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We consider the gravitational quasinormal modes of the static and spherically-symmetric dirty black
holes in the effective theory of gravity with the third order curvature term inspired by the Goroff-Sagnotti
calculation. It is demonstrated that using the WKB-Padé summation proposed in [J. Matyjasek and
M. Opala, Phys. Rev. D 96, 024011 (2017)] one can achieve sufficient accuracy to calculate corrections to
the complex frequencies of the quasinormal modes caused by the Goroff-Sagnotti curvature term. It is
shown that the curvature correction (with our choice of the sign of the coupling constant) increases
damping of the fundamental modes (except for the lowest fundamental mode) and decreases their
frequencies. We argue that the methods adopted in this paper can be used in the analysis of the influence of
the higher-order curvature terms upon the quasinormal modes and in a number of related problems that
require high accuracy.
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I. INTRODUCTION

The reaction of a black hole to small perturbations is
described by a set of oscillations, called quasinormal, and
characterized by complex numbers, ω, the real part of
which gives the frequency of the mode whereas the
imaginary part controls its damping rate. Mathematically,
the quasinormal modes considered in this paper are the
solutions to the ordinary second order Schrödinger-like
differential equation

d2

dx2
Ψþ ðω2 − V½rðxÞ�ÞΨ ¼ 0 ð1Þ

with the boundary conditions corresponding to purely
outgoing waves at infinity and purely ingoing waves at
the horizon. Here x is the tortoise coordinate, Ψ ¼ Ψ½rðxÞ�
describes the radial perturbations in the linear regime and V
is the potential. The potential is constant as jxj → ∞ and
has a maximum at x0. For the mode of a given spin weight,
j, the quasinormal frequencies are labeled by the multipole
number, l, and the overtone number n.
Unfortunately, in the black hole context, it is impossible

to solve this equation exactly and consequently one has to
resort to numerical and/or approximate methods.1 Since
their discovery by Vishveshwara in 1970 [4] an enormous
amount of work has been carried out on the quasinormal

oscillations. Interested readers are referred to the excellent
reviews [5–8] covering almost all aspects of the problem.
Here we mention only the most popular and highly accurate
numerical approaches: the method of continued fractions
[9–11], the Hill determinant method [12], asymptotic
iteration [13], the pseudospectral method [14] and the
method of Nollert and Schmidt [15]. On the other hand, we
have a group of analytic and semi-analytic methods based
on the WKB expansion and its variants [16–23] and the
related method of Gal’tsov and Matukhin [24]. Among the
WKB-based approximations the most popular are the
(third-order) Iyer-Will method [17] and its sixth-order
generalization constructed by Konoplya [23]. Moreover,
computationally still very promising is the method devel-
oped by Zaslavskii [25], who following the ideas of
Refs. [26–28] reduced the problem to the calculation of
the energy levels of the quantum anharmonic oscillator.
As has been demonstrated in Ref. [25], one can reproduce
the Iyer-Will [17] results by calculating the first two
nontrivial corrections to the energy levels of the sixth-
order anharmonic oscillator and this equivalence can be
extended to higher orders [29].
Recently, it has been proposed to construct the Padé

transform of the WKB series describing complex frequen-
cies of the quasinormal modes instead of just summing
them term by term [29,30]. This approach appears to be a
major improvement over the pure WKBmethod. Indeed, its
has been shown in Refs [29,30] that (within the domain of
applicability) one can obtain highly accurate values of the
quasinormal frequencies. Depending on the number of
terms retained in the WKB expansion one can achieve the

*jurek@kft.umcs.lublin.pl, jirinek@gmail.com
1In certain cases the solution of Eq. (1) can be expressed in

terms of the confluent Heun functions. See, e.g., [1–3] and
references cited therein.
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accuracy of (at least) 24 decimal places for the low-lying
modes.2

The aforementioned techniques have been successfully
applied to various black hole systems, too numerous to list
them here. Once again the reader is referred to review
papers. Here we shall discuss certain aspects of the effective
gravity in the context of the quasinormal oscillations of
black holes. The influence of the higher-order curvature
terms (see, e.g., Refs [31–34]) on quasinormal modes has
attracted some attention recently. (See for example
Refs. [35–38] and the references cited therein). In this
paper we shall investigate this problem in some detail. We
will limit ourselves to the effective theory of gravity with
the six-derivative term and concentrate on the following
issues: First, we check if the adapted method (which is
based on the results of Refs. [29,30]) is sufficiently
sensitive to quantify the influence of the higher order
terms upon the quasinormal modes. Second, we compare
the complex frequencies calculated for the classical black
hole and its curvature-corrected counterpart. Finally, we
will briefly discuss the danger of relying too much on the
schemes that involve only a few first terms of the WKB
expansion.
The paper is organized as follows. In Sec. II we study the

spherically symmetric black holes and give main equations
of the problem. In Sec. III A we illustrate the adopted
method using simple Mashhoon [39] and Schutz-Will [16]
approach3 with the Regge-Wheeler and the Zerilli poten-
tials expressed in terms of the Lambert functions. The
corrections caused by the six-derivative terms are presented
graphically. The accurate calculations of the quasinormal
modes are carried out in Sec. III B, where we also study the
influence of the second-order corrections to the black hole
solution on the quasinormal frequencies. Finally, in Sec. IV
we discuss the results obtained and the dangers of naive
summation of the WKB terms or using simplistic methods.
Throughout the paper we use natural units c ¼ G ¼ 1.

The signature of the metric is taken to be “mainly positive”,
i.e., þ2, and the conventions for the curvature tensor are
Ra

bcd ¼ ∂cΓa
bd…, and Ra

bac ¼ Rbd.

II. DIRTY BLACK HOLES

As is well known, the macroscopic black holes are
sensitive to the higher-order terms in the gravitational
action. Typically, such terms are constructed from the
basis of the curvature monomial invariants of definite order
and degree and appear in a natural way in the low-energy

limit of the string theory, phenomenological effective
Lagrangians and the Lovelock gravity. Moreover, the
renormalized one-loop effective action of the quantized
massive fields in the large mass limit is constructed form
the curvature invariants (the type of the field enters through
the spin-dependent numerical coefficients). The general
gravitational action of this type can be written as

Sg ¼
Xm
k¼0

αkSk; ð2Þ

where each Sk is constructed from the curvature invariants
of the definite order s (the number of differentiations of the
metric) and degree q (the number of factors). Here s ¼ 2k,
S0 is related to the cosmological term and S1 is the standard
Einstein-Hilbert action. The total action is therefore the
sum of the gravitational action and the matter contribution,
where the latter may also contain quantum corrections. The
result of the functional differentiations of the total action
with respect to the metric tensor can generally be written as

Rab −
1

2
Rgab þ Λgab þ Pab ¼ 8πðTab þ Tð1Þ

ab Þ; ð3Þ

where Pab represents the result of the functional differ-
entiation of the higher-order curvature terms, Tab is the

stress-energy tensor of the classical matter, Tð1Þ
ab is a small

correction (presumably of quantum origin) and all the
remaining symbols have their usual meaning. Both the left
and the right hand side of (3) functionally depends on the
metric tensor. Of course, there is no necessity to introduce

Pab and T
ð1Þ
ab terms simultaneously, typically we have either

one or the other present. It should be noted that when the

tensor Tð1Þ
ab is of purely geometric origin it may (with some

reservations), equally well, be treated as the object that
modifies the left-hand side of the equations [40,41].
One of the most important and interesting applications of

the higher-order theories of gravitation is the search for
their imprints on classical configurations modeled by the
solutions of the Einstein field equations. This should lead to
some definite predictions. Unfortunately, the complexity of
the problem practically excludes construction of the exact
solutions and one is forced to adopt either some approx-
imations or refer to numerics. Here we shall choose the first
option. To illustrate the procedure, we consider the simplest
case of the spacetime generated by the spherically sym-
metric matter distribution. The line element describing the
spacetime in question can be written as

ds2 ¼ −e−2ψ
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2 þ r2dΩ2;

ð4Þ
where m ¼ mðrÞ and ψ ¼ ψðrÞ are two functions of the
radial coordinate and dΩ2 denotes the metric on the unit

2The WKB results have been compared with the results
obtained within the framework of the continued fraction method.
The accuracy of the results is limited by the available computer
resources.

3Although the authors adopted different strategies the resulting
equations are essentially the same and we will abbreviate them as
MSW equations.
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sphere. The functions mðrÞ and ψðrÞ are model-dependent,
i.e., they are the solutions of the Einstein field equations
describing the particular model. Now, let us assume that the
line element (4) describes a black hole with the event
horizon located at r ¼ rþ. In what follows we shall refer to
this configuration as “dirty” or “corrected” black hole.4 For
the line element (4) the field equations (3) with the
cosmological constant set to zero assume the form

−
2

r2
dm
dr

þ εPt
t ¼ 8πðTt

t þ εTð1Þt
t Þ ð5Þ

and

−
2

r2
dm
dr

−
2

r
dψ
dr

�
1 −

2mðrÞ
r

�
þ εPr

r ¼ 8πðTr
r þ εTð1Þr

r Þ;

ð6Þ

where ε is the dimensionless parameter that helps to keep
track of the order of terms in complicated expansions, and
as such, it should be set to 1 at the end of the calculation.
The potential of the gravitational perturbations can be

written in the form [42,43]

VðrÞ ¼ e−2ψ
�
1 −

2m
r

��
lðlþ 1Þ

r2
−
6m
r3

þ 2

r2
dm
dr

þ 1

r

�
1 −

2m
r

�
dψ
dr

�
: ð7Þ

With mðrÞ ¼ M and ψðrÞ ¼ 0 the potential VðrÞ reduces
to the Regge-Wheeler potential of the Schwarzschild black
hole. It belongs to a more general class of potentials
describing scalar, vector and gravitational perturbations

VðrÞ ¼ e−2ψ
�
1 −

2m
r

��
lðlþ 1Þ

r2
þ ð1 − j2Þ 2m

r3

− ð1 − jÞRθ
θ

�
; ð8Þ

where

j ¼

8>><
>>:

0 for scalar

1 for vector

2 for gravity

ð9Þ

and the angular components of the Ricci tensor are given by

Rθ
θ ¼ Rϕ

ϕ ¼ 2

r2
dm
dr

þ 1

r

�
1 −

2m
r

�
dψ
dr

: ð10Þ

Our discussion has been exact up to this point. Now, let
us assume that the functions mðrÞ and ψðrÞ have the
following expansion

mðrÞ ¼
XN
k¼0

εkMkðrÞ þOðεNþ1Þ ð11Þ

and

ψðrÞ ¼
XN
k¼1

εkψkðrÞ þOðεNþ1Þ; ð12Þ

where ε is the dimensionless parameter. Note that the term
ψ0 has no independent physical meaning and is omitted.
The system of the differential equations has to be supple-
mented with the suitable boundary conditions. In what
follows we shall relate the additive integration constant
with the total mass of the system measured from infinity
r∞, i.e., mðr∞Þ ¼ M, whereas the second integration
constant can be determined from the natural condition
ψðr∞Þ ¼ 0. Now, inserting the expansions of the functions
mðrÞ and ψðrÞ into Eqs. (5) and (6) and collecting terms
with like powers of ε, one obtains a system of the ordinary
differential equations of ascending complexity.
Let us concentrate on pure gravity. As is well known, the

one-loop corrections to the pure classical gravity are
quadratic and the divergent terms calculated by ’t Hooft
and Veltman have the form [45]

1

ð4πÞ2ðD − 4Þ
�

1

120
RabRab þ 7

20
R2

�
; ð13Þ

where D is the dimension. Hence the one-loop divergences
of pure gravity vanish on-shell, the result that can be
obtained on the basis of symmetry. In their seminal papers,
Goroff and Sagnotti [46,47] showed that at the two-loop
level the divergences of the gravitational action are encoded
in the term

209

2880ð4πÞ2ðD − 4Þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Rab

cdRcd
efRef

ab; ð14Þ

and thus the Einstein theory of gravitation is not renorma-
lizable. Although this result seems to be quite pessimistic,
one can think of it as the indication of possible modifica-
tions of the Einstein gravity. Indeed, introducing the term
proportional to

S3 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Rab

cdRcd
efRef

ab ð15Þ4Many factors can make the black holes dirty, see for example
Refs. [42–44] and the references cited therein.
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to the total action one obtains, in concord with the
philosophy of the effective Lagrangians, a simplest gener-
alization of the pure Einstein gravity that absorbs the
divergent term. At the level of the field equations S3
introduces the term proportional to

1ffiffiffiffiffiffi−gp δ

δgab
S3 ¼ −12Rc

b
;dRca;d þ 12Rc

b
;dRda;c

− 6Rcde
b
;iRcdia;e þ 12Rc

b
;deRcdeaR

þ 12Rc
a
;deRcdeb − 12RcdeiRj

cebRdjia

− 6RcdRei
cbRdaei þ 1

2
gabRcdeiRjk

cdReijk:

ð16Þ

Now, let us analyze the influence of the higher-derivative
terms that may appear in the low-energy effective action
functional on the complex frequencies of the quasinormal
modes. To keep the calculations as simple as possible we
neglect, in concord with our previous discussion, the four
derivative terms and restrict ourselves to the first order
expansion of the functions mðrÞ and ψðrÞ. Additionally we
assume that the total stress-energy tensor vanishes and the
six-derivative term (15) is the only source of the modifi-
cations of the vacuum field equations. The total (effective)
action is therefore given by

Stotal ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
R − α

Z
d4x

ffiffiffiffiffiffi
−g

p
Rab

cdRcd
efRef

ab:

ð17Þ

Our first task is to solve the field equations. To this end,
let us return to the spherically symmetric line element (4)
with (11) and (12). Now, making a substitution α → εα and
subsequently, as has been mentioned earlier, functionally
differentiating the total gravitational action with respect to
the metric tensor, inserting the line element to the thus
obtained system of the differential equations and finally
expanding the result in the powers of ε, one obtains a chain
of differential equations for ψ iðrÞ and MiðrÞ. The zeroth-
order solution is the Schwarzschild line element charac-
terized by the mass M, whereas the first order equations
can be written as

−
2

r2
dM1ðrÞ

dr
þ 24M2ð98M − 45rÞ

r9
¼ 0 ð18Þ

and

−
dψ1ðrÞ
dr

þ 648M2

r7
¼ 0: ð19Þ

They can be easily integrated and the perturbative solution
to the higher-order gravity field equations is given by

mðrÞ ¼ M − α
4M2

r6
ð49M − 27rÞ ð20Þ

and

ψ1ðrÞ ¼ −α
108M2

r6
; ð21Þ

where ε has been put to 1. Since the black hole solution is
characterized by a total mass as seen by a distant observer,
the corrected location of the event horizon is

rþ ¼ 2M
�
1þ 5α

16M4

�
: ð22Þ

It should be noted that the solution we just found is
equivalent to the solution constructed in Ref. [34], where
g00 and g11 have been expanded in the powers of r−1. The
coefficients of the expansion satisfy a system of algebraic
equations. Indeed, inserting (20) and (21) into (4), expand-
ing the result in ε and finally making substitution
α → 16πα, one obtains precisely the solution presented
in [34]. We prefer our method simply because it is (in our
opinion) more natural and for higher orders it reduces to
simple quadratures. More information is given at the end of
Sec. III B.
Of course, the representation given by (20) and (21) is

not unique. One can, equally well, make use of the another
set of conditions:mðrþÞ ¼ rþ=2 and ψðr∞Þ ¼ 0, where rþ
is the corrected location of the event horizon. In what
follows, however, we will use the former parametrization
and characterize the black hole by its total mass as seen by a
distant observer rather than the radius of the event horizon.

III. QUASINORMAL MODES

Let us return to our discussion of the quasinormal modes
and assume that the potential VðrÞ of the gravitational
(j ¼ 2) perturbations of the black holes described by the
line element (4) with (20) and (21) is given by

VðrÞ ¼ 1

r

�
1 −

2M
r

��
L
r
−
6M
r2

�
−
8M2α

r10

× ð528M2 − 549Mrþ 5MLrþ 135r2Þ; ð23Þ

where L ¼ lðlþ 1Þ. Here we focus on the gravitational
modes; the scalar and electromagnetic perturbations can be
analyzed in a similar manner. It can be easily checked that
(23) vanishes at the event horizon, as expected. In what
follows we also need the radial coordinate of the maximum
of the effective potential. A simple calculation shows that it
is given by

r0 ¼ rð0Þ þ αrð1Þ; ð24Þ
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where

rð0Þ ¼
ð3Lþ 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9L2 − 42Lþ 81

p
ÞM

2L
; ð25Þ

rð1Þ ¼ −
4M2ð3ð5L − 549ÞMrð0Þ þ 1760M2 þ 360r2ð0ÞÞ

r5ð0Þð40M2 − 4ðLþ 3ÞMrð0Þ þ Lr2ð0ÞÞ
:

ð26Þ

Asymptotically, as l → ∞, the leading behavior of rð0Þ and
rð1Þ is given, respectively, by

rð0Þ ∼ 3MþM
l2

ð27Þ

and

rð1Þ ∼
20

81M3
þ 356

729M3l2
: ð28Þ

Now, we have all the necessary ingredients to calculate the
complex frequencies of the quasinormal modes.

A. The first-order approach

Our strategy for calculating the quasinormal modes can
be illustrated by the following simple example, that is,
nevertheless, valid for l ≫ 1. It would be instructive to
analyze it in some detail as the more accurate approaches
roughly follow a similar path. This (first-order) approach is
mainly due to Mashhoon [39] and Schutz and Will [16],
and it leads to the following simple and elegant expression

iQ0=ðQ00
0Þ1=2 ¼

�
nþ 1

2

�
; ð29Þ

where n ¼ 0; 1; 2;…, Q0 ¼ ω2 − V0 and prime denotes
differentiation with respect to the tortoise coordinate x.
Here, the subscript “0” means that the subscripted quantity
has to be evaluated at the maximum of the potential. The
relation (29) can be rewritten in the following simple
“ready to use” form

ω2 ¼ V0 − i

�
nþ 1

2

�
ð2Q00

0Þ1=2: ð30Þ

This formula is the starting point for various more profound
analyses and is an indispensable tool in determining the
order of magnitude and the general behavior of the modes.
Moreover, for more complex potentials (as the one studied
here) the MSW method allows splitting of the quasinormal
frequencies into two parts: the classical part and the
correction, each of which can be calculated and studied
independently. It is evident that the methods based on the
summation of the higher-order WKB terms also share this

property. Unfortunately, even for such simple approxima-
tion as that given by (30), the analytic formulas are too
complicated (and not very illuminating) to be shown here.
Instead, we will present the results of our calculations
graphically.
To illustrate the approach we have calculated frequencies

of the all fundamental gravitational modes for 2 ≤ l ≤ 100.
The calculated frequencies have the general form

ω ¼ ω0 þ αδω; ð31Þ

where ω0 denotes the frequencies of the classical
Schwarzschild black hole, δω is the correction and α is
the coupling constant. It should be noted that the mod-
ifications of the results caused by the higher-order curva-
ture terms are expected to be small and consequently in
order to detect them very accurate results for both the
Schwarzschild and the dirty black hole are needed. Since
the formula (30) gives only qualitative information
(although it gets progressively better with increasing l)
it cannot be used for the actual comparisons. On the other
hand, its simplicity and the fact that for a given potential
both ω0 and δω are the known (although very complicated)
functions of the parameters l and n makes this approach
ideal for preliminary analyses. The results of the calcu-
lations are plotted in Figs. 1 and 2. Inspection of the figures
shows that the behavior of the real and the imaginary part of
δω follows the behavior of the Schwarzschild modes.
Indeed, the linear dependence of ℜðω0Þ on l is also
visible in ℜðδωÞ. For α > 0, the six-derivative term tends
to decrease the real part of the frequency. Similarly, the

FIG. 1. The real part of the quasinormal frequencies of the
fundamental modes for 2 ≤ l ≤ 100. Here ω0 and δω denote
respectively the frequencies of the quasinormal oscillations of the
classical black hole and their corrections.
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imaginary part of the corrections follows the pattern
of ℑðω0Þ, making the modes slightly more damped.
Finally, observe that both ℑðω0Þ and ℑðδωÞ asymptotically

approach well defined limits. Indeed, ℑðω0Þ¼−ð27Þ−1=2¼
−0.192450 and ℑðδωÞ ¼ − 52

729
ð27Þ−1=2 ¼ −0.013728 as

l → ∞.
Let us return to the Schwarzschild black hole. Inverting

standard relation between the radial and the Regge-Wheeler
coordinates

x ¼ rþ 2M ln

�
r

2M
− 1

�
ð32Þ

and expressing the result in term of the principal branch of
the Lambert W function,5 one has

r ¼ 2Mð1þWðyÞÞ; ð33Þ

where y ¼ expðx=ð2MÞ − 1Þ. Now, the Regge-Wheeler
potential can be written in the form

V0 ¼
WðyÞ½lðlþ 1ÞWðyÞ − 3�

4ð1þWðyÞÞ4 ; ð34Þ

whereas a slightly more complicated Zerilli potential
assumes the form

V0 ¼ WðyÞ 9þ 18β½1þWðyÞ� þ 12β2½1þWðyÞ�2 þ 8β2ð1þ βÞ½1þWðyÞ�3
4½1þWðyÞ�4½3þ 2βð1þWðyÞ�2 ; ð35Þ

where β ¼ ðl − 1Þðlþ 2Þ=2. We prefer this representation
over the standard one simply because it depends explicitly
on the Regge-Wheeler coordinate x. Now, in order to make
use of Eq. (30) it suffices to calculate x0 and the second
derivative of the potentials with respect to x at x0. Results
for the first nine fundamental gravitational modes are
tabulated in Table I. Even a brief analysis of the results
shows that the accuracy is not high. Moreover, taking into
account a few additional WKB terms does not necessarily
improve the quality of the approximation. The foregoing
analysis indicates that using simple approximation schemes
naively, the calculated corrections may be smaller than the
deviations between the approximate and the exact quasi-
normal frequencies of the classical black hole, so care is
needed. A very important lesson that follows from this
analysis is the observation that, in principle, it should be
possible to differentiate between the “ideal” and the dirty
black holes, even if the corrections caused by the external
factors are small. To do so, however, it is necessary to have
a reliable, robust and accurate method for calculation the
complex frequencies. Moreover, in view of the expected

smallness of the corrections the adopted techniques should
allow to work with as many decimal places as needed.

B. Padé approximants

Before we extend the above analysis and make our
calculations much more accurate let us discuss the options
we have. First, it would be natural to extend the method of
calculations along the lines developed by Iyer and Will
[17]. As has been demonstrated in Refs. [17–19,23,30] it

FIG. 2. The imaginary part of the quasinormal frequencies of
the fundamental modes for 2 ≤ l ≤ 100. Here ω0 and δω denote
respectively the frequencies of the quasinormal oscillations of the
classical black hole and their corrections. The asymptotic value of
ℑðω0Þ and ℑðδωÞ as l → ∞ is −ð27Þ−1=2 and − 52

729
ð27Þ−1=2,

respectively.

TABLE I. The complex frequencies of the fundamental gravi-
tational quasinormal modes of the Schwarzschild black hole
calculated for the Regge-Wheeler potential (left column) and the
Zerilli potential (right column).

l ωRW ωZ

2 0.7976992 − 0.1765708i 0.7977882 − 0.1767022i
3 1.2331224 − 0.1846363i 1.2331234 − 0.1846375i
4 1.6446063 − 0.1878587i 1.6446064 − 0.1878588i
5 2.0459245 − 0.1894270i 2.0459245 − 0.1894270i
6 2.4420040 − 0.1903071i 2.4420040 − 0.1903071i
7 2.8350206 − 0.1908507i 2.8350206 − 0.1908507i
8 3.2260873 − 0.1912102i 3.2260873 − 0.1912102i
9 3.6158342 − 0.1914605i 3.6158342 − 0.1914605i
10 4.0046454 − 0.1916419i 4.0046454 − 0.1916419i

5The Lambert W function is defined by the simple relation
WðξÞ exp½WðξÞ� ¼ ξ. Other applications of the Lambert func-
tions in the black hole context can be found in Refs. [41,48,49].
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usually gives slightly more accurate results than its sim-
plified version given by [16]. The formula relating the
complex frequencies of the quasinormal modes and the
derivatives of QðxÞ at x ¼ x0 can be written in the form

iQ0ffiffiffiffiffiffiffiffiffi
2Q00

0

p
ε̃
−
XN
k¼2

ε̃k−1Λk ¼ nþ 1

2
; ð36Þ

where the overtones are labeled by n and ε̃ is the expansion
parameter that helps to keep track of the order of terms in
the expansion. The parameter ε̃ must not be confused with
ε. Each Λk is a combination of the derivatives of QðxÞ
calculated at x0 and its complexity grows fast with the
order. The general form of the functions Λk are known for
k ≤ 16 and, in principle, it is possible to construct the
analog of Eq. (31). However, since the Iyer-Will technique
consists of just summing up theΛ terms it cannot be used to
obtain highly accurate results. Moreover, increasing the
number of Λ terms does not improve the quality of
the approximation. On the contrary, it can be shown that
the moduli of the real and imaginary parts of the quasi-
normal frequencies rapidly grow with the number of the
terms of WKB series summed.
A second approach, and the one that will be used here,

consists of treating the right-hand side of the expression

ω2 ¼ Vðx0Þ − i

�
nþ 1

2

� ffiffiffiffiffiffiffiffiffi
2Q00

0

q
ε̃ − i

ffiffiffiffiffiffiffiffiffi
2Q00

0

q XN
i¼2

ε̃jΛj

≡ Vðx0Þ þ
XN
i¼1

ε̃iΛ̃i ð37Þ

as the power series and instead of summing the terms
(which is a bad strategy) we construct the Padé approx-
imants [29,30]. The Padé approximants of a formal power
series

P
akε̃k are defined as the unique rational functions

PM
N ðε̃Þ of degree N in the denominator and M in the

numerator satisfying [50]

PM
N ðε̃Þ −

XMþN

k¼0

akε̃k ¼ Oðε̃MþNþ1Þ: ð38Þ

It has been shown that this simple strategy yields amazingly
accurate results. For example, it can be demonstrated that
for the low-lying fundamental gravitational modes of the
Schwarzschild black hole one can easily achieve accuracy
of 32 decimal places or better. Such accuracy is a must as
we are interested in the corrections to ω0 caused by the very
subtle effects. The Padé summation of the WKB terms in
Eq. (37) has been introduced in Ref. [30] and subsequently
extended in Ref. [29] to which the interested reader is
referred for the technical details and a general discussion.
Although the functions Λk for k ≥ 17 are unknown, they
can be constructed for a given potential with prescribed l

and n numerically [29,51,52]. Since the approach is
numerical it is practically impossible to construct the
complex frequencies of the quasinormal modes for a
general coupling constant. On the other hand, the calcu-
lations can be repeated as many times as needed with
various choices of the coupling constant α, and, conse-
quently, given the expected benefits, the loss of the
analyticity in the coupling constant can be treated as a
minor sacrifice.
Since we do not know the coupling parameter α and the

adopted method requires knowledge of its numerical value,
we shall consider a toy model in which α ¼ 10−3. Such a
choice, although unphysical, guarantees that the corrections
will be easily visible in the final results. Of course the
method is capable of a very high precision and allows for
much smaller values of α as will be demonstrated explicitly
at the end of this section.
Because of the nature of the problem at hand we want to

(numerically) construct the quantities ω and ΔωðαÞ that
satisfy

ω ¼ ω0 þ ΔωðαÞ ð39Þ

and ΔωðαÞ → 0 as α → 0. Before we start the presentation
of the results let us briefly discuss the general features of
the method. First, it should be observed that for a given N,
the accuracy of the Padé transform PN

N increases with l and
decreases with n. On the other hand, increasing of N
improves the accuracy of the overtones. Of course, for each

FIG. 3. The real part of the quasinormal frequencies of the
fundamental modes for 2 ≤ l ≤ 100 calculated for α ¼ 10−3.
Here ω0 and Δω denote respectively the frequencies of the
quasinormal oscillations of the classical black hole and their
corrections. As the quality of the approximation grows with l,
starting with l ¼ 50we reduced the number of calculated modes.
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problem there is a minimal N starting with which one
obtains sensible results. Since we are interested in a
moderate accuracy of the fundamental gravitational qua-
sinormal modes, say up to 20 decimal places, it suffices to
start with P150

150 and gradually decrease N with increasing l.
For example, it suffices to take N ¼ 40 for l ¼ 10.
Unfortunately, for more complex potentials this places
severe demands on the computer resources. Now, in order
to obtain Δω for a given l we calculate both ω0 and ω.
Since the quality of the approximation grows with l,
starting with l ¼ 50 we reduce the number of calculated
modes. Inspection of Figs. 3 and 4 shows that the
quasinormal frequencies calculated within the framework
of the Padé-WKB approach and the MSW method follow a
similar pattern. Of course, the latter method is unable to
provide required accuracy of the calculations. Once again
we see that for a given l and a positive α the quasinormal
modes of the corrected black hole are more suppressed
(except for the lowest fundamental mode) whereas their
frequency is decreased. The results of the calculations

(rounded to 19 decimal places) are presented in Table II.
We believe that they are correct to the assumed accuracy.
It should be noted that with the increase of l the

stabilization of results is achieved for lower values N in
PN

N and this observation may speed up the calculations
considerably. Moreover, inspection of Table II and Figs. 5
and 6 shows that even with such moderate accuracy it is
possible to detect the influence of the Goroff-Sagnotti term
for α of order 10−14. In the log-log plots (Figs. 5 and 6) both
−ℜðΔωÞ and ℑðΔωÞ of the gravitational fundamental
mode ðl ¼ 2; n ¼ 0Þ calculated for α ¼ 5 × 10−9; 10−8;
5 × 10−8; 10−7; 5 × 10−7;…; 10−3 lie on a straight line, an
expected result which, nevertheless, can be regarded as
the useful check of the correctness of the calculations. For
l > 2 the corrections follow the same pattern for −ℜðΔωÞ
and −ℑðΔωÞ.

C. The second-order solution

Finally, let us consider the influence of the second-order
solution of the equations (5) and (6) upon the quasinormal
modes. Now, for mðrÞ and ψðrÞ one has

mðrÞ ¼ M − α
4M2

r6
ð49M − 27rÞ

þ 24α2M4ð6787M − 4104rÞ
11r12

ð40Þ

and

ψðrÞ ¼ −α
108M2

r6
þ 1296α2M3ð253M − 128rÞ

11r12
; ð41Þ

whereas the event horizon rþ is located at

rþ ¼ 2M
�
1þ 5α

16M4
−

1623α2

5632M8

�
: ð42Þ

Making use of Eq. (7) one obtains the following expression
describing the effective potential

TABLE II. The complex frequencies of the fundamental gravitational quasinormal modes of the Schwarzschild
black hole (left column) and the dirty black hole (right column) calculated for α ¼ 10−3. The Padé approximants of
the WKB series, PN

N , are calculated for N ¼ 150.

l ω0 ω

2 0.747343368836083672 − 0.177924631377871397i 0.747289996857394327 − 0.177922202116315106i
3 1.198886576874980146 − 0.185406095889895208i 1.198829745091059250 − 0.185412294358677386i
4 1.618356755064478281 − 0.188327921977846499i 1.618293764592806149 − 0.188337413836831943i
5 2.024590624270701002 − 0.189741032163219024i 2.024519942903865805 − 0.189752057406537987i
6 2.424019641304260981 − 0.190531691684164105i 2.423940385532620070 − 0.190543545087114363i
7 2.819470241218645086 − 0.191019258552094436i 2.819381873352072298 − 0.191031608642424504i
8 3.212387456545430050 − 0.191341402053726517i 3.212289629226929000 − 0.191354073479312716i
9 3.603589562167645343 − 0.191565498650669442i 3.603482039130982745 − 0.191578390083493717i
10 3.993575588236105108 − 0.191727744259109785i 3.993458201820883910 − 0.191740793053382124i

FIG. 4. The imaginary part of the quasinormal frequencies of
the fundamental modes for 2 ≤ l ≤ 100 calculated for α ¼ 10−3.
Here ω0 and Δω denote respectively the frequencies of the
quasinormal oscillations of the classical black hole and their
corrections. As the quality of the approximation grows with l,
starting with l ¼ 50we reduced the number of calculated modes.
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VðrÞ ¼ 1

r

�
1 −

2M
r

��
L
r
−
6M
r2

�

−
8M2α

r10
ð528M2 − 549Mrþ 5MLrþ 135r2Þ

−
48α2M3

11r16
ð−29249LM2rþ 28728LMr2

− 6912Lr3 þ 436656M3 − 567867M2r

þ 250128Mr2 − 38016r3Þ: ð43Þ

Repeating the steps of Sec. III B one can construct the
quasinormal frequencies. The results of our calculations are
tabulated in Table III. This time however, the calculations
are more complex and time consuming as the construction
of the derivatives of VðxÞ could impose severe demands on
the computer resources.
Inspection of tables II and III shows that the absolute

value of the difference between the first and the second-
order results is a few orders of magnitude smaller than the

difference between the Schwarzschild and the first order
results. Indeed, in the first case the difference of the real
part does not exceed 1.5 × 10−7 whereas the imaginary part
is always smaller than 3.5 × 10−8. This can be contrasted
with the first case, where the analogous differences are
typically 103 times bigger.

IV. FINAL REMARKS

In this paper, we have investigated the influence of
the higher-order curvature terms upon the quasinormal
modes. The idealized “experimental” situation we have in
mind is the following: we have two black holes characterized
by the same mass M. One of them is described by the
Schwarzschild line element whereas the second one has
(presumable small) corrections caused by the Goroff-
Sagnotti third-order curvature terms. Our task is to determine
which black hole is which. We see that this question—when
addressed naively—may lead to incorrect answer. Indeed,
making use of unsophisticated calculational techniques one
can obtain results in which the error of the method is bigger
than the expected effect, so the results, although mathemati-
cally correct, do not reflect the actual situation. For example,
ℜðωÞ of the lowest fundamental mode of the dirty black hole
calculated within the framework of the MSW method is
closer to the exact Schwarzschild value than its uncorrected
counterpart. Assuming that the coupling constant α is small
all we need is a very accurate and sensitive method for
calculations of the complex frequencies. In this paper we
argue that the Padé approximants of the (formal)WKB series
describing quasinormal frequencies of the black holes may
have desired features. In the case in hand, one can easily
approach the accuracy of, say, 30 decimal places (or more)
even for low-lying modes. For example, both the continued
fraction method and theWKB-Padé summation agree that to
32 digits accuracy

ω ¼ 0.74734336883608367158698400595410

− 0.17792463137787139656092185436905i ð44Þ

FIG. 5. The log-log plot of the −ℜðΔωÞ part of the gravitational
fundamental mode ðl ¼ 2; n ¼ 0Þ for α ¼ 5 × 10−9; 10−8;
5 × 10−8; 10−7; 5 × 10−7;…; 10−3

FIG. 6. The log-log plot of the ℑðΔωÞ part of the gravitational
fundamental mode ðl ¼ 2; n ¼ 0Þ for α ¼ 5 × 10−9; 10−8;
5 × 10−8; 10−7; 5 × 10−7;…; 10−3

TABLE III. The complex frequencies of the fundamental
gravitational quasinormal modes of the dirty black hole with
the second-order corrections calculated within the framework of
the WKB-Padé technique. The geometry of the black hole is
characterized by Eqs. (40) and (41), and α ¼ 10−3.

l ω

2 0.747290083278501734 − 0.177922209944631719i
3 1.198829835396153738 − 0.185412278758324958i
4 1.618293857305014600 − 0.188337388043360077i
5 2.024520040450694490 − 0.189752027161955573i
6 2.423940490052797489 − 0.190543512760709371i
7 2.819381986313369047 − 0.191031575267004615i
8 3.212289751605332245 − 0.191354039537637231i
9 3.603482171586300389 − 0.191578355817096047i
10 3.993458344812290014 − 0.191740758590793688i
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for the lowest fundamental gravitational mode of the
Schwarzschild black hole. Of course, the method have
some limitations, but because of its simplicity we believe
that it can be the method of choice in many calculations of
this type. We have limited ourselves to the effective gravity
with the Goroff-Sagnotti term. It is clear that this approach is
easily adaptable to other theories (not necessarily pure
gravity) with the higher-order curvature terms and in many
related problems.
Finally, a few words on the computational side of the

problem are in order. The calculations can be roughly divided
into the three parts. First, we calculate the derivatives of the

potential with respect to the x coordinate at x0. Although
highly algorithmic, this stage (when performed analytically)
can be both time and memory consuming. Subsequently we
construct the Λ̃ functions and finally we calculate the Padé
transformsof theWKBseries. It should benoted that the time
spent on calculations of the Padé transforms is only a small
fraction of the total time of computations. On the other hand,
for a given N, the calculation time of the WKB series is
practically insensitive to the type of the black hole. All the
calculations presented in this paper can easily be completed
on a budget laptop with 16 GB of RAM.
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