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We revisit our previous proposed conjecture—the horizon creates a local instability which acts as the
source of the quantum temperature of a black hole. It is found that a chargeless massless particle moving
along the null trajectory in Eddington-Finkelstein (EF) coordinates feels instability in the vicinity of the
horizon. Such instability is observer independent for this particle motion. Moreover, an observer associated
with EF coordinates finds the local Hamiltonian as xp, where p is the canonical momentum corresponding
to the coordinate x. Finally, using this Hamiltonian, we notice that, at the quantum level, this class of
observers feels the horizon as a thermal object with the temperature given by the Hawking expression. We
provide this by using various techniques in quantum mechanics and, thereby, bolster our earlier claim—the
automatic local instability can be a mechanism for emerging the horizon as a thermal object. In this process,
the present analysis provides another set of coordinates (namely, the EF frame), in addition to our earlier
Painlevé ones, in which the null trajectory of the massless particle is governed by an xp-type Hamiltonian
in the near-horizon regime.
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I. INTRODUCTION AND MOTIVATION

The study of thermal and geometrical properties of the
black hole horizon and their intimate relationship with the
dynamics of particle motion near it is one of the phenom-
enological interests in recent times. It has been observed
that the horizon may introduce chaos in a system whenever
the system comes under the influence of it [1–8]. In a recent
work [9], a similar thing has been discussed in the case of a
string around a charged black brane. In history, chaotic
dynamics in the presence of a horizon have been exten-
sively studied, but the reason behind this fascinating feature
of the horizon is yet to be completely understood. Similarly,
why all the horizons (static or stationary) classically give
the same phenomenological feature is also an essential
question on this note. The investigation has not been
limited in the classical scale only, and people have tried
to expound the chaotic dynamics of the horizon in the
quantum regime as well. The phenomena of quantum chaos
are mainly examined by the behavior of the out-of-time-
order correlator (OTOC) of some quantum operator
[10,11]. The characteristic exponential growth of OTOC
in those cases is the signature of the quantum measure of
chaos [10,11].
However, one crucial noticeable point is that, whenever

we mention chaos, there must be some instability factors
associated with the system which characterizes its chaotic
feature. This is known as the Lyapunov exponent (see

Ref. [12] for a detailed discussion). One recent discovery
on the upper bound of the Lyapunov exponent predicted in
the Sachdev-Ye-Kitaev (SYK) model [10] has made things
very interesting. In the classical picture, it has been found in
Refs. [2,4] that, for any static or stationary black holes, the
radial motion of the particle grows exponentially in the
near-horizon region. The upper bound of the instability
factor, in this case, theoretically comes out to be consistent
with that of the SYK model. This has been verified
numerically as well.1 In all those cases, the upper bound
on the Lyapunov exponent is determined by the surface
gravity of the black hole. Since it is well known that the
surface gravity is related to the Hawking temperature
[15,16], therefore, this upper bound is dependent on the
temperature [10,17]. In a recent paper [18], authors have
demonstrated that this upper bound of the Lyapunov
exponent can be verified in an experimentally realizable
setup using a trapped-ion technique.
In fact, there are shreds of evidence about the connection

between the instability of the system and its corresponding
quantum thermality. The original work of Srednicki [19]
suggested that a chaotic system naturally incorporates
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1There are a few cases [13,14] which indeed show the violation
of the bound in the Lyapunov exponent. This is either due to
considering the unstable equilibrium position of the particle
motion far from the horizon [13] or to the inclusion of the
quantum correction in the particle motion, provided by the
generalized uncertainty principle [14]. Here, we shall consider
the analysis very near to the horizon. Moreover, in a practical
situation, later corrections are very small compared to the original
value.
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thermal behavior. Recently, Morita [20], in a similar note,
suggested that an unstable classical mode, characterized by
a fixed value of the Lyapunov exponent, cannot have zero
temperature in the quantum scale. One of the extensively
investigated unstable systems in this direction is an inverse
harmonic oscillator (IHO). At the classical level, the IHO
provides instability, and people found that quantum temper-
ature can arise from it, which is determined by the
instability factor. A notable feature of this analysis is that
the obtained temperature is a pure quantum consequence,
and so, in the classical limit, it does vanish. All these
findings indicate that there is a close connection between
the instability and the pure quantum temperature. More
precisely, this instability at the classical level can be a
source of a pure quantum temperature of a system.
Contemporary works of Bekenstein [21] and Hawking

[15,16] indicate that the black hole horizon is a thermo-
dynamic object. Interestingly, the horizon temperature is an
observer-dependent quantity and, more importantly, is a
pure quantum entity. Since the inception of this thermal
concept of a horizon, one of the main thrusts to date
remains to look for a suitable microscopic origin of the
aforesaid black hole thermodynamics. There are several
attempts, and all of them have their own merits and
demerits, and also none of them are complete. Here, we
want to address one of these important issues in this area.
Although a thermodynamical parameter like temperature
nicely fits with the horizon, the question remains—what is
the source of this temperature? The underlying mechanism
which sources such temperature still is one of the gray
areas. Motivated by the earlier and recent observations in
the context of connection between the classical instability
and quantum thermality, we want to explore here such a
possibility to explain the existence of horizon temperature.
We feel that it can be an important tool to explain this. In
this connection, we want to mention that there are some
works where IHO (which, as we mentioned earlier,
provides instability) has appeared in the black hole system
[2,20,22]. For example, Hashimoto and Tanahashi [2] have
shown that if one considers the analysis around the maxima
of a field potential in the black hole spacetime, the effective
motion of a particle is that in an IHO potential. Later
on, Morita [20] and Hegde et al. [22] independently
showed that such IHO gives rise to temperature under
quantization which is proportional to the instability factor
of the system. In a completely different context [23,24], it
has been observed that if a particle scattering phenomenon
is considered in a black hole spacetime in the presence of a
localized shock wave, the effective scattering Hamiltonian
comes out to be that of IHO, which also gives rise to the
same in the quantum regime.
The noticeable fact in all these works, mentioned above,

is the possibility of the existence of instability in the form of
IHO for a black hole background, which provides thermal-
ity to the system. In addition, this feature is local, as it

exists in a very small region around a particular point—
either around the maxima of the potential [2] or around the
location of the shock wave [24]. Hence, none of these
analyses is directly connected with the horizon. In other
words, the existing observations have not been done
around the location of the horizon. Since we know that
the temperature is the property of the horizon, this should
arise totally from the investigations around this one-way
membrane. That is why our prime objective here is to find if
there is any instability near the horizon and try to under-
stand whether that instability is associated with this
temperature.
In this regard, we mention that recently such investiga-

tion has already been attempted by us [25]. It has been
observed that the near-horizon Hamiltonian for the radial
motion of an outgoing massless particle in the Painlevé
coordinates is xp type, where p is the conjugate momentum
corresponding to coordinate x. It takes IHO form in a new
canonical conjugate pair of phase space variables and,
hence, is unstable. Moreover, the consequences at the
quantum level are found to be the automatic appearance
of thermality as long as the Lyapunov exponent of the
system remains a positive nonzero quantity. It appeared that
the density of states (DOS) is thermal in nature with the
temperature identified as given by the Hawking expression
[15]. It suggests that the instability, seen by the particle, in
the classical scale around the horizon may result in the
horizon temperature in the quantum scale. The essential
feature of this study is that the system need not be in the
chaotic phase; only the unstable feature is enough to get
thermality. In addition, all these are concluded with respect
to the Painlevé observer.
Based on these facts, there are certain remaining issues

which need to be addressed. They are as follows.
(i) Can the instability be addressed without going to

Hamiltonian (or, equivalently, Lagrangian) analysis?
(ii) Is there any other set of observers other than

Painlevé, which also predicts a similar instability
as well as thermality?

(iii) Are all these features, in general, observer depen-
dent, or are some not so?

(iv) Is it possible to construct a Hamiltonian of the system
just by the knowledge of the nature of instability in the
near-horizon regime? This will elaborate on the active
role of the xp-type Hamiltonian in this system.

(v) We know that the thermality of the horizon itself is
an observer-dependent phenomenon. Can we clas-
sify those observers by investigating the connection
between instability and thermality?

In this paper, we aim to investigate the whole phenome-
non in a more extensive way. In the process of addressing
these issues, we find that there is another set of coordinates,
namely, the Eddington-Finkelstein (EF) coordinates, in
which the motion of the particle along the null trajectory
also faces the instability in the near-horizon regime.
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Moreover, such instability is very much there for any
observer when the particle is following the outgoing null
path in those particular EF coordinates. It implies that the
observed near-horizon instability of the particle motion is
an observer-independent phenomenon for this particular
motion of the particle. Notably, again the instability factor
is given by the surface gravity of the black hole. Next, we
find that the observer associated with the EF frame
measures the radial motion as r ∼ eκt, where r and t are
the EF radial and time coordinates, respectively. The
corresponding Hamiltonian comes out to be in xp structure.
This implies that, as of now, this particular type of
Hamiltonian is observer dependent—the frame (either in
Painlevé or in EF coordinates) which originally defines the
particle’s motion will see this.
Following this classical picture, we next proceed to the

quantum calculation. We observe that our present EF
observers are suitable to predict the automatic appearance
of the thermality as a result of this aforesaid instability. We
investigate this fact using different quantum approaches in
order to establish our previous conjecture, stated in Ref. [25],
in a more robust way. In every case, the temperature is found
to be that given by Hawking. Therefore, now, under the
present investigation, we reframe this conjecture as follows:
The presence of instability in the near-horizon region is the
mechanism for providing the temperature to the horizon as
seen by a particular class of observers.
The paper is organized as follows. In Sec. II, we first

define the outgoing null path of our massless test particle in
EF coordinates. We then analyze the behavior of the
trajectory in Sec. III within the classical picture in the
near-horizon region where the radial trajectories are found
to be unstable in nature. Next, using the Raychaudhuri
equation [26], in Sec. IV, we introduce a technique where
we try to realize this instability in a covariant way.
Section V is devoted to constructing the near-horizon
Hamiltonian of this particle. Here, first, we derive it by
using the unstable radial equation of motion of the particle
and then verify the same using a direct approach in the
context of the dispersion relation. Up to Sec. V, every
calculation is done in the classical scale. Now, the next
section, i.e., Sec. VI, is dedicated to studying the quantum
consequences, which is thermality of the horizon in its
neighborhood region. In Sec. VI A, we start the study of
thermality using tunneling formalism [27–31] across the
horizon. In the next subsection, we investigate thermality
using the detector response approach. Up next in Sec. VII,
we study the scattering of a massless particle by taking our
near-horizon Hamiltonian as a pure quantum mechanical
scatterer. It again yields thermal nature, and, moreover, we
are able to extract the imaginary part of the frequency of
black hole quasinormal modes (QNMs) [32–34]. In
Sec. VIII, we again study the thermality in the near-horizon
region in a perturbative approach considering the obtained
near-horizon Hamiltonian as a simple quantum mechanical

model. In the final section (i.e., Sec. IX), we conclude our
work. Three appendixes are also included at the end of
the paper. In Appendix A, we evaluate the values of the
nonaffinity parameter, the expansion parameter, and the
shear parameter for the null vector in our chosen background.
These are essential for our computation of the main work. In
Appendix B, we study the detector response function in
(1þ 1)-dimensional Schwarzschild background for both
the outgoing and the ingoing detector, which follow the
same path as our test particle. In this case, the near-horizon
approximation is avoided. In Appendix C, we readdress the
study of thermality through Gutzwiller’s formula in order to
strengthen our earlier analysis [25]. The last two appendixes
are included mainly for a side discussion.

II. OUTGOING PATH OF MASSLESS PARTICLE

Massless particle follows null-like trajectories, and,
therefore, the tangent to the path must be null-like.
To identify those, for simplicity, we consider a static
spherically symmetric black hole (SSSBH) metric in
Schwarzschild coordinates ðts; r; θ;ϕÞ as

ds2 ¼ −fðrÞdt2s þ
1

fðrÞ dr
2 þ hðrÞðdθ2 þ sin2θdϕ2Þ: ð1Þ

Usually, in (1þ 3) dimensions hðrÞ ¼ r2, but we kept this
as a general function of radial coordinate for our future
purpose. The above coordinate system is singular at the
event horizon H, which corresponds to fðrHÞ ¼ 0. Since
we shall confine our investigation in the near-horizon
regime, the above singularity is not desired to exist in
the choice of coordinates. Moreover, we want the particle to
follow the outgoing null trajectory. For this purpose,
Kruskal-Szekeres (KS) coordinates ðU;V; θ;ϕÞ in the
null-null form will be the relevant ones. Since the paths
will be outgoing, we consider the particle propagates along
the normal to U ¼ const surface, where

U ¼ � exp ð−κuÞ þ 1: ð2Þ

(Following the discussion in Sec. 2.5 of Ref. [35], we here
choose the above convention.) Since the normal to null
surface is tangent to it as well, the particle will propagate
along this U ¼ const surface if the tangent to its path is this
null normal. For the above choice, the event horizon r ¼ rH
is located atU ¼ 1. Here, κ is the surface gravity defined by
κ ¼ f0ðrHÞ=2. The þð−Þ sign stands for the coordinate is
defined outside (inside) the event horizon. For the present
purpose, only the þ sign will be considered, as our test
particle resides outside the horizon. In the above, u is
known as the EF outgoing null coordinate. There is also EF
ingoing null coordinate v. Both of them are related to
Schwarzschild coordinates by the relations u ¼ ts − r� and
v ¼ ts þ r�, respectively, with the tortoise coordinate r�
defined as
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dr� ¼
dr
fðrÞ : ð3Þ

The KS coordinates cover the whole spacetime and,
therefore, are very much adopted to a freely falling
observer. In order to realize the presence of the horizon
by the particle and to confine it outside the black hole, the
null trajectories will be viewed from a different coordinate
system, defined only outside the horizon. For that purpose,
we adopt a new set of EF coordinates ðt; r; θ;ϕÞ, where t is
related to the old coordinates as

t ¼ v − r ¼ ts þ r� − r; ð4Þ

where r� is taken to be valid outside the horizon. Since ts
and r are timelike and spacelike in the r > rH region, these
new coordinates are properly suited for this region only.
The metric (1), in these, takes the following form:

ds2 ¼ −fðrÞdt2 þ 2ð1 − fðrÞÞdtdrþ ð2 − fðrÞÞdr2
þ hðrÞðdθ2 þ sin2θdϕ2Þ: ð5Þ

Considering that the observer is in this frame, we shall
calculate all our physical quantity in these coordinates. So
now, our next task is to calculate the normal to U ¼ const
surface, which describes the path of the massless particle.
Since the observer is in the new EF frame, we need to
transform the normal vector in these coordinates. This will
give the form of the trajectory of the massless particle with
respect to our desired observer.
The normal vector to U ¼ const (say, K) surface is

determined by la ¼ eρ∇aU, where ρ is some scalar field on
this. For the moment, the value of K can be any constant.
But since we are interested in the near-horizon region, at the
end, whenever necessary, the limit U ¼ K → 1 will be
taken to achieve our final goal. With this, we find the
following components of la on any U ¼ const surface in
ðt; r; θ;ϕÞ coordinates as

la ¼ −κe½ρ−κðt−2r�þrÞ�
�
1 −

2

fðrÞ ;−1; 0; 0
�
: ð6Þ

Let us now choose ρ in such a way that lt ¼ 1. Then we
obtain the contravariant components of the tangent to
particle trajectory as

la ¼
�
1;

fðrÞ
2 − fðrÞ ; 0; 0

�
: ð7Þ

Consequently, the covariant components are

la ¼
�

fðrÞ
fðrÞ − 2

; 1; 0; 0

�
: ð8Þ

One can check that on the horizon H the components

reduce to la ¼H ð1; 0; 0; 0Þ, which has the same normaliza-
tion as that of the timelike Killing vector for this spacetime.
This motivated the purpose of the above choice for ρ.
Now the integral curves xaðμÞ ¼ ðt; r; θ;ϕÞ of la, char-

acterized by

dxaðμÞ
dμ

¼ laðxðμÞÞ; ð9Þ

where μ is the parameter which fixes the particle position at
a particular moment, lead to the outgoing null trajectory of
our massless particle along any U ¼ const surface. Note
that the angular components of la vanish, and so the
particle will have motion only along the radial direction.
In the upcoming section, we shall study these trajectories
in the near-horizon regime, i.e., in the limit U → 1 [or,
equivalently, fðrÞ → 0].

III. RADIAL BEHAVIOR: INSTABILITY
VERY NEAR TO THE HORIZON

So far, we found the path of our test particle, given by the
integral curve (9) of the tangent vector (7). We are now in a
position to investigate the behavior of this curve in the
vicinity of the horizon. Since it has been observed that
Eq. (7) does not have any angular component, the particle
will perform only the radial motion. Therefore, our local
analysis will give the nature of the radial coordinate of the
particle.
Since the components of tangent vector la are given by

Eq. (7) and xa ¼ ðt; r; θ;ϕÞ, the time component of Eq. (9)
yields

dt
dμ

¼ 1 ⇒ μ ¼ t: ð10Þ

Then the radial component of Eq. (9) leads to

dr
dt

¼ fðrÞ
2 − fðrÞ : ð11Þ

The solution of this will give us the behavior of the particle
trajectory in the radial direction. Since we are interested in
the neighborhood region of the horizon, the metric coef-
ficient fðrÞ can be taken as the leading term of the Taylor
series expansion of it around r ¼ rH:

fðrÞ ≃ 2κðr − rHÞ: ð12Þ

Substituting this in Eq. (11) and then keeping up to the
relevant leading order ½Oðr − rHÞ�, we obtain

dr
dt

≃
2κðr − rHÞ

2 − 2κðr − rHÞ
≃ κðr − rHÞ: ð13Þ
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The solution of it is

r − rH ¼ 1

κ
eκt: ð14Þ

Interestingly, the above analysis indicates the presence of
instability in the radial direction of the particle motion as
long as the particle is very near to the horizon. Therefore,
we call this local instability. For the rest of the paper, we
shall call this just instability without the explicit mention
that it is locally applicable. But keep in mind that, whenever
such is stated, this is always in a local sense.
Before going into the discussion of the consequences of

this local instability, wewill show that the above can also be
realized in an alternative way. We know that the expansion
parameter Θ, defined in Eq. (A5) or in Eq. (A7) (see
Appendix A), of the null geodesic congruence encodes
the information about the behavior of geodesics—how the
distance between two neighboring paths changes.
Therefore, it is instructive to investigate this parameter
in the present context. Below, we shall use the value of Θ,
calculated in Appendix A, to obtain the behavior of the
radial direction in the vicinity of the horizon. We shall come
back to this quantity again in the next section.
Use of Eq. (A7) from Appendix A for the metric (5)

yields

∂rlr ¼ Θ −
h0ðrÞ
hðrÞ l

r þ κ̃; ð15Þ

where a prime indicates the derivative with respect to the r
coordinate. Notice that, in the near-horizon regime, the
expression (A9) for Θ implies that the expansion parameter
is of the order of ðr − rHÞ. Similarly, Eq. (7) shows lr is also
Oðr − rHÞ in this approximation. On the other hand,
Eq. (A4) shows that κ̃ ¼ κ þOðr − rHÞ. Therefore, in
the limit r → rH, keeping only the leading-order terms
in Eq. (15), we obtain

∂rlr ¼ κ: ð16Þ

Now, using the fact that lr ¼ dr=dt, the solution of the
above comes out to be r ¼ ð1=κÞeκt þ C, where C is an
integration constant. Since r → rH (i.e., r� → −∞) implies
t → −∞, one obtains C ¼ rH. Therefore, we have the same
solution (14).
We now make a comment for the same in the (1þ 1)-

dimensional static black hole case. This is needed later in
some situations; we shall consider this lower-dimensional
case for the simplicity of the calculation (for example, a
side discussion has been made in Appendix B in this
spacetime dimension). For the (1þ 1)-dimensional case,
i.e., considering the (t − r) sector of metric (5), one can
readily show that the time and radial components of la are
given by those given in Eq. (7). Therefore, one again finds
the same radial behavior as obtained in Eq. (14). Also, as

here Θ vanishes and the determinant of the metric is
g ¼ −1, the definition for expansion parameter (A7)
reduces to Eq. (16). Hence, one finds Eq. (14) again,
and so the existence of the instability in the particle motion
in the near-horizon region persists in this case as well. This
indicates that the present instability is completely due to the
influence of the horizon in spacetime, not specific to the
number of spacetime dimensions.

IV. A COVARIANT REALISATION
OF LOCAL INSTABILITY

We found that the radial motion is unstable in nature very
near to the horizon. In this regard, it is natural to ask—what
happens to the family of these null geodesics in this region
and whether this congruence of geodesics also faces a
similar instability due to the horizon. Moreover, in the last
section, we mentioned that the expansion parameter Θ can
be an important quantity to illuminate our main inves-
tigation. Particularly, as it measures the separation between
the two nearby geodesics, it will be interesting to see how
this separation changes with time. Thus, we shall have a
more concrete idea of instability, provided by the horizon.
Therefore, the present section will be dedicated to examin-
ing the evaluation of Θ for null geodesics in the nearby
region of the horizon. The most promising way is to start
with the Raychaudhuri equation for null congruence [26].
Since it is in the covariant form, we expect that the
evaluation character of Θ, obtained from this, contrary to
the earlier section, may provide a covariant description of
our aforesaid instability.
The Raychaudhuri equation for null geodesics is [26]

dΘ
dμ

¼ κ̃Θ −
1

2
Θ2 − σabσ

ab þ ωabω
ab − Rablalb: ð17Þ

Here, we shall study this equation in the near-horizon of our
SSSBH spacetime (5). All the quantities are defined with
respect to the null vector (7). Let us now examine each of
the terms on the right-hand side of the above equation.
These are all calculated in Appendix A. We found that the
shear parameter σab ¼ 0 [see Eq. (A12)], and, since la is
hypersurface orthonormal, we must have the rotation
parameter ωab ¼ 0 as well. Next, note that in the near-
horizon region Θ ∼Oðr − rHÞ [see Eq. (A9)], whereas, as
mentioned in the last section, κ̃ ¼ κ þOðr − rHÞ. The
evaluation of the term Rablalb for metric (5) yields

Rablalb ¼
f2ðrÞðh02ðrÞ − 2hðrÞh00ðrÞÞ

2ðfðrÞ − 2Þ2h2ðrÞ : ð18Þ

Now, for the value of hðrÞ ¼ r2, the above term vanishes.
Therefore, keeping the leading-order terms, i.e., Oðr − rHÞ
terms in the right-hand side of Eq. (17), one obtains
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dΘ
dμ

¼ κΘ: ð19Þ

Performing the integration of the above equation, we obtain
the form of the expansion parameter as

Θ ¼ κeκμ: ð20Þ

This implies that in the near-horizon the expansion of
geodesic congruences is exponentially increasing as μ
increases. It characterizes the presence of instability in
the geodesic motion of the particle.
This analysis not only indicates the presence of local

instability for the particle motion but also provides a
covariant description and realization of this phenomenon.
Since Θ is a scalar quantity, we now understand that, for
this particular particle motion, the aforesaid instability is an
observer-independent feature of the horizon.
Just for completeness, we now show that from Eq. (20)

the explicit form of unstable nature in radial motion can be
evaluated. In our EF coordinates, we identified μ ¼ t [see
Eq. (10)]. One can check that, at the horizon (i.e., t → −∞),
Θ vanishes, which implies that the above solution correctly
satisfies the required boundary condition. The value of Θ
for our metric (5) is given by Eq. (A9). In the near-horizon
regime, at the leading order, it comes out to be

Θ ≃
2κ

rH
ðr − rHÞ; ð21Þ

where we have used hðrÞ¼ r2→ r2H and h0ðrÞ ¼ 2r → 2rH.
Substitution of this in the solution (20) yields r − rH ≃
ðrH=2Þeκt. Thus, again, we found a similar unstable nature
in the radial direction. It must be mentioned that although
the instability is an observer-independent feature, this
particular radial character with time is related to the
EF observer. This is a very crucial observation in this
analysis. We shall talk about more on this in our later
discussion. It plays a big role in the concept of observer-
dependent thermality, which will be introduced in the
upcoming sections.

V. NEAR-HORIZON INSTABILITY:
HAMILTONIAN ANALYSIS

So far, without using any formal prescription, like
Lagrangian or Hamiltonian analysis, we have been able
to show the appearance of local instability on the radial
motion of a massless particle in the vicinity of the horizon.
This feature has been shown earlier in Ref. [25] using the
Hamiltonian analysis using Painlevé coordinates for the
metric. It was shown that the near-horizon Hamiltonian
takes the form ∼xp, where x ¼ r − rH and p is the radial
momentum. In this work, we are using new EF coordinates
and find that, here also, a similar feature is appearing in
radial motion even in these new coordinates. Therefore, it

would be interesting to see whether a Hamiltonian pre-
scription can be built out in our present analysis. More
importantly, we are interested in investigating the possibil-
ity of finding out the Hamiltonian of our system using the
obtained radial feature in the earlier sections and if so, then
whether it is again similar to xp. In this section, we shall
first find the Hamiltonian from our earlier findings on the
radial trajectory and then verify this by deriving the same
using the dispersion relation for the massless particle on the
background (5). This obtained structure of Hamiltonian
will be very important for the later purpose of our analysis.

A. Hamiltonian from trajectories

The near-horizon radial motion is driven by Eq. (14).
Therefore, use of Hamilton’s equation of motion _x ¼
∂H=∂p implies

∂H
∂p ¼ κx; ð22Þ

where x≡ r − rH. Solution of this is given by
H ¼ κxpþ f1ðxÞ, where f1ðxÞ is an arbitrary function
of the radial coordinate. This can be fixed by using the
information that the corresponding Lagrangian must van-
ish, as we are dealing with a massless free particle. The
Lagrangian for this solution comes out to be

L ¼ p_x −H ¼ −f1ðxÞ: ð23Þ

So, to make it vanish, we must choose f1ðxÞ ¼ 0. Thus, we
find that the Hamiltonian in the near-horizon regime is
given by

H ¼ κxp: ð24Þ

We now verify this below by direct evaluation of the
Hamiltonian from the dispersion relation. This method
has been adopted earlier in Ref. [25], but for Painlevé
coordinates.

B. Hamiltonian from dispersion relation

We again start with the static spherically symmetric
metric written in EF coordinates (5), which has a timelike
Killing vector χ0a ¼ ð1; 0; 0; 0Þ, and the energy of a
particle moving under this background is given by
E ¼ −χ0apa ¼ −pt, where pa is the four momentum
whose components are pa ¼ ðpt; pr; 0; 0Þ. The angular
components are chosen to be zero, as for our choice of path
there is only radial motion [see Eq. (7)]. Using the covariant
form of the dispersion relation gabpapb ¼ 0 for the mass-
less particle, we obtain the equation of the energy in terms
of the radial component of the momentum as

ðfðrÞ − 2ÞE2 − 2ð1 − fðrÞÞEpr þ fðrÞp2
r ¼ 0: ð25Þ
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It is found that the energy has two solutions:

E ¼ ðfðrÞ − 1Þpr ∓ pr

2 − fðrÞ ; ð26Þ

where the positive sign is for the outgoing particle and the
negative sign for the ingoing one. With the near-horizon
approximation, i.e., for fðrÞ given in Eq. (12), we obtain
the expression for the energy of the outgoing particle (i.e.,
taking the þve sign solution) as

E ¼ ðfðrÞ − 1Þpr þ pr

2 − fðrÞ

¼ κðr − rHÞpr

1 − κðr − rHÞ
≃ κðr − rHÞpr þOðr − rHÞ2: ð27Þ

Since we are interested in near to the horizon, taking
up to the first order, one obtains the expression of the
Hamiltonian for the outgoing particle as Eq. (24),2 with
pr ≡ p.
So we observed that the nature of Hamiltonian, like in

Painlevé coordinates, is ∼xp even in EF coordinates. This
is inherently unstable in nature, having hyperbolic points at
x ¼ 0 and p ¼ 0, which induces the instability into the
particle’s motion. The solutions of the equations of motion
corresponding to the Hamiltonian (24) are

xðtÞ ¼ xð0Þeκλ; pðtÞ ¼ pð0Þe−κλ; ð28Þ

where λ is the affine parameter, which defines the momen-
tum of the particle as pr ¼ dr=dλ. It immediately shows us
again that, at the classical level, the radial motion of the
massless particle is unstable in the vicinity of the horizon,
which we have already shown in different approaches in the
previous sections.
We shall end this classical discussion with the following

comment. Through various approaches, people have already
seen that the horizonmay induce chaos in a systemwhenever
the system comes under the influence of it [2,4,7], and,
notably, this is common to any black hole spacetime. To
follow up the real cause of this universal feature, we argued
in Ref. [25] that the instability is the main cause of it. There,
we studied the particle motion in the Painlevé coordinates.
Here, we showed that the same instability appears in EF
coordinates. Moreover, such is observer independent, pro-
vided that the particle is following a particular null path in

the near-horizon region. But it must be remembered that the
particular radial nature of the particle trajectory is observer
dependent. Since the behavior of a system under the
influence of the horizon has been studied with these
trajectories, it may happen that the appearance of chaos is
an observer-dependent phenomenon. This last statement is
not conclusive at this stage; rather, it is a suggestive one. We
needmore investigation in this direction to reach any definite
conclusion.

VI. QUANTUM THERMALITY

Till now, we observed that, at the classical level, the
horizon creates a local instability on the radial motion of a
massless particle. This is completely a local phenomenon,
as it may not be observed when the particle motion is
considered over the full spacetime. We are now curious to
know whether such a local phenomenon can have any
observable consequence. In this section, quantum aspects
will be addressed. Two of the authors of this paper already
showed in Ref. [25] that the instability may provide
temperature to the horizon with respect to the Painlevé
observer. Here, we observed that our EF frame also
perceives similar instability in the trajectory. Therefore,
we will again investigate if this can again explain the
thermality of the horizon. Here, our main objective is to
study the consequences of the aforesaid instability at the
quantum level in various possible ways in order to verify
the robustness of the aforesaid thermality. It will be found
that quantum thermality of the horizon is unavoidable and,
thereby, provides robust evidence of our earlier claim.

A. Tunneling formalism

Classically, nothing can escape from the black hole.
But the quantum probability of escaping from the barrier of
the horizon can be different. The previously obtained
Hamiltonian can be used here to find this. It is the main
quantity which is found in tunneling formalism to study the
Hawking effect (for the underlying concept and details of
this method, see Refs. [27–30]; also see Ref. [31] for an
extensive list of works on tunneling formalism).3 Adopting
the concept of this mechanism, here we shall calculate the
tunneling probability of a particle. The analysis is semi-
classical in nature, and calculation at the vicinity of the
horizon is sufficient.
We start with the standard ansatz for wave function for a

particle as

ΨðxÞ ¼ exp

�
i
ℏ
SðxÞ

�
; ð29Þ2It may be mentioned that this type of Hamiltonian is somehow

a very common feature of the gravitational system. It appears in
different situations in the presence of gravity. At the thermody-
namic level, the surface part of the Einstein-Hilbert action yields
the xp-type Hamiltonian [36]. Also, a similar observation has
been noticed for the dynamics of the supertranslational parameter
in the context of asymptotic symmetry of a null surface [37].

3Reference [27] adopted the Hamilton-Jacobi method, whereas
Ref. [28] is based on the null geodesic approach. Based on the
tunneling idea, using the connections between the coordinates on
both sides of the horizon, the same has been done in Refs. [29,30].
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where SðxÞ is the Hamilton-Jacobi action for the particle,
defined as an integration of the momentum p of the particle
with respect to the position coordinate x variable:

SðxÞ ¼
Z

pdx: ð30Þ

(Here, we have considered the above expression for two-
dimensional phase space.) The outgoing and ingoing
trajectories correspond to ∂S=∂x > 0 and ∂S=∂x < 0,
respectively. For our present situation, both the outgoing
and ingoing particles are just outside the horizon.
Therefore, we are interested in calculating the absorption
probability of the outgoing particle while the emission
probability for ingoing one. The ratio of them will give us
the required tunneling probability.
The energy of the outgoing particle is given by Eq. (24).

Since H ¼ E is the conserved quantity here, we substitute
p in terms of x in Eq. (30) to find the outgoing action. Also,
since the absorption probability will be our main interest,
the limits of the integration must be chosen x ¼ ϵ to
x ¼ −ϵ, where ϵ > 0 (i.e., from just outside the horizon
to just inside). Thus, the “absorption” action is given by

S½absorption� ¼ E
κ

Z
−ϵ

ϵ

dx
x

¼ −
iπE
κ

þ ðreal partÞ: ð31Þ

In performing the above integration, we noticed that x ¼ 0
is the pole of the integrand. To evaluate it, the lower
complex plane is being considered. Observe that, since the
particle starts from outside the black hole where x > 0, we
have ∂S=∂x > 0, which is consistent with the definition of
the outgoing nature of the trajectory. On the other hand, the
“emission” action for the ingoing particle will be real, as the
limits of integration never include the horizon singularity.
This can be checked trivially with the identification of
energy for the ingoing particle as E ¼ −p [see Eq. (26)].
So, the probability of absorption turns out to be

P½absorption� ∼ jeði=ℏÞS½absorption�j2 ∝ exp

�
2πE
ℏκ

�
; ð32Þ

whereas the probability of emission is P½emission� ¼ 1.
Hence, the tunneling probability is evaluated as

Γ ¼ P½emission�
P½absorption� ∼ exp

�
−
2πE
ℏκ

�
: ð33Þ

Note that the above one is thermal in nature. The temper-
ature is identified as

T ¼ ℏκ
2π

: ð34Þ

This temperature exactly matches the standard Hawking
expression [15] for the black hole.

We just observed that the near-horizon Hamiltonian (24)
predicts a finite probability of escaping a particle from
the horizon and, thereby, providing a temperature to the
horizon. Since this Hamiltonian shows a local instability,
we argue that such instability is responsible for the thermal
behavior of the black hole. From this analysis, we can note
that the observer is associated with the EF coordinates.
But at this point, it is not vivid whose vacuum state is filled
with a particle with respect to this frame. It is the well-
known limitation of the tunneling approach. This will be
illuminated in the next subsection by adopting a different
approach.

B. Detector’s response

Thermality is an observer-dependent phenomenon
[38,39], and vacuum plays an important role in this case.
The precise choice of observer and the corresponding
choice of vacuum are very important in that sense.
Therefore, the aim of our next approach is to identify
the observer and the corresponding vacuum state connected
to this thermality. One such popular approach is inves-
tigating through the detector’s response of a two-level
atomic detector, which can give us a clear idea to identify
our observer and the vacuum. The choice of the observer
here is the one which is following the path (14) in the near-
horizon regime. The vacuum is chosen to be Boulware
vacua, which is defined with respect to the static observer in
Schwarzschild coordinates. We will find the transition rate
of the atomic detector, which moves along the trajectory
(14) with respect to this Boulware vacuum. The calculation
must be performed very near to the horizon. The particular
preference of this vacuum among others like Unruh or
Kruskal vacua is due to the fact that Unruh and Kruskal
ones are not vacuum with respect to the static frame,
whereas Boulware is a trivial one. Therefore, it is apparent
that the present moving frame again finds Unruh and
Kruskal vacua as nontrivial. Hence, whether Boulware
appears to be nontrivial with respect to our present observer
will be an interesting observation (a discussion of defining
different vacuum states can be followed from Ref. [39]).
Let us consider a two-level atomic detector (say, a is the

excited level and b is the ground state) moving along the
geodesic (14). We consider the massless scalar field Φ
under this background, and its modes are denoted by uν
with frequency ν. The modes for the atomic detector we
denote as ψω, where ω is the characteristic frequency. The
interaction Hamiltonian between the atomic detector and
the field is taken as

ĤintðτÞ ¼ Q½ðâνuν þ H:c:Þðσ̂ωψω þ H:c:Þ�; ð35Þ

where the operator âν is the photon annihilator operator and
σ̂ω is the atomic detector lowering operator. H.c. signifies
the Hermitian conjugate. Q is the coupling constant, which
determines the strength of the interaction, and τ is the
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detector’s clock time. This type of model was originally
considered for this purpose in Ref. [40] and has been
subsequently used in Ref. [41].
Initially, when there is no photon is detected, the detector

stays in the ground state jbi; i.e., the field is in the
Boulware vacuum j0i. So the initial state of the whole
system is j0; bi ¼ j0i ⊗ jbi. Now after interaction the
detector will go to state jai. Then the transition amplitude
of the detector, using the first-order perturbation theory, is
given by

Γ ¼ −i
Z

τf

τi

dτh1ν; ajĤintðτÞj0; bi; ð36Þ

where j1νi is the one-particle state of Φ. In this subsection,
we have chosen ℏ ¼ 1. In this case, the probability of
the excitation of the atomic detector for interaction
Hamiltonian (35) becomes (see Ref. [41] for a detailed
calculation)

P↑ ¼ Q2

����
Z

rf

ri

dr

�
dτ
dr

�
u�νðrÞψ�

ωðrÞ
����2: ð37Þ

Here, reexpressing the detector’s path (14) as t in terms of
radial coordinate, we obtain

t ¼ 1

κ
ln

�
r
rH

− 1

�
þ const; ð38Þ

where the constant, irrelevant for the present analysis, is
given by ð1=κÞ lnðκrHÞ. Next, taking τ ¼ t, the positive-
frequency mode corresponding to the detector is

ψω ¼ e−iωt: ð39Þ

The positive-frequency Boulware mode for a massless
scalar field can be obtained by solving the Klein-Gordon
(KG) equation □Φ ¼ 0 under the background of Eq. (1).
Near the horizon, the KG equation reduces to

� ∂2

∂t2s −
∂2

∂r2�
�
Φ ¼ 0; ð40Þ

where in the near-horizon limit r� is given by

r� ≃
1

2κ
ln

�
r
rH

− 1

�
: ð41Þ

The solutions are e−iνðts�r�Þ, where the positive sign
corresponds to ingoing and the negative sign refers to
outgoing modes. Here, our detector is moving in the
outward direction, and so we will consider the ingoing
Boulware mode to investigate the response of the detector.
Therefore, we choose

uν ¼ e−iνðtsþr�Þ: ð42Þ

Hence, expressing the integrand of Eq. (37) in terms of the
radial coordinate and using Eq. (38), we obtain the
probability of transition as

P↑ ¼ Q2

κ2

����
Z

rf

rH

d

�
r
rH

��
r
rH

− 1

�ði=κÞðνþωÞ−1
eiνr

����2; ð43Þ

where the upper limit is taken as position rf, which is
situated very near to the horizon. It has to be chosen in such
a way that its value satisfies our near-horizon approxima-
tion, i.e., ð r

rH
− 1Þ ≪ 1.

In order to get some convenient look of Eq. (43), let us
first make a change of variable: ðr=rHÞ − 1 ¼ y. Then,
Eq. (43) reduces to

P↑ ¼ Q2

κ2

����
Z

yf

0

dyyði=κÞðωþνÞ−1eiνðyþ1Þ
����2: ð44Þ

This can be expressed in terms of lower incomplete Gamma
function (see p. 527 in Ref. [42])

P↑ ¼ Q2

κ2

���� 1

ð−iνÞði=κÞðωþνÞ γ
�
i
κ
ðωþ νÞ;−iνyf

�����2: ð45Þ

But, to get a better understanding, here we shall examine it
numerically for different values of ω. In order to do that,
first we need to make all the variables dimensionless.
We choose the following substitutions in Eq. (44):

rHω ¼ ω0; rHν ¼ ν0 and rHκ ¼ κ0: ð46Þ

Then Eq. (44) reduces to the following form:

P0
↑ ¼

����
Z

yf

0

dyyði=κ0Þðω0þν0Þþϵ−1eiðν0þiϵÞðyþ1Þ
����2; ð47Þ

where P0
↑ ¼ κ02

Q2r2H
and in the above we have introduced a

very small parameter ϵ to make the integration convergent.
Now, we numerically integrate the above expression for

different values of ω0 and then plot ν02P0
↑ as a function of ν

0.
The plot is represented in Fig. 1. This shows that the nature
of the transition probability of the detector is similar to
Planck distribution. So the detector will register particles in
the Boulware vacuum when it moves along our local
unstable path. Hence, with respect to this observer, the
vacuum appears to be thermal. As we increase the value of
ω0, the peak of the curve decreases. It means that, for higher
values of ω0, the probability of detecting particle gets
lessened.
In a similar approach, one can also derive the expression

for the probability of detecting an outgoing scalar field
mode by an ingoing detector in the near-horizon region.
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It means that the detector is moving very near to the
horizon, but this time its direction of motion is toward
the horizon, just opposite to the previous case. In this case,
the EF time coordinate is represented in terms of the
outgoing EF coordinates ðu; r; θ;ϕÞ as

t ¼ uþ r ¼ ts − r� þ r: ð48Þ

In a similar approach, we can reexpress the path of the
ingoing detector as t as a function of the radial coordinate.
For the near-horizon approximation using Eq. (B16) of
Appendix B 2, we obtain

t ¼ −
1

κ
ln

�
r
rH

− 1

�
þ const: ð49Þ

Now, proceeding with an exactly similar approach like the
case of the outgoing detector, one can land up to the
expression of probability, which turns out to be

P↓ ¼ Q2

κ2

����
Z

yf

0

dyy−ði=κÞðωþνÞ−1e−iνðyþ1Þ
����2; ð50Þ

and it basically gives the same result as in the case of the
outgoing detector (Fig. 1).
Therefore, the outgoing (ingoing) atomic detector, fol-

lowing the null path, detects an ingoing (outgoing) scalar
particle, respectively, in the Boulware vacuum. The
Planckian nature of the plots suggests that, at the quantum
level, the vacuum appears to be thermal. We showed this for
a near-horizon trajectory. For completeness, we also show
that our present observer, when they move throughout the
whole spacetime, then also will perceive thermality. This
we present in Appendix B for the Schwarzschild black
hole, where the near-horizon approximation is being
avoided. To have a complete analytic analysis, the calcu-
lation is performed in (1þ 1) dimensions, and the temper-
ature is identified to be the Hawking expression.

VII. SCATTERING OF PARTICLE AND QNMS

Till now, we observed that the horizon provides an
unstable potential to the massless particle in its neighbor-
hood region. Moreover, it causes the particle to feel the
black hole as a thermal object. This quantum phenomenon
can also be elaborated through a “scattering” model of a
particle. The idea is the following. When a particle is
moving very near to the horizon, it will feel the influence of
the horizon through the local Hamiltonian (24). Then the
state of the particle will be influenced. The change of wave
function can be evaluated by visualizing Eq. (24) as the
governing potential for the scattering phenomenon. In order
to proceed toward the main purpose, first, we need to
identify the initial (before scattering) and final (after
scattering) energy eigenstates of the system.
Our xp Hamiltonian can be visualized as that for an IHO

in a new set of canonical variables ðX;PÞ. The relation
between the old and these new ones are x ¼ 1ffiffi

2
p ðP − XÞ and

p ¼ 1ffiffi
2

p ðPþ XÞ. Then, in the ðX;PÞ diagram, the old ðx; pÞ
variables are considered to be as ingoing and outgoing
coordinates, respectively. This is shown in Fig. 2. Here, the
value of x is always positive; therefore, the trajectory for
E > 0 in the X–P plane always remains in that quadrant
where both p and x are positive definite (see Fig. 2). Since x
is identified as the ingoing coordinate, the energy eigenstate
in x representation is the initial state of the system.
Likewise, the p representation energy state is our final
state for the system. Therefore, our next task is to find the
eigenstates for Hamiltonian (24) in both representations.
In order to make Hamiltonian (24) Hermitian, we

express this as

FIG. 1. Plot of ν02P0
↑ vs ν0 for different values of ω0. The choice

of the small parameter is ϵ ¼ 0.00095.

FIG. 2. X − P diagram: The red line represents the trajectory of
the particle.
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Ĥ ¼ κ

2
½x̂p̂þ p̂x̂�; ð51Þ

where the basic commutator is given by ½x̂; p̂� ¼ iℏ. Then
the inner product between x and p states is

hxjpi ¼ 1ffiffiffiffiffiffiffiffi
2πℏ

p exp

�
ixp
ℏ

�
: ð52Þ

To find the initial state, we represent the Hamiltonian
operator in position representation:

Ĥ ¼ −iγ̃
�
x
∂
∂xþ

1

2

�
; ð53Þ

where γ̃ ¼ ℏκ. With this, the initial state with energy E
comes out to be

hxjEii ¼
1ffiffiffiffiffiffiffiffi
2πγ̃

p 1

xð1=2Þ−ðiE=γ̃Þ
with x > 0: ð54Þ

The final state is determined by expressing the Hamiltonian
in momentum representation:

Ĥ ¼ iγ̃

�
p

∂
∂pþ 1

2

�
: ð55Þ

The eigenstate with energy E of this operator yields the
final state of the system as

hpjEif ¼ 1ffiffiffiffiffiffiffiffi
2πγ̃

p 1

pð1=2ÞþðiE=γ̃Þ with p > 0: ð56Þ

Now we shall find the relation between the final state and
initial state. This is done as follows:

hxjEif ¼
Z

∞

−∞
dphxjpihpjEif

¼ 1

2π
ffiffiffiffiffi
γ̃ℏ

p
Z

∞

0

dpeðix=ℏÞpp½−ðiE=γ̃Þþð1=2Þ�−1: ð57Þ

To perform the integration, we use the formula (see p. 604
of Ref. [43] for details)

Z
∞

0

dxe−bxxs−1 ¼ e−s ln bΓðsÞ; ð58Þ

with the condition ReðbÞ > 0 and ReðsÞ > 0. To satisfy
these conditions for integration (57), we take b ¼
−iðx=ℏÞ þ ϵ and identify s ¼ −iðE=γ̃Þ þ ð1=2Þ with
ϵ > 0. At end of the integration, we consider the limit
ϵ → 0. This leads to

hxjEif ¼ ℏ−iE=γ̃ffiffiffiffiffiffi
2π

p eiπ=4eπE=2γ̃Γ
�
1

2
−
iE
γ̃

� x−1=2 þ iE
γ̃ffiffiffiffiffiffiffiffi

2πγ̃
p

¼ ℏ−iE=γ̃ffiffiffiffiffiffi
2π

p eiπ=4eπE=2γ̃Γ
�
1

2
−
iE
γ̃

�
hxjEii: ð59Þ

In the last step, Eq. (54) has been used. So we find the
relation between the final energy eigenket jEif and the
initial one jEii as

jEif ¼ ℏ−iE=γ̃ffiffiffiffiffiffi
2π

p eiπ=4eπE=2γ̃Γ
�
1

2
−
iE
γ̃

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ci

jEii: ð60Þ

The modulus square of the coefficient (Ci) in the above
equation gives the probability of finding the particle in the
initial state itself. Therefore, the transition probability for
the particle to jump from the initial (jEii) to the final state
(jEif) is

P ¼ 1 − jCij2 ¼
1

e2πE=ℏκ þ 1
; ð61Þ

which yields again the thermal nature with temperature
given by Eq. (34).
Now, it is well known that the scattering phenomenon in

black holes can provide the information about the frequency
of the QNMs (see p. 397 of Ref. [43]). The imaginary part of
the frequency is determined by the poles of the Gamma
function appearing in Eq. (60). It is clear that the poles are at
En ¼ −iγ̃ðnþ 1=2Þ with n ¼ 0; 1; 2…. So the imaginary
part of the frequency is given byωn ¼ −iκðnþ 1=2Þ, which
matches with the earlier finding [32–34,43].
In this context, it is worth mentioning that the probability

expression [Eq. (61)], obtained using the scattering process,
has an intimate relationship with the probability [Eq. (33)],
which we got using the tunneling approach in Sec. VI A.
The transition amplitude ∼hx2je−ði=ℏÞHtjx1i (known as the
propagator), in the scattering process, is related to the
Feynman path integral

P
all paths exp½ði=ℏÞS�, where S is the

classical action. The modulus square of this quantity yields
the transition probability, which is Eq. (61) in the present
case. In the semiclassical limit, under a saddle point
approximation, the path integral comes out to be propor-
tional to eði=ℏÞS. Interestingly, in the tunneling formalism,
based on the WKB approximation, the ansatz for the wave
function is given by Eq. (29), which is similar to this
semiclassical transition amplitude in the scattering process.
Therefore, it is expected that in the semiclassical regime
both the tunneling probability and transition probability
must coincide (for details, see Chap. 7 of Ref. [44]). It is
known that this regime is best achieved by taking ℏ → 0,
and in this limit one can check that the probability
distribution [Eq. (61)], keeping only the dominating term,
turns out to be
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P ≃ exp

�
−
2πE
ℏκ

�
: ð62Þ

This is exactly identical to Eq. (33) and, thereby, validates
the standard relationship between the scattering amplitude
and the tunneling probability in the semiclassical limit.

VIII. THERMALITY: A PERTURBATIVE
APPROACH

Here, we visualize the whole system as a following
effective quantum mechanical model. We first consider a
free massless particle in Minkowski spacetime whose
Hamiltonian is given by H0 ¼ p (with the choice of unit
c ¼ 1). The near-horizon Hamiltonian H ≃ κxp is treated
as a small interaction of the particle with a potential of this
form. So we model the actual system effectively as an
interaction picture where a massless particle is interacting
with the potential κxp when it is following the trajectory
(14). So we take the interaction Hamiltonian as

ĤI ¼
1

2
κðx̂p̂þ p̂x̂Þδ

�
x −

1

κ
eκt

�
: ð63Þ

The Dirac-delta function has been introduced in order to
make sure that the interaction is occurring only when the
particle is moving along the path, given by Eq. (14). Now, if
the particle is a two-level quantum atom, then there is a
possibility of transition from one state to another state.
Here, we want to calculate the probability of transition if
the atom is initially in the ground state. So the total
Hamiltonian for this quantum system is

Ĥ ¼ Ĥ0 þ ĤI; ð64Þ

where ĤI is treated as small compared to Ĥ0. So the
transition amplitude can be evaluated in a perturbative way.
The unperturbed energy eigenbases are evaluated from
Ĥ0 ¼ p̂. This will provide the initial and final basis states.
These are given by ψ iðxÞ ∼ eiωix and ψfðxÞ ∼ eiωfx, respec-
tively (considering ℏ ¼ 1 and the velocity of light in free
space c ¼ 1). Introducing the transition frequency
ω ¼ ωf − ωi, we write the transition amplitude at the
first-order perturbation as

ci→f ¼ −i
Z

∞

−∞
dthfjĤIðtÞjiieiωtδ

�
x −

1

κ
eκt

�
ð65Þ

¼ −
iκ
2

Z
∞

−∞
dthfjðx̂p̂þ p̂x̂Þjiieiωtδ

�
x −

1

κ
eκt

�
:

ð66Þ

Now, let us concentrate on

I ¼ κ

2

�
hfjx̂p̂jiiδ

�
x −

1

κ
eκt

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I1

þ hfjp̂x̂jiiδ
�
x −

1

κ
eκt

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I2

�
:

ð67Þ

The first term can be evaluated as follows:

I1 ¼
Z

∞

−∞
hfjxihxjx̂p̂jiiδ

�
x −

1

κ
eκt

�
dx

¼
Z

∞

−∞
hfjxixhxjp̂jiiδ

�
x −

1

κ
eκt

�
dx

¼
Z

∞

−∞
ψ�
fðxÞx

�
−i

∂
∂x

�
hxjiiδ

�
x −

1

κ
eκt

�
dx

¼ −i
Z

∞

−∞
ψ�
fðxÞx

∂
∂xψ iðxÞδ

�
x −

1

κ
eκt

�
dx: ð68Þ

In a similar approach, the other term of Eq. (67) yields

I2 ¼ hfjp̂x̂jiiδ
�
x −

1

κ
eκt

�
¼ ðhijx̂p̂jfiÞ�δ

�
x −

1

κ
eκt

�

¼ i
Z

∞

−∞
ψ iðxÞx

∂
∂xψ

�
fðxÞδ

�
x −

1

κ
eκt

�
dx: ð69Þ

Then, using these and substituting the values of ψ i and ψf

along with their conjugates in Eq. (67), we obtain

I ¼ iκ
2

Z
∞

−∞
dx½eiωixð−iωfÞe−iωfx − e−iωfxðiωiÞeiωix�

× xδ

�
x −

1

κ
eκt

�

¼ κ

2

Z
∞

−∞
dxe−iωxðωf þ ωiÞxδ

�
x −

1

κ
eκt

�

¼ κ

2
ðωf þ ωiÞe−iðω=κÞeκt

1

κ
eκt: ð70Þ

Next, using the above expression in Eq. (66) and
performing the integration, one finds

ci→f ¼ −
iðωf þ ωfÞ

2
exp

	�
−
�
1þ iω

κ

�
ln

����ωκ
����

−
�
1þ iω

κ

�
iπ
2
sgn

�
ω

κ

��
Γ
�
1þ iω

κ

�

: ð71Þ

In the above, “sgn” denotes the sign function.
Therefore, the probability of transition from jii to jfi

turns out to be

jci→fj2 ¼
πκðωi þ ωfÞ2

2ω

1

e2πω=κ − 1
: ð72Þ
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This transition probability is thermal in nature, and one
identifies the temperature as Eq. (34).
Now let us give some physical aspects of this perturba-

tion method. The main motive of this approach is to build a
quantum mechanical model which mimics the near-horizon
characteristics. In this case, we have taken the potential
to be the xp kind, which is basically the near-horizon
Hamiltonian. Another important point is that we have
considered a definite path for the massless particle, which
is basically similar to the radial trajectory of a massless
particle, which we have shown already in the previous
sections (Secs. III–V). Therefore, in a physical sense, this
model basically mimics the quantum behavior of the
massless particle whenever it comes into the vicinity of
the horizon. The nonzero value of the probability whose
nature is similar to the Planckian distribution tells us about
the thermal behavior in the near-horizon region. Therefore,
it can be regarded as an effective approach to show the
thermal nature in the near-horizon region.

IX. CONCLUSION

The reason why the horizon is associated with temper-
ature has always been a fascinating question for the physics
community. On the other hand, the recent observations
[2,4,7] within the theoretical framework predict the pos-
sibility of induction of chaotic behavior in a system when it
is under the influence of the horizon. There is a surge of
discussion in this direction. Interestingly, both of these
phenomena are characterized by a common horizon quan-
tity, namely, surface gravity. Therefore, this “apparent
interlink” between them may help us to uncover such
properties of the horizon. In our recent work [25], we
predicted that the existence of local instability, created by
the horizon, may be a possible reason for chaotic motion as
well as horizon temperature. As a continuation, in this
article, we again took up this issue with great details. Here,
the mentioned issues in Sec. I have been addressed. To be
concrete, we focused on a recently developed conjecture;
namely, the presence of local instability in the near-horizon
region is responsible for providing the temperature to the
horizon seen by a particular set of observers. We find that
this is indeed the case. For a particular set of observers, the
near-horizon Hamiltonian in the case of an outgoing
massless particle is of the xp kind, which is an unstable
Hamiltonian, and the quantum consequences lead us to
explore that thermality emerges due to this instability. This,
in turn, satisfies our claim about the relationship between
instability and thermality.
Now, let us discuss briefly and summarize our results

that we have achieved in this paper.
(i) In our earlier paper [25], we found that the radial

motion of an outgoing massless particle in the
Painlevé coordinate system is unstable in the
near-horizon region. Proceeding one step further
in this paper, our prime objective was to examine

this whole occurrence of this feature in a more
extensive way. We started our calculation by choos-
ing another set of coordinates, which is EF coordi-
nates, in which the motion of the massless particle
along the null trajectory has been studied. Interest-
ingly, we have found that in this coordinate also the
instability still persists for the outgoing null path.
Therefore, this result suggests that there are other sets
of observers other than in the Painlevé coordinate
system which can also predict a similar instability.

(ii) Moreover, in our next investigation, using the Ray-
chaudhuri equation, we have calculated the expansion
parameter of the null geodesics, which are followed
by our test particle in that particular EF coordinate.
Here, we have found that the expansion parameter
shows instability in the near-horizon region. It means
that, in the near-horizon region, instability in the
particle motion is an observer-independent phenome-
non for this particular motion of the particle.

(iii) Following the unstable nature of the horizon, next,
we have constructed the Hamiltonian of the system
just by the knowledge of the nature of instability
in the particle motion. Interestingly, we have found
that the structure of the Hamiltonian comes out to be
of the xp kind to the observer associated with the
frame of the particle where the radial motion of the
particle grows as r ∼ eκt with EF time. It suggests
that, although the instability is observer independent
for our particle motion, the particular form of the
Hamiltonian is observer dependent. The observer
associated with this specific frame of the particle,
either in Painlevé or in EF coordinates, will see this
form of the near-horizon Hamiltonian.

(iv) After obtaining a clear picture of instability in the
classical scale, we next targeted quantum calcula-
tions in order to see how thermality appears to
our EF observers due to this unstable xp kind
of structure of the near-horizon Hamiltonian. We
started with the tunneling approach, where we found
that this near-horizon Hamiltonian predicts a finite
probability of escaping the particle from the horizon,
thereby providing a temperature to the horizon. The
expression came out to be as that of Hawking [15].

(v) The next approach was the detector response ap-
proach in order to get a distinct idea about the relevant
vacuum state. The observer or rather the detector, in
this case, is following the same null trajectory in EF
coordinates in the near-horizon regime, as we men-
tionedearlier. Thevacuumwas chosen to beBoulware
vacuum in this case. After evaluating the response
function numerically, we have obtained that the
transition probability of the detector of detecting a
photon in the Boulware vacuum is similar to Planck
distribution. It showed that the detector will see the
Boulware vacuum as a thermal bath.
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(vi) The other feature of the unstable potential is that it
shows scattering phenomena. Therefore, our next
approach was to study the scattering phenomena in
the presence of this unstable xp kind of near-horizon
Hamiltonian. Identifying the “in” and “out” states,
we obtained the transition probability for the particle
to jump from the initial to final energy state, which
yielded the thermal nature again with the desired
Hawking temperature. Moreover, we gained the
information about the frequency of the quasinormal
modes from this scattering which matches with the
earlier findings [32–34,43].

(vii) In order to complete our discussion about thermality,
our last approach was to consider the near-horizon
system as a quantummechanical model. We built the
model by considering that our near-horizon xp kind
of Hamiltonian is a small interaction Hamiltonian,
and it represents the interaction with a free massless
particle. We calculated the transition probability
using the first-order perturbation approximation
and found that the expression is thermal in nature.
The motive of this approach was to construct a
simple quantum mechanical model which mimics
the near-horizon characteristics. It turns out that this
model definitely mimics the near-horizon feature
and can be regarded as an effective approach to show
the thermal nature in the near-horizon region.

Therefore, a clear recipe has been presented in this article
about the relationship between instability and thermality in
the context of the horizon. However, the specific unstable
spacetime region is very small, confined only within the
neighborhood of the horizon. Moreover, it is also shown

that, in the quantum regime, this instability provides the
automatic emergence of the temperature to the system,
which is exactly equal to the Hawking expression. The way
we have studied here is very interesting. Within the various
known techniques, the black hole system has been inves-
tigated. On this note, we feel that the results, as well as the
techniques, introduced here will not only have a significant
impact in the area of black hole physics, but also may
uncover several unknown sides of the horizon. Furthermore,
the present discussion has been confined within a static,
spherically symmetric black hole. So it would be interesting
if the same can be extended to Kerr and other nontrivial
backgrounds. The investigations in these directions are in
progress, and we hope to be able to report soon.

APPENDIX A: EVALUATION OF κ̃, Θ, AND σab
FOR THE NULL VECTOR (7) IN THE

BACKGROUND (5)

1. Nonaffinity coefficient κ̃

Consider the null normal vector field la of any null
hypersurface generates a null geodesic congruence. The
nonaffinely parametrized geodesic equation is given by

lb∇bla ¼ κ̃la; ðA1Þ

where κ̃ is called the nonaffinity coefficient. In order to find
κ̃ for the geodesic curves, given by Eq. (7), first we need to
compute the gradient of the null normal (∇bla). We have
already computed the components of la in Sec. II
[see Eq. (8)]. Therefore, the components of ∇bla in EF
coordinates are obtained for the metric (5) as

∇bla ¼

0
BBBBBB@

1
2

fðrÞf0ðrÞ
fðrÞ−2

1
2

ðfðrÞ−4ÞfðrÞf0ðrÞ
ðfðrÞ−2Þ2 0 0

f0ðrÞ
2

1
2

ðfðrÞ−4Þf0ðrÞ
fðrÞ−2 0 0

0 0 − 1
2

fðrÞh0ðrÞ
fðrÞ−2 0

0 0 0 − 1
2

fðrÞh0ðrÞ
fðrÞ−2 sin2 θ

1
CCCCCCA
: ðA2Þ

Using the values of the ∇bla components, we obtain

lb∇bla ¼
�
2f0ðrÞfðrÞ
ðfðrÞ − 2Þ3 ;

2f0ðrÞ
ðfðrÞ − 2Þ2 ; 0; 0

�
: ðA3Þ

Using the geodesic equation (A1) and comparing Eq. (A3)
with the expression of Eq. (8), we deduce the value
of κ̃ as

κ̃ ¼ 2f0ðrÞ
ðfðrÞ − 2Þ2 : ðA4Þ

2. Expansion parameter Θ
The expansion parameter of the congruence of geodesics

Θ is defined as

Θ ¼ qab∇alb; ðA5Þ

where qab is the transverse part of the metric gab,
defined as

qab ¼ gab þ lanb þ lbna: ðA6Þ
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Here, na is an auxiliary null vector field which satisfies
lana ¼ −1. Therefore, using Eqs. (A1) and (A6) in
Eq. (A5), the parameter Θ can be expressed in terms of
la and κ̃ as

Θ ¼ ∇ala − κ̃

¼ 1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
laÞ − κ̃; ðA7Þ

where g is the determinant of the metric. Since in this case
the determinant of the metric (5) is g ¼ −h2ðrÞ sin2 θ and la
is given by (7), Eq. (A7) yields

Θ ¼ 1

hðrÞ sin θ ∂r

�
hðrÞfðrÞ
2 − fðrÞ sin θ

�
− κ̃: ðA8Þ

Next, using Eq. (A4) in the above, we obtain the expression
of the expansion parameter

Θ ¼ h0ðrÞfðrÞ
hðrÞð2 − fðrÞÞ : ðA9Þ

3. Shear parameter σab
The shear parameter σab of the congruence of geodesics

is defined as

σab ¼
1

2
ðbab þ bba − ΘqabÞ; ðA10Þ

where bab is the orthogonal component of ∇alb projected
by qab:

bab ¼ qcaqdb∇cld: ðA11Þ

Using Eq. (A2) in Eq. (A11), one can easily calculate each
component of σab. This can be readily shown that each term
of σab vanishes, i.e.,

σab ¼ 0: ðA12Þ

APPENDIX B: DETECTOR’S RESPONSE IN
(1 + 1)-DIMENSIONAL SCHWARZSCHILD

BACKGROUND

In Sec. VI B, we studied the transition probability for an
atomic detector, which is interacting with a massless scalar
field, moving very close to the horizon. It is found that it
will register a particle in the Boulware vacuum. This was
done numerically. Here, we shall present an analytical
approach when the detector is moving throughout the
spacetime along our chosen null path, which near to
the horizon leads to an unstable trajectory (14). The
metric will be chosen to be a Schwarzschild black hole
in (1þ 1) spacetime dimensions. The two-dimensional

case is analytically solvable, and, since we will be inter-
ested in finding the detected temperature, it is sufficient to
consider a two-dimensional situation. Here, both ingoing
and outgoing detectors will be studied. We shall adopt
the previous atomic detector model, and so the working
formula for transition probability is given by Eq. (37).
The Schwarzschild metric in (1þ 1)-dimensional space-

time in Schwarzschild coordinates ðts; rÞ is given by

ds2 ¼ −fðrÞdt2s þ
dr2

fðrÞ ; ðB1Þ

where fðrÞ ¼ ð1 − rH
r Þ. The horizon is located at rH ¼ 2M,

where M is the mass of the black hole. In the Eddington-
Finkelstein coordinates ðt; rÞ, the metric transforms into

ds2¼−
�
1−

rH
r

�
dt2þ2rH

r
dtdrþ

�
1þ rH

r

�
dr2: ðB2Þ

In this case, the tortoise coordinate is given by

r� ¼ rþ rH ln

�
r
rH

− 1

�
: ðB3Þ

In the following calculation, we shall choose the unit such
that ℏ ¼ 1.

1. Outgoing detector

The outgoing null path can be determined as earlier. The
detector is moving from the horizon to radial infinity. In this
case, the tangent of the path is determined by the t and r
components of Eq. (7). Therefore, the path is found to be
the solution of

dr
dt

¼
r
rH
− 1

r
rH
þ 1

: ðB4Þ

Performing the above integration, we obtain

t ¼ rþ 2rH ln

�
r
rH

− 1

�
: ðB5Þ

We have already found the positive-frequency mode
corresponding to the detector [see Eq. (39)]. Next, we
need to find the positive-frequency Boulware mode for the
massless scalar field, i.e., uν, and for that, we need to solve
the KG equation□ϕ ¼ 0 under the background (B2). Since
the detector is outgoing, the scalar mode under investiga-
tion will be the ingoing one. This is given by Eq. (42). Now,
substituting everything in the general form (37) [i.e., using
Eqs. (B5) and (42) along with Eq. (B3)] with τ ¼ t and
reexpressing it in terms of the radial coordinate, we obtain
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P↑ ¼ Q2

����
Z

∞

rH

dr
� r

rH
þ 1

r
rH
− 1

�
eið2νþωÞr

×

�
r
rH

− 1

�
2irHðνþωÞ����2: ðB6Þ

Changing the variable as ð r
rH
− 1Þ ¼ y, we find

P↑ ¼ Q2

����rH
Z

∞

0

dy

�
yþ 2

y

�
eið2νþωÞrHðyþ1Þy2irHðνþωÞ

����2
¼ Q2jI↑1 þ I↑2j2; ðB7Þ

where

I↑1 ¼ rHeið2νþωÞrH
Z

∞

0

dyy2irHðνþωÞeið2νþωÞrHy ðB8Þ

and

I↑2 ¼ 2rHeið2νþωÞrH
Z

∞

0

dyy2irHðνþωÞ−1eið2νþωÞrHy: ðB9Þ

These integrations can be performed using the general
formula (58) and following the prescription as performed in
Sec. VII. This leads to

I↑1 ¼ rHeið2νþωÞrH exp
	�

−ð1þ 2irHðνþ ωÞÞ
�
ln jð2νþ ωÞrHj −

iπ
2
sgn½ð2νþ ωÞrH�

��

Γð1þ 2irHðνþ ωÞÞ ðB10Þ

and

I↑2 ¼ 2rHeið2νþωÞrH exp
	�

−2irHðνþ ωÞ
�
ln jð2νþ ωÞrHj −

iπ
2
sgn½ð2νþ ωÞrH�

��

Γð2irHðνþ ωÞÞ: ðB11Þ

Substituting them in Eq. (B7) and performing the
modulus square, we finally obtain the expression for the
transition probability as

P↑ ¼ Q2
4πrHν2

ð2νþ ωÞ2ðνþ ωÞ ×
1

e4πrHðνþωÞ − 1
: ðB12Þ

This is thermal in nature, and the temperature is identi-
fied as

T ¼ 1

4πrH
; ðB13Þ

which is the Hawking expression for a Schwarzschild
black hole.

2. Ingoing detector

The detector is now approaching the horizon from radial
infinity. In this case, the null trajectory is chosen to be along
the tangent, which is normal to the ingoing null Krushkal-
Szekeres coordinate V ¼ const surface. This is defined by

V ¼ � expðκvÞ þ 1; ðB14Þ

where V ¼ 1 is the horizon. The observer’s coordinates are
chosen to be outgoing Eddington-Finkelstein coordinates
ðu; rÞ. Then the EF timelike coordinate (t) is given by
Eq. (48). In these coordinates ðt; rÞ, the metric (B1) takes
the following form:

ds2 ¼ −fðrÞdt2 þ 2ðfðrÞ − 1Þdtdr
þ ð2 − fðrÞÞdr2: ðB15Þ

Now, as earlier, the tangent to the path is given by

la ¼
�
1;

fðrÞ
fðrÞ − 2

�
: ðB16Þ

Correspondingly, the covariant components are

la ¼
�

fðrÞ
fðrÞ − 2

;−1
�
: ðB17Þ

Therefore, again the detector is moving along the radial
direction only, and the trajectory is determined by

dr
dt

¼
1 − r

rH

1þ r
rH

: ðB18Þ

Performing the integration in Eq. (B18), we obtain the
solution of t as

t ¼ −r − 2rH ln

�
r
rH

− 1

�
: ðB19Þ

Since the detector is ingoing, we shall investigate the
outgoing Boulware scalar mode, given by

uν ¼ e−iνðts−r�Þ: ðB20Þ
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Substituting all these in Eq. (37) and proceeding in the
previous way, one finds that the transition probability is
the same as Eq. (B6). Therefore. the final expression is
given by Eq. (B12). Hence, the ingoing detector will
register a particle in the Boulware vacuum with Hawking
temperature (B13).

APPENDIX C: A NOTE ON THERMALITY
THROUGH GUTZWILLER’S FORMULA

In our earlier work [25], the quantum thermal character
of our xp Hamiltonian was revealed using Gutzwiller’s
formula [45,46]

gðEÞ¼−
i
ℏ

X
l

Tl

kMBA;l−1k1=2 exp
�
i
ℏ
SlðEÞ− i

μlπ

2

�
; ðC1Þ

to derive the DOS of a system. The DOS is given by

ρðEÞ ¼ −
1

π
ImðgðEÞÞ: ðC2Þ

The meaning of each of the terms is given in Ref. [25].
We already showed in Ref. [25] that for our Hamiltonian
the DOS is thermal in nature. The whole focus was to
evaluate the Jacobi action

SlðEÞ ¼
I

pdx; ðC3Þ

for the lth closed orbit. Since theHamiltonian corresponds to
an unstable trajectory, in order to perform the closed
integration in Eq. (C3), an analytic continuation to the
complex plane approach was adopted. Transforming to the
IHO Hamiltonian, the frequencylike quantity was complexi-
fied, which led to a harmonic oscillator Hamiltonian. The
trajectory is now closed, and the action was obtained to be

SlðEÞ ¼
2πiEl

κ
: ðC4Þ

This yielded the thermal density of states as

ρðEÞ ¼ 1

ℏκ

X
l

1

sinh π
e−2πEl=ℏκ cos

μlπ

2
; ðC5Þ

with the temperature is given by Eq. (34). See Ref. [25] for a
detailed calculation.
Here we shall show that the action (C4) can also be

obtained in a different way. Since our Hamiltonian (24) is
valid very near to the horizon, we consider a closed path
which encircles the horizon x ¼ 0 in a circular trajectory
with a very small radius (say, ϵ → 0) as shown in Fig. 3.
Actually, the path is one which starts just outside the

horizon, enters through it, and comes back again. So it
crosses the singular point x ¼ 0 twice. To avoid this, a

complex path has been chosen, and, since the relevant
contribution comes from the singularity, we have chosen a
circular path as shown in Fig. 3. The choice of these types
of paths is motivated from the semiclassical treatment of the
Hawking effect in the tunneling formalism, similar to what
we already discussed in Sec. VI A. Since the formula (C1)
is semiclassical in nature, we hope that such paths are
relevant here as well. With this, the action of the particle
following the closed path is

SlðEÞ ¼
I

pdx ¼ El

κ

I
dx
x
: ðC6Þ

The above closed integration can be divided into two parts:

SlðEÞ ¼
El

κ

�Z
qB

qA

dx
x|fflfflffl{zfflfflffl}

I1

þ
Z

qA

qB

dx
x|fflfflffl{zfflfflffl}

I2

�
: ðC7Þ

Now, the integration I1, i.e., when the particle is going from
qA to qB, is evaluated as

I1 ¼
Z
qA→qB

dx
x

¼
Z

2π

π

iϵeiϑ

ϵeiϑ
dϑ ¼ iπ; ðC8Þ

where in the above ϵ is chosen to be the radius of the
circular path and we substituted x ¼ ϵeiϑ. Similarly, I2 is
evaluated to be

I2 ¼ iπ: ðC9Þ

Finally, putting the values of I1 and I2 in Eq. (C7), we
obtain the same expression of the action as in Eq. (C4).

FIG. 3. The contour diagram across the horizon where the
horizon is at xH .
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