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Scalar perturbations around the Kerr black hole in scalar-Einstein-Gauss-Bonnet (SEGB) theory
are studied in the time domain. To overcome the “outer boundary problem” that usually encountered in
traditional numerical calculations, we apply the hyperboloidal compactification technique to perform a
(2þ 1)-dimensional simulation aiming to obtain a precise object picture of the wave propagation under the
scalar field perturbation. We find that the big enough coupling constant between the scalar field and the
Gauss-Bonnet curvature is responsible to destroy the original Kerr black hole. The breakdown of the Kerr
spacetime happens earlier and the instability becomes more violent when the coupling becomes stronger.
We further present object confirmations on the special case for the negative coupling where there exists a
minimum rotation and below which the instability can never happen no matter how strong the coupling is.
We also illustrate the fine structure property in the quasinormal ringing frequency once there is the
coupling, and present the characteristic imprint of the SEGB theory. We expect that such a fine structure can
be detected in the future gravitational wave observation to test the SEGB theory.
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I. INTRODUCTION

In the past few years, because of the great achievements
in observations, especially the first detection of the gravi-
tational wave (GW) [1–3] and the first-ever picture cap-
tured for the black hole [4,5], the study of black hole
physics has entered the golden era. These observations
enable us to test general relativity (GR) in the strong gravity
regime [6–8]. In GR, the Kerr metric describes the most
general black hole spacetime (without charge). Besides
mass and rotation, the Kerr black hole does not have
additional hairs, which is the famous no-hair theorem.
However this no-hair theorem is challenged in the modified
gravity theories (MOGs), where the general hairy rotating
black hole solutions were found [9,10]. More interestingly
it was found that the Kerr solution can also be allowed in
MOGs, although in MOGs the perturbation on the same
Kerr background is in general different from that in GR.
This actually gives a possible way to distinguish MOGs

from GR though the study of perturbation dynamics.
Employing the current available observational constraints,
some MOGs, such as scalar-tensor theory, scalar-Einstein-
Gauss-Bonnet theory (SEGB), dynamical Chern-Simon
gravity (DCSG) and Lorentz-violating gravity (see, e.g.,
[11] for a review) were found viable. It is intriguing to
further disclose the signature of MOGs by uncovering the
objective picture of wave dynamics. This in turn can check
the no-hair theorem and unveil the hairy black holes
imprints. Precise pictures in wave dynamics around hairy
black holes can help understand better physics in MOGs
through future GW detections.
Among MOGs, the SEGB theory has recently attracted a

lot of attentions. In this theory, an additional scalar field
coupling to the Gauss-Bonnet (GB) term is added to the
usual Einstein-Hilbert action. Spherical and axial symmet-
ric black hole solutions in GR were found in the SEGB
theory [12–17]. However, when the coupling between the
scalar field and GB term becomes strong enough, the
effective mass square can become negative in the vicinity of
the black hole horizon, resulting in the tachyonic instability
which leads to the so-called spontaneous scalarization and
the formation of the hairy black holes. The phenomenon of
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spontaneous scalarization was observed a long time ago in
neutron stars, but there the instability is induced by the
surrounding matter instead of the curvature [18]. Hairy
black holes show the signature of MOGs. A lot of efforts
have been devoted to study the physical implications of
these hairy black holes, including black hole shadows [15],
the classical stability [19,20], etc. Results that show
deviations from that of the Kerr solution indicate possible
observational signatures to test SEGB theory in the future.
Perturbations around black holes can reflect character-

istic sounds of black holes which can be recorded by GW
detectors. Studying matter perturbations such as the scalar
field perturbations in the black hole background has both
theoretical and observational interests. Theoretically, it has
been known for a long time that the time evolution of the
perturbations in the black hole background will generally
experience three stages [21]. After the initial pulse, the
perturbation field undergoes the damped oscillations, called
the quasinormal ringing with frequencies and damping
times entirely fixed by the black hole parameters. At late
times, quasinormal oscillations are swamped by the relax-
ation process, which is the requirement of the black hole
no-hair theorem. For more details, please refer to the
reviews [22–25]. The coupling between the scalar field
and GB term must influence the quasinormal modes
(QNMs) and their late time wave dynamics. When the
coupling is strong enough, the QNMs can show its effect
and the late time wave behavior can reflect the destroy of
the GR black hole, because of the tachyonic instability. The
blow up of the perturbation tail illustrates the breakdown
of the no-hair theorem and the birth of the hairy black hole.
In observations, through GW detections, the MOGs can be
confirmed if the signatures of the wave dynamics in SEGB
theory are detected. It is expected that current and further
GW detectors will detect the signatures of the ringdown
and late-time stages [26].
In GR, even for the most general Kerr background,

thanks to the separability of the scalar perturbation equa-
tion, the QNMs have been extensively studied either in the
frequency domain or time domain, for references on this
topic please see [22–25]. However, the situation becomes
more complicated in SEGB, since the scalar perturbation
equation cannot be separated with usual methods. Because
of this reason, in the study of the spontaneously scalarized
Kerr black holes, the objective picture of perturbation wave
dynamics was not presented explicitly in [15] when the
coupling between the scalar field and GB curvature
correction term α > 0. This technical obstacle is common
in MOGs. Fortunately, several methods, mostly numerical,
have been developed in the past few years to deal with such
problems [27–43]. Among them, a general method is to
study the full time evolution of the scalar perturbation by a
(1þ 1)- or (2þ 1)-dimensional simulation. In [44], by
projecting the scalar field onto a basis set of spherical
harmonics to separate the angular dependencies, the

authors considered the case with α < 0 and studied the
time evolution of the scalar perturbation using (1þ 1)-
dimensional simulations. The results show that instability
only occurs at sufficiently high spins ða=M > 1

2
Þ (see also

Ref. [45] for an analytical argument). For a given big
enough spin a, there exists a critical value jαcj, above
which instability occurs. However, jαcj depends on the
parameter a, and in particular it decreases as a is increasing.
Further, these results were confirmed by using the (2þ 1)-
dimensional simulation with a numerical method intro-
duced in [46]. It was shown that the instability with α < 0
leads to the dubbed spin-induced scalarization and the final
hairy black holes can be constructed [16,17]. See also a
related work Ref. [47] concerning the time evolution of a
test and minimally coupled scalar field in this theory.
In available numerical treatments, the tortoise co-

ordinate was utilized to map the radial computational
domain ðrþ;þ∞Þ to ð−∞;þ∞Þ (here rþ is the horizon).
However, Price et al. pointed out that traditional numerical
methods suffer the so-called outer boundary problem [30]:
namely in practical calculations, one has to truncate the
infinite radial computational domain to a finite range and
put boundary conditions (ingoing and outgoing waves at
the horizon and infinity, respectively) at the outer edges,
thus inevitably resulting spurious wave reflections from the
edge which can spoil the evolution of the scalar perturba-
tion at the late time. To overcome this problem, a technique
called hyperboloidal compactification was developed in
[33–40,42], with which the radial computation domain is
mapped to a finite range and the outer boundary conditions
are satisfied automatically. Interestingly, armed with this
numerical strategy, only until recently we obtain a well
understanding on the late-time behaviors of the scalar field
perturbation even for the Kerr black hole [30,48,49]. This
technique has also been successfully applied to study
gravitational waveforms from large- and extreme-mass-
ratio inspirals in the Kerr black hole extracted at null
infinity for the first time [42], and also the full-time
evolution of scalar perturbations in DCSG [50].
It is interesting to further apply the hyperboloidal

compactification technique to study the scalar perturbation
in the SEGB theory when there is coupling between the
scalar field and GB curvature correction. We expect to get a
complete and objective picture on the wave dynamics to
describe precisely the time evolution of the scalar pertur-
bation in the SEGB theory. Such a picture can not only
provide us information about the stability of the black hole,
serving as an independent confirmation of the scalarization
discussions [15,44–46], but it can also present further
imprints on the scalar dynamics, including QNMs and
the late-time behavior influenced by the coupling constant
between the scalar field and GB term. Precise waveforms
can reflect the effect of the coupling α in QNMs and
suggest the potential verification of the SEGB theory. We
will examine the objective picture of the scalar evolution
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with α > 0 as well as α < 0 in the time domain, and obtain
a complete understanding on the effects of the coupling
constant on the scalar wave dynamics.
This paper is organized as follows. In Sec. II, we give

a brief introduction of the SEGB theory and write out
the scalar perturbation equation. In Sec. III, applying the
hyperboloidal compactification technique, we cast the
scalar perturbation equation into a form suitable for
numerical calculations. In Sec. IV, we first check the
validity of the hyperboloidal compactification technique
for the case α ¼ 0, and then we report numerical results for
α > 0 and α < 0, respectively, in SEGB theory. The last
section is devoted to summary and discussions.

II. SCALAR-EINSTEIN-GAUSS-BONNET
THEORY AND SCALAR PERTURBATION

EQUATION

The action of the SEGB theory is [12–15]

S ¼ 1

2κ

Z
dx4

ffiffiffiffiffiffi
−g

p ðR − 2Λþ αLGB þ LΦÞ;

LGB ¼ fðΦÞG;

LΦ ¼ −
1

2
∇μΦ∇μΦ − VðΦÞ;

G ¼ R2 þ RμνρσRμνρσ − 4RμνRμν; ð1Þ

where the scalar field Φ is nonminimally coupled to the
Gauss-Bonnet term G with the coupling constant α. fðΦÞ is
a function of the scalar field and Λ is the cosmological
constant. From the action, one can derive the equations of
motion

∇2Φ ¼ dV
dΦ

− α
df
dΦ

G; ð2Þ

Rμν −
1

2
gμνRþΛgμν ¼ αTGB

μν þ TΦ
μν;

TGB
μν ¼ 2ð∇μ∇νfÞR− 2gμνð∇ρ∇ρfÞR

− 4ð∇ρ∇νfÞRμρ − 4ð∇ρ∇μfÞRνρ

þ 4ð∇ρ∇ρfÞRμν þ 4gμνð∇ρ∇σfÞRρσ

− 4ð∇ρ∇σfÞRμρνσ;

TΦ
μν ¼

1

2
∇μΦ∇νΦ−

1

2
gμνVðΦÞ

−
1

4
gμν∇ρΦ∇ρΦ: ð3Þ

The theory admits GR black hole solutions with constant
scalar profile Φ ¼ Φ0, if

VðΦ0Þ ¼ 0;
dV
dΦ

����
Φ0

¼ 0;
df
dΦ

����
Φ0

¼ 0: ð4Þ

In the following, we will consider a simple case as [15] by
choosing Λ ¼ 0; VðΦÞ ¼ 0 and

fðΦÞ ¼ 1

2β
ð1 − e−βΦ

2Þ; ð5Þ

where β > 0 is a constant.
We are going to study the wave dynamics of scalar field

perturbations on the background of GR black holes in
the linear regime. More precisely, we consider the Kerr
black hole with Φ ¼ 0. The metric in the Boyer-Lindquist
coordinates is

ds2 ¼ −
Δ
Σ
ðdt − a sin2 θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2 θ
Σ

ðadt − ðr2 þ a2ÞdφÞ2; ð6Þ

where Δ≡ r2 − 2Mrþ a2 and Σ≡ r2 þ a2 cos2 θ. In this
case, the scalar perturbation equation (2) in the Kerr
background reduces to

∇2Φ ¼ −αGΦ;

G ¼ −
48M2ð−32r6 þ 48r4Σ − 18r2Σ2 þ Σ3Þ

Σ6
; ð7Þ

where G is valued in the background. As one can see, the
scalar field has an effective mass m2

eff ¼ −αG, which is
position dependent and approaches zero at infinity, with the
sign depending on the coupling constant α. When α ¼ 0,
the above equation describes wave propagations of a free
scalar field in the Kerr background which has been studied
thoroughly [27,28,30]. For α > 0, in the Schwarzschild
background, one has G ¼ 48M2=r6 so that the effective
mass square is always negative, which leads to the
tachyonic instability and the subsequent spontaneous
scalarization. In [12,13] it was found that the instability
occurs when M=ð2 ffiffiffi

α
p Þ≲ 0.587 (note that in [12,13] λ2

was used to represent the coupling constant which is related
to α by λ2 ¼ 4α), and becomes more violent for larger α or
smaller M. However, for a Kerr background, the situation
becomes more complicated, because G is not a monotonic
function so that the effective mass square is not always
negative. How does this effective mass affects the stability
of the Kerr black hole configuration and triggers sponta-
neous scalarization requires careful investigations.
In the following sections, we will study carefully the

time evolution of the scalar perturbation and obtain object
pictures on the influences of the coupling constant α on
wave dynamics in the SEGB theory.

III. SETUP OF THE NUMERICAL METHOD

As mentioned in the introduction, traditional numerical
methods usually encounter the so-called outer boundary
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problem, which can spoil the numerical precision, espe-
cially for the evolution of the scalar perturbation at the
late time [30]. To overcome this problem, we apply the
numerical strategy proposed in [33–40,42] to solve
the scalar perturbation equation (7), which contains two
steps of coordinates transformations mainly. First, we
define the ingoing coordinates ft̃; r; θ; φ̃g through the
following transformation

dt̃ ¼ dtþ 2Mr
Δ

dr; dφ̃ ¼ dφþ a
Δ
dr; ð8Þ

and the metric becomes

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt̃2 −

4aMr
Σ

sin2 θdt̃dφ̃þ 4Mr
Σ

dt̃dr

þ
�
1þ 2Mr

Σ

�
dr2 − 2a sin2 θ

�
1þ 2Mr

Σ

�
drdφ̃

þ Σdθ2 þ
�
r2 þ a2 þ 2Ma2r sin2 θ

Σ

�
sin2 θdφ̃:

ð9Þ

Considering the axial symmetry of the Kerr spacetime, the
scalar perturbation can be decomposed as

Φðt̃; r; θ; φ̃Þ ¼ 1

r

X
m

Ψðt̃; r; θÞeimφ̃: ð10Þ

Substituting the above ansatz into Eq. (7), the scalar
perturbation equation in the ingoing coordinates becomes

At̃ t̃∂2
t̃Ψþ At̃r∂ t̃∂rΨþ Arr∂2

rΨþ Aθθ∂2
θΨþ Bt̃∂ t̃Ψ

þ Br∂rΨþ Bθ∂θθΨþ CΨ ¼ 0; ð11Þ

where

At̃ t̃ ¼ Σþ 2Mr;

At̃r ¼ −4Mr;

Arr ¼ −Δ;

Aθθ ¼ −1;

Bt̃ ¼ 2M;

Br ¼ 2

r
ða2 −MrÞ − 2ima;

Bθ ¼ − cot θ;

C ¼ m2

sin2 θ
−
2ða2 −MrÞ

r2
þ 2ima

r
− αΣG: ð12Þ

The second step is to use the technique of hyperboloidal
compactifications developed in [51], which defines a

compactified horizon-penetrating, hyperboloidal coordinates
ðτ; ρ; θ; φ̃Þ (HH coordinates) through the transformation [52]

t̃ ¼ τ þ hðρÞ; r ¼ ρ

ΩðρÞ ; ð13Þ

where

hðρÞ ¼ ρ

Ω
− ρ − 4M lnΩ; ΩðρÞ ¼ 1 −

ρ

S
: ð14Þ

Here S is a free parameter controlling both the domain and
the foliation. With this compactification, the semi-infinite
radial domain outside the horizon r ∈ ½rþ;∞Þ is mapped to
a finite range ρ ∈ ½ρþ; SÞwith the event horizon r ¼ rþ now
locates at

ρþ ¼ a2SþMS2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2S4 − a2S4

p

a2 þ 2MSþ S2
: ð15Þ

Then we have the relations

∂ t̃ ¼ ∂τ; ∂r ¼ −H∂τ þ K∂ρ; ð16Þ

where H ≡ dh
dr ðρÞ and K ≡ dρ

dr ðρÞ. With these relations, the
scalar perturbation equation in the HH coordinates can be
written as

∂2
τΨ ¼ Ãτρ∂τ∂ρΨþ Ãρρ∂2

ρΨþ Ãθθ∂2
θΨþ B̃τ∂τΨ

þ B̃ρ∂ρΨþ B̃θ∂θΨþ C̃Ψ; ð17Þ

where

fÃτρ; Ãρρ; Ãθθ; Ãτ; B̃τ; B̃ρ; B̃θ; C̃g

¼ −
1

Aττ fAτρ; Aρρ; Aθθ; Aτ; Bτ; Bρ; Bθ; Cg; ð18Þ

and

Aττ ¼ At̃ t̃ −HAt̃r þH2Arr;

Aτρ ¼ KAt̃r − 2KHArr;

Aρρ ¼ K2Arr;

Bτ ¼ Bt̃ −HBr −
dH
dρ

KArr;

Bρ ¼ K

�
Br þ dK

dρ
Arr

�
: ð19Þ

To solve the above equation numerically in the time domain,
it is convenient to rewrite it as two coupled first-order
partial differential equations by introducing a new variable
Π≡ ∂τΨ,
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∂τΨ ¼ Π;

∂τΠ ¼ B̃τΠþ Ãτρ∂ρΠþ Ãρρ∂2
ρΨþ B̃ρ∂ρΨ

þ Ãθθ∂2
θΨþ B̃θ∂θΨþ C̃Ψ: ð20Þ

Numerically, this form is suitable for the method
mentioned above [53]. Precisely, the derivatives in ρ and
θ directions are approximated by finite differences, and
the evolution in the time direction is implemented with the
fourth-order Runge-Kutta integrator. One of the main
advantages of working in the HH coordinates is that the
ingoing (outgoing) boundary condition at the horizon
(infinity) is satisfied automatically, so we do not need to
worry about the sophisticated “outer boundary problem,”
which is hard to handle and influences the precision. At
the poles in the angular direction θ ¼ 0 and π, physical
boundary conditions are needed

Ψjθ¼0;π ¼ 0 for odd m; ð21Þ

∂θΨjθ¼0;π ¼ 0 for even m: ð22Þ

Following [28], we use a staggered grid and add ghost
points to implement these conditions.

IV. RESULTS

We consider the initial data of the scalar perturbation to
be a Gaussian distribution localized outside the horizon at
ρ ¼ ρc,

Ψðτ ¼ 0; ρ; θÞ ∼ Ylme
−ðρ−ρcÞ2

2σ2 ; ð23Þ

where Ylm is the θ-dependent part of the spherical
harmonic function and σ is the width of the Guassian
distribution. Without loss of generality, we consider the
perturbation to have time symmetry so that

Πðτ ¼ 0; ρ; θÞ ¼ 0: ð24Þ

In the following, we take ρc ¼ 6M. Also, we set M ¼ 1 so
that all quantities are measured in units ofM. Observers are
assumed to locate at ρ ¼ 6M and θ ¼ π

4
. We choose the free

parameter S ¼ 10 as in [51].
The Kerr spacetime is not spherically symmetric, except

when a ¼ 0, so the mode-mixing phenomenon occurs
[30,48,49]: a pure even (odd) initial l multipole will excite
other even (odd) multipoles (denoted by l0) with the same
m as it evolves. So, in this work, we only consider l ¼ 0

FIG. 1. Time evolution of the axisymmetric scalar perturbation for a ¼ 0, 0.5, and 0.9. The initial multipoles we considered are l ¼ 0,
1, and 2. Time is in units of M.
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and l ¼ 1 as representative even and odd multipoles,
respectively. Also, we only consider axisymmetric pertur-
bations with m ¼ 0 for simplicity.

A. α= 0

To check the reliability of our numerical strategy so as to
further disclose precisely the influence of α on the wave

dynamics, we first consider the simple case where the
scalar field does not couple to the GB term, i.e., α ¼ 0.
We compare our results with those in the ringdown
phase and the late-time tail with available results either
in the time domain or in the frequency domain. In this
case with zero α, the scalar field equation is separable
for the r and θ variables and can be cast into a Schrödinger-
like form. Then, QNMs can be computed directly in the
frequency domain by using Leaver’s continued fraction
method [22–25].
In Fig. 1, the time evolutions of the scalar perturbation in

the Kerr background are plotted for various spins. We only
consider axisymmetric initial multipoles (m ¼ 0) with
various l’s. From the figure, we can read off the quasi-
normal frequencies by using the Prony’s method [54]. The
results are listed in Table I denoted as ωProny. To make a
comparison, the results derived by Leaver’s method in the
frequency domain [24,55] are also listed denoted as ωLeaver.
From the table, we can see that using the numerical method
described in the last section, our obtained results agree well
with previous ones. The relatively large discrepancy for the
l ¼ 0 case is due to the short duration of the ringdown
phase so that Prony’s method can not give quasinormal
frequencies with sufficient precisions.

TABLE I. Dominant QNMs and the power-law index of the
late-time tail for axisymmetric scalar perturbations with a ¼ 0,
0.5 and 0.9. npredicted refers to the power-law index according to
Eq. (25) and nfitting is our fitting result.

a l ωProny ωLeaver nfitting npredicted

0 0 0.1084 − 0.1062i 0.1105 − 0.1049i 3.16 3
1 0.2929 − 0.0976i 0.2929 − 0.0977i 5.10 5
2 0.4836 − 0.0968i 0.4836 − 0.0968i 7.32 7

0.5 0 0.1124 − 0.0935i 0.1123 − 0.1022i 3.16 3
1 0.2979 − 0.0954i 0.2979 − 0.0954i 5.18 5
2 0.4920 − 0.0946i 0.4920 − 0.0946i 3.38 3

0.9 0 0.1186 − 0.0901i 0.1138 − 0.0916i 3.18 3
1 0.3108 − 0.0866i 0.3108 − 0.0866i 5.18 5
2 0.5148 − 0.0864i 0.5148 − 0.0864i 3.35 3

FIG. 2. Time evolution of the scalar perturbation for a ¼ 0, 0.3, 0.5, and 0.9 with α > 0. Initial multipole is fixed as l ¼ 0. Time is in
units of M.

ZHANG, WANG, WANG, and SAAVEDRA PHYS. REV. D 102, 124056 (2020)

124056-6



Now let us examine the late-time tail. Interestingly, it is
only recently and with the hyperboloidal compactification
technique that we have a precise and well understanding
of the late-time behaviors of the scalar field perturbation in
the Kerr black hole background [30,48,49]. For axisym-
metric perturbations (m ¼ 0), the late-time behaviors of
these multipoles exhibit a power-law decay Ψ ∼ τ−n at time
infinities, where

n ¼
�
lþ l0 þ 3 for l ¼ 0; 1

lþ l0 þ 1 otherwise
: ð25Þ

In the full late-time, the dominant mode is l0 ¼ 0 for the
even l case and l0 ¼ 1 for the odd l case (for more details
we refer readers to Refs. [30,48,49]).
From Fig. 1, we can see that in the late-time, the

perturbation exhibits a power-law decay as expected. By
fitting the late-time data with function τ−n, we can find the
index that is listed in Table I denoted as nfitting. It should be
noted that the power-law decay (25) only holds exactly at a
very late time, so to make a precise comparison we need to
evolve the perturbation to very late time which will be
extremely time consuming. However, in the time range we

show that the index nfitting and its trend with time derived by
fitting agrees well with the prediction (25).

B. α > 0

Now let us consider the case with α > 0. In Fig. 2, the
time evolution behaviors of the scalar perturbation for
various positive αs are plotted. The initial multipole is taken
as l ¼ 0. We first look at the wave propagation after the
ringing. From the figure, one can see that when a ¼ 0, there
exists a critical value αc ∼ 0.726, above which the pertur-
bation grows, indicating the occurrence of the instability.
The instability happens earlier and becomes more violent as
α further increases. Similar behaviors of the stability also
appear for a ≠ 0. We learn that the instability starts at
αc ¼ 0.75, 0.726, 0.71, and 0.6 for different rotations
a ¼ 0.3, 0.5, 0.7, and 0.9, respectively. The dependence
of αc on a is not simply monotonic as the increase of the
spin from zero to the extreme value, αc first increases when
the hole starts to rotate and then changes to decrease as the
hole rotates faster until the extreme value. Using a different
and more precise numerical strategy described in the last
section, we have shown that our results agree quantitatively
well with those computed in [12,13].

FIG. 3. Time evolution of the scalar perturbation for a ¼ 0, 0.5, and 0.9 with α > 0. Initial multipole is fixed as l ¼ 1. Time is in units
of M.
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We notice that instability also occurs for other multi-
poles. In Fig. 3, the time evolution of the multipole l ¼ 1
for various values of α > 0 are shown. We observe similar
wave dynamics behaviors due to the influence of α as the
fundamental multipole mode. Besides, we learn that αc for
l ¼ 1 is larger than its corresponding value for l ¼ 0.
To gain a better understanding of the physics behind

the above phenomena, we examine the influence of the
coupling constant and the spin on the effective mass square
m2

eff ¼ −αG. When a ¼ 0, the background reduces to the
Schwarzschild spacetime in which G ¼ 48M2=r6, so that
m2

eff is always negative everywhere for any α > 0 and
becomes more negative when α is further increased.
Small negative m2

eff < 0 is not sufficient to trigger the
tachyonic instability. Only when m2

eff is sufficiently neg-
ative (α > αc), can the instability be developed and
becomes more violent with the further increase of α, for
which m2

eff will become more negative. In Fig. 4, m2
eff is

plotted for various a ≠ 0 and α. From the figure, one can
clearly see that m2

eff becomes negative somewhere even
when α is still smaller than the critical value. But this small
negative effective mass square is not strong enough to
change the bulk stability. As α continuously increases, at

some fixed position close to the horizon, we see that m2
eff

becomes more and more negative. The instability for big
enough α is triggered by the negative enough m2

eff .
Moreover, from the figure, one can see that with the
increase of the spin, m2

eff will be lifted up near the horizon
in some θ direction. This cannot save the stability, since at
other θ directions the effective mass square can become
more negative, so that even smaller αc can trigger the
instability for fast rotating holes.
Now we examine the quasinormal ringing behavior. The

influence of α on the ringdown phase is also explored by
using the Prony’s method, as shown in Table II. Since the
duration of the ringdown phase for the multipole l ¼ 0 is
too short to give precise enough QNMs by using Prony’s
method, we only present QNMs for the l ¼ 1 multipole.
From the table and the figure, one can see that when a ¼ 0,
as α achieves bigger positive values, the real part of QNMs
ℜω decreases, while the imaginary part jℑωj increases.
However, when a ≠ 0, the situation becomes more com-
plicated: as α increases from 0, ℜω keeps decreasing for
low spins but changes to increase for high spins, while jℑωj
first decreases and then increases. The nonmonotonic
change in jℑωj with the increase of the coupling constant
becomes more obvious for fast rotation cases in QNMs.
Since the QNMs can be used uniquely to identify black
holes (in GR) and shall be detected through GW observa-
tions (specially for the third generation detectors), it is clear
that the fine structure in the QNMs due to the influence of
the coupling between the scalar field and GB term can be
used to explore the signature of the SEGB theory. Due to
the “mode-mixing mechanism” [30,48,49], one can expect
that similar behaviors described above will also occur for
higher multipoles.

C. α < 0

We now consider the case with α < 0. In Fig. 5, by fixing
a ¼ 0 and 0.5, the time evolution of the scalar perturbation
for multipole l ¼ 0 is plotted, where no instability is
observed. This objective picture actually confirms the
argument that there exists a minimum spin amin ¼ 1

2
and

FIG. 4. The effective mass square m2
eff is plotted for a ¼ 0.3 and 0.9.α is chosen as in Fig. 2.

TABLE II. Dominant quasinormal modes for the scalar per-
turbation with initial l ¼ 1 multipole. “−” means the duration of
the ringdown phase is too short to give precise enough QNMs
with Prony’s method.

a

α 0 0.5 0.9

−2.0 0.3870 − 0.1105i 0.3613 − 0.1067i −
−1.5 0.3633 − 0.1062i 0.3456 − 0.1034i 0.3387 − 0.1150i
−1.0 0.3397 − 0.1020i 0.3300 − 0.1001i 0.3118 − 0.1122i
−0.5 0.3163 − 0.0988i 0.3139 − 0.0975i 0.3088 − 0.1019i
0 0.2929 − 0.0976i 0.2979 − 0.0954i 0.3108 − 0.0866i
0.5 0.2703 − 0.1002i 0.2817 − 0.0945i 0.3210 − 0.0747i
0.8 0.2580 − 0.1046i 0.2721 − 0.0948i 0.3281 − 0.0711i
1.0 0.2512 − 0.1088i 0.2657 − 0.0955i 0.3325 − 0.0700i
2.0 0.2394 − 0.1244i 0.2389 − 0.1067i 0.3467 − 0.0729i
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below which no instability can be triggered, which is
irrespective of the value of α [44,45]. To see more clearly
the influences of the spin and coupling constant on the
onset of the instability, in Fig. 6, we fix the spin to some
representative values above amin and show the time
evolution of the scalar perturbation for various α. From

the figure, similar to the case α > 0, one can see that the
instability only occurs when α exceeds a critical value jαcj
for a fixed spin. For a ¼ 0.7; 0.8; and 0.9, αc is −5.8;−2.0,
and −0.92, respectively. This tells us that with the increase
of the spin, jαcj decreases quickly. For the extreme hole
with the highest spin, it is very simple to trigger instability

FIG. 5. Time evolution of the scalar perturbation for a ¼ 0 and 0.5 with α < 0. Initial multipole is fixed as l ¼ 0. Time is in units
of M.

FIG. 6. Time evolution of the scalar perturbation for various spins. a is fixed as 0.7,0.8, and 0.9, respectively. Initial multipole is fixed
as l ¼ 0. Time is in units of M.
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because we only require the smallest jαcj. Moreover, we
observe that above jαcj for each chosen a, larger jαj makes
the instability to appear earlier and behave more violently.
Similar properties are also found for the multipole l ¼ 1, as
shown in Fig. 7. These results agree well even quantita-
tively with those found in [44–46].
Similar to the discussion for α > 0, we can also under-

stand the instability from the behavior of the effective mass

square m2
eff and have a qualitative explanation. In Fig. 8,

m2
eff as a function of the coordinates is plotted for various

α < 0. From the left panel of the figure, one can see that
when a ≤ amin ¼ 1=2, m2

eff is always positive everywhere
for any value of α < 0. This presents physically reason why
there is no tachyonic instability for low spin a ≤ amin.
However, when a > amin, a ¼ 0.9 for example as shown in
the right panel of the figure, we find that m2

eff will become

FIG. 7. Time evolution of the scalar perturbation for various spins. a is fixed as 0.7,0.8, and 0.9, respectively. Initial multipole is fixed
as l ¼ 1. Time is in units of M.

FIG. 8. The effective mass squarem2
eff is plotted for a ¼ 0.5 and 0.9.α is chosen as in Figs. 5 and 6. In the right panel, the surface with

α ¼ −0.92 overlaps largely with that with α ¼ −1.0.

ZHANG, WANG, WANG, and SAAVEDRA PHYS. REV. D 102, 124056 (2020)

124056-10



negative near the horizon, which explains the emergence
of the tachyonic instability for sufficiently negative α.
Moreover, similar to the case with α > 0, as jαj is increased
for a fixed spin, m2

eff becomes more and more negative at
some fixed position, which explains the appearance of
more and more violent instabilities.
Besides the stability investigation in the final wave

dynamics, we have used Prony’s method and read off
the QNMs in the time evolution of the perturbation in the
ringdown phase for l ¼ 1, see the results in Table II. We
find that the result is simpler than the case with α > 0
mentioned above. For a chosen a, with the decrease of jαj,
both ℜω and jℑωj decrease. Differences in QNM frequen-
cies from the GR situation show that in SEGB theory the
characteristic sound is special. We expect that future precise
detections of GWs can observe the signature of the SEGB
theory from its special sound frequency. Once again, due to
the “mode-mixing mechanism” [30,48,49], one can expect
that instability will also occur for higher multipoles, and
moreover even and odd modes will give roughly compa-
rable contributions to the instability [44].

V. SUMMARY AND DISCUSSIONS

In this work, we have studied the massless scalar
perturbation on the background of the Kerr black hole in
SEGB theory. We have overcome the nonseparability
problem and the “outer boundary problem” by employing
the hyperboloidal compactification technique to perform
carefully the numerical computations and have got object
pictures on the time evolution of the scalar field perturba-
tions. In addition to the information about the stability, we
have also obtained the sound characteristics of the quasi-
normal ringing in the SEGB theory. For negative couplings
between the scalar field and the GB term, we have
presented objective support on the existence of the mini-
mum rotation to break the Kerr stability, no matter how
strong the coupling α is. This minimum a requirement does
not exist for positive αs. For fast rotating black holes, it
requires smaller coupling jαj to trigger the instability. This
result holds for negative couplings when the rotation is
above a minimum value. The stronger coupling jαj will
bring the break down of the original Kerr configuration to
happen earlier and the resulting instability becomes more
violent. We have also examined carefully the characteristic
sound of the quasinormal ringing of the scalar perturbation

outside the original Kerr black hole in the SEGB theory.
We have unveiled the special sound once there is a coupling
between the scalar field and the GB curvature and when it
becomes stronger. The fine frequency difference uncovered
can be used as imprints to confirm the SEGB theory in the
future precise GW detections.
In addition to presenting objective pictures of the wave

propagation in the SEGB theory, we have also examined
the physical reason about the occurrence of the instability
of the Kerr black hole once the coupling between the
scalar field and GB term is strong enough. We have found
that a big enough jαj always leads to a negative effective
mass square, which triggers the tachyonic instability and
destroys the original Kerr background configuration in the
SEGB theory. With the increase of jαj, the effective mass
square becomes more negative, which results in a more
violent instability. For negative couplings, we have found
the reason behind the minimum rotation in order to
accommodate the instability, and the effective mass square
is always positive no matter how strong the coupling
strength is.
In this paper, we have concentrated ourselves on the

massless scalar field perturbation. It is of great interest to
generalize the discussion to the massive scalar field. For the
massive scalar field, in addition to the tachyonic instability,
there is the possibility for the superradiant instability to
happen. Therewill be richer physics involved in studying the
dynamics and the fate of the Kerr black hole. Furthermore, in
this study we have only paid attention to the probe limit, the
linear perturbation in the Kerr black hole background. It is
intriguing to extend our study to include the backreaction
of the scalar field, which can present us the process of the
formation of the scalar hair and the final spacetime of the
hairy black hole. Another interesting direction is to extend
our study to consider the coupling of the scalar field to other
topological curvature invariants beyond the Gauss-Bonnet
term we considered here, such as Chern-Simons term [50],
Lovelock term, etc.
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