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Using a simple model of low-mass stellar objects we have shown modified gravity impact on their
early evolution, such as Hayashi tracks, radiative core development, effective temperature, masses, and
luminosities. We have also suggested that the upper mass’ limit of fully convective stars on the main
sequence might be different than commonly adopted.
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I. INTRODUCTION

Working on modified gravity does not make one to
forget the elegance and success of Einstein’s theory of
gravity, being already confirmed by many observations [1];
even more, general relativity (GR) still delights when one
of its mysterious predictions, such as the existence of black
holes, is directly affirmed by the finding of gravitational
waves as a result of black holes’ binary mergers [2] as well
as soon after the imaging of the shadow of the supermassive
black hole of M87 [3] (see [4] for a review).
Despite the successes, there are still shortcomings which,

among many others, the modified gravity community is
trying to solve by proposing extensions or/and alternatives
to GR. The lack of detection of dark matter and dark energy
sources in order to be in agreement with the cosmological
concordance model [5–10], issues with unification with the
high energy physics [11,12] as well as existence of space-
time singularities [13] are just sequent motivations for
modified theories of gravity.
In order to answer the mentioned ambiguities, some

of the extensions of GR propose to consider more general
than Einstein-Hilbert gravitational action (with nonlinear
terms of curvature scalars) [14], or to include minimally
or nonminimally coupled scalar fields [15,16], to incorpo-
rate additional geometric ingredients [17], and to treat the
physical constants as dynamical quantities [18,19], as a
few examples. Some of those theories can be already
constrained by gravitational wave observations [20–25].
Astrophysics also provides additional constraints (one

of the most exciting is the neutron stars’ merger [26]) on
GR and its modifications [27–29], but also delivers draw-
backs. The observations of neutron stars (NS) with masses
of two solar ones [30–32] clearly demonstrate how much is
not understood yet when we try to construct a NS model
with our current knowledge on gravitational interactions

and nuclear physics at the extreme densities. The lack of
information on the conditions at the NS center, where
densities are above the nuclear saturation density ρ ≈ 2.8×
1014 gr=cm3, forces to extrapolate forms of equation of
state (EoS). The recent discovery of an object of 2.6 solar
masses [33] (being above the heaviest known NS and
below the lightest black hole, that is, in the so-called mass
gap [34]), which merged with a black hole of 23 M⊙,
provided even more questions for theoretical physics of
compact objects.
However, it turns out that there is a class of stellar

objects, with the internal structure much better understood
than that of neutron stars, which might be used to constrain
theories of gravity. It is a family of low-mass stars (LMS)
[35–37] which includes such ordinary objects as M dwarfs
(also called red dwarfs), which are cool main sequence stars
with masses in the range ½0.09 − 0.6�M⊙, brown dwarfs
(stars which failed to join the main sequence, with masses
below 0.09 M⊙) [38,39] or infant stars, that is, pre-main-
sequence (PMS) stars which have not yet started hydrogen
burning [40].
LMS are the most common stellar objects—around

70 percent of stars in the Milky Way are red dwarfs,
evolving slowly because of their small size and low masses.
Their importance becomes clear [41] when one wants to
understand the properties of distant galaxies—a significant
part of baryonic mass is contained in LMS [42]; globular
clusters, being the oldest objects in the Universe with
reliable age determination, mainly consists of such objects
[43]. Another, maybe the most important, argument for
studying LMS is our relationship with the Sun: the knowl-
edge on its past and future, that is, the evolution of a star
with dependent planets like the Earth, crucially determines
our fate and survival possibilities. There are already many
discoveries [44–51] of exoplanets orbiting low-mass stars
whose habitable properties essentially depend on star’s
characteristics, from which the most important one is its
mass. Moreover, these objects are also studied in order to*aneta.magdalena.wojnar@ut.ee
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test properties of Standard Model particles as well as dark
matter candidates [52–54]. There are also works con-
straining the gravitational theories using data obtained
from the Sun and white dwarfs observations [55,56],
such as, for instance, analyzing the effect of an additional
Yukawa component for gravity in the stellar equilibrium
[57], the role of a nonminimal coupling between matter
and curvature [58] or the effect of an ungravity component
[59,60].
The early evolution of low-mass stars has not been yet

examined in the context of modified gravity according to
our knowledge (for a recent review on stellar structure in
modified gravity see [61] while on astrophysical test see
[62]. main sequence and red giant stars in modified
gravity were studied in [63–65].). Due to that fact, we
would like to answer the questions if modified gravity may
have any significant effect on early life of such objects as
well as what kind of consequences might be carried by the
positive answer to that issue. Accordingly, we will focus on
the simplest example of metric-affine theories of gravity,
that is, Palatini fðRÞ gravity; nevertheless, the analogous
analysis can be made for any other theory of gravity which
modifies the Newtonian hydrostatic equilibrium and related
to that stellar equations.
The action of Palatini fðRÞ gravity, which is the simplest

generalization of GR, has the following form

S ¼ Sg þ Sm ¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p
fðRÞd4xþ Sm½gμν;ψm�; ð1Þ

where R ¼ Rμνgμν is the Ricci scalar constructed with the
metric g and Ricci tensor built of the independent con-
nection Γ̂. Thus the common assumption on g-metricity of
the connection is abandoned. Let us notice that we use the
ð−þþþÞ metric signature convention while κ ¼ − 8πG

c4

[66]. The variation of (1) with respect to the metric gμν
gives

f0ðRÞRμν −
1

2
fðRÞgμν ¼ κTμν; ð2Þ

where Tμν is the energy momentum tensor of the matter
field, obtained in the standard way Tμν ¼ − 2ffiffiffiffi−gp δSm

δgμν
. Later

on it will be assumed to be a perfect fluid. Here, the
primes denote derivatives with respect to the function’s

argument: f0ðRÞ ¼ dfðRÞ
dR .

The variation with respect to the independent connection
Γ̂ provides

∇̂βð
ffiffiffiffiffiffi
−g

p
f0ðRÞgμνÞ ¼ 0: ð3Þ

We immediately notice that ∇̂β is the covariant derivative
calculated with respect to Γ̂, that is, it is the Levi-Civita
connection of the conformal metric

hμν ¼ f0ðRÞgμν: ð4Þ

A very helpful equation, called the structural equation, is
obtained from the trace of (2) taken with respect to gμν

f0ðRÞR − 2fðRÞ ¼ κT; ð5Þ

where T is the trace of the energy-momentum tensor.
For some chosen functional fðRÞ it is possible to solve
the structural equation (5) in order to obtain the relation
R ¼ RðTÞ.
It is a well-known fact, derived easily from (5), that in the

vacuum the Palatini gravity provides Einstein vacuum
solution with the cosmological constant independently of
the fðRÞ form. Moreover, in the case of analytic fðRÞ
functions it was shown [67] that the center-of-mass orbits
are the same as in GR while the modifications of energy
and momentum which appear in Euler equation are not
sensitive to the experiments performed for the solar system
orbits so far. The situation may change when atomic level
experiments will be available [68–70].
It can be shown [14] that one may rewrite the field

equations as a dynamical equation for the conformal metric
hμν [71,72] and the undynamic scalar field defined as
Φ ¼ f0ðRÞ:

R̄μν −
1

2
hμνR̄ ¼ κT̄μν −

1

2
hμνŪðΦÞ ð6aÞ

ΦR̄ − ðΦ2ŪðΦÞÞ0 ¼ 0 ð6bÞ

where we have introduced ŪðΦÞ ¼ RΦ−fðRÞ
Φ2 and appropri-

ate energy momentum tensor T̄μν ¼ Φ−1Tμν. It has been
already shown [73–76] that this representation of the
Palatini gravity significantly simplifies considerations on
particular physical problems.

II. PALATINI STARS

The stellar structure in the metric-affine theory (for the
detailed review on that topic see [61]) was studied mainly
in the context of spherical-symmetric solutions and mass-
radius relation [77–86], the last one given by the modified
Tolman-Oppenheimer-Volkoff equations. Possible issues
and their solutions were discussed in [87–96]. Works on
stability problems can be found in [76,97–101]. Nonrela-
tivistic stars which are our concern were considered in
[102–107]. In what follows, we will use some results
derived in [76,102–104].

A. Nonrelativistic Palatini stars

It was demonstrated [102,103] for the Starobinski model

fðRÞ ¼ Rþ βR2 ð7Þ

ANETA WOJNAR PHYS. REV. D 102, 124045 (2020)

124045-2



that nonrelativistic Palatini stars can be described by the
following equations

dp
dr̃

¼ −
Gmðr̃Þρðr̃Þ
Φðr̃Þr̃2 ; ð8Þ

m ¼
Z

r̃

0

4πx2ρðxÞdx; ð9Þ

where r̃2 ¼ Φðr̃Þr2 and Φðr̃Þ≡ f0ðRÞ ¼ 1þ 2κc2βρðr̃Þ.
After transforming back to the Jordan frame, taking the
Taylor expansion around β ¼ 0 we may write down the
modified hydrostatic equilibrium equation as

p0 ¼ −gρð1þ κc2β½rρ0 − 3ρ�Þ; ð10Þ

where g ¼ const is the surface gravity, which can be
approximated on the star’s surface (that is, on the photo-
sphere, which is often taken as the surface of a star) as

g≡ GmðrÞ
r2

∼
GM
R2

; ð11Þ

where M ¼ mðRÞ. Let us notice that the transformation of
the mass function mðr̃Þ to mðrÞ depends on the energy
density which on the nonrelativistic star’s surface will drop
to zero. Due to that fact, we approximate the mass function
to the one of the very familiar formm0ðrÞ ¼ 4πr2ρðrÞ in the
Jordan frame, such that one has

m00 ¼ 8πrρþ 4πr2ρ0: ð12Þ

We use it in (10), together with (11) written after differ-
entation with respect to r as d2m=dr2 ¼ 2m=r2, in order to
find the following form

p0 ¼ −gρ
�
1þ 8β

g
c2r

�
: ð13Þ

The heat transport with respect to radiative and con-
ductive processes is given by [108]

∂T
∂m ¼ −

3

64π2ac
κrcl
r4T3

; ð14Þ

where l is the local luminosity, the radiation density
constant is a ¼ 7.57 × 10−15 erg

cm3K4 and the opacity κrc is
given by

1

κrc
¼ 1

κrad
þ 1

κcd
ð15Þ

with κrad being the radiative opacity while κcd the con-
ductive one. Writing (13) as

∂p
∂m ¼ −

Gm
4πr4

�
1þ 8β

Gm
c2r3

�
ð16Þ

and using it together with the heat transport (14) one has

∂T
∂p ¼ 3κrcl

16πacGmT3

�
1þ 8β

Gm
c2r3

�
−1
: ð17Þ

Similarly as in the standard case, we define a gradient
describing the temperature variation with depth

∇rad ≔
�
d lnT
d lnp

�
rad

ð18Þ

which in Palatini case takes a form

∇rad ¼
3κrclp

16πacGmT4

�
1þ 8β

Gm
c2r3

�
−1
: ð19Þ

B. Polytropic Palatini stars

Since in the further part we will consider polytropic stars
whose equation of state is given by the simple power-law
relation

p ¼ Kργ; ð20Þ

it is convenient to recall now the Palatini Lane-Emden
equation [102]. Its solutions will be needed to the dis-
cussion on the pre-main-sequence phase of the stellar
evolution, as well as to describe fully convective stars
on the main sequence. Thus, the modified Lane-Emden
equation has the following form

1

ξ

d2

dξ2

� ffiffiffiffi
Φ

p
ξ

�
θ −

2κ2c2ρcα
nþ 1

θnþ1

��
¼ −

ðΦþ 1
2
ξ dΦ

dξÞ2ffiffiffiffi
Φ

p θn;

ð21Þ

where Φ ¼ 1þ 2αθn with α defined as α ¼ κc2βρc, while
the dimensionless variables are given by

r ¼ rcξ; ρ ¼ ρcθ
n; p ¼ pcθ

nþ1; ð22Þ

r2c ¼
ðnþ 1Þpc

4πGρ2c
; ð23Þ

where pc and ρc are the central pressures and densities and
n ¼ 1

γ−1 is the polytropic index of the polytropic equation of
state (20). Let us notice that in the standard version of the
Lane-Emden equation (when α ¼ 0) one deals with only
one parameter n whose value is related to a type of the star.
It also indicates the stable stars’ configurations (see for
example [109]). The most important values are n ¼ 3=2,
modeling cores of fully convective stars and small white
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dwarfs, and n ¼ 3, used for high mass white dwarfs and
approximated analysis of main-sequence stars. In a modi-
fied version we have the extra parameter α, coming from
the modification of GR, used for constraining the theory
against observational data (or in some cases, by theoretical
analysis, as for instance the mentioned stability problem,
discussed in [107]).
Equation (21) has two exact solutions [104] for

n ¼ f0; 1g

θn¼0 ¼ −
ξ2

6
þ 1; θn¼1 ¼

ξ2 − 15

2ακ2c2ρcð10þ ξ2Þ ; ð24Þ

thus for the other values of the index n one needs to solve
the equation numerically [102,103]. Let us notice that the
equation depends on the central energy density which is a
common feature of Palatini theories of gravity. That is, the
theory introduces new energy-density dependent contribu-
tions which distinguishes it from other proposals extending
GR [93].
Using the solutions of the modified Lane-Emden equa-

tion (21) one may obtain the star’s mass, radius, central
density, and temperature via the well-known expressions

M ¼ 4πr3cρcωn; ð25Þ

R ¼ γn

�
K
G

� n
3−n
M

n−1
n−3; ð26Þ

ρc ¼ δn

�
3M
4πR3

�
; ð27Þ

T ¼ Kμ

kB
ρ

1
n
cθn; ð28Þ

where kB is the Boltzmann constant and μ the mean
molecular weight. It should be commented that the con-
stants (29) and (31)

ωn ¼ −
ξ2Φ3

2

1þ 1
2
ξ
Φξ

Φ

dθ
dξ

����
ξ¼ξR

; ð29Þ

γn ¼ ð4πÞ 1
n−3ðnþ 1Þ n

3−nω
n−1
3−n
n ξR; ð30Þ

δn ¼ −
ξR

3 Φ−1
2

1þ1
2
ξ
Φξ
Φ

dθ
dξ jξ¼ξR

: ð31Þ

differ from their GR forms because of the newΦ-dependent
terms [104]. It is so since in order to obtain the Eq. (21),
the Einstein frame was used and finally one has to
come back to the Jordan one by performing the conformal
transformation.

Let us notice that in the case of polytropies Eq. (19) can
be written in terms of solutions of the modified Lane-
Emden equation [102,103]

∇rad ¼
3κrclp

16πacGmT4

�
1 −

4α

3δn

�
−1
; ð32Þ

with α ¼ κc2βρc.

III. A TOY MODEL FOR FULLY CONVECTIVE
STARS IN PALATINI GRAVITY

A. A brief comment on dynamical instability

Apart from the radiative and conductive energy transport
briefly mentioned in Sec. II A, convection is another
phenomenon which may have an important role in the
heat transport in some regions of the star. It appears when
small fluctuations of functions and variables describing a
spherical symmetric star, which are always present in the
star’s interior, grow: that causes mixing of the stellar
material as well as it may be an agent of energy transport
through one region to another.
We will focus on an ideal gas, therefore ρ ∼ p=T. Let

us consider an element ρe which remains always in the
pressure balance with the surrounding ρs, so Dp ≔
pe − ps ¼ 0. When the element is slightly hotter with
DT > 0, from the ideal gas relation we have Dρ < 0—the
element is lighter than the surrounding material and will be
lifted upwards by the buoyancy forces from r to rþ Δr.
The change of the element density risen by dr is written as

Dρ ¼
��

dρ
dr

�
e
−
�
dρ
dr

�
s

�
Δr: ð33Þ

If on the considered layer we deal withDρ > 0, the element
is heavier than the surrounding and will be drawn back to
its original position, so the perturbation is removed and we
deal with a stable configuration.
Assuming that the energy is not being exchanged during

that process (that is, the element rises adiabatically), we
may rewrite the stability condition ([97]) for the equation of
state ρ ¼ ρðp; T; μÞ with the homogeneous chemical com-
position μ (which results as dμ ¼ 0 for both, the element
and surrounding) in the following form

−
�
1

T
dT
dr

�
e
þ
�
1

T
dT
dr

�
s
> 0: ð34Þ

Multiplying it by the term −p dr
dp one obtains the stability

criterion
�
d lnT
d lnp

�
s
<

�
d lnT
d lnp

�
e
; or ∇ < ∇e: ð35Þ

If the element changes adiabatically, we may write ∇e ¼∇ad while if the energy is transported by the radiation
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(and conduction), then∇ ¼ ∇rad. This is the Schwarzschild
criterion for the stable star’s layer:

∇rad < ∇ad: ð36Þ

When perfect, monatomic gas is considered, then the
adiabatic temperature gradient can be shown to be ∇ad ¼
0.4 (see, e.g., [110]).
However, if ∇rad is too high, that is, we are dealing with

large flux F ¼ l=ð4πr2Þ or very opaque matter, or ∇rad has
a depression, the left-hand side (lhs) of (36) will be bigger
than ∇ad and a part of the flux will be carried by the
convection, so ∇ ≠ ∇rad. Thus, the condition for the
convective energy transport in some region of the star
is ∇rad > ∇ad.
Let us just comment that the chemical composition

gradient ∇μ, which will appear on the right-hand side
(rhs) when nonhomogeneous chemical composition is
considered (Ledoux criterion), has a stabilizing effect.
Since it was shown that in Palatini gravity the radiative

gradient is modified, it will also have an effect on the
Schwarzschild criterion, that is, the convection appears
when

3κrcpl
16πacGmT4

�
1þ 8β

Gm
c2r3

�
−1

> ∇ad: ð37Þ

Therefore, depending on the Starobinsky parameter β, the
modification can have a stabilizing or destabilizing effect.

B. Convective stars

1. Hayashi tracks

We will consider a fully ionized monatomic gas with the
temperature T and mean molecular weight μ fulling the
interior of a convective star up to the photosphere. We
assume that the photosphere lies in r ∼ R, where R is the
star’s radius, and thus, as already mentioned, the stratifi-
cation ∇e ¼ d lnT=d lnp ¼ ∇ad is adiabatic and equaled
to 2=5. In such a case it turns out that the equation of state
can be written as the polytropic equation of state (20) with
the index n ¼ 3=2. Using the ideal gas relation in the
polytropic EoS (20)

ρ ¼ μp
NAkBT

; ð38Þ

where NA and kB are the Avogardo and Boltzmann
constants, respectively, one may write

p ¼ K̃T1þn; K̃ ¼
�
NAkB
μ

�
1þn

K−n: ð39Þ

Let us notice that however K is a constant, it depends on
modified gravity, since the formula

K ¼
�

4π

ξnþ1
R ð−θ0nðξRÞÞn−1

�1
n G
nþ 1

M1−1
nR

3
n−1 ð40Þ

includes the solutions of the modified Lane-Emden equa-
tion (21). So K and K̃ vary not only from star to star, but it
also depends on the modified gravity model (here via the
solutions of the modified Lane-Emden equation for given
Starobinsky parameter β).
The EoS (39) holds as far as the photosphere. The

photosphere is a visible surface with the temperature Teff
which satisfies the Stefan-Boltzmann equation (that is,
photosphere is a surface from which the radiation is emitted
into space while Teff is the temperature of a black body).
For the photosphere, the optical depth τ takes the value
τ ¼ 2=3. Above the photosphere one deals with an atmos-
phere that we assume to be radiative for which the
absorption law is given by a simple relation

κabs ¼ κ0piTj: ð41Þ

Since we will consider rather cool stars, for temperatures in
the range 3000≲ T ≲ 6000 K, its surface layer is domi-
nated by H− opacity [108], which for hydrogen mass
fraction X ≈ 0.7 is

κH− ¼ κ0ρ
1
2T9 cm2 g−1; ð42Þ

where κ0 ≈ 2.5 × 10−31ð Z
0.02Þ. A metal mass fraction Z is

taken from the range 0.001≲ Z ≲ 0.03, with 0.02 being the
solar metallicity. For the ideal gas, (42) can be rewritten as

κH− ¼ κgp
1
2T8.5 cm2 g−1; ð43Þ

where κg ¼ κ0ð μ
NAkB

Þ12 ≈ 1.371 × 10−33Zμ
1
2.

As already mentioned, the photosphere can be defined at
the radius for which the optical depth with a mean opacity κ
(averaged over the stellar atmosphere) is equaled to 2=3:

τðrÞ ¼ κ

Z
∞

r
ρdr ¼ 2

3
: ð44Þ

Using this relation in order to integrate the hydrostatic
equilibrium equation (13) with r ¼ R and M ¼ mðRÞ, and
applying the absorption law (43) one gets

pph ¼ 8.12 × 1014
�
Mð1 − 4α

3δÞ
LT4.5

ph Zμ
1
2

�2
3

; ð45Þ

where we have already used the Stefan-Boltzmann law
L ¼ 4πσR2T4

ph with Teffjr¼R
≡ Tph.

On the other hand, from (39) taken on the photosphere
with n ¼ 3=2 we have
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Teffjr¼R
¼

�
μ

NAkB

�
−2=3

�
4π

ξð−θ0Þ12
�

2=5
�
2G
5

�3
5

M
1
5R

3
5p

2
5

ph:

ð46Þ

Applying again the Stefan-Boltzmann law to the above
expression, one gets

Tph ¼ 9.196 × 10−6
�
L

3
2Mp2

phμ
5

−θ0ξ5R

� 1
11

: ð47Þ

The pressure appearing in the above relation must be
equaled to the gravitational pressure taken on the photo-
sphere, that is, Eq. (45). After some algebraic manipulation
and rescaling the result to the solar values L → L=L⊙ and
M → M=M⊙, where L⊙ and M⊙ are solar luminosity and
solar mass, respectively, one finds

Tph ¼ 2487.77μ
13
51

�
L
L⊙

� 1
102

�
M
M⊙

� 7
51

� ð1−4α
3δ

Z Þ
4
3

ξ5R
ffiffiffiffiffiffiffi
−θ0

p
� 1

17

K: ð48Þ

Treating the star’s mass and mean molecular weight as
parameters (so each star with a mass M and uniform
composition μ will have its own evolutionary track drawn
by (48), and for given metallicity Z, we got a familiar form
relating the effective temperature and luminosity of the
pre-main-sequence star. The tracks given by Eq. (48) are
Hayashi tracks [111], that is, almost vertical lines on the
right-hand side of the H-R diagram. They are followed by
the infant stars with masses not exceeding three solar
masses, having nearly constant low effective temperature.
The stars on the Hayashi tracks are fully convective apart
from the radiative photosphere. The relation (48) shows
that their effective temperatures are almost independent of
luminosity which means that Teff is nearly independent of
the way how the energy is generated.
Let us notice that the temperature coefficient is too low

(it should be around 4000 K) but this is the result of a very
simplified calculation. However, as already mentioned, the
considered toy-model is good enough to examine the
modified gravity effects. A few Hayashi tracks with res-
pect to the parameter α are drawn in the Fig. 1 for a
star with mass M ¼ 0.25 M⊙, mean molecular weight
μ ¼ 0.618, and solar metallicity Z ¼ 0.02. Bigger masses
and smaller amounts of metals (Z < 0.02) give higher
effective temperatures with a similar pattern as in Fig. 1 for
different parameters α.
Coming back to the relation (48), let us emphasize

again that the difference between the GR relation and ours
is not only given by the presence of the parameter α but
also by the values of ξR and θ0, which are different in
modified gravity—they are obtained for a given value of α
by solving the modified Lane-Emden equation (21). Even
a small change in the constants, which will be our case,

changes the position of the Hayashi track on the H-R
diagram. Therefore, for a nonzero Starobinsky parameter
we will deal with a shift of such a path which immediately
leads to the possibility to constrain the theory by the
observations of fully convective pre-main sequence stars
following Hayashi tracks. Especially useful for such
analysis could be T Tauri stars (for the review, see for
example [40]) which are newly formed low-mass stars,
very active and variable, in the process of contracting to
the main sequence, and which just started to be visible in
the optical range.

2. Fully convective stars on main sequence

Let us now consider a fully convective star (apart from
the radiative region on the surface) at the end of its journey
on the Hayashi track, that is, a PMS star approaching the
main sequence. Such an object, depending on its mass, may
become a brown dwarf [39], convective star on the main
sequence or, before reaching the main sequence, it may
start following the Henyey track as soon as the radiative
core appears [112–114]. The last evolutionary track is
represented by the almost horizontal lines on the H-R
diagram (their luminosities remain almost constant while
their effective temperatures increase).
When a star on the Hayashi track contracts, its lumi-

nosity decreases and thus it may happen that the star’s
interior becomes radiative (the turning point from Hayashi
to Henyey track). However, the case when fully convec-
tive star reaches the main sequence before developing a

FIG. 1. The Hayashi tracks of a star with mass M ¼ 0.25 M⊙,
metallicity Z ¼ 0.02, and chemical composition μ ¼ 0.618 with
respect to a few values of the parameter α, given by the
equation (48).
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radiative core also occurs, and this is the situation which we
would like to study in our toy model.
As discussed in Sec. III A, a chemically homogeneous

layer is convective if

∇rad > ∇ad: ð49Þ

A radiative region in the star’s center starts to develop when
∇rad drops below∇ad; thus let us examine the limiting case,
that is, when ∇rad ¼ ∇ad. Therefore, for the polytropic
model (39) with the polytropic index n ¼ 3

2
and the

assumption that the deep interior opacity can be described
by the Kramers’ absorption law (41) with i ¼ 1 and
j ¼ −4.5, the temperature gradient ∇rad after entering
the numerical values for the constants is

∇rad ¼ 1.564 × 1070
δ3=2ξ

5θ0

ð4α − 3δ3=2Þ
κ0L

μ5M2R3T3.5 ; ð50Þ

where L is the total luminosity (after the homology law of
contracting stars [115]). Applying the central temperature
solution (28) together with the homology contraction
argument

Tc ¼ 6.679 × 10−16
μδ2=33=2

ξ5=3ð−θ0Þ1=3
M
R
; ð51Þ

and the Stefan-Boltzmann law one gets

∇rad ¼ 2.71 × 10−12
ξ10.83ð−θ0Þ2.167
δ1.333=2 ð3δ3=2 − 4αÞ

κ0ð L
L⊙
Þ1.25

μ8.5M5.5
−1Teff

; ð52Þ

where we have defined M−1 ¼ M=ð0.1 M⊙Þ. For the ideal
gas model that we are using the adiabatic gradient is
∇ad ¼ 0.4, thus the minimum luminosity

Lmin ¼ 9.89 × 107L⊙
δ1.0643=2 ð3

4
δ3=2 − αÞ

ξ8.67ð−θ0Þ1.73
�
Teff

κ0

�
0.8
M4.4

−1 ;

ð53Þ

which is, for the GR values in the case of a star with
Teff ¼ 4000 K, mass M ¼ 0.1 M⊙ and opacity (62),
around LGR

min ¼ 0.66× 10−4L⊙ where L⊙≈4×1033 ergs=s.
Then, we may write for the arbitrary low-mass star

Lmod
min ≈ 181.8LGR

min

δ1.0643=2 ð3
4
δ3=2 − αÞ

ξ8.67ð−θ0Þ1.73 : ð54Þ

It may however happen that a low-mass star moving
along the Hayashi track can cross the main sequence
without reaching the minimum luminosity (53) needed
for developing a radiative region in its center. It means that
such a star may reach the main sequence being fully

convective (apart from the photosphere), or, if its mass
does not exceed the value ∼0.09 M⊙, it will fail to be a
main sequence star, that is, the star will become a brown
dwarf ([38], for the review see [39], in modified gravity
[103,116–118]).
Let us assume that such a fully convective star has

smaller luminosity but very close to the one obtained above
(so it almost has the luminosity Lmin), and that its mass is
large enough to burn hydrogen. It means that we have a
fully convective star on the main sequence, while another
star with the luminosity (and mass) a bit bigger than Lmin
will have a radiative center. For both stars the energy
generation per unit mass in the process of hydrogen burning
can be obtained by the following power-law form [39]

_ϵpp ¼ _ϵc

�
T
Tc

�
s
�
ρ

ρc

�
u−1

; ð55Þ

with s ≈ 6.31 and u ≈ 2.28, while Tc and ρc are as usual
the central temperature and density, respectively, obtained
from the near center solution of (21). As before, the
hydrogen fraction is taken as X ≈ 0.75, while _ϵc ≈ 3.4 ×
10−9Ts

cρ
u−1
c ergs g−1 s−1 [39]. Integrating it over the stellar

volume one gets the luminosity from hydrogen burning

LHB ¼ 4πr3cρc _ϵc

Z
ξR

0

ξ2θnðuþ
2
3
sÞdξ; ð56Þ

where θ is a solution of the generalized Lane-Emden
equation. Following the result found in [103], we have
for the quadratic Palatini case that the luminosity from
hydrogen burning is given by the following expression

LHB¼1.53×107L⊙
δ5.4873=2

ω3=2γ
16.46
3=2

M11.977
−1

η10.15

ðηþαdÞ16.46
; ð57Þ

where η measures the degree of the degeneracy electron
pressure of the star and αd ≡ 5μe

2μ ≈ 4.82. Let us notice again
that the above relation is modified by the values of δ, ω, and
γ. Let us just mention that the above luminosity for GR
values for a star with mass M ¼ 0.1 M⊙ is around LHB ¼
0.61 × 10−4L⊙ [39,103], being thus a very faint red dwarf
star which belongs to the class M. It can be also written for
a general low-mass star as

Lmod
HB ≈ 198LGR

HB

δ5.4873=2

ω3=2γ
16.46
3=2

: ð58Þ

Equaling the two luminosities (53) and (57) allows to
find the mass of the biggest fully convective star on the
main sequence (a star onset of radiative core development)

M−1 ¼ 1.7
μ0.9T0.11

eff ðαd þ ηÞ2.173
η1.34κ0.110

γ2.173ω0.132

δ0.583=2 ξ
1.14ð−θ0Þ0.23 : ð59Þ
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The obtained expression, as we will see below, is
sensitive to opacity (here to Kramers’ opacity with κ0).
Moreover, one usually solves much more complicated
equations numerically, having tabulated values of opacities
and taking into account nuclear reaction rates, more
accurate EoS, non-grey atmosphere models, ...[37,119]).
From such a theoretical analysis it is well known that the
fully convective stars on the main sequence have masses
from the range ð∼0.09–0.35ÞM⊙. The early analysis gave
the upper bound 0.26 M⊙ [120] while 0.35 M⊙ was
obtained by [37]. In our very simplified model one gets
masses a bit above the minimum one needed for hydrogen
burning. However, as argued above, we may use this
theoretical crude result to see the modified gravity influ-
ence on the stars’ masses.
Using the GR values for the Lane-Emden solutions

(α ¼ 0), as well as αd ¼ 4.82 and the degree of the
degeneracy electron pressure as η ¼ 9.4 [39] one gets

MGR
−1 ¼ 31.17μ0.9Teffκ

−0.11
0 ; ð60Þ

while taking the mean molecular weight μ ¼ 0.618 and the
effective temperature as Teff ¼ 4000 K:

M ¼ 4.86 M⊙κ
−0.11
0 : ð61Þ

Let us consider two estimated opacities of the Kramers’
form (41) with i ¼ 1; j ¼ −4.5: the total bound-free and
free-free opacities [108]:

κbf0 ≈ 4 × 1025μ
Zð1þ XÞ
NAkB

cm2 g−1; ð62Þ

κff0 ≈ 4 × 1022μ
ðX þ YÞð1þ XÞ

NAkB
cm2g−1; ð63Þ

for which the masses are, taking X ¼ 0.75 and Z ¼ 0.02,
respectively

Mbf ¼ 0.099 M⊙; Mff ¼ 0.135 M⊙: ð64Þ

As already mentioned, from our very simplified model we
got the mass values too small. Even so, we use these values
as the reference ones to see how much they are affected by

modification of our gravitational model. The results are
presented in the Table I for which we have calculated a
few masses for both opacity models with respect to the
parameter α [and the corresponding quantities depending
on it, such as ω, γ, δ (29)].

IV. CONCLUSIONS

We would like to stress again that the presented model is
too simple to describe real PMS stars and fully convective
M dwarfs on the main sequence. We have not taken into
account the magnetic field [119,121], thermonuclear
depletion of the light elements [122–124], rotation [125],
protostellar initial conditions, more accurate atmosphere
and opacities models. However, our aim was to demon-
strate how modified gravity can affect the macroscopic
values of such objects, such as mass (which is the most
crucial quantity in order to study stars’ evolution), radius,
effective temperature and luminosity as well as how it may
change their early evolutionary tracks. Due to that fact, the
considered model is close enough to young low-mass
stellar objects in order to show such an effect.
The discussion undertaken in the subsection III B 1

proved that the Hayashi tracks in modified gravity are
significantly shifted to right or left in the H-R diagram
relative to their GR counterpart. In the GR case (when
α ¼ 0), the Eq. (48) describes a path of effective temper-
ature which is taken by a PMS star with the mass M and
mean molecular weight μ—at any stage the temperature
cannot fall below that value because the star could enter
into the forbidden region with lower temperatures on the
H-R diagram [111]. Since in Palatini gravity this value is
modified, the PMS stars with known mass/luminosity
moving along the Hayashi tracks could be used to con-
straint the theory [126,127]. By considering more realistic
models which take into account missing physics (for
example proper treating of the atmosphere, opacity, degen-
eracy, rotation,...), analysis of Hayashi tracks of the PMS,
such as T-Tauri stars [40], will be a powerful tool to
constrain gravitational theories which modify the stellar
equations.
It should be also noticed that for a star with mass M,

metallicity Z, and uniform composition μ the effective
temperature can be higher (lower) because of the extra term
coming from the modification of the gravitational theory (in
other words, the star would follow a neighbor’s track of the
one given by GR). Having a slightly different evolutionary
track means that the star may stay longer or shorter on the
pre-main sequence phase which has an effect on the total
stars’ luminosity contributing to the galaxy brightness
(a very nice discussion on that topic can be found in [64]).
Another important point which also appeared in our

consideration is the direct effect of modified gravity on the
equation of state. It was already pointed out in [94] (therein
EiBI theory [128–131] studied) and later in [132] (general
metric-affine theories) that the modified gravity introduces

TABLE I. Numerical values of maximal masses (in solar
masses) of fully convective stars on the main sequence for
different values of α ¼ κc2βρc.

α Mbf=M⊙ Mff=M⊙

−0.4 0.047 0.065
−0.1 0.083 0.114
0 (GR) 0.099 0.135
0.1 0.12 0.159
0.4 0.18 0.24
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gravitational backreaction on the fluid particles, resulting as
an additional pressure which should be taken into account.
Commonly used EoSs, such as polytropic ones, are obtained
by consideringmotion of particles in flat spacetime so it may
happen that the pressure may not be local in high curvature
regime which means that the covariant assumption for the
pressure might not hold [61]. In our simple model we have
used a modified polytropic EoS: the polytropic constant K
(40) turn out to depend on solutions of generalized Lane-
Emden equation and thus is sensitive to modifications of
gravitational equations.
A similar situation happens with the temperature gra-

dient which is used for examinations of dynamical stability.
As demonstrated, the Schwarzschild (or Ledoux) criterion
is also altered by the theory of gravity in such a way that the
extra term appearing in the criterion has stabilizing or
destabilizing effect. Depending on the sign of the param-
eter, the radiative core can develop quicker or slower (it
means, for smaller or bigger masses) than for the masses
predicted by GR [37]. In consequence, improving our toy
model and then confronting it against accurate empirical
masses could be a powerful tool to constraint the modified
gravity. Such empirical mass-luminosity relations are
already available (see e.g., [133–136]) as well as more
direct and model-independent approaches for mass deter-
mination using detached eclipsing binaries (for a review see
[137,138]).
The accurate mass determination is crucial when one

shapes the evolutionary track of a star—we have shown that

the minimummass a star needs to have in order to develop a
radiative core can be different (59) than the one given by
theoreticalmodels usingNewtonian hydrostatic equilibrium.
When low-mass stars considered, fully convective stars and
stars with radiative core are modelled in different ways, thus
knowing that theoretical range of fully convective stars can
have other upper limit (from 0.09 to 0.35 M⊙ in GR based
theoretical models [37]) might improve existing numerical
models. Moreover, that could also shed light on a discrep-
ancy between predicted and dynamical masses of the M
dwarfs and PMS stars with masses below 0.5 M⊙, discussed
in details in, for example, [126,139].
The general conclusion, together with the previous

works on low-mass stars in modified gravity [103,116–
118], is that not only extreme environments such as black
holes, neutron stars and early/late cosmology are a back-
ground for testing theories of gravity. Low-mass stellar
objects give additional, if not simpler (taking into account
still unknown internal features of neutron stars or con-
ditions of early stage of the universe), possibility to have a
closer look at a bunch of gravitational theories, for one
deals with better understood density regimes allowing to
examine eventual effects caused by such proposals.
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