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We find unitary and local theories of higher curvature gravity in the vielbein formalism, known as
Poincaré gauge theory, by utilizing the equivalence to ghost-free massive bigravity. We especially focus on
three and four dimensions, but extensions into a higher-dimensional spacetime are straightforward. In three
dimensions, quadratic gravity L ¼ Rþ T2 þ R2, where R is the curvature and T is the torsion with indices
omitted, is shown to be equivalent to zwei-dreibein gravity and free from the ghost at fully nonlinear orders.
In a special limit, new massive gravity is recovered. When the model is applied to the AdS=CFT
correspondence, unitarity both in the bulk theory and in the boundary theory implies that the torsion must
not vanish. On the other hand, in four dimensions, the absence of a ghost at nonlinear order requires an
infinite number of higher curvature terms, and these terms can be given by a schematic form
Rð1þ R=αm2Þ−1R, where m is the mass of the massive spin-2 mode originating from the higher
curvature terms and α is an additional parameter that determines the amplitude of the torsion. We also
provide another four-dimensional ghost-free higher curvature theory that contains a massive spin-0 mode
as well as a massive spin-2 mode.

DOI: 10.1103/PhysRevD.102.124049

I. INTRODUCTION

Giving a mass to the graviton is an idea from the
pioneering study by Fierz and Pauli [1] and has been
extensively discussed since then (see [2,3] for reviews).
Although it was believed that the appearance of a patho-
logical mode, called the Boulware-Deser (BD) ghost [4], is
inevitable in theories of a massive spin-2 field, the ghost-
free nonlinear extension of the Fierz-Pauli theory was
discovered by de Rham et al. in 2010 [5,6]. This ghost-
free theory, often dubbed the de Rham-Gabadadze-Tolley
(dRGT) theory, is the theory of a single massive spin-2 field
extended to bigravity [7], which includes the massless
spin-2 field as well, and to multigravity, which has multiple
massive spin-2 fields as well as the massless one [8]. The
dRGT theory and its extensions provide a well-defined
framework for modification of general relativity (GR), and
many phenomenological aspects have been investigated. If
a future observation reveals the existence of the massive
spin-2 field(s), what can we learn about the nature of
gravity? In the case of particle physics, the discovery of
massive gauge bosons was a path to revealing the standard

model of particle physics. To answer this question, we
should investigate the underlying physics of the theories of
massive gravity. The simplest possibility would be a higher
dimensional scenario. Reference [9] indeed demonstrated
that ghost-free theories can be obtained as a Kaluza-Klein
compactification of the higher dimensional GR. In this
case, multiple massive spin-2 fields are naturally expected,
corresponding to the Kaluza-Klein states of the graviton.
Another previous idea was to interpret gravity as a gauge

force, which was initiated by Utiyama [10], Kibble [11],
and Sciama [12] (see [13,14] for reviews). In particle
physics, force and symmetry are closely related. The idea
of the gauge principle elegantly explains the existence of
gauge fields and interactions between the gauge fields and
matter fields. One may apply the same idea to gravity. Since
a particle is specified by energy, momentum, and angular
momentum (spin)—namely, currents associated with the
Poincaré group—it is natural to suppose that gravity is a
Poincaré gauge theory (PGT). The corresponding gauge
fields are the vielbein eaμdxμ and the spin connection
ωab

μdxμ, which are regarded as the gauge fields associated
with the translation part and the rotation part of the
Poincaré group, respectively. Let us then consider the
dynamics of the gauge fields. The field strengths are
the curvature and the torsion. An important observation
is that PGT can be interpreted as a Higgs phase theory
[15,16]. When one considers a general Lagrangian con-
sisting of the curvature and the torsion and studies per-
turbations around the flat background, eaμ ¼ δaμ;ωab

μ ¼ 0,
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one finds that the particles associated with the spin
connection are massive. Hence, in a low energy limit,
the spin connection can be integrated out, and the vielbein
is the only dynamical field. Thanks to local Lorentz
invariance, we can use the spacetime metric as the
independent variable of gravity instead of the vielbein.
The leading piece of the Lagrangian in the low energy limit
is the Einstein-Hilbert action. As a result, GR arises
naturally as a low energy effective field theory (EFT) of
PGT. However, similarly to the weak force, a new force
carried by the massive spin connection should appear at
short distances.
There have been many attempts to identify a viable

model of PGT involving a dynamical spin connection.
When the Lagrangian of PGT is algebraic in field strength,
the existence of first-class constraints, namely, the sym-
metries of PGT, concludes that there exist 18 degrees of
freedom (dofs) in addition to the massless graviton in four
dimensions [17,18]. These 18 dofs are classified into
massive spin-2�; 1�; 0� particle species where the number
and � of JPðJ ¼ 0; 1; 2; P ¼ �Þ denote the spin and the
parity, respectively. Since the equations of motion are
second order, there is no Ostrogradsky ghost. However,
all of these particle species cannot be physical simulta-
neously [19,20] (see [21–24] for recent discussions). This
can be understood by the fact that the Poincaré group is
noncompact, meaning that the norm is not positive definite.
There can be a negative (ghostly) mode, in general. We
should fine-tune the Lagrangian so that the masses of the
ghost modes are sufficiently heavy; we can then discuss the
dynamics of (the physical modes of) the spin connection.
Even though we need to accept the fine-tuning, the idea of
PGT is natural and worth considering. In particular, if the
existence of the dynamical spin connection is revealed by
an experiment, it can be described as the discovery of
“massive gauge bosons” in the gravity sector.
In the present paper, we connect two ideas, massive

gravity and PGT, and show that a particular class of PGT is
equivalent to ghost-free bigravity in a vacuum. Similar
discussions were already given in [25,26]; however, an
important difference is that we show the equivalence
without violating either unitarity or locality. From the
perspective of massive gravity, we can interpret the massive
spin-2 field as a massive gauge boson arising from a higher
curvature correction to GR. It is well known that higher
curvature corrections to GR give rise to a massive spin-2
mode, but this mode is a ghost mode according to the
Ostrogradsky theorem and cannot be thought of as a
physical state of the theory. However, the torsion enables
us to find a ghost-free higher curvature theory, as we will
see. On the other hand, the equivalence provides a
counterexample to a speculated conclusion of PGT: The
only good propagating modes of the spin connection are the
spin-0 modes. Although one can find a ghost-free PGT at
the level of linear perturbations about the flat background,

the nonlinear interactions may drastically change the
structure of the theory. According to [27,28], it seems that
the nonlinearly ghost-free PGT can only contain the spin-0
modes in addition to the massless graviton (see also [29]).
However, there is a nonlinearly ghost-free PGT involving a
massive spin-2 mode when an infinite number of appro-
priate higher curvature terms are added. The ghost-free
higher curvature terms are determined by a finite number of
coupling constants because of the restriction of the dRGT
mass terms.
The rest of the present paper is organized as follows. We

first summarize the notation and definitions in Sec. II.
Section III is devoted to studying three-dimensional quad-
ratic gravity. Consideration of three-dimensional gravity
not only provides a simplified relation between higher
curvature gravity and bigravity but also interesting
insight into AdS=CFT correspondence. We then study
four-dimensional higher curvature theories in Sec. IV
and find that fully ghost-free higher curvature gravity is
obtained by adding an infinite number of appropriate
higher curvature terms. In Sec. V, we consider an extension
of the argument of Sec. IV. We conclude in Sec. VI with a
summary and discussions.

II. NOTATION

Throughout the present paper, Greek indices μ; ν; � � � are
used to denote spacetime indices, whereas Latin indices
a; b; � � � are used to represent the Lorentz indices.
The signature of the metric is ð−;þ; � � � ;þÞ, and ηab is
the Minkowski metric. In this section, we consider D-
dimensional spacetime, and we focus on three and four
dimensions in the latter sections.
The basic variables of PGT are the vielbein ea ¼ eaμdxμ

and the spin connection ωab ¼ ωab
μdxμ, which are

regarded as gauge fields associated with the translation
and the Lorentz transformations, respectively. Since we are
interested in the SOð1; D − 1Þ connection, the spin con-
nection is assumed to have antisymmetric indices,
ωab ¼ ω½ab�. The associated field strengths are the torsion
2-form Ta ¼ 1

2
Ta

μνdxμ ∧ dxν and the curvature 2-form
Rab ¼ 1

2
Rab

μνdxμ ∧ dxν defined by

Ta ≔ Dea ¼ dea þ ωa
b ∧ eb; ð2:1Þ

Rab ≔ dωab þ ωa
c ∧ ωcb; ð2:2Þ

where d and D are the exterior derivative and the exterior
covariant derivative, respectively. The Levi-Civita tensor is
denoted by ϵa1a2���aD with ϵ012��� ¼ 1. In component expres-
sions, the spacetime indices are converted to the Lorentz
indices and vice versa with the help of the vielbein and its
inverse.
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The Ricci tensor and the Ricci scalar are defined by

Ra
μ ≔ Rba

νμeνb; R ≔ Ra
μe

μ
a; ð2:3Þ

where the tensor Rμν ¼ eaμRaν is not symmetric in its
indices, contrary to Riemannian space. We then introduce
the Schouten 1-form

Sa ¼ Saμdxμ ≔
�
Ra

μ −
1

2ðD − 1ÞRe
a
μ

�
dxμ ð2:4Þ

and the contortion 1-form

Kab ¼ Kab
μdxμ ≔

1

2
ðTμ

ab − Tb
μ
a − Tab

μÞdxμ: ð2:5Þ

The contortion tensor represents the difference between the
general connection and the torsionless connection,

Kab
μ ¼ ωab

μ − ωab
μðeÞ; ð2:6Þ

where ωab
μðeÞ is the torsionless spin connection which is

determined by the vielbein. Similarly, we denote the
curvature tensors as Rab

μνðeÞ; Ra
μðeÞ; RðeÞ when they

are determined by the torsionless connection ωab
μðeÞ.

Later, we will introduce another vielbein faμ. The curvature
2-form with respect to faμ is denoted by RabðfÞ.

III. THREE DIMENSIONS

As mentioned, in the general Lagrangian, there must be
ghostly dofs because the positive definiteness is not
guaranteed. We need a fine-tuning so that the ghost modes
do not propagate, at least in a low energy regime. If we
demand that the Lagrangian is at most quadratic in
derivatives, the Lagrangian is schematically given by the
form L ¼ Rþ T2 þ R2, called quadratic PGT. At the level
of linear perturbations around the flat background, dis-
cussions about the particle content and the ghost-free
conditions of three-dimensional quadratic PGT can be
found in [30,31]. In this section, among general possibil-
ities of PGT, we focus on a specific model of the quadratic
PGT which only has a massive spin-2 dof in linear
perturbations.
Let us consider the following Lagrangian of a higher

curvature gravity in D ¼ 3 dimensions:

S¼M3

Z
M3

L

L¼ ϵabc

�
σea ∧Rbc−

α

2
Ta ∧Kbc−

1

2M2�
Sa ∧Rbc

�
; ð3:1Þ

where M3 is the three-dimensional Planck mass, M� is a
mass parameter, σ ¼ �1, and α is a dimensionless coupling
constant. For simplicity, we ignore the cosmological con-
stant, but the inclusion of the cosmological constant is
straightforward. The “wrong” sign σ ¼ −1 is allowed
because the massless spin-2 field has no degrees of freedom
in three dimensions. The Lagrangian consists of a particular
torsion square and curvature square terms, T ∧ K and
S ∧ R, in addition to the Einstein-Hilbert term e ∧ R.
These particular combinations ensure that the Lagrangian
(3.1) only has a massive spin-2 mode and is free from the
ghosts at the linear level of perturbations (see e.g.,
[19,20,30,31]). A remarkable feature is that even at fully
nonlinear orders, these combinations are free from the
ghostly dofs, as we will see.
The (dualized) equations of motion are given by

σRab−αðDKab−Ka
c ∧KcbÞþ 1

M2�
S½a ∧ Sb� ¼ 0; ð3:2Þ

ðα − σÞTa þ 1

M2�
DSa ¼ 0: ð3:3Þ

When we ignore the coupling T ∧ K and the torsion, the
model is known as new massive gravity (NMG) [32]. Note,
however, that the α → 0 limit of (3.1) does not lead to
NMG; rather, NMG is obtained as the jαj → ∞ limit of
(3.1). As shown in (2.6), the general connection can be
divided into the torsionless part ωabðeÞ and the torsion part
Kab. We can thus use the torsion and the dreibein as
independent variables instead of the dreibein and the spin
connection. In this case, the second term T ∧ K can be
regarded as a “mass” term of the torsion. Therefore, the
limit jαj → ∞ is an infinitely heavy limit of the torsion. The
torsion can be integrated out, and a local action can be
obtained by expanding it in terms of α−1. The perturbative
solution of (3.3) under jαj → ∞ is

Ta ¼ −
1

αM2�
DðeÞSaðeÞ þOðα−2Þ ð3:4Þ

where DðeÞ is the exterior covariant derivative defined by
the torsionless connection ωabðeÞ. As a result, the action
becomes

S ¼ M3

Z
M3

ϵabc

�
σea ∧ RbcðeÞ − 1

2M2�
SaðeÞ ∧ RbcðeÞ

�

þOðα−1Þ

¼ M3

Z
M3

d3xjej

×

�
σRðeÞ þ 1

M2�

�
RμνðeÞRμνðeÞ − 8

3
R2ðeÞ

��

þOðα−1Þ; ð3:5Þ
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and then the original NMG is obtained under the limit
jαj → ∞. In NMG, we should assume σ ¼ −1 as required
by unitarity. The massive spin-2 mode is then a nonghost
particle. Hereinafter, we call the model (3.1) torsional new
massive gravity (TNMG) whereas the model (3.5) is simply
called NMG.
It is known that NMG is obtained as a scaling limit of the

three-dimensional ghost-free bigravity theory, dubbed zwei-
dreibein gravity [25,33]. A point of the present paper is that
the equivalence betweenTNMGand the ghost-free bigravity
is shownwithout the use of any scaling limit. As mentioned,
NMG is obtained as a particular limit of TNMG, and this
limit is indeed what Refs. [25,33] considered.
The idea is basically the same as in the analysis of NMG

[25,32,33] or of fðRÞ theories, but we need to elaborate on
how we include auxiliary variables. Let us introduce two
auxiliary 1-forms ξa and χab ¼ χ½ab�, and rewrite the action
(3.1) as an equivalent form

Seq ¼M3

Z
M3

Leq;

Leq ¼ ϵabc½σea ∧RbcþαðTa ∧ χbcþ ea ∧ χbd ∧ χdcÞ
þ ðσ−αÞξa ∧Rbcþðσ−αÞ2M2�ea ∧ ξb ∧ ξc�: ð3:6Þ

Since the variables ξa and χab are auxiliary ones, the their
equations of motion yield

ξa ¼ 1

ðα − σÞM2�
Sa; χab ¼ −Kab; ð3:7Þ

and then the original action (3.1) is recovered by substitut-
ing the solutions into (3.6). Instead, we perform integration
by parts to find

Leq ¼ ϵabc½σea ∧Rbcþαea ∧ ðDχbcþ χbd ∧ χdcÞ
þ ðσ−αÞξa ∧Rbcþðσ−αÞ2M2�ea ∧ ξb ∧ ξc�; ð3:8Þ

where we have used Ta ¼ Dea. Then, we introduce a new
dreibein and a new spin connection via

fa ¼ ea þ ξa; Ωab ¼ ωab þ χab ð3:9Þ

and define the curvature 2-form associated with the new
connection,

Fab ≔ dΩab þ Ωa
c ∧ Ωbc; ð3:10Þ

which yields the relation

Dχab þ χac ∧ χcb ¼ Fab − Rab: ð3:11Þ

It is straightforward to show that the action (3.8) is written
as the form of ghost-free bigravity, also called zwei-
dreibein gravity,

Leq ¼ ϵabc½αea ∧ Fbc þ ðσ − αÞfa ∧ Rbc

þ ðσ − αÞ2M2�ea ∧ ðfb − ebÞ ∧ ðfc − ecÞ�: ð3:12Þ

Let us confirm the consistency with the original formu-
lation (3.1). The equations of motion of (3.12) are

αFab − ðσ − αÞ2M2�ð2e½a ∧ ξb� − ξ½a ∧ ξb�Þ ¼ 0; ð3:13Þ

Rab þ 2ðσ − αÞM2�e½a ∧ ξb� ¼ 0; ð3:14Þ

and

dea þ Ωa
b ∧ eb ¼ 0; ð3:15Þ

dfa þ ωa
b ∧ fb ¼ 0; ð3:16Þ

where ξa ¼ fa − ea. Equations (3.14) and (3.15) lead to
Eq. (3.7). Substituting (3.7) into Eqs. (3.13) and (3.16),
we obtain the original equations of motion (3.2) and (3.3).
Therefore, two systems (3.1) and (3.12) are indeed
equivalent.
Using (3.15) and (3.16), we can eliminate the spin

connections from the action as with the Einstein-Cartan-
Sciama-Kibble theory. We then obtain the torsionless
bigravity

Leq ¼ ϵabc½αea ∧ RbcðeÞ þ ðσ − αÞfa ∧ RbcðfÞ
þ ðσ − αÞ2M2�ea ∧ ðfb − ebÞ ∧ ðfc − ecÞ�: ð3:17Þ

It is worth emphasizing that in the original action (3.1), the
Einstein-Hilbert term is composed of the pair ðea;ωabÞ,
while the Einstein-Hilbert actions in (3.12) consist of the
different pairs ðea;ΩabÞ and ðfa;ωabÞ. We summarize these
three pairs of variables, which we call physical, g-, and
f-variables, in Table I. The “torsionless” conditions (3.15)
and (3.16) do not yield the torsionless condition Ta ¼
dea þ ωa

b ∧ eb ¼ 0 in the sense of the higher curvature
theory (3.1). Torsionless bigravity (3.17) is equivalent to
the torsionfull higher curvature theory (3.1). The symmetric
dreibein condition ea ∧ fa ¼ 0 is obtained as a constraint
of (3.17) under which the bigravity in the dreibein
formalism is reduced to that in the metric formalism
[8,34,35].1 The theory is then defined by two “metrics”
gμν ¼ ηabeaμebν and fμν ¼ ηabfaμfbν , where the g-metric
coincides with the physical one of the original theory
(3.1) while the f-metric appears as a result of the
inclusion of the auxiliary variables. The symmetric dreibein

1In general, there are other branches of the constraint [8,36].
The equivalence between bigravity in the vielbein formalism and
that in the metric formalism holds only when one chooses the
branch ea ∧ fa ¼ 0 of the constraint. Throughout the present
paper, we only consider the branch ea ∧ fa ¼ 0 to guarantee the
absence of the BD ghost.
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condition ea ∧ fa ¼ 0 says that the physical Ricci tensor,
which is defined by the pair ðea;ωabÞ, is symmetric,

R½μν� ¼ 0; ð3:18Þ

although the torsion does not vanish.
NMG (3.5) is obtained as the jαj → ∞ limit of (3.1).

Since we have proved TNMG is equivalent to ghost-free
bigravity, we can also conclude that NMG is obtained as a
limit of bigravity, which was already pointed out in
Ref. [25] (see also [33]). Let us consider the scaling limit
investigated in [25]. To follow Ref. [25], we first rewrite the
action (3.17) as

Seq ¼
Z
M3

ϵabc½Mgea ∧ RbcðeÞ þMffa ∧ RbcðfÞ

þMeffm2ea ∧ ðfb − ebÞ ∧ ðfc − ecÞ�; ð3:19Þ

where

Mg ≔ αM3; Mf ≔ ðσ − αÞM3;

Meff ≔ ðM−1
g þM−1

f Þ−1 ¼ αðσ − αÞ
σ

M3; ð3:20Þ

and

m2 ≔
σðσ − αÞ

α
M2� ð3:21Þ

is the mass of the spin-2 mode about the flat background.
Reference [33] considered the limit

Mf → þ∞; ð3:22Þ

keeping−ðMg þMfÞ > 0 andm fixed. Clearly, this limit is
equivalent to the α → −∞ limit with σ ¼ −1, keeping
M3;M� fixed. We thus reproduce the result of [33] in a
different way. One can also consider the limit Mf → −∞,
keeping −ðMg þMfÞ > 0 and m fixed, which corresponds
to the limit α → þ∞. In the NMG limit jαj → ∞, one of
the “Planck masses,” Mg or Mf, has to be negative.
The higher curvature term may be interpreted as a

correction of quantum gravity which motivates us to think
of the AdS=CFT correspondence in which D-dimensional
quantum gravity in an asymptotically anti-de Sitter
(AdS) spacetime is conjectured to be equivalent to a

(D − 1)-dimensional conformal field theory (CFT). To
discuss the implication for the AdS=CFT correspondence,
we add the cosmological constant term

−M3

Z
M3

ϵabc
1

3
λM2�ea ∧ eb ∧ ec ð3:23Þ

to the action (3.1), where λ is dimensionless. The same term
is then added to (3.12) after changing the variables. In three
dimensions, the ghostly massless spin-2 field does not
violate unitarity. Therefore, the limit jαj → ∞, namely
NMG, provides well-defined lower-dimensional gravity
as long as the massive spin-2 field is not a ghost.
However, in NMG, there is a conflict between unitarity
in the bulk theory and unitarity in the dual CFT, as required
by the positive central charge [37–39]. Reference [33]
proposed zwei-dreibein gravity to resolve this problem.
Nonetheless, in the generic parameter space, zwei-dreibein
gravity cannot be recast in the form of higher curvature
gravity in the metric formalism unless introducing infinite
derivatives (see e.g., [26]).
We now know the equivalence between zwei-dreibein

gravity and TNMG. We can understand, in the language of
higher curvature theory, what the missing ingredient of
NMG is to preserve unitarity in both the bulk theory and the
dual CFT. After adding (3.23) and substituting the ansatz of
maximally symmetric spacetime into the equations of
motion, we obtain

Ra
μ −

1

2
Reaμ þ Λeaμ ¼ 0; Ta

μν ¼ 0 ð3:24Þ

where

Λ ¼ −2M2�ðσ � ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p Þ: ð3:25Þ

The constant Λ determines the cosmological constant of
the maximally symmetric solution. In this solution, the
f-dreibein is given by fa ¼ γea where

γ ¼ 1þ Λ
2M2�ðα − σÞ : ð3:26Þ

Following Ref. [33], the ghost-free and tachyon-free (bulk
unitarity) conditions around the AdS background require

αðσ − Λ=2M2�Þ
σ − α − Λ=2M2�

> 0; ð3:27Þ

M2 ≔ m2 þ 1

2
Λ
�
1 −

Λ
2αM2�

�
> 0; ð3:28Þ

while the positive central charge (boundary unitarity)
requires

TABLE I. Summary of variables.

Variables Curvature Torsion

Physical variables ðea;ωabÞ Rab Ta ≠ 0

g-variables ðea;ΩabÞ Fab dea þΩa
b ∧ eb ¼ 0

f-variables ðfa;ωabÞ Rab dfa þ ωa
b ∧ fb ¼ 0
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c ≔ 24πlM3

�
σ −

Λ
2M2�

�
> 0; ð3:29Þ

where l ¼ 1=
ffiffiffiffiffiffiffi
−Λ

p
is the AdS radius. The condition (3.27)

conflicts with (3.29) under the limit jαj → ∞, i.e., in NMG.
Furthermore, the three conditions are inevitably inconsis-
tent when σ ¼ −1. On the other hand, all the conditions
simultaneously hold when

0 < α < 1; −2ð1 − αÞM2� < Λ < 0 ð3:30Þ

for σ ¼ þ1 and Λ < 0. These inequalities imply that we
need to choose the minus branch

Λ ¼ −2M2�ð1 −
ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p Þ: ð3:31Þ

As a result, we obtain the conditions

σ ¼ þ1; 0 < α < 1; −1þ α2 < λ < 0; ð3:32Þ

to preserve unitarity in both the bulk and the boundary.
A finite value of α implies that the torsion has a finite value
and the higher curvature theory (3.1) has the additional
term T ∧ K. The torsion resolves the conflict of unitarity.
The inclusion of the torsion is originally motivated by

localizing the Poincaré group, and the Poincaré group is
obtained as a contraction of the AdS group. The vielbein and
the spin connection can be combined to form a single
connection for the AdS group. PGTwith a negative cosmo-
logical constant might be obtained as a low energy EFTof an
AdS gauge theory by spontaneously breaking down the AdS
group to the Lorentz group [40,41].2 Intriguingly, the
unitarity problem of the AdS=CFT correspondence in
NMG is simply solved by adding the torsion which is
expected to appear when the AdS group, the symmetry of
the bulk, is localized and is spontaneously broken.
We started with the higher curvature theory (3.1) and

found that (3.1) can be recast in the form of a bigravity
theory. Instead, one can assume the full bigravity (the zwei-
dreibein gravity) action and integrate out the f-dreibein and
the g-spin connection to obtain a more general theory of
ghost-free higher curvature gravity. In general, the equation
of motion of ξ becomes nonlinear. The resultant higher
curvature theory must have an infinite number of higher
curvature terms, but these terms are specified by a finite

number of coupling constants of the ghost-free bigravity
theory.

IV. FOUR DIMENSIONS

A. Quadratic gravity

In the NMG limit, one of the Einstein-Hilbert terms in
(3.12) must have the “wrong” sign, meaning that there
exists a ghostly massless (or massive) spin-2 field. On the
other hand, the existence of the torsion enables us to find an
equivalent bigravity theory with the “correct” sign of the
Einstein-Hilbert terms in three dimensions. This suggests
the existence of a ghost-free higher curvature theory with
the massless and massive spin-2 fields even in D > 3
dimensions thanks to the torsion.
Let us consider a simple extension of TNMG in four

dimensions,

S ¼ M2
pl

4

Z
M4

ϵabcd

�
ea ∧ eb ∧ Rcd − αea ∧ Tb ∧ Kcd

−
1

M2�
ea ∧ Sb ∧ Rcd

�
; ð4:1Þ

which only has the massive spin-2 mode in addition to
the massless graviton at the level of linear perturbations,
just like the previous Lagrangian (3.1) [19,20]. We do not
introduce the parameter σ ¼ �1 in four dimensions
because the massless spin-2 field is dynamical. In the
following, we discuss nonlinear properties of (4.1) by
rewriting the action in the form of bigravity.
Following the same step as before, we find the equivalent

action in the bigravity form,

Seq ¼ SdRGT½e;Ω; f;ω� þ Sder½e;Ω; f;ω�; ð4:2Þ

where

SdRGT¼
M2

pl

4

Z
M4

ϵabcd

× ½αea∧eb∧Fcdþð1−αÞfa∧fb∧Rcd

þαð1−αÞm2ea∧eb∧ ðfc−ecÞ∧ ðfd−edÞ�; ð4:3Þ

Sder ¼
ðα− 1ÞM2

pl

4

Z
M4

ϵabcdðfa − eaÞ ∧ ðfb − ebÞ ∧ Rcd;

ð4:4Þ

with

m2 ¼ 1 − α

α
M2�: ð4:5Þ

As expected, we find the ghost-free bigravity action SdRGT,
but we also have a derivative coupling Sder. The essential

2The general action of PGT has local Lorentz symmetry but
does not have either local (A)dS symmetry or local Poincaré
symmetry. On the other hand, there is a case where the symmetry
is enlarged from the Lorenz group to the (A)dS group or the
Poincaré group in particular dimensions. The three-dimensional
Einstein-Hilbert action with a negative cosmological constant in
the vielbein formalism has SOð2; 2Þ invariance and is equivalent
to Chern-Simons gauge theory for the AdS group [42,43]. In this
case, gravity is indeed an AdS gauge theory, and the symmetry is
preserved.
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difference between the three-dimensional case and the four-
dimensional case is that the Einstein-Hilbert action is
nonlinear in the vierbein in four dimensions. In three
dimensions, we find the coupling ξ ∧ R ¼ ðf − eÞ ∧ R
in (3.6), which generates the Einstein-Hilbert action of the
f-variable, f ∧ R. In four (and higher than four) dimen-
sions, after replacing the term e ∧ S ∧ R, we have the
coupling e ∧ ξ ∧ R which is linear in ξa and thus cannot
yield the Einstein-Hilbert action f ∧ f ∧ R. We need the
nonlinear term ξ ∧ ξ ∧ R to find the Einstein-Hilbert action
of the f-variable. As a result, the straightforward extension
of TNMG in four dimensions (and D > 4 as well) is not
equivalent to the ghost-free bigravity theory; the resultant
theory possesses the derivative interactions of the
form ξ ∧ ξ ∧ R ¼ ðf − eÞ ∧ ðf − eÞ ∧ R.
The derivative interaction Sder contributes to the dynam-

ics from the cubic order of perturbations about the flat
background, eaμ ¼ faμ ¼ δaμ;ωab

μ ¼ Ωab
μ ¼ 0. In the free

theory, the theory is free from the ghost when 0 < α < 1,
and it describes a massless spin-2 field and a massive spin-2
field. The question is whether or not Sder yields any
pathology at nonlinear orders. The coupling ðf − eÞ ∧
ðf − eÞ ∧ R was already discussed in [44] in the context of
massive gravity, and it was shown that a new spin-1 dof
appears, though the well-known BD ghost [4] does not
appear. This additional mode must be a ghost or is at best
strongly coupled in the flat spacetime limit, meaning that
there is a cutoff of the theory, which will be identified by
Λ4 ¼ ðMplm3Þ1=4 in Appendix. New physics is required at
Λ4, and the theory (4.1) is meaningful in energy scales only
below the cutoff Λ4.
The appearance of addition dof(s) at nonlinear orders

was also pointed out by Yo and Nester [28] in the context of
PGT, although they did not explicitly present the analysis of
PGT with the massive spin-2þ mode. We thus call the
additional ghostly modes of PGT Yo-Nester (YN) ghosts.
Similarly to the BD ghost problem of general massive
gravity, general PGT suffer from the nonlinear YN ghost(s).

B. Ghost-free theory from bigravity

Instead of introducing new physics at Λ4, one may add
appropriate counterterms to push the cutoff scale of (4.1)
into a higher scale. Since SdRGT is free from the ghost at
fully nonlinear orders, we can easily obtain the ghost-free
theory by adding the counterterm, Sct ¼ −Sder; that is,

SGF ¼ Seq þ Sct ¼ SdRGT: ð4:6Þ

The lowest scale of interactions is then raised to Λ3 ¼
ðMplm2Þ1=3 > Λ4 where M� ≃m ≪ Mpl has been implic-
itly assumed, in which the connection is weakly coupled.
The cutoff of the theory is Λ3 or can be larger than Λ3 since
no additional dof appears at nonlinear orders. The dRGT

theory can resolve the YN ghost problem of PGTas well as
the BD ghost problem of massive gravity.
By using the auxiliary variables ξa and χab, the bigravity

action is written as

SGF½e;ω;ξ;χ�

¼M2
pl

4

Z
M4

ϵabcd

�
ea∧eb∧Rcd

þ2α

�
ea∧Tb∧χcdþ1

2
ea∧eb∧χce∧χed

�

þð1−αÞð2ξa∧eb∧Rcdþξa∧ðαm2eb∧ecþRbcÞ∧ξdÞ
�
:

ð4:7Þ

We have a nonlinear term ξ ∧ R ∧ ξ coming from the
counterterm. The equation of motion of χab is still given by
the same form,

χab ¼ −Kab; ð4:8Þ

whereas the equation of motion of ξa is

ϵabcd½ξb ∧ ðαm2ec ∧ ed þ RcdÞ þ eb ∧ Rcd� ¼ 0: ð4:9Þ

The solution of ξa is schematically given by

ξðRÞ ¼ −
R

αm2

�
1þ R

αm2

�
−1
; ð4:10Þ

and the explicit solution can be obtained perturbatively.
Eliminating the auxiliary variables ξa and χab, we find a
ghost-free higher curvature theory,

SGF½e;ω� ¼
M2

pl

4

Z
M4

LGF;

LGF ¼ ϵabcdðea ∧ eb ∧ Rcd − αea ∧ Tb ∧ KcdÞ

−
1

M2�
R

�
1þ R

αm2

�
−1
R; ð4:11Þ

where

R

�
1þ R

αm2

�
−1
R ¼ −αm2ϵabcdξ

aðRÞ ∧ eb ∧ Rcd

¼ ϵabcdea ∧ Sb ∧ Rcd

−
1

αm2
ϵabcdSa ∧ Sb ∧ Rcd

þOðR4=ðαm2Þ2Þ: ð4:12Þ

There exists a nonlinearly ghost-free higher curvature
theory describing a massless spin-2 field and a massive
spin-2 field if we add an infinite number of appropriate

NONLINEARLY GHOST-FREE HIGHER CURVATURE GRAVITY PHYS. REV. D 102, 124049 (2020)

124049-7



higher curvature terms. The higher curvature terms can be
given by a schematic form Rð1þ R

αm2Þ−1R.3 The stability
conditions simply lead to

0 < α < 1; ð4:13Þ

as well as M2
pl;M

2� > 0.
It would be interesting if the higher curvature terms were

suppressed by αm2 rather than m2. When we take the limit
jαj → ∞ with m2 kept finite (note that m2 → −M2� as
jαj → ∞), we can ignore cubic and higher than cubic order
terms, and find

SGF½e�¼
M2

pl

4

Z
M4

LQGþOðα−1m−4Þ;

LQG¼ ϵabcd

�
ea∧eb∧RcdðeÞ− 1

M2�
ea∧SbðeÞ∧RcdðeÞ

�

¼ ϵabcd

�
ea∧eb∧RcdðeÞþ 1

m2
ea∧SbðeÞ∧RcdðeÞ

�
;

ð4:14Þ

where the spin connection is integrated out by the use of
Ta ¼ Oðα−1m−2Þ. The last equality holds only under the
jαj → ∞ limit. In the coordinate expression, the action is
given by

SGF½g� ¼
M2

pl

2

Z
M4

d4x
ffiffiffiffiffiffi
−g

p
LQGþOðα−1m−4Þ;

LQG ¼RðgÞþ 1

M2�

�
RμνðgÞRμνðgÞ−1

3
RðgÞ2

�

¼RðgÞþ 1

2M2�
½CμνρσðgÞCμνρσðgÞ−R2

GBðgÞ�; ð4:15Þ

where CμνρσðgÞ is the Weyl tensor and R2
GBðgÞ is the Gauss-

Bonnet term. We obtain quadratic gravity in four dimen-
sions. Since this action is obtained as a scaling limit, the
dynamical degrees of freedom are still the massless spin-2
field and the massive spin-2 field only. However, in the
limit jαj → ∞, either one of the Planck masses,M2

g ¼ αM2
pl

orM2
f ¼ ð1 − αÞM2

pl, must be negative. Either the massless
spin-2 or the massive spin-2 is a ghost.
Even for a finite α, one can obtain the same action (4.15)

as an effective description when one is interested in energy
scales below m. By integrating out the torsion, in low
energies E ≪ m, we find

SQG ¼ M2
pl

2

Z
M4

d4x
ffiffiffiffiffiffi
−g

p
LQG þOðm−4Þ: ð4:16Þ

Note, however, that the two actions (4.15) and (4.16) are
physically different. In (4.15), we just take the limit
jαj → ∞ and do not assume the energy scale. On the other
hand, the action (4.16) is obtained as an effective descrip-
tion of the theory (4.11) in low energies E ≪ m. Although
both (4.15) and (4.16) contain the massive spin-2 ghost
because of the higher curvature term, the ghost in (4.15) is a
“real” ghost whereas the ghost in (4.16) appears as a result
of the breakdown of the approximation. The Oðm−4Þ terms
cannot be ignored at E ∼m.
We can consider low energy scattering problems based

on the effective action (4.16). We recognize that not all
apparently consistent low energy EFTs admit a “standard”
UV completion [45]. The standard axioms of the scattering
amplitude—namely, unitarity, Lorentz invariance, causal-
ity, and locality—lead to nontrivial constraints on non-
gravitational EFTs called the positivity bounds [45]. As for
gravitational EFTs, the positivity bounds are derived when
an expected UV behavior of the amplitude, the Regge
behavior, is assumed [46] (see also [47–49]). A detailed
study [50] concludes the positive sign of the Weyl square
term, M2� > 0, under the assumption that the graviton t-
channel pole can be ignored, and this assumption is
justified when M� is much lower than the scale of UV
completion of gravity [46]. The requirement of the pos-
itivity is consistent with the requirement of the stability
condition of the ghost-free theory (4.6), as it should be.
As mentioned in the three-dimensional case, we can

assume the full four-dimensional bigravity theory and
then obtain the equivalent higher curvature theory by
integrating out the vierbein and the spin connection.
A similar discussion was already made in [25], considering
the general D-dimensional bigravity theory; however,
unitarity needs to be explicitly broken to find a correspond-
ing higher curvature theory in their analysis, although the
BD ghost remains absent. This is because they work in the
metric formalism where the torsion vanishes, which cor-
responds to the limit jαj → ∞ of our case. When the torsion
is allowed and 0 < α < 1 is satisfied, unitarity can be
preserved, on the other hand. This conclusion is expected to
hold in generic D > 4 dimensions.

V. INCLUSION OF ADDITIONAL DOF

Since generic PGTs contain not only the massive spin-2þ
mode but also other spin modes, it is natural to consider
extensions of the theory (4.11) to theories including addi-
tional massive dofs. In this section, we present an example
of the extension that contains an additional spin-0 mode in
four dimensions.
The dynamical spin-0− mode of the spin connection

shows up around the flat background when the term

3We suppose the existence of the inverse ð1þ R=ðαm2ÞÞ−1. As
far as jRj ≪ αm2, we can expand this expression in terms of
R=ðαm2Þ, and then we can safely conclude the equivalence
between (4.11) and ghost-free bigravity. However, at jRj ∼ αm2,
the inverse can be singular, meaning that (4.11) with jRj ≪ αm2

and jRj ≫ αm2 can be disconnected.
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d4xjejX 2 is added, where X is the so-called Holst scalar
defined by

X ≔ −
1

2
ϵμνρσRμνρσ: ð5:1Þ

However, the naive inclusion of the X2 term should
break the special structure of the ghost-free theory. The
YN ghost(s) must reappear, in general.
We study the action

S2þ&0− ½e;Ω; f;ω;φ�

¼M2
pl

4

Z
M4

ϵabcdðαea ∧ eb ∧Fcdþð1−αÞfa ∧ fb ∧RcdÞ

þM2
pl

2

Z
M4

φfa ∧ fb ∧RabþSmass½e;f;φ�; ð5:2Þ

where φ is a parity odd scalar field. Here, Smass is an
extension of the dRGT mass terms,

Smass ¼
M2

plM
2�

4

X
A;B;C;D

Z
M4

ciðφÞϵabcdeaA ∧ ebB ∧ ecC ∧ edD;

ð5:3Þ
where eaA ¼ fea; fag and ciðφÞ are arbitrary functions of φ.
The spin connections Ωab and ωab in (5.2) are non-
dynamical and thus can be integrated out. We then obtain

S2þ&0− ½e; f;φ�

¼ M2
pl

4

Z
M4

ϵabcdðαea ∧ eb ∧ RcdðeÞ

þ ð1 − αÞfa ∧ fb ∧ RcdðfÞÞ

−
3M2

plð1 − αÞ
4

Z
M4

d4xjfaμj
ð∂φÞ2f
1þ φ2

þ Smass½e; f;φ�;

ð5:4Þ

where ð∂φÞ2f ¼ ηabfμafνb∂μφ∂νφ ¼ fμν∂μφ∂νφ. When we
introduce the canonically normalized field θ via

φ ¼ sinh θ; ð5:5Þ
the action is

S2þ&0− ½e;f;θ�

¼M2
pl

4

Z
M4

ϵabcdðαea ∧ eb ∧ RcdðeÞ

þ ð1− αÞfa ∧ fb ∧ RcdðfÞÞ

−
3M2

plð1− αÞ
4

Z
M4

d4xjfaμjð∂θÞ2f þ Smass½e;f; sinhθ�;

ð5:6Þ

in which the scalar field θ has a canonical kinetic term
coupling to the f-variables and interactions with both
g- and f-variables through the dRGT mass terms. It is
known that a matter field coupling to both g- and
f-variables reintroduces the BD ghost, in general
[51,52]. However, the interactions of (5.6) are free from
the BD ghost. A similar Lagrangian is introduced by [53] as
the chameleon bigravity because the mass of the spin-2
field depends on the scalar field θ through the functions
ciðφÞ. The action (5.2) is recast in the form of the
chameleon bigravity and thus is free from the ghost at
nonlinear orders.
We then return to the Lagrangian (5.2) and introduce the

auxiliary variables ξa and χab. Since Smass½e; f;φ� has no
derivatives of the fields, Smass½e; ξ;φ� is algebraic in ξa and
φ. The new term φf ∧ f ∧ R becomes

φfa ∧ fa ∧ Rab ¼ φðea þ ξaÞ ∧ ðeb þ ξbÞ ∧ Rab; ð5:7Þ

and is also algebraic in ξa and φ. The Einstein-Hilbert
actions are the same as before. Therefore, the variables
χab; ξa, and φ are nondynamical variables and can be
integrated out. The equations of motion of χab take exactly
the same form χab ¼ −Kab, leading to the coupling
e ∧ K ∧ T. We can also eliminate the nondynamical
variables ξa and φ by solving their equations of motion
at least perturbatively. As an example, we suppose the
interaction

Smass ¼
M2

plM
2�

4

Z
ϵabcd

�
−

φ2

8α0−
ea ∧ eb ∧ ec ∧ ed

þ ð1 − αÞ2ea ∧ eb ∧ ξc ∧ ξd
�
; ð5:8Þ

where α0− is a dimensionless constant. The mass of the
spin-0− mode is m2

0− ¼ ð1 − αÞM2�=α0− about the flat
background. Up to leading order, the action is given by

S2þ&0− ½e;ω� ¼
M2

pl

4

Z
M4

ϵabcd

�
ea ∧ eb ∧ Rcd

− αea ∧ Tb ∧ Kcd −
1

M2�
ea ∧ Sb ∧ Rcd

�

þ α0−M2
pl

12M2�

Z
M4

d4xjejX2 þOðM−4� Þ: ð5:9Þ

We obtain a ghost-free higher curvature theory with the
massive spin-2þ and spin-0− modes.
One may consider the coupling φe ∧ e ∧ F instead of

φf ∧ f ∧ R. In the bigravity frame, the only difference
from (5.4) is that the kinetic term of φ appears in the
g-sector. However, one should recall the relation (3.11)
(the same relation holds in four dimensions). Hence, there
is the coupling φea ∧ eb ∧ Dχab when the variables
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χab; ξa;φ are used, and then the action is no longer
algebraic in either φ or χab. The variables ξa; χab, and φ
may be integrated out formally, but the resultant theory
must be nonlocal. Although this nonlocal theory has the
spin-0 dof, this dof should be regarded as the dof of φ rather
than part of the spin connection. To obtain the local higher
curvature gravity, the kinetic term of φ should exist in the
f-sector.

VI. SUMMARY AND DISCUSSIONS

In the present paper, we have shown the equivalence
between a particular class of PGT and the ghost-free
bigravity in a vacuum. Although a similar relation was
shown in [25] by taking a scaling limit, the limit necessarily
breaks unitarity; either the massless spin-2 mode or the
massive spin-2 mode is a ghost. On the other hand, we have
shown that even if both the massless and massive spin-2
modes are not ghostly modes, the equivalence holds thanks
to the torsion. The limit considered in [25] is the limit to
vanishing torsion. We have also presented an example
extension that includes an additional massive spin-0 degree
of freedom in four dimensions. The ghost-free bigravity
and its extension can arise from higher curvature correc-
tions to the Einstein-Hilbert action. The higher dimensional
scenarios predict multiple massive spin-2 fields. Hence, if
the number of massive spin-2 states is clarified, we may
argue whether the massive spin-2 originates from the higher
dimensions or the higher curvatures. From the point of view
of PGT, the equivalence provides counterexamples to the
previous argument about ghost-free PGTs.
Let us comment on matter couplings. In the context of

PGT, spin currents, as well as energy-momentum currents,
are sources of gravity. The minimal couplings between the
spin connection and matter fields are introduced by
replacing the partial derivative d with the covariant deriva-
tive D. Regarding the bosonic fields that have no Lorentz
indices such as scalar, vector, and form fields, the covariant
exterior derivative is the same as the exterior derivative,
DAp ¼ dAp, where Ap is a p-form, meaning that there is
no coupling between the spin connection and these matter
fields. On the other hand, fermionic fields ψ and tensor
fields of the Lorentz group Tab��� have the coupling through
the covariant derivatives, Dψ ; DTab���. Spin currents for
these matter fields become sources of the spin connection.
If one adopts the minimal couplings, the equivalent
bigravity theory apparently has peculiar couplings: the
matter fields are coupled with the g-vielbein and the f-spin
connection. Energy-momentum currents are sources for the
g-variable while spin currents are sources for the f-variable.
A new type of double matter coupling is expected.
The connection between massive gravity and PGT

could have interesting implications not only for studies
about massive gravity and PGT but also for the AdS=CFT
correspondence. The massive spin-2 mode can play the role

of dark matter [54–59], and we can discuss these scenarios
based on PGTs in which the new type of matter coupling is
predicted. It would also be intriguing to see implications of
higher curvature terms for the AdS=CFT correspondence.
In three dimensions, the torsionless quadratic gravity,
known as NMG, has a conflict between unitarity in the
bulk and the dual CFT. This conflict is simply resolved by
adding the torsion. Furthermore, higher dimensional exten-
sions are straightforward. Supposing the ghost-free bigrav-
ity theory in generic D dimensions in the vielbein
formalism, one may obtain the corresponding higher
curvature theory by integrating out the g-spin connection
and the f-vielbein. One can discuss holographic implica-
tions of higher curvature terms in generic dimensions
without suffering from the ghost.
In four-dimensional bigravity, the Schwarzschild(-AdS)

black hole (BH) is a vacuum solution, and the
Schwarzschild BH becomes unstable when the horizon
radius is smaller than the Compton wavelength of the
massive spin-2 field [60,61]. At the same time, hairy BH
solutions have been found [62–64], and these BHs are
natural candidates for the final state of the instability of the
Schwarzschild BH. Since ghost-free bigravity is shown to
be equivalent to ghost-free higher curvature gravity, the
same phenomenon should occur: a small BH may exhibit a
phase transition, and the threshold is determined by the
scale in which the higher curvature terms are important. On
the other hand, in three dimensions, the situation could be
different, since the Banados-Teitelboim-Zanelli BH [65] is
locally AdS, and then it would be stable even in the
presence of the massive spin-2 field, suggesting no phase
transition. It would be interesting to investigate the (non)
existence of hairy BH solutions in general dimensions and
show whether such a phase transition is indeed present or
absent in bigravity or higher curvature gravity, which we
leave for a future study.
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APPENDIX: CUTOFF OF QUADRATIC GRAVITY

As shown in the main text, an infinite number of higher
curvature terms can yield a ghost-free completion of higher
curvature gravity without introducing any additional dofs.
Instead, one may consider another scenario with the help
of a heavy dof which changes the theory at an energy
scale well below the scale of the ghostly operator. Even if a
theory contains a ghostly operator, the theory can be
thought of as an EFT.
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The quadratic curvature terms are particularly interesting
in four dimensions because these terms have an additional
local symmetry, the scale invariance. Since the curvature 2-
form is defined by the spin connection, Rab is invariant
under the following scale transformation,

ea → eΩðxÞea; ωab → ωab; ðA1Þ

where ΩðxÞ is an arbitrary function. The quadratic curva-
ture terms such as e ∧ S ∧ R are invariant under the
transformation (A1). If these quadratic curvature terms
become dominant at some energy scale, there exists an
approximate scale invariance which might be used to cause
the inflationary universe at such an energy scale [67], just
like Starobinsky inflation [68].4 We, therefore, rediscuss the
quadratic model (4.1) and clarify the scale of the lowest
ghostly operator.
We follow the decoupling limit analysis used in Ref. [44]

(see also [69,70]). As we have shown, the equivalent theory
of quadratic gravity (4.1) is Seq ¼ SdRGT þ Sder. For later
convenience, we use the Planck mass of the f-sectorM2

f ¼
ð1 − αÞM2

pl instead of the original Planck mass Mpl. By
means of three parameters Mf;m, and α, the equivalent
action is

SdRGT ¼
M2

f

4

Z
M4

ϵabcd

�
α

1−α
ea ∧ eb ∧Fcdþfa ∧ fb ∧Rcd

þαm2ea ∧ eb ∧ ξc ∧ ξd
�
; ðA2Þ

Sder ¼ −
M2

f

4

Z
M4

ϵabcdξ
a ∧ ξb ∧ Rcd; ðA3Þ

where ξa ¼ fa − ea is understood. We then define the Λn
decoupling limit by

Mf → ∞; m → 0 ðA4Þ

while keeping

Λn ¼ ðMfmn−1Þ1=n → finite; ðA5Þ

under which higher dimensional operators suppressed by
Λn0 with n0 < n vanish.
In the bigravity action Seq½e;Ω; f;ω�, there are two sets

of vierbeins and spin connections, but there is only one
set of diffeomorphism invariance and local Lorentz invari-
ance. To “recover” two sets of invariances, we introduce
Stückelberg fields as

ea ¼ Λa
bebcðϕÞdϕc; ðA6Þ

Ωa
b ¼ dϕe½Λa

cΩc
deðϕÞðΛ−1Þdb þ Λa

c∂eðΛ−1Þcb� ðA7Þ

where ϕa are four scalar fields and Λa
b is the Lorentz

Stückelberg field, respectively. We then define the canoni-
cally normalized fields about the flat background via

ωab ¼ 1

Mf
μab; fa ¼ 1a þ 1

Mf
ha; ðA8Þ

Ωab
c ¼

1

Mg
νabc; eab ¼ δab þ

1

Mg
γab; ðA9Þ

ϕa ¼ xa þ 1

Mfm
Aa þ 1

Mfm2
∂aπ; ðA10Þ

Λa
b ¼ exp

�
1

Mfm
λab

�
; ðA11Þ

where M2
g ¼ αM2

pl ¼ α
1−αM

2
f and 1a ¼ δaμdxμ. We now

have seven variables,

fμabμdxμ; haμdxμ; νabc; γab; Aa; π; λabg;

and we expand the action in terms of them.
One can perform the general decoupling limit analysis of

bigravity theory [70]. However, for the sake of simplicity,
we further consider the limit

α → 1; ðA12Þ

which is the weak coupling limit of the g-fluctuations,
namely,M2

g ≫ M2
f. The fluctuations of the g-variables, ν

ab
c

and γab, are then decoupled from those of the f-variables
and the Stückelberg fields. Hence, the action for the
f-variables and the Stückelberg fields under the limit
α → 1 is simply obtained by substituting

ea ¼ Λa
bdϕb; Fab ¼ 0; ðA13Þ

and (A8), (A10), and (A11) into the action. Hereinafter, we
only consider the fluctuations of the f-variables and
Stückelberg fields.
It is known that the dRGT mass term is free from the BD

ghost, and the lowest strong coupling scale is Λ3 around the
Minkowski spacetime. Indeed, ignoring boundary terms,
we obtain

4Precisely speaking, the successful inflationary scenario
should require a spin-0 dof, so the present model (4.1) itself
may not be used for inflation.
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M2
f

Z
M4

ϵabcdfa ∧ fb ∧Rcd
ðfÞ

¼
Z
M4

ϵabcdð2ha ∧ dμbc ∧ 1dþμae ∧ μeb ∧ 1c ∧ 1dþ�� �Þ;

ðA14Þ

M2
fm

2

Z
M4

ϵabcdea ∧ eb ∧ ξc ∧ ξd

¼
Z
M4

ϵabcdð−2ha ∧ d∂bπ ∧ 1c ∧ 1d

þ 2dAa ∧ λbe1e ∧ 1c ∧ 1d

þ λae1e ∧ λbf1f ∧ 1c ∧ 1d þ � � �Þ ðA15Þ

where � � � are nonlinear operators suppressed by Λ3 or
higher. The � � � are irrelevant when we consider the Λn
decoupling limit with n > 3. On the other hand, the
derivative coupling ξ ∧ ξ ∧ R is given by

M2
f

Z
M4

ϵabcdξ
a ∧ ξb ∧ Rcd

¼
Z
M4

ϵabcd

�
1

Λ5
5

d∂aπ ∧ d∂bπ ∧ dμcd

þ 2

Λ4
4

d∂aπ ∧ λbe1e ∧ dμcdðfÞ

�
þ � � � ; ðA16Þ

where � � � are operators suppressed by higher than Λ4.
Thanks to the exterior products, the first term, the operator
at Λ5, possesses the total derivative structure. Although the
naive cutoff scale isΛ5, which is known as the lowest cutoff
of general massive gravity, the cutoff is raised to Λ4

because of the special structure of the interaction.
However, the operator at Λ4, namely d∂π ∧ λ ∧ dμ, is a

ghostly operator as shown by [44]. After performing

integration by parts, the variable μab is a nondynamical
variable. We can thus eliminate μab from the action. The
existence of the operator d∂π ∧ λ ∧ dμ implies that the
Lorentz Stückelberg field λab gets a kinetic term of the form

1

Λ8
4

ð∂λÞ2ð∂2πÞ2; ðA17Þ

after integrating out μab where the indices are omitted for
notational simplicity. On the other hand, λab does not have
a quadratic kinetic term; thus, λab must be a ghostly dof or,
at best, strongly coupled. Note that in Ref. [44] the authors
rescale the coupling constant of ξ ∧ ξ ∧ R and then take
the Λ3 decoupling limit. In the present case, on the other
hand, there is no free parameter to rescale the coupling
constant of ξ ∧ ξ ∧ R. We thus find the ghostly mode at the
scale Λ4.
There might be a possibility that the variable λab

represents a healthy spin-1 dof. Since the generic PGTs
involve a spin-1 dof, the strong coupling issue of λab can be
resolved by adding appropriate quadratic torsion and
quadratic curvature terms. Inclusion of additional terms,
however, may change the structure of the theory, and then
the YN ghost(s) could appear, in general. It would be
interesting to see whether the ghost appears in such models
and whether the ghost can be eliminated by introducing
appropriate counterterms as we did in the main text.
In summary, the cutoff of the quadratic gravity (4.1) is

Λ4 ≃ ðMplm3Þ1=4. As long as m ≪ Mpl, there is an inter-
esting energy regime m < E ≪ Λ4 in which the quadratic
curvature term may provide relevant effects, and the theory
could be still meaningful. Phenomenological implications
of the spin-2 mode of the quadratic PGT were recently
discussed in [67] in the context of inflation and were
studied in [71,72] for the late time cosmology.
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and tachyon free Poincaré gauge theories: A systematic
approach, Phys. Rev. D 99, 064001 (2019).

[24] K. Aoki and S. Mukohyama, Ghostfree quadratic curvature
theories with massive spin-2 and spin-0 particles, Phys. Rev.
D 100, 064061 (2019).

[25] M. F. Paulos and A. J. Tolley, Massive gravity theories and
limits of ghost-free bigravity models, J. High Energy Phys.
09 (2012) 002.

[26] B. Gording and A. Schmidt-May, Ghost-free infinite deriva-
tive gravity, J. High Energy Phys. 09 (2018) 044.

[27] H.-j. Yo and J. M. Nester, Hamiltonian analysis of Poincare
gauge theory scalar modes, Int. J. Mod. Phys. D 08, 459
(1999).

[28] H.-J. Yo and J. M. Nester, Hamiltonian analysis of Poincare
gauge theory: Higher spin modes, Int. J. Mod. Phys. D 11,
747 (2002).
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