHYS. REV. D 102, 124058 (2020)

124058-13



time scale over which the loss due to gravitational radiation
is significant. If the particle remains confined to the
equatorial plane or to its immediate vicinity for an interval
of time, which is sufficiently long for the amount of emitted
gravitational radiation to be significant, the above analysis
will be directly applicable. As we demonstrate below, for
small enough NUT charge (more quantitative estimation of
the smallness of the NUT charge will be provided shortly),
such a scenario indeed exists.
Let us consider an example in which a particle starts

orbiting the central massive object in a circular trajectory
on the equatorial plane. Assuming that the geometry of
the central object is described by the Kerr-NUT spacetime,
we set the Carter constant to be, λ ¼ N2; therefore, the
previous discussion suggests _θ identically vanishes, but θ̈
does have a nonzero value (see, e.g., D). A nonzero θ̈would
change _θ and then θ—finally, the particle will move away
from the equatorial plane. The question is how quick is this

process involving departure from the equatorial plane. To
study the evolution of the particle as it starts on the
equatorial plane, we employ the Euler method [60] to
integrate the geodesic equations in the Kerr-NUT black
hole spacetime. With the standard expressions for _θ and θ̈
to leading order, we may assume the evolution equations
are given as follows:

_θnew ¼ _θold þ ðd2θ=dτ2Þoldδτ;
θnew ¼ θold þ ðdθ=dτÞoldδτ; and

tnew ¼ told þ U tδτ; ð60Þ

where U t is the t-component of the 4-velocity of the
orbiting particle. This can be written in terms of the energy
E and the momentum Lz as follows:

U t ¼ −gttEþ gtϕLz; ð61Þ

FIG. 1. The above figures capture the angular deviation of the orbit from the equatorial plane for various values of the NUT parameter
and for different radii of the circular orbit. For the solid curve in the above figures, the radius of the circular orbit rc is taken to be 50M,
while for the dashed curve rc is 40M. Given that the NUT charge and the radius of the orbit are responsible for this off-equatorial plane
motion—lesser the NUT charge and larger the radius, lesser is the angular deviation. See text for more discussion.
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where gtt and gtϕ are the metric components of the Kerr-
NUT black hole spacetime. The other notations, such as
“old” and “new,” introduced in (60) are given for past and
future step differing by the proper time interval δτ,
respectively, while iterating for the numerical analysis.
We assume that the particle starts at τ ¼ 0, and the circular
orbit can have a radius of rc ∼Oð50MÞ. Using these initial
conditions, we determine the orbit at a later instant by
solving the geodesic equations numerically. The outcome
of such a numerical analysis has been depicted in Fig. 1,
which shows an interesting behavior. As evident, the orbits
slowly evolve away from the equatorial plane and start to
oscillate about another planar section, different from
θ ¼ ðπ=2Þ. Interestingly, this oscillation does not decay
in time, rather the orbit keeps oscillating with a constant
amplitude. The amplitude depends crucially on the value
of the NUT parameter, and for larger values of the NUT
charge the amplitude increases, thereby affecting the
deviation from the equatorial plane. For example, in
Fig. 1(a), the deviation from the equatorial plane has been
plotted for N ¼ 10−2M, and as one can clearly observe, the
angular deviation becomes Δθ ≈ 0.3°. On the other hand,
for the case N ¼ M, given in Fig. 1(c), the deviation from
the equatorial plane becomes large, asΔθ ≈ 20°. Therefore,
for a sufficiently small value of the NUT parameter,
possibly with ðN=MÞ < 10−2, the formalism developed
in the earlier section will be highly appropriate. Thus, there
exists a range of the NUT charge, for which the particle
almost remains confined to the equatorial plane and hence
the earlier discussion comes to life. The other important
factor which also contributes to the deviation of the orbit
from the equatorial plane is the radius of the circular orbit.
As all the plots in Fig. 1 demonstrate, for a larger radius, the
angular deviation is smaller compared to an orbit of smaller
radius. This can also be understood from (49), which relates
the angular frequency with the radius of the circular orbit
and the NUT charge. Since the orbits with larger radius
describe the early phase of a binary inspiral, while smaller
radius corresponds to a binary at the late stage of the
inspiral, we can safely state that the formalism presented
here is suitable to describe the early phase of the evolution
of a binary system, with the massive object described by the
Kerr-NUT geometry with ðN=MÞ < Oð10−2Þ.
This shows that even though in the PN expansion of the

observables, the NUT charge appears at a lower PN order
than the rotation parameter, it is the rotation parameter
which will dominate the picture. As emphasized earlier,
the contribution from the NUT charge and the rotation
parameter will be comparable if ðN=MÞ2 ∼ ða=MÞv. Thus,
for the typical choice of the NUT charge, consistent with
the quasicircular orbit on the equatorial plane, we have
ðN=MÞ ∼ 10−3. A typical rotation parameter will have the
following estimation, ða=MÞ ∼ 0.1, such that the effect
from the NUT charge and rotation will be comparable
for v ∼ 10−5. This corresponds to typical velocity of an

inspiraling system and hence for all practical purposes, the
NUT charge and the rotation parameter contribute equally
to the gravitational radiation. An identical consideration
applies to other observables as well. Therefore, a proper
analysis of the inspiral part of the merger events seen in
Advanced LIGO experiment can be used to provide bound
on the NUT charge, which we leave for the future.

V. CONCLUSION

In this work, we have discussed the multipolar structure
of the Kerr-NUT spacetime, which has enabled us to
address some of the theoretical and observational impli-
cations pertaining to it. Given the not-so-obvious result that
asymptotically the Kerr-NUT spacetime does not reduce to
flat spacetime metric ημν, one may argue that the Geroch-
Hansen formalism is probably not applicable to derive the
multipole moments of Kerr-NUT spacetime. However, as
discussed in Sec. II (see also [57]), the asymptotic limit of
the Kerr-NUT spacetime is nontrivial, since even though
the Kerr-NUT spacetime does not reduce to flat spacetime
metric, the spacetime curvature vanishes asymptotically
∼Oð1=r3Þ. Due to this property, as we have explicitly
demonstrated, it is possible to obtain a lower dimensional
submanifold, which is asymptotically flat. This has enabled
us to apply the Geroch-Hansen formalism to derive the
multipole moments of the Kerr-NUT spacetime. In addi-
tion, the fact that the Kerr-NUT spacetime is vacuum has
also aided us in the quest to find multipole moments of this
spacetime by providing the twist potential.
Having derived the twist potential as well as asserting the

asymptotic flatness of the lower dimensional submanifold,
the derivation of the multipole moment follows from the
tensorial recursion relation derived in [14–16]; see also
[59]. However, in the presence of stationarity and axisym-
metry, the above tensorial recursion relation can be reduced
to a scalar recursion relation and hence it follows that the
multipole moments can be derived by taking recurrent
derivatives of an appropriate scalar function. Following this
analysis, we have explicitly derived the multipole moments
of the Kerr-NUT spacetime and it has been presented in
(46), depicting our final result. It turns out in the limit of
vanishing NUT charge, the multipole moments reduce to
that of Kerr spacetime. However, in striking contrast to Kerr
spacetime, for Kerr-NUT spacetime both mass and spin
multipole moment of all orders exist. For example, the
zeroth order spin multipole moment is given by the NUT
charge N, while the first order mass multipole moment is
given by Na. While for vanishing NUT charge, all of these
terms identically vanish. It is quite remarkable to witness
how the addition of a nonzero NUT charge changes the
multipolar structure of spacetime, though the expression for
the multipole moments remains compact and is consistent
with an intuitive picture. As we have explored further, it
turns out that nonvanishing of all the mass and spin
multipole moments for Kerr-NUT spacetime is a feature
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and not a bug, which is intimately connected with the
asymmetry of the Kerr-NUT spacetime about the equatorial
plane. Besides, the expression for multipole moments is
also consistent with the duality symmetry of the Kerr-NUT
spacetime, namely, the multipole moments with N ¼ 0
are identical to the multipole moments with M ¼ 0,
modulo a negative sign, under the following transforma-
tion,M ↔ iN. This provides an overview of the theoretical
computations associated with the multipole moments of the
Kerr-NUT spacetime, which we have applied to the context
of gravitational wave observations.
The observational aspects of this work stem from the

analysis of the multipolar structure of the Kerr-NUT
spacetime. In particular, we have studied the inspiral phase
of a binary system with incomparable masses, using which
one can relate the multipole moments of the central massive
object with the gravitational wave observables like the
radiated energy and the precession frequencies. Due to
the nonvanishing contributions from the odd mass and even
spin moments, it is likely that the gravitational wave
observable would also contain their imprints. This is what
we have achieved in this work, i.e., we have expressed the
energy radiated by the gravitational waves as well as
precession frequencies of the inspiraling object about the
circular orbit on the equatorial plane in terms of all the
multipole moments, including odd mass moments and even
spin moments. Interestingly, the zeroth order spin moment
appears at a leading order PN coefficient than the first order
spin moment, as expected. For the Kerr-NUT spacetime,
this translates into the fact that the NUT charge appears at a
lower PN order than the rotation parameter and hence has
significant influence on these observables.
However, the above result is based on the existence of

quasicircular orbits on the equatorial plane, which is not
possible on the Kerr-NUT spacetime. In order to circum-
vent this issue, we have attempted to estimate how the value
of NUT charge affects the departure of the circular orbit
from the equatorial plane. As we have noticed in Fig. 1,
with an increase in the value of the NUT charge, the angular
deviation from the equatorial plane also increases, render-
ing the above analysis inappropriate. Our analysis suggests
that the NUT charge should always satisfy the following
bound ðN=MÞ < Oð10−2Þ in order to claim that the orbits
are confined mostly on the equatorial plane and hence the
above analysis can be carried out. In addition, we observe
that circular orbits with larger radius have a smaller
deviation from the equatorial plane compared to a circular
orbit with smaller radius. This is expected, since an orbit
with a larger radius describes an early phase of the inspiral
and likely to have less interaction with the NUT charge,
compared to a later stage of the inspiral. To point out
another key aspect of our findings, we notice that even
though the NUT charge appears at a lower PN order than
the rotation parameter, due to the smallness of the ratio
(N=M), for most of the astrophysical situations the

contribution from the NUT charge will be comparable or
smaller compared to the rotation parameter. We have also
provided an algorithm to read of the multipole moments
from the gravitational wave observables. It would be
interesting to derive the PN expansion of the observables
to higher orders using the above algorithm. This would
enable us to determine the effect of asymmetry about the
equatorial plane from the gravitational wave observables and
hence can provide further constraints on the NUT charge.
This will also facilitate further constraint on the NUT charge
using the inspiral part of the data from the binary black hole
merger events in LIGO. These we leave for the future.
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APPENDIX A: FROM SPHERICAL TO
CYLINDRICAL COORDINATE SYSTEM

The Kerr-NUT spacetime in the spherical coordinate
system ðt; r; θ;ϕÞ is well known. In this Appendix, we will
demonstrate how the Kerr-NUT metric in the cylindrical
coordinate system can be determined. The key to this
transformation is (4). The idea is to find the coordinates
ðρ; zÞ, such that the Kerr-NUT metric in ðt; r; θ;ϕÞ coor-
dinate system expressed in (1) can be written as (4).
Equating gtt and gtϕ components of (1) and (4), we obtain

F ¼ Δ − a2sin2θ
Σ2

; ω̄ ¼ ΔP − asin2θðr2 þ a2 þ N2Þ
Δ − a2sin2θ

:

ðA1Þ

Therefore, by equating the gϕϕ component in (1) with that
in (4), we obtain the following relation:

ðr2 þ a2 þ N2Þ2 sin2 θ − ΔP2

Σ2

¼ ρ2Σ2

Δ − a2 sin2 θ
−
Δ − a2 sin2 θ

Σ2

×
�
ΔP − a sin2 θðr2 þ a2 þ N2Þ

Δ − a2 sin2 θ

�
2

: ðA2Þ

The above equation can be rewritten and the cylindrical
coordinate ρ can be related to the spherical coordinates
ðr; θÞ as
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ρ2 ¼ Σ−4fðΔ − a2 sin2 θÞ½ðr2 þ a2 þ N2Þ2 sin2 θ − ΔP2�
þ ½ΔP − a sin2 θðr2 þ a2 þ N2Þ�2g;

¼ Δ sin2 θ: ðA3Þ

Let us now work out the connection between the other
cylindrical coordinate z and the spherical coordinates
ðr; θÞ. For this purpose, we assume the following decom-
position z ¼ fðrÞ cos θ and hence express the following
combination in the spherical coordinates:

dρ2 þ dz2 ¼
� ffiffiffiffi

Δ
p

cos θdθ þ sin θ
Δ0

2
ffiffiffiffi
Δ

p dr

�
2

þ ð−f sin θdθ þ f0 cos θdrÞ2;

¼
�
Δ02

4Δ
sin2 θ þ f02 cos2 θ

�
dr2

þ ðΔ cos2 θ þ f2 sin2 θÞdθ2

þ 2 sin θ cos θ

�
Δ0

2
− ff0

�
drdθ: ðA4Þ

Comparison with (1) suggests that coefficient of the drdθ
term must vanish, which yields Δ0 ¼ 2ff0, which can be
integrated, yielding fðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2Mrþ C

p
, where C is a

constant of integration. For consistency of the grr and gθθ
components with the metric presented in (1), we obtain
C ¼ M2 and hence, z ¼ ðr −MÞ cos θ. These are the two
transformation relations used in (3).

APPENDIX B: EXISTENCE OF THE TWIST
POTENTIAL FOR VACUUM SPACETIMES

In this Appendix, we will demonstrate that in vacuum
spacetimes there always exists a twist potential ω, arising
out of the twist vector field ωμ defined in (8). As
emphasized before, the existence of the twist potential ω
demands the following form for the twist vector field ωμ,
namely, ωμ ¼ ∇μω. To see that this is really the case,
we need to establish that, ∇½μων� ¼ 0. To prove the same,
we start with the following relation:

∇½μων� ¼
1

2
ð∇μων −∇νωμÞ

¼ 1

2
ðδαμδβν − δανδ

β
μÞ∇αωβ ¼

1

4
ϵμνρσϵ

αβρσ∇αωβ; ðB1Þ

where in the last line we have used the properties of the
Levi-Civita symbol ϵμναβ appropriately. Following the
definition of the twist vector field ωμ, as in (8), we can
simplify the term ϵρσαβ∇αωβ as follows:

ϵρσαβ∇αωβ ¼ ϵρσαβ∇α



ϵβησδξ

η
ðtÞ∇σξδðtÞ

�

¼ ϵρσαβϵβησδ∇α



ξηðtÞ∇σξδðtÞ

�
: ðB2Þ

By using the properties of the Levi-Civita tensor and the
fact that ξαðtÞ is a Killing vector field, we can express the

above relation as

ϵρσαβ∇αωβ ¼ −2f∇αðξαðtÞ∇ρξσðtÞÞ þ∇αðξσðtÞ∇αξρðtÞÞ
þ∇αðξρðtÞ∇σξαðtÞÞg: ðB3Þ

The above expression can be further simplified using the
properties of the Killing vector field ξαðtÞ, e.g., we have the
following identity:

∇αðξαðtÞ∇ρξσðtÞÞ ¼ ð∇αξ
α
ðtÞÞð∇ρξσðtÞÞ þ ξαðtÞð∇α∇ρξσðtÞÞ ¼ 0;

ðB4Þ

where we have used the result∇αξ
α
ðtÞ ¼ 0 and the following

identity:

∇α∇βξ
ðtÞ
ρ ¼ −Rα

σβρξ
σ
ðtÞ; ðB5Þ

as well as the antisymmetry of the Riemann tensor in the
first two indices. Therefore, (B3) simplifies to the following
form:

ϵρσαβ∇αωβ ¼ −2f∇αðξσðtÞ∇αξρðtÞÞ þ∇αðξρðtÞ∇σξαðtÞÞg: ðB6Þ

Expanding out the derivatives and using the relation

∇μξ
ðtÞ
ν þ∇νξ

ðtÞ
μ ¼ 0, we obtain

ϵρσαβ∇αωβ ¼ −2fξσðtÞ∇αð∇αξρðtÞÞ þ ξρðtÞ∇αð∇σξαðtÞÞg;
¼ 2fξσðtÞRρ

αξαðtÞ − ξρðtÞR
σ
αξ

α
ðtÞg; ðB7Þ

where in arriving at the last line we have used (B5).
Therefore, (B1) simplifies to

∇½μων� ¼
1

2
ϵμνρσfξσðtÞRρ

αξαðtÞ − ξρðtÞR
σ
αξ

α
ðtÞg ¼ ϵμνρσξ

σ
ðtÞR

ρ
αξαðtÞ:

ðB8Þ

Therefore, for the vacuum solutions and for maximally
symmetric spacetimes, the above expression identically
vanishes, thereby ensuring the existence of the twist
potential ω.
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APPENDIX C: CONNECTION WITH THORNE’S FORMALISM

In this section, we expand the g00 and g0ϕ components of the Kerr-NUT metric in an asymptotic series, from which the
initial multipole moments can be determined. Following [17], we introduce the tetrads, eμ0 ¼ ∂t and e

μ
ϕ ¼ ðr sin θÞ−1∂ϕ, and

hence we have the following asymptotic expansion for the metric coefficients:

g00 ¼ eμ0e
ν
0gμν ¼ −

Δ − a2sin2θ
Σ2

¼ −r2 þ 2Mr − a2cos2θ þ N2

r2 þ ðN þ a cos θÞ2

¼
�
−1þ 2M

r
−
a2cos2θ

r2
þ N2

r2

��
1þ ðN þ a cos θÞ2

r2

�−1

¼
�
−1þ 2M

r
−
a2cos2θ

r2
þ N2

r2

��
1 −

ðN þ a cos θÞ2
r2

þ ðN þ a cos θÞ4
r4

�

¼ −1þ 2M
r

þ 2Na cos θ þ 2N2

r2
−
2MðN þ a cos θÞ2

r3
−
a2N2cos2θ

r4
þO

�
1

r5

�
; ðC1Þ

as well as

g0ϕ ¼ gtϕ
r sin θ

¼ ΔP − asin2θðr2 þ a2 þ N2Þ
r sin θΣ2

¼ ðr2 − 2Mrþ a2 − N2Þðasin2θ − 2N cos θÞ − asin2θðr2 þ a2 þ N2Þ
r sin θΣ2

¼ ð−2Mr − 2N2Þasin2θ − 2Nðr2 − 2Mrþ a2 − N2Þ cos θ
r3 sin θ

�
1þ ðN þ a cos θÞ2

r2

�−1

¼ 1

r2

��
−2M −

2N2

r

�
a sin θ − 2N

�
r − 2M þ a2 − N2

r

�
cot θ

��
1 −

ðN þ a cos θÞ2
r2

þ ðN þ a cos θÞ4
r4

�

¼ −
2N cot θ

r
−
2Ma sin θ þ 4NM cot θ

r2
þO

�
1

r3

�
: ðC2Þ

These expressions have been referred to in the main text while relating the multipole moments from the Geroch-Hansen
formalism with the Thorne’s formalism.

APPENDIX D: EXPRESSIONS FOR THE CIRCULAR ORBITS ON THE EQUATORIAL PLANE

In order to derive the following results, we have employed the notations and expressions given in [38]. From Eq. [12] of
[38], the expression of _θ is given as follows:

_θ ¼ fλ2sin2θ þ ðLz − aEÞ2 − ðaEsin2θ − 2l cos θÞ − LzÞ2 − sin2θðlþ a cos θÞ2ÞÞg1=2
sin θ½r2c þ ðlþ a cos θÞ2� ; ðD1Þ

where, rc, λ, E, Lz have the usual meaning of radius of the orbit, Carter constant, energy, angular momentum associated with
the orbit. By differentiating with the proper time, we obtain θ̈ and is given by

θ̈ ¼ 1

½r2c þ ðlþ a cos θÞ2�3 f−4rcð−ðLz − aEÞ2ðr2c − 2Mrc þ a2 − l2Þ þ ððr2c þ a2 þ l2ÞE − aLzÞ2

− ðr2c − 2Mrc þ a2 − l2Þðr2c þ λÞÞ þ ðr2c þ ðlþ a cos θÞ2Þ½2ðLz − aEÞ2ðM − rcÞ
− 2rcðr2c − 2Mrc þ a2 − l2Þ þ 4ErcðEðr2c þ a2 þ l2Þ − aLzÞ þ 2ðM − rcÞðr2c þ λÞ�g: ðD2Þ

From the condition of timelike circular orbit, i.e., _r ¼ ̈r ¼ 0, the expression for energy is given as (Eq. [39] in [38])

Eþ
c ¼ ð1þ l2u2cÞ−1½1þ l2u2c − 2Mucð1þ l2u2cÞ − a2u2cð1þ λu2cÞ þ au3=2c K1=2�fZcþð1þ l2u2cÞg−1=2; ðD3Þ
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where we assume the orbit to be corotating and uc ¼ 1=rc.
The expression for angular momentum is given as

Lz ¼ aEþ xcþ: ðD4Þ
The expression for xcþ is given by

xcþ ¼ −
1

ucZcþ1=2

1þ λu2c
ð1þ l2u2cÞ1=2

fa ffiffiffiffiffi
uc

p
− ð1þ λu2cÞ−1K1=2g;

ðD5Þ
where Zcþ and K have the following expressions:

Zcþ ¼ ð1þ l2u2cÞ−1½f1 − l4u4c þMucðl4u4c − 2l2u2c − 3Þ
− 2a2u2cð1þ λu2cÞg þ 2au3=2c K1=2� ðD6Þ

and

K ¼ Mð1þ l2u2cÞf1þ 3λu2c − 3l2u2c − λl2u4cg
þ ucf2l2 − λþ l4u2cð2þ u2cλÞ þ a2ð1þ λu2cÞ2g:

ðD7Þ

APPENDIX E: DERIVING THE RECURSION
RELATION

In this Appendix, we will derive the recursion relation
relevant for obtaining the multipole moments from the
gravitational wave observations. In this context, the Ernst
potential ε, defined in (25), plays an important role, as it
satisfies the following differential equation (see [61]):

∇2ε ¼ 1

λ
ð∇εÞ · ð∇εÞ; ðE1Þ

where the differential operator ∇ is the three-dimensional
directional derivative on the manifoldM3. Arising out of the
Ernst potential is the quantityΦ, defined in (26), which plays
a central role in the analysis of the multipole moments. The
differential equation satisfied by the potential Φ can be
determined along the following lines. First of all,

∇2Φ ¼ ∇2

�
1 − ε

1þ ε

�
¼ −2

∇2ε

ð1þ εÞ2 þ
4∇ε · ∇ε
ð1þ εÞ3 : ðE2Þ

By using (E1), the above equation can be rewritten as
follows:

∇2Φ ¼ −
2

λ

∇ε · ∇ε
ð1þ εÞ2 þ

4∇ε · ∇ε
ð1þ εÞ3

¼ −
2

λ

∇ε · ∇ε
ð1þ εÞ3 ð1þ ε − 2λÞ

¼ −
ð1þ λþ iωÞð1 − λþ iωÞ

2λ
ð∇Φ · ∇ΦÞ: ðE3Þ

In arriving at the last line, we have used the following result:

∇Φ ·∇Φ¼
�
−∇ε
1þ ε

−
1− ε

ð1þ εÞ2∇ε
�
·

�
−∇ε
1þ ε

−
1− ε

ð1þ εÞ2∇ε
�

¼ 4

ð1þ εÞ4 ð∇ε ·∇εÞ: ðE4Þ

Besides, we can also have the following result related to the
Φ and its complex conjugate Φ�:

ðΦΦ�Þ−1 ¼ ð1þ λþ iωÞð1þ λ − iωÞ
ð1 − λ − iωÞð1 − λþ iωÞ ¼ ð1þ λÞ2 þ ω2

ð1 − λÞ2 þ ω2
;

ðE5Þ

which upon further simplification yields

ΦΦ� − 1 ¼ −4λ
ð1þ λÞ2 þ ω2

: ðE6Þ

Thus, we immediately obtain

2Φ�

jΦj2 − 1
¼ 2ð1 − λþ iωÞð1þ λþ iωÞ

−4λ
: ðE7Þ

Therefore, (E3) becomes

∇2Φ ¼ 2Φ�

jΦj2 − 1
∇Φ · ∇Φ; ðE8Þ

which is the desired differential equation for Φ. However, it
is often advantageous to introduce a set of new coordinates ρ̃
and z̃ from the old cylindrical coordinates ðρ; zÞ introduced
in (4), such that

ρ̃ ¼ ρ

ρ2 þ z2
; z̃ ¼ z

ρ2 þ z2
; r̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̃2 þ z̃2

q
: ðE9Þ

Asymptotically, ρ̃ and z̃ coincide with the ρ̄ and z̄ defined in
(29). Thus, the unphysical potential becomes Φ̄ ¼ Φ=

ffiffiffiffi
Ω

p ¼
ð1=r̃ÞΦ and it satisfies the following differential equation:

ðr̃2Φ̄Φ̄� − 1Þ∇2Φ̄

¼ 2Φ̄�½r̃2ð∇Φ̄Þ2 þ 2r̃ Φ̄∇Φ̄ · ∇r̃þ ð∇r̃Þ2Φ̄2�: ðE10Þ

From (57), the expansion of the unphysical potential Φ̄ in the
new ðρ̃; z̃Þ coordinate system is given by

Φ̄ ¼
X
i¼0
j¼0

aijρ̃iz̃j: ðE11Þ

This expansion must be substituted in (E10) in order to
determine the coefficients aij. In the coordinate system
ðρ̃; z̃;ϕÞ, we obtain the following expression for the
Laplacian operator on the three-dimensional manifold M3:
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∇2Φ̄ ¼ e−2γ
�
∂2
ρ̃Φ̄þ 1

ρ̃
∂ ρ̃Φ̄þ ∂2

z̃Φ̄
�
; ðE12Þ

where ∂2
ϕΦ̄ term is absent as Φ̄ is independent of the

coordinate ϕ, thanks to the axisymmetry of the compact
object. Substituting (E11) in the above expression, we obtain

∇2Φ̄ ¼ e−2γ
�X

i¼2
j¼0

iði − 1Þaijρ̃i−2z̃j þ
X
i¼1
j¼0

iaijρ̃i−2z̃j

þ
X
i¼0
j¼2

jðj − 1Þaijρ̃iz̃j−2
�
: ðE13Þ

In addition, we also have the following relations in the three-
dimensional manifold M3, which take the following forms:

∇Φ̄ · ∇Φ̄ ¼ e−2γ½ð∂ ρ̃Φ̄Þ2 þ ð∂ z̃Φ̄Þ2�

∇Φ̄ · ∇r̃ ¼ e−2γ
�
ρ̃

r̃
∂ ρ̃Φ̄þ z̃

r̃
∂ z̃Φ̄

�

∇r̃ · ∇r̃ ¼ e−2γ: ðE14Þ

Therefore, we can write (E10) as follows:

½ðρ̃2 þ z̃2ÞΦ̄Φ̄� − 1�
�
∂2
ρ̃Φ̄þ 1

ρ̃
∂ ρ̃Φ̄þ ∂2

z̃Φ̄
�

¼ 2Φ̄�½ðρ̃2 þ z̃2Þfð∂ ρ̃Φ̄Þ2 þ ð∂ z̃Φ̄Þ2g
þ 2Φ̄fρ̃∂ ρ̃Φ̄þ z̃∂ z̃Φ̄g þ Φ̄2�; ðE15Þ

which can be rewritten as

∂2
ρ̃Φ̄þ 1

ρ̃
∂ ρ̃Φ̄þ ∂2

z̃Φ̄

¼ ðρ̃2 þ z̃2ÞΦ̄Φ̄�
�
∂2
ρ̃Φ̄þ 1

ρ̃
∂ ρ̃Φ̄þ ∂2

z̃Φ̄
�
− 2Φ̄�½ðρ̃2 þ z̃2Þfð∂ ρ̃Φ̄Þ2 þ ð∂ z̃Φ̄Þ2g þ 2Φ̄fρ̃∂ ρ̃Φ̄þ z̃∂ z̃Φ̄g þ Φ̄2�: ðE16Þ

Using the expansion of Φ̄ and (E13), the above differential equation becomes

X
p;q

apqpðp − 1Þρ̃p−2z̃q þ
X
p;q

apqpρ̃p−2z̃q þ
X
p;q

apqqðq − 1Þρ̃pz̃q−2

¼ ðρ̃2 þ z̃2Þ
X

akla�mnρ̃
kþmz̃lþn

�X
apqpðp − 1Þρ̃p−2z̃q þ

X
apqpρ̃p−2z̃q þ

X
apqqðq − 2Þρ̃pz̃q−2

�

− 4
X

akla�mnρ̃
kþmz̃lþn

�X
apqpρ̃pz̃q þ

X
apqqρ̃pz̃q

�
− 2

X
akla�mnapqρ̃kþmþpz̃lþnþq

− 2
X

a�mnρ̃
mz̃nðρ̃2 þ z̃2Þ

��X
apqpρ̃p−1z̃q

�
×

�X
aklkρ̃k−1z̃l

�

þ
�X

apqqρ̃pz̃q−1
��X

akllp̃kz̃l−1
��

: ðE17Þ

The above equation can be simplified further by renaming the indices appropriately, which yields

X
apþ2;qρ̃

pz̃qðpþ 2Þ2 þ
X

ap;qþ2ðqþ 2Þðqþ 1Þρ̃pz̃q

¼
X

akla�mnρ̃
kþmz̃lþn

�X
apqp2ðρ̃pz̃q þ ρ̃p−2z̃qþ2Þ þ

X
apqqðq − 1Þðρ̃pþ2z̃q−2 þ ρ̃pz̃qÞ

�

− 4
X

akla�mnρ̃
kþmz̃lþn

�X
papqρ̃pz̃q þ

X
qapqρ̃pz̃q

�
− 2

X
akla�mnapqρ̃kþmþpz̃lþnþq

− 2
X

a�mnρ̃
mz̃nðρ̃2 þ z̃2Þ

�X
pkapqaklρ̃pþk−2z̃lþq þ

X
lqapqaklρ̃pþkz̃lþq−2

�
: ðE18Þ

Relabeling the indices and then equating the coefficients of equal powers of ρ̃ and z̃, we obtain the following recursion relation
for determining the coefficients ajk:

SAJAL MUKHERJEE and SUMANTA CHAKRABORTY PHYS. REV. D 102, 124058 (2020)

124058-20



ðrþ 2Þ2arþ2;s ¼ −ðsþ 1Þðsþ 2Þar;sþ2 þ
X

kþmþp¼r
lþnþq¼s

akla�mn½apþ2;q−2ðpþ 2Þðpþ 2 − 2kÞ þ ap−2;qþ2ðqþ 2Þðqþ 1 − 2lÞ

þ apqðp2 þ q2 − 4p − 5q − 2pk − 2ql − 2Þ�; ðE19Þ

which has been used in the main text.
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