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We readdress the thermodynamic structure of geometrical relations on a generic null surface. Among
three potential candidates, originating from different components of Rab along the null vectors for the
surface (i.e., Rabqaclb, Rablalb, and Rablakb where qab is the projector on the null surface and la, ka are null
normal and corresponding auxiliary vectors of it, respectively), the first one leads to a Navier-Stokes-like
equation. Here we devote our investigation to the other two members. We find that Rablalb, which yields
the evolution equation for the expansion parameter corresponding to la along itself, can be interpreted as a
thermodynamic relation when integrated on the two-dimensional transverse subspace of the null
hypersurface along with a virtual displacement in the direction of la. Moreover, for a stationary
background, the integrated version of it yields the general form of the Smarr formula. Although this is
more or less known in literature, a similar argument for the evolution equation of the expansion parameter
corresponding to ka along la, provided by Rablakb, leads to a more convenient form of thermodynamic
relation. In this analysis, contrary to earlier approaches, the identified thermodynamic entities come out to
be in covariant forms and also are foliation independent. Hence, these can be applied to any coordinate
system adapted to the null hypersurface. Moreover, these results are not restricted to any specific
parametrization of ka and also ka need not be hypersurface orthogonal. In addition, here any particular
dynamical equation for the metric is not being explicitly used and therefore we feel that our results are
solely based on the properties of the null surface.

DOI: 10.1103/PhysRevD.102.124044

I. INTRODUCTION

The intriguing connection between gravitational dynam-
ics explored on the black hole horizon and classical
thermodynamics was laid bare in the 1970s following
the work of Bekenstein, Hawking, and others [1–5] (for
a review see [6–8]). This led to the development of the
famous black hole mechanics which are a set of intricate
equivalences. For every law of black hole mechanics, there
exists a corresponding law of classical thermodynamics,
thus allowing the black hole to be considered as a
thermodynamic object. However these connections can
very well be equivalently established not only for black
hole horizons, but also on any arbitrary null hypersurface.
This allows the attribution of thermodynamical quantities
like temperature, entropy, etc. for any null surface [9].1 It
has been shown in literature, that certain projections of the
Ricci tensor Rab onto a generic null hypersurface H and
along the corresponding auxiliary null vector assume
physical and/or geometrical interpretations. These relevant

projections are Rablalb, Rablakb, and Rablaqbc (a related
discussion can be followed from Sec. 3 of [13], see also
[14]). Here la represents the null generators of H and ka,
the auxiliary null vector field on H. The induced metric
onto St, where St represents the two-dimensional spacelike
transverse submanifold of H, is given by qbc (these
notations will be cleared in the next section). Below, we
first mention the existing discussion of these in order to
motivate to our goal.
Damour [15] (in the context of a black hole event horizon

in Einstein gravity) showed that the particular projection,
Rablaqbc, on St leads to the Damour–Navier-Stokes (DNS)
equation which is structurally quite similar to the Navier-
Stokes equation. However, the DNS equation can as well be
obtained for any generic null hypersurface H in the
spacetime [16–18] [see Eq. (6.14) of [16] for an excellent
review]. The DNS equation is an evolution equation that
relates the Lie derivative (along la) of the Hajicek one-form
with Rablaqbc. The Hajicek one-form is a purely geometric
quantity defined on St.
On the other hand, Rablalb leads to the null

Raychaudhuri (NRC) equation [19]. The NRC equation
is a purely geometrical relation which relates the evolution
of θðlÞ (the expansion scalar of la field) along the null
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1Although not fully understood, there exists certain progress in

this direction (see [10–12] for a few instances).
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generators la with Rablalb. The NRC equation was used as
a crucial input by Jacobson to derive the Einstein field
equations from the Clausius identity δS ¼ δQ

T , applied on
the local Rindler horizons [20]. The Rindler horizons are
assumed to be at thermodynamic equilibrium and δQ
represents the matter energy flux traversing across the
causal horizon which results in the change of entropy δS
(known as Clausius entropy) associated with the horizon.
The equilibrium condition requires the crucial restrictive
assumption of the vanishing of the second fundamental
form and the shear tensor on the null horizon. It is
postulated that δS is proportional to the area change of
the horizon. The above formalism was extended to the
nonequilibrium case, in the regime of which, the shear
tensor and the expansion scalar on the null surface cannot
be set to zero [21–23]. Gravitational equations for certain
modified theories of gravity were also obtained from such
similar thermodynamic considerations [22]. Later, this
concept of Clausius entropy was extended to an arbitrary
bifurcate null surface [24] and the Einstein equations were
also derived for a stretched light cone [25]. Moreover,
Jacobson [26] derived the Einstein field equations as
applied to local causal diamonds (constructed at any point
in the spacetime) by extremizing the total entanglement
entropy of the null horizon and the matter inside of it.
Now we concentrate on Rablakb. It was shown by

Padmanabhan and his collaborators [13,27,28] that a
certain projection of the Einstein equation (specifically
Gablakb and hence Rablakb) yields a thermodynamic
interpretation which is structurally similar to the first
law of thermodynamics. The main difference between
Padmanabhan’s [13,27,28] and Jacobson’s [20] approaches
in order to relate thermodynamics is the choice of
the component of the Einstein equation. For Jacobson,
the relevant projection component is Rablalb, whereas for
Padmanabhan, the choice is Rablakb. In fact, it is pointed
out in [13] that the neater component to consider is Rablakb

which produces the thermodynamic identity without any
restrictive assumptions like the vanishing of the second
fundamental form and the shear tensor on H (which was a
crucial assumption in Jacobson’s approach). The argument
behind this is that Rablakb picks out the component of
Rabla along la, the null generators which are intrinsic to the
null surface H, while the other one corresponds to that of
Rabla along ka (see Sec. 3 of [13] for more details).
Padmanabhan’s approach has been generalized to the case
of Lanczos-Lovelock theories of gravity [29–31] as well.
However, the existing physical interpretations of Rablalb

and Rablakb, so far, have been made explicit via the specific
gravitational equation of motion. Moreover, in the latter
case the same has been done for a generic null hypersurface
by invoking the adapted Gaussian null coordinates (GNC)
[32–35]. This makes the identified expression of the
thermodynamics entities to be in “noncovariant” form.
In this paper, we aim to investigate whether in a completely

covariant fashion, Rablalb and Rablakb can be provided
with any physical interpretation, without invoking any
specific gravitational dynamics, i.e., solely based on the
properties of null surface H. In our analysis, the NRC
equation (for both the la and ka vector fields) is the starting
point in providing a physical interpretation for the two
concerned projections. We show that the underlying
dynamics of the background is not “explicitly” necessary
to provide such an interpretation.
Our analysis and results are divided in different sections.

In Sec. II we provide a brief overview of the null foliation
of the spacetime manifold in the neighborhood of our
generic null hypersurface H, which acts as the building
block of the present analysis. In Sec. III, we analyze if
Rablalb can be provided with a physical interpretation. We
begin with the NRC equation for la and then integrate it on
the transverse spacelike surface St. The performance of a
virtual displacement along the null generators ofH leads to
a possibility of thermodynamic identity. We feel that this is
not a surprising result at all as the NRC equation is being
used in search of the thermodynamics of horizon and
therefore it possesses such an inherent structure. Still, we
present this one in order to provide a segue into our main
topic of providing a physical interpretation to Rablakb in a
covariant way. In going through the steps we shall observe
few interesting features of the approach which are probably
not emphasized in literature. It is noticed that in the special
case of a stationary black hole system, the expression of
the energy is related to the well-known Komar energy
EK (please see Chap. 4, p. 149 of [19]). Moreover, the
integrated form of the thermodynamic identity leads to a
generalized form of the Smarr formula [36] which, as given
in literature, is of the form EK ¼ 2ST. Here T is the
temperature of the horizon (see [37–40] for discussions
related to this identity).
Next we concentrate our attention to Rablakb in Sec. IV.

Invoking the NRC equation corresponding to ka (the
auxiliary null vector field) and integrating it on the trans-
verse space St and allowing for the virtual displacement
along ka, we arrive at a thermodynamic interpretation of
Rablakb which is structurally equivalent to the first law of
thermodynamics. The null foliation (though nonunique)
of the spacetime manifold allows us to have a completely
covariant expression of the energy term. This is because the
expression of the energy term contains geometrical quan-
tities defined on the null surface H. These geometrical
quantities once defined on H will be independent of the
foliation chosen. Here we provide our definition of the
“geometrical work function” in order to make way for
the thermodynamic identity independent of any theory of
gravity.
The previously equivalent thermodynamic interpreta-

tion (analogous to the first law of thermodynamics) has
been provided in the Einstein-Hilbert [13] and Lanczos-
Lovelock theories [31]. However, there are certain important
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differences between the work in [13,31] and ours. In [13]
and [31], the derivations of the thermodynamic identity
have been performed near a generic null hypersurface
without any assumed symmetries of the spacetime.
However, the derivations have been performedwith respect
to an adapted null coordinate system constructed in the
neighborhood of the generic null surface H known as the
GNC system. One noticeable feature of such a construction
is that the expression of the energy is compatible to the
GNC metric only. For the GNC construction, the auxiliary
null vector field ka is affinely parametrized and hypersur-
face orthogonal. In our case, however, we foliate the
spacetime in the vicinity of the generic null surface H
by a family or stack of null hypersurfaces. Then, allowing
for the 3þ 1 induced foliation of the family of the null
surfaces, we derive exactly the same structural thermody-
namic identity in a completely coordinate independent
fashion. The reason as to why we are able to achieve this
covariantly is mentioned in Sec. II once we introduce the
construction of the null foliated spacetime. Our construc-
tion does not require ka to be affinely parametrized and
hypersurface orthogonal. Another difference in our
approach from that adopted in earlier ones is that our
starting point is the NRC equation for ka, whereas no such
equation has been explicitly used in these works. It may be
pointed out that the work function (or pressure) in
[13,31,41] has constantly been defined as P ¼ −Tablakb,
i.e., owing entirely from the matter energy tensor. The
entropy density has then been defined as the Bekenstein-
Hawking entropy density for the Einstein-Hilbert case [13]
and as the Wald entropy density for the Lanczos-Lovelock
models [31]. However, in our interpretation, we have
identified what we call the geometrical work function
(or geometrical pressure), entirely from geometrical quan-
tities. In analogy to the entanglement entropy, we call our
identified entropy density the “entanglement entropy
density” since it depends on the geometry of the relevant
surface. Under the umbrella of such an interpretation, we
have aimed to provide the thermodynamic identification
independent of any theory of gravity.
For the reader, we summarize the structural and inter-

pretational difference between the approach in [13,31]
and ours.

(i) The thermodynamic identity in [13,31] is brought
through the GNC construction while ours is brought
about through a 3þ 1 foliation of the null fam-
ily HΦ.

(ii) The expression of the energy in the GNC is solely
adapted to these coordinates. On the contrary ours is
in a covariant form and hence can be applied to any
structure of the null surface.

(iii) In [13,31], the pressure or work function has been
consistently defined with respect to the matter
energy tensor P ¼ −Tablakb, while we define a
so-called geometrical work function.

(iv) The entropy density in [13] is the Bekenstein-
Hawking entropy density, while in [31] it is the
Wald entropy density for the Lanczos-Lovelock
models. For our interpretation, the entropy density
is consistently the entanglement entropy density
irrespective of the theory of gravity.

Finally we shall conclude in Sec. V. We use the
appendixes to show that the covariant expression of the
energy we derive entirely matches with the expression of
the energy obtained via the GNC system in [13] for the
Einstein-Hilbert case. There we also provide outlines of
derivations for expressions used in the text.
Before proceeding ahead, we state that throughout the

paper we have the metric signature ð−;þ;þ;þÞ. We use
units where ℏ and c are set to unity. The lowercase latin
indices a; b;…. represent the bulk spacetime indices and
run from 0 to 3. The greek symbol μ runs from 1 to 3 and
represents the spatial coordinates on a spacelike hypersur-
face. The transverse coordinates in the spacelike subspace
St orthogonal to la and ka are represented by the upper case
latin indices A;B;… and run from 2 to 3.

II. BRIEF OVERVIEW OF OUR
GEOMETRICAL CONSTRUCTION
AND COMPARISON WITH GNC

In this section we briefly mention the geometrical setup
of the arena where we aim to find the thermodynamical
connections. All our analysis will be focused on a generic
null hypersurface H in the spacetime manifold ðM; gÞ and
we aim to establish thermodynamical laws with respect
to this null surface. For details of the construction, we
refer the reader to [16] and hence we provide a brief
overview here.
Our generic null hypersurface is submanifold in the

spacetime such that the induced metric qab of H is
degenerate. The null surface can be defined by the constant
value of a scalar field Φ such that the normal one-form to
the hypersurface H is defined as

la ¼ eρ∇aΦ; ð1Þ

with ρ being a scalar function on the null surface. This
entails the Frobenius identity and hence is hypersurface
orthogonal toH. The null generators la of this hypersurface
satisfy the geodesic equation,

li∇ila ¼ κla; ð2Þ

where κ is the nonaffinity parameter and therefore these are
not affinely parametrized.
Now we add structure to the null hypersurface H by the

auxiliary null foliation in its neighborhood. The aim of this
construction is geared to the fact that we want la to be
defined not just only on H, but also in its open neighbor-
hood [in ðM; gÞ]. This allows us to define the covariant
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derivative of la in the entire spacetime, which would not
have been the case had we been restricted only on H. The
construction proceeds by foliating the spacetime in the
neighborhood of H, by a family of null hypersurfaces
parametrized by different (constant) values of the scalar
field Φ. Thus the family of the null hypersurfaces foliating
the spacetime is denoted by HΦ. Our generic null hyper-
surface H is then nothing, but a particular member of this
set, sayHΦ¼1. Then (1) stays valid even in this construction
of a family of null hypersurfaces. Therefore, it “extends”
the domain of scalar field ρ from the null surface H to its
open neighborhood where the foliation takes place. One
important caveat of such a construction is that even though
such a foliationHΦ is nonunique, all geometrical quantities
are independent of the foliation. That is to say, once a
geometrical quantity has been evaluated atH, it remains the
same no matter what construction is chosen for HΦ to
foliate the open neighborhood of H.
In order to define the projector onto the null surface we

require an auxiliary null vector ka satisfying laka ¼ −1 and
kaka ¼ 0. However, the auxiliary null field ka satisfying the
above two conditions is not uniquely defined. We then
proceed to foliate the null hypersurface H (or the family
HΦ) by spacelike slices in the spirit of 3þ 1 splitting.
We consider a family of t ¼ constant spacelike hyper-
surfaces Σt (parametrized by t ∈ R) that intersect the
family HΦ on two-dimensional spacelike hypersurfaces
St;Φ, i.e., St;Φ ≔ HΦ ∩ Σt. Then for our concerned hyper-
surface H, St surfaces are precisely St ¼ St;Φ¼1 ¼ H ∩ Σt.
Now, out of the family of the nonunique null auxiliary field
ka, we choose the one that is orthogonal to the surface St
and hence satisfies the conditions kaka ¼ 0, kala ¼ −1 and
kaeaA ¼ 0. Here, feaAg refers to the basis of the tangent
space T pðStÞ established on ðSt; qÞ. Hence, in our con-
struction we have the vector fields la and ka orthogonal to
T pðStÞ, i.e., laqab ¼ 0 and kaqab ¼ 0. We nowmention the
structural differences between the above construction and
the GNC adapted (to H) system (a detailed discussion on
the construction of GNC can be followed from [32–35]).
This discussion is important in order to identify the
underlying constructional difference in the thermodynamic
interpretation from the earlier attempts which rely on the
structure of GNC. In this construction with the coordinates
ðu; r; xAÞ, the generic null hypersurface is stationed at
r ¼ 0. The null normal to the hypersurface H is defined as
the gradient of the r ¼ constant surfaces, i.e., la ¼ ∂ar and
are nonaffinely parametrized satisfying (2). The auxiliary
null vector field ka in the GNC is by construction chosen to
be along affinely parametrized null geodesics. That is, we
move away from the null surface stationed at r ¼ 0 along
the ingoing null geodesic of ka. In the GNC, the auxiliary
null vector field ka ¼ −ð∂=∂rÞa has the affine parameter r
and points along the direction of decreasing r (ingoing). It
can also be seen that the null geodesic ka is hypersurface
orthogonal to the u ¼ constant surfaces, i.e., ka ¼ −∂au.

Hence, we see that the coordinates adapted to the null
surface H at r ¼ 0 are ðu; xAÞ. As a result of this adapted
coordinatization ðu; r; xAÞ of ðM; gÞ in the vicinity of H,
the thermodynamic interpretation of Rablakb comes explic-
itly as GNC dependent. However, in the construction of the
null foliated spacetime introduced above, provided with a
3þ 1 foliation, we do not impose any coordinatization.
That is, we just demand that the neighborhood of HΦ¼1 is
null foliated by a family of hypersurfaces HΦ¼c. This null
foliated spacetime is then foliated by t ¼ constant spacelike
surfaces. That is all that we require for providing Rablalb

and Rablakb with a thermodynamic interpretation. This is
because, as we have mentioned earlier, even though the
foliation is nonunique, all geometrical quantities relevant to
H are independent of the foliation chosen. In fact, if we
want, we can “adapt” a coordinate system with respect to
H. A very famous example would be a coordinate system
that is “stationary with respect to the null hypersurface H”
[16]. For example, associated with the spacelike foliation of
ðM; gÞ via t ¼ constant surfaces, we can consider a 3þ 1
coordinate system ðxa ¼ ðt; xμÞÞ. Here t is the coordinate
associated with the time development vector ta ¼ ð ∂∂tÞa ¼
ð1; 0; 0; 0Þ and xμ are the spacelike coordinates on the
t ¼ constant slice. ta can be expressed in terms of the lapse
function N and the shift vector ba as

ta ¼ Nna þ ba; ð3Þ

where na is the timelike unit normal to Σt. The time
development vector basically connects neighboring slices
of Σt and Σtþdt with the same spatial coordinates. If, in this
coordinate system ðxaÞ, the equation ofH does not depend
on the coordinate t and only involves the spatial coordinates
xμ, then ðxaÞ is a coordinate system that is stationary with
respect toH. This implies that there exists a scalar function
ψðx1; x2; x3Þ such that say ψðx1; x2; x3Þ ¼ 1 defines H.
This means that the location of the 2-surface St is fixed
on the t ¼ constant surface [Σt with the coordinates
xμ ¼ ðx1; x2; x3Þ]. It can then be shown [16] that for such
a stationary coordinate system xa ¼ ðt; xμÞ adapted to H,
we have

la¼H ta þ Va; ð4Þ

where (4) is valid only on the null hypersurface. Va then
represents the surface velocity of H with respect to these
adapted stationary coordinates. Had we proceeded with
finding the physical interpretations of Rablalb and Rablakb

with respect to such an adapted coordinate system, then our
expressions would turn out to be coordinate dependent. Just
like in GNC construction, the generic null surface r ¼ 0 is
intersected by the u ¼ constant null surfaces. However
these scalar functions are themselves adapted to define the
coordinate system in the neighborhood ofH. Adapting any
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coordinate system with respect to H would defeat our
purpose of providing the interpretations covariantly. We
will show in our computations that nowhere do we require
the information of the lapse function N and the shift vector
ba associated with the 3þ 1 foliation. Nor do we, as
advertised, require the need of a coordinate system adapted
toH. In fact, anticipating one step further, whatever physical
interpretation we covariantly attest to Rablalb and Rablakb

should in fact be independent of our null foliated construc-
tion itself (since it is nonunique). The interpretation ought to
be specific only to the null hypersurface H.
In our construction, the auxiliary null vector field need

not be along null geodesics as well as hypersurface
orthogonal. The auxiliary null vector field in our case
is by construction an ingoing normal to the spacelike
2-surfaces St and hence extends out into the open neigh-
borhood ofH. It can be shown (see [16] for details) that ka
satisfies the following relation:

∂akb − ∂bka ¼
1

2N2

�
∂a

�
ln

�
N
M

��
lb − ∂b

�
ln

�
N
M

��
la

�
;

ð5Þ

where M ¼ eρ
N . The relation (5) shows that ka is not

hypersurface orthogonal (as on the rhs la appears).
Hence, ka is not the generator of any null hypersurface
or in other words, the hyperplane normal to ka is not
integrable into a smooth submanifold surface. It can also be
shown (see [16]) that

ki∇ika ¼ −
1

2N2
Πi

a∂i ln

�
N
M

�
; ð6Þ

where Πi
a ¼ δia þ kila is the projection tensor onto H

along ki. The relation (6) essentially shows that the auxiliary
null vector field ka does not satisfy the geodesic equation.
After mentioning the constructional difference we are

now aiming to our main goal. This will require several
relevant quantities, which we shall list below. The detailed
geometric interpretation of them are provided in [16]. The
projection tensor onto St is

qab ¼ gab þ lakb þ kalb: ð7Þ

The second fundamental form Θab of the null surface H
and its irreducible decomposition in terms the expansion
scalar θðlÞ and the traceless shear tensor σab corresponding
to la are

Θab ¼
1

2
qiaqkb£lqik ¼ ð∇ilkÞqiaqkb ¼

1

2
qabθðlÞ þ σab:

ð8Þ

The rotation one-form ωa satisfies the following relation:

ωalb ¼ ∇alb − Θab þ laðki∇ilbÞ: ð9Þ

The Hajicek 1-form Ωa is basically the projection of the
rotation one-form onto St and is given by

Ωa ¼ qiaωi ¼ ωa þ κka: ð10Þ

The transversal deformation rate tensor Ξab of St projected
on to the tangent plane of (St, q) along the auxiliary null
vector field ka and its irreducible decomposition into
the traceless part ðθðkÞÞ and the shear tensor ðσðkÞabÞ are
given by

Ξab ¼
1

2
qiaqjb£kqij ¼ qiaqjb∇ikj ¼

1

2
qabθðkÞ þ σðkÞab :

ð11Þ
The covariant derivative defined on ðSt; qÞ for any spatial
vector va confined to it is

2Davb ¼ qiaqkb∇ivk: ð12Þ

The Ricci tensor corresponding to the 2-surface spacelike
manifold ðSt; qÞ is designated by 2Rab and its correspond-
ing Ricci scalar as 2R ¼ qab2Rab.

III. Rablalb: A THERMODYNAMIC IDENTITY?

The quantity Rablalb is best represented by the NRC
equation for the null vector la. Usually, the NRC equation is
being used to explore the thermodynamical behavior of
black hole horizon. Both for proving the area increase
theorem as well as finding the first law of black hole
mechanics, this plays a central role. It must be noted that in
all these analyses, the NRC equation came in the middle of
the calculation and always applied for the Killing vector,
which is null on the horizon. For instance, see the
discussion around Eq. (8.168) to Eq. (8.173) of [42].
Moreover, in Jacobson’s analysis [20] this has been used
to derive the Einstein’s equation of motion from the
Clausius relation. Therefore, apparently the NRC equation
has an inherent thermodynamical structure on the horizon.
It is not explicitly mentioned in literature, but the way it has
been used one can immediately identify this property. In all
these earlier analyses, the expressions for thermodynamical
entities are taken as input at the very beginning and then
finally the NRC equation is used to obtain the required
conclusion. Also, as we mentioned earlier, this is strictly
confined to the Killing case (or asymptotically Killing).
Here we shall take the “opposite” route. We will begin

with the NRC equation for an arbitrary null vector la (say),
not necessarily a Killing one. Interestingly, the integration
of this on the two-dimensional subspace on which la is
normal leads to first law of thermodynamics-like structure.
This analysis has some noticeable features. First of all, this
is valid for any arbitrary null surface and so the results are
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valid beyond the Killing vector field. Second, a more
general expression of gravitational energy can be obtained.
Finally, this thermodynamic structure is the property of the
null surface, instead of being related to any associated
gravitational theory.
Let us now start our calculation. The NRC equation for

la is given by [16,19]

dθðlÞ
dλðlÞ

¼ κθðlÞ −
1

2
θ2ðlÞ − σabσ

ab − Rablalb; ð13Þ

where la, satisfying (2), is parametrized by the nonaffine
parameter λðlÞ, i.e., la ¼ dxa=dλðlÞ. We now make a virtual
displacement of the null hypersurface along its own
generators by an amount δλðlÞ. Multiplying both sides of
Eq. (13) by the transverse elementary area dA ¼ ffiffiffi

q
p

d2x of
St and δλðlÞ and then integrating dA one only finds

δλðlÞ

Z
St

dAκθðlÞ

¼ δλðlÞ

Z
St

dA

�
dθðlÞ
dλðlÞ

þ
θ2ðlÞ
2

þ σabσ
ab þ Rablalb

�
: ð14Þ

Now since we know that

θðlÞ ¼
1ffiffiffi
q

p d
ffiffiffi
q

p
dλðlÞ

; ð15Þ

the term on the lhs of (14) can be expressed as follows:

1

8πG
δλðlÞ

Z
St

dAκθðlÞ ¼¼
Z
St

d2x
κ

2π
δλðlÞ

d
dλðlÞ

�
1

4G
ffiffiffi
q

p �

¼
Z
St

d2xTδλðlÞs: ð16Þ

In the above we introduced a factor 1=ð8πGÞ. Here we have
identified T ¼ κ

2π as the temperature of the null surface and
is hence related to the nonaffinity parameter κ of the null
generators of the null hypersurfaceH. We here also identify

s ¼
ffiffi
q

p
4G as the entropy density of the null surface. This, in

analogy to entanglement entropy, we may interpret as
entanglement entropy density (more will be discussed on
this analogy in the next section). In the same way,
multiplying the rhs of (14) by the numerical factor
ð1=8πGÞ, the resultant equation can be interpreted as the
following thermodynamic identity:

Z
St

d2xTδλðlÞs ¼ δλðlÞE; ð17Þ

where E is the energy associated to the null surface,
given by

E ¼ 1

8πG

Z
dλðlÞ

Z
St

dA

�
dθðlÞ
dλðlÞ

þ
θ2ðlÞ
2

þ σabσ
ab þ Rablalb

�
:

ð18Þ

Note that in the whole analysis, we never used Einstein’s
equations of motion and so the result is very generic to any
null surface. The virtual displacement δλðlÞ is consistent
with any physical process that virtually displaces the 2-
surface St along the null generators itself, say, from
positions λðlÞ ¼ 0 to λðlÞ ¼ δλðlÞ.
We can however provide an alternative interpretation to

the NRC equation (13) under the process of the virtual
displacement δλðlÞ. We first multiply both sides of Eq. (13)
by the transverse area element of the 2-surface St together
with a multiplicative factor of 1

8πG, i.e.,
1

8πG dA ¼ 1
8πG

ffiffiffi
q

p
d2x

and the virtual displacement δλðlÞ. We then integrate the
resulting equation over St,

1

8πG
δλðlÞ

Z
St

d2x
ffiffiffi
q

p
κθðlÞ

¼ 1

8πG
δλðlÞ

Z
St

d2x
ffiffiffi
q

p �
−
θ2ðlÞ
2

þ σabσ
ab

�

þ 1

8πG
δλðlÞ

Z
St

d2x
ffiffiffi
q

p �
dθðlÞ
dλðlÞ

þ θ2ðlÞ þ Rablalb
�
: ð19Þ

Following Eq. (16), the lhs can be identified as

1

8πG
δλðlÞ

Z
St

d2x
ffiffiffi
q

p
κθðlÞ ¼

Z
St

d2xTδλðlÞs; ð20Þ

where s ¼
ffiffi
q

p
4G is the entropy density of the null hypersurface

and will be identified as the entanglement entropy density.
Looking at the first term of the rhs of (19), we find the
integrand contains the well-known dissipation term D
corresponding to the null hypersurface,

D ¼ ΘabΘab − θ2ðlÞ ¼ −
1

2
θ2ðlÞ þ σabσ

ab: ð21Þ

The identification of the dissipation term basically comes
from the Rablaqbc component, which results in the DNS
equation. The physical interpretation of this viscous dis-
sipation term and its observer dependence has been
explored in [17]. Finally, if we identify the variation of
the energy under the δλðlÞ virtual displacement as

δλðlÞE ¼ 1

8πG
δλðlÞ

Z
St

d2x
ffiffiffi
q

p �
dθðlÞ
dλðlÞ

þ θ2ðlÞ þ Rablalb
�
;

ð22Þ

we can then identify (19) as
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Z
St

d2xTδλðlÞs ¼
1

8πG
δλðlÞ

Z
St

d2x
ffiffiffi
q

p
Dþ δλðlÞE: ð23Þ

The first term on the rhs of (23) is identified as the heat
generation part under the virtual displacement δλðlÞ process
due to irreversible viscous dissipation effects of the null
surface H,

δλðlÞQdis ¼
1

8πG
δλðlÞ

Z
St

d2x
ffiffiffi
q

p
D: ð24Þ

Avery interesting feature of this dissipation termD is that it
comprises of entirely geometrical quantities. Hence, it can
be thought that the dissipative sector of the heat generation
basically arises due to gravitational energy fluxes through
the null surface. A similar interpretation was previously
put forth in [22]. The authors of [22] show via an analogy
between the horizon null congruence and a continuous
medium that the dissipative heat generation is purely due
to gravitational effects. Our expression of the internal heat
production (24) for nonaffine generators la matches with
Eq. (47) of [22] for a nonaffine Killing vector field
approximately generating the Killing horizon, provided
we set θðlÞ to zero in our case. The authors in [22] con-
structed a local Rindler wedge in the neighborhood of a
spacetime point P. The Rindler horizon is approximately
generated by the Killing vector field ξa which satisfies
ξa∇aξ

b ¼ κξb. The Killing vector field is tangent to the
affinely parametrized null congruence la of the Rindler
horizon. The viscous dissipative part of the heat generation
term or uncompensated heat in Eq. (47) of [22] contains the
norm jjσ̂jj, where σ̂ab is the shear tensor corresponding to
the Killing congruence. However in our construction, the
arbitrary null surface is generated by the nonaffinely
parametrized la field and hence all geometric quantities
in our expression (24) of the dissipative heat generation
pertains to the la congruence itself. Under such an
identification, we have from Eq. (23),

Z
St

d2xTδλðlÞs ¼ δλðlÞQdis þ δλðlÞE: ð25Þ

We now carry over this analysis to the special case of a
stationary black hole system, for example, the Kerr
spacetime. In that case, the nonaffinity parameter κ is
independent of the transverse coordinates fxAg and hence
can be taken outside the integral in Eq. (16). This allows us
to interpret Eq. (17) in the more familiar form of the
thermodynamic identity (first law of thermodynamics),

TδλðlÞS ¼ δλðlÞE; ð26Þ

where S ¼ A
4G is the entropy of the null hypersurface and

hence proportional to its area A. Let us now investigate the
expression (18) of the energy E for the stationary black hole

case. In this case, H is the event horizon of the black hole
and la is the timelike Killing vector which is null on H.
Therefore, we denote la as la ≡ ξa ¼ ð1; 0; 0;ΩHÞ where
ΩH is the angular velocity of the black hole. Then, the first
term on the rhs of (18) can be evaluated as follows.

Integration over λðlÞ yields
R
St
dAθðlÞjλðlÞ¼2

λðlÞ¼1 and since the

value of θðlÞ vanishes at the stationary point on horizon
St, this term will not contribute. In this case, for the
“quasistatic physical process” the next two terms of
the rhs can be neglected on St compared to the other
terms (known as equilibrium or near-equilibrium situation
[43,44]). Therefore the energy expression (18), for this
special case reduces to

E ¼ 1

8πG

Z
dλðlÞ

Z
St

dARabξ
aξb: ð27Þ

Also analogously we investigate the second alternative
interpretation provided via Eq. (25), through the introduc-
tion of the viscous dissipative part of the heat generation
under the quasistatic physical process for the stationary
black hole system. This process actually displaces the
2-surface St initially at λðlÞ ¼ 0 (say) to the position
λðlÞ ¼ δλðlÞ. However, for the stationary black hole case,
the virtual displacement is through a quasiequilibrium
process. That is, initially the 2-surface St is at equilibrium
at λðlÞ ¼ 0 and then via a quasistatic process it is displaced
to the stationary equilibrium state at λðlÞ ¼ δλðlÞ. As a result
of this quasistatic virtual displacement process, the dis-
sipative heat generation δλðlÞQdis is basically zero. Under
such a process for the stationary black hole, we hence
have (26). The energy expression for the stationary black
hole case in this alternative interpretation still remains the
same and is given by (27).
This expression of the energy (27) is known to be

proportional to the Komar expression for a conserved
quantity (see [19] for details on Komar conserved quantity),
calculated on the horizon. The volume element on H is
dΣa ¼ −ξadλðlÞdA. Also, we can express Rabξ

b as Rabξ
b ¼

½∇b;∇a�ξb ¼ð1=2Þ∇bð∇aξb−∇bξaÞ≡ ð1=2Þ∇bJab, where
in the last step the Killing equation ∇aξb þ∇bξa ¼ 0 has
been used. Note that Jab can be identified as the Noether
potential for Einstein gravity. Using all these in (27) one
obtains

E ¼ −
1

16πG

Z
H
dΣa∇bJab ¼ −

1

32πG

I
St

dΣabJab: ð28Þ

In the last equality, the Stoke’s law for integration has been
applied. Now the Komar conserved quantity is defined
as [19]

EK ¼ −
1

16πG

I
St

dΣabJab; ð29Þ
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which for the Killing vector corresponding to time trans-
national symmetry, gives the mass term MH at the horizon
while that for the Killing vector corresponding to azimuthal
symmetry leads to −2ΩHJH where JH is the angular
momentum at St. Therefore (29), for a stationary black
hole, like the Kerr metric, yields EK ¼ MH − 2ΩHJH.
Comparison of (28) and (29) yields E ¼ ð1=2ÞEK .
Next we can integrate Eq. (26) over λðlÞ. Since for

stationary background la ¼ ξa and ξa∇aκ ¼ 0, we have

δλðlÞT ¼ δλðlÞ
dT
dλðlÞ

¼ δλðlÞξa∇aT ¼ 0: ð30Þ

Therefore integration of (26) yields E ¼ TS and since
E ¼ ð1=2ÞEK , in terms of the Komar conserved quantity on
horizon, one finds

EK ¼ 2TS: ð31Þ
This has already been shown in the literature [37–40], that
it is the general form of the famous Smarr formula [36] (for
a particular dynamical black hole, similar relations have
also been achieved [45]). For instance, in the case of Kerr,
the above leads to our well-known Smarr expression
MH ¼ 2ΩHJH þ ðκA=4πGÞ. This shows that the integrated
form of the NRC equation on the stationary horizon along
the Killing vector is the Smarr relation.

IV. Rablakb, FAVORABLE CANDIDATE FOR
THERMODYNAMIC INTERPRETATION:

A COVARIANT APPROACH

We are now in a position to hit the better candidate
among the different projections of Rab, i.e., Rablakb (the
logic for better choice has been discussed in [13]), which
serves as a thermodynamic identity. The approach will be
similar to the earlier section and hence the outcome will be
covariant in nature. We start with the following evolution
equation of the transversal deformation rate tensor Ξab
along the null generators la of the hypersurface H:

qiaq
j
b£lΞij ¼

1

2
ð2DaΩb þ 2DbΩaÞ þ ΩaΩb −

1

2
2Rab

þ 1

2
qiaq

j
bRij −

�
κ þ θðlÞ

2

�
Ξab

−
θðkÞ
2

Θab þ ΘaiΞi
b þ ΞaiΘi

b: ð32Þ

The detailed derivation of this is given in [16]. Taking trace
on both sides we obtain the following identity:

−κθðkÞ ¼
�
−2DaΩa −ΩaΩa þ θðlÞθðkÞ þ li∇iθðkÞ þ

1

2
2R

�

−
�
Rijlikj þ

1

2
R

�
: ð33Þ

See Appendix A for the derivation of this.

Similar to the NRC for la, Eq. (33) can be interpreted as
the evaluation equation for θðkÞ along la. Another point to
be noted is that one can write la∇aθðkÞ ¼ ka∇aθðlÞ and then
this provides the directional derivative of θðlÞ along ka. This
has been sketched in Appendix D. Below we shall show,
taking inspiration from the earlier section, that the NRC
equation (33) via the virtual displacement along ka can also
be provided with an interpretation as a thermodynamic
relation on the 2-surface, without explicitly invoking the
underlying dynamical equation for gravity.
The auxiliary null vector field ki is parametrized as

ki ¼ −ðdxi=dλðkÞÞ, where λðkÞ is the parameter along the ki

field. Note that a negative sign is chosen here in the
parametrization. The reason is as follows. Usually the null
vector la is chosen to be outgoing and so xa increases along
this direction. Whereas the auxiliary vector ka is regarded
as the ingoing one and hence xa decreases along this field.
Now here we are interested in the thermodynamic inter-
pretation of (33) when evaluated along ka. In this case, to
identify the relevant thermodynamic entities like entropy,
energy, etc. in their usual meaning it is required to define a
change of xa along ka as positive one. Therefore, we have
the coordinate variation under the virtual displacement
δλðkÞ as δxa ¼ −kaδλðkÞ. The physical interpretation of this
displacement has been explained in [13] and we briefly
mention it here. Let us consider two null surfaces under
the null based foliation of the spacetime by the family HΦ.
The null surfaces have to be the solutions to the specific
theory of gravity that we are considering implicitly. Let us
suppose that the null surfaces are stationed at λðkÞ ¼ 0 and
λðkÞ ¼ δλðkÞ. The virtual displacement δλðkÞ is essentially a
process that lets us shift from one solution of the hyper-
surface to the other since ka is an ingoing vector. Then the
expansion of the congruence of the auxiliary null vector
field in terms of rate of area element of St is given as

θðkÞ ¼ qijð∇ikjÞ ¼
1

2
qij£kqij ¼

1ffiffiffi
q

p £k
ffiffiffi
q

p

¼ −
1ffiffiffi
q

p d
dλðkÞ

ffiffiffi
q

p
: ð34Þ

The details of this relation have been sketched in
Appendix C. Now we multiply both sides of (33) with
δλðkÞ and the elemental area

ffiffiffi
q

p
d2x on the 2-surface St

along with an overall factor of 1
8πG. Then the integration

over the 2-surface yields

− δλðkÞ

Z
St

d2x
ffiffiffi
q

p κ

2π

1

4G
θðkÞ

¼ δλðkÞ

Z
St

d2x
ffiffiffi
q

p 1

8πG

�
1

2
2Rþ ki∇iθðlÞ−ΩaΩa − 2DAΩA

�

− δλðkÞ

Z
St

d2x
ffiffiffi
q

p 1

8πG

�
Rijlikjþ

1

2
R

�
: ð35Þ
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The lhs of the above equation (35) can be rewritten in the
following form:

− δλðkÞ

Z
St

d2x
ffiffiffi
q

p κ

2π

1

4G
θðkÞ

¼
Z
St

d2x
κ

2π
δλðkÞ

d
dλðkÞ

�
1

4G
ffiffiffi
q

p �
¼

Z
St

d2xTδλðkÞs; ð36Þ

where we associate the temperature T of the null surface St
as being related to the nonaffinity parameter via T ¼
ðκ=2πÞ. The entropy density s of the null surface is
identified to be s ¼ ð ffiffiffi

q
p

=4GÞ. We identify this entropy
density defined on the null hypersurface to be the entan-
glement entropy density. We will have more to say on the
nature of this entropy density shortly.
Now, focusing on the first term on the rhs of (35),

we identify it as the variation of the energy associated
with the null surface St under the virtual displacement
δλðkÞ, i.e.,

δλðkÞE ¼ δλðkÞ

Z
St

d2x
ffiffiffi
q

p 1

8πG

�
1

2
2R

þ ki∇iθðlÞ þ θðlÞθðkÞ −ΩaΩa − 2DAΩA

�
: ð37Þ

Performing an indefinite integration over λðkÞ allows us to
have an expression for the energy associated with the
2-surface St,

E ¼
Z

dλðkÞ

Z
St

d2x
ffiffiffi
q

p 1

8πG

�
1

2
2R

þ ki∇iθðlÞ þ θðlÞθðkÞ −ΩaΩa − 2DAΩA

�
: ð38Þ

Before proceeding ahead, we note that the expression of
the energy as obtained in (38) is reminiscent of the
Hawking-Hayward energy definition [46,47]. Our aim here
is to show that the analogous null Raychaudhuri equation
for the auxiliary null vector field ki (33) has a thermody-
namic interpretation under the process of the virtual
displacement δλðkÞ. That is, we proceed towards interpret-
ing (35) as a thermodynamic identity. To this end we have
identified the lhs of (35) as TδλðkÞs integrated on the null
2-surface St and the first term on the rhs of (35) as the
variation of the energy of the null surface under the virtual
displacement. The thermodynamic identity would be com-
plete if we are allowed to interpret the second term of (35)
as the virtual work done under the displacement of the null
surface St by δλðkÞ. Allowing ourselves the liberty, we
identify the “geometric work function” associated with the
virtual displacement δλðkÞ as P¼−1=ð8πGÞðRijlikjþ 1

2
RÞ.

Following this, we have

− δλðkÞ

Z
St

d2x
ffiffiffi
q

p 1

8πG

�
Rijlikj þ

1

2
R

�

¼ δλðkÞ

Z
St

d2x
ffiffiffi
q

p
P≡ FδλðkÞ; ð39Þ

where F is the integral of the work function over the
transverse space St of the null surface and FδλðkÞ is to be
interpreted as the virtual work done under δλðkÞ. Combining
(36), (37), and (39), we see that (35) can be succinctly
formulated asZ

St

d2xTδλðkÞs ¼ δλðkÞEþ FδλðkÞ: ð40Þ

We recall that this interpretation holds for all the variations
that are consistent with the virtual displacement. That is, to
physically interpret this, let us say that our virtual displace-
ment is a “physical” process that virtually shifts our null
surface H from say λðkÞ ¼ 0 to λðkÞ ¼ δλðkÞ. Under such a
virtual variation process, energy flows through the null
surface H. The energy is given by δλðkÞE. The energy then
contributes to the heat energy

R
St
d2xTδλðkÞs and the virtual

work done FδλðkÞ under this virtual displacement process.
We further note that the expression of the energy (38) can

be rewritten as

E ¼ 1

2

Z
dλðkÞ

�
χ

2G

�
þ 1

8πG

Z
dλðkÞ

Z
St

d2x
ffiffiffi
q

p ½ki∇iθðlÞ

þ θðlÞθðkÞ −ΩaΩa − 2DAΩA�; ð41Þ
having noted that χ represents the following integral over St
(a two-dimensional manifold) defined as

χ ¼ 1

4π

Z
St

d2x
ffiffiffi
q

p 2R: ð42Þ

If the transverse space St of the null surface is compact then χ
is precisely equal to the Euler characteristic of the St; if not,
then χ is defined via the integral (42). For example, if the
topology of H is R × S2, then St is the compact surface S2

and hence χ then represents the Euler characteristics of the
sphere.
Now, we restrict to the special case where the nonaffinity

parameter κ and hence the temperature T associated with
the null surface St is independent of the transverse co-
ordinates of St (for example a stationary black hole
system). In that sense T can be taken outside the integral,
and then identifying the total change of the entropy S of the
null surface under the virtual displacement as δλðkÞS ¼R
St
d2xδλðkÞs, we have further simplification of (40),

TδλðkÞS ¼ δλðkÞEþ FδλðkÞ: ð43Þ
Before proceeding ahead towards showing the equiv-

alence of our approach with previous results and
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interpretations, let us mention the differences instead first.
We iterate that our analysis is independent of any gravi-
tational theory per se. For example, we have not invoked
the Einstein’s field equations or any other gravitational field
equation for that matter in our interpretation of the null
Raychaudhuri equation for ki as providing a thermody-
namic identity. This is in contrast to previous results, which
have been specifically formulated for explicit theories of
gravity [13,31,41]. This is precisely the reason as to why
we define a gravitational/geometric work function P ¼
−1=ð8πGÞðRijlikj þ 1

2
RÞ as opposed to P ¼ −Tablakb as

is done in previous works [13,31,41] which identify the
work function or pressure entirely in terms of the matter
energy momentum tensor. This also reveals why, irrespec-
tive of any gravitational theory, we have identified the
entropy density of the null hypersurface under the virtual
displacement process to be the entanglement entropy
density. The observer under such a virtual displacement
process is the null observer moving along the integral
curves of the null generators la. We assume that our generic
null hypersurface H actually partitions the spacetime into
timelike and spacelike regions. Then the quantum fields
living in spatial slices on both these two sides can be
entangled. The degrees of freedom (d.o.f.) of the quantum
fields in the spacelike acausal region is not accessible to a
timelike observer in the timelike causal region. The time-
like observer then calculates the reduced density matrix by
tracing out the d.o.f. of the quantum fields on the acausal
side. The entanglement entropy is then defined as the von
Nuemann entropy of this reduced density matrix. By
introducing a momentum cutoff, the entanglement entropy
is shown to be proportional to the area of the null surfaceH.
Since the entropy density introduced in our case is propor-
tional to

ffiffiffi
q

p
, with an analogy to entanglement entropy, we

propose that this is the entanglement entropy density as
measured by the null observer, moving along la. In this
regard we mention that a similar concept has been taken by
Jacobson [20,21,26] at the very beginning of his analysis in
order to obtain the Einstein’s equation by extremizing the
entropy of the Rindler horizon as well as for a causal
diamond.
Let us mention again, that in our analysis leading

towards the thermodynamic interpretation (under the vir-
tual displacement δλðkÞ), (40) is independent of any
coordinate system as opposed to [13,31], which produces
the equivalent thermodynamic identity, but under the null
adapted GNC coordinates. A specific requirement under
the GNC system is the fact that there is only one null
hypersurface stationed at the position r ¼ 0. This null
hypersurface partitions the spacetime between timelike and
spacelike regions. However, in our case, we have foliated
the spacetime in the neighborhood of H by a family of
null hypersurfaces HΦ and have focused on producing
the thermodynamic identity on any one of them, say
HΦ¼1 ¼ H. A specific advantage of such a foliation is

that all the relevant geometrical quantities that can be
defined on the null surface (for example expansion
scalar, second fundamental form, etc.) are independent
of the foliation. Another requirement specific to the GNC
analysis is that the auxiliary null vector field is affinely
parametrized, i.e., ka ¼ −∂au or in other words ka is
hypersurface orthogonal to u ¼ constant surfaces. This,
we believe is a certain restriction on the analysis. We can
however do away with such a restriction. Under the system
of the foliation of spacetime introduced in Sec. II, we do not
require ka to be affinely parametrized and hypersurface
orthogonal. In fact, under this general structure, the hyper-
plane normal to ka cannot be integrated into some inte-
grable surface. As a result of such a null foliation of the
spacetime in the vicinity of H, our interpretation of the
energy and the work function pertain entirely to geometric
quantities defined in the spacetime manifold. The way we
have made a distinction between the energy term and the
work function is to recognize that the energy expression
(38) contains terms that are defined on the null 2-surface St
along with a term involving the directional derivative of
such quantities defined on St. However, the work function
(39) contains terms that are defined for the entire spacetime
manifold. In doing so, we have obtained a covariant (but
foliation based) expression of the energy of the null surface.
Previous expositions [13,31] into the energy term under the
purview of providing a thermodynamic interpretation have,
however, come under the context of an adapted coordinate
system with respect to a fiduciary null surface, i.e., the
GNC construction. As a result, previous such descriptions
of the energy have been coordinate dependent.
As a mathematical curiosity, the above relation (33) can

also be derived in an alternative method following [41]. In
[41], the thermodynamic identity analogous to Eq. (43) was
shown for static null horizons. We generalize the results to
any arbitrary null hypersurface via the use of the two
following relations. The first one relates the Ricci tensor
(2Rab) of the two-dimensional transverse Riemannian
manifold ðSt; qÞ with the four-dimensional Riemann cur-
vature tensor of the spacetime ðM; gÞ, the second funda-
mental form Θab of the null hypersurface H, and the
transversal deformation rate Ξab (see [16]),

2Rab ¼ qaiqajqckRc
jki − ΞabθðlÞ − ΘabθðkÞ

þ Θa
cΞcb þ Ξa

cΘcb: ð44Þ

Taking the trace of the above equation, we obtain

2R ¼ qijqckRcjki − 2θðlÞθðkÞ þ 2ΘabΞab: ð45Þ

Using the definition of the orthogonal projection tensor
onto the 2-surface St as qab ¼ gab þ lakb þ kalb, we have

qijqckRcjki ¼ Rþ 4Rijlikj þ 2Rabcdlakbkcld: ð46Þ
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Similarly, using the irreducible decomposition of both the
second fundamental form of H and the traversal deforma-
tion tensor of the 2-surface St, i.e., Θab ¼ 1

2
θðlÞqab þ σab

and Ξab ¼ 1
2
θðkÞqab þ σðkÞab, we get

2ΘabΞab ¼ θðlÞθðkÞ þ 2σabσ
ab
ðkÞ: ð47Þ

Upon using Eqs. (46) and (47) in Eqs. (45), we obtain, as a
result,

R ¼ 2R − 4Rijlikj − 2Rabcdlakbkcld

þ θðlÞθðkÞ − 2σabσ
ab
ðkÞ: ð48Þ

The second relation that will be put to use is

Rabcdlakbkcld ¼ 2DaΩa þΩaΩa − κθðkÞ − li∇iθðkÞ

−
1

2
θðlÞθðkÞ − σabσ

ab
ðkÞ − Rablakb: ð49Þ

A detailed derivation of the above result is provided in
Appendix B. In fact the relation (49) can be regarded as a
generalization to Eq. (5) of [41] (which is valid only for
static null horizons) to any arbitrary null surface. Now
simply the use of Eq. (49) in Eq. (48) leads us to Eq. (33).
Let us conclude this section by mentioning that in

Appendix E, we show the equivalence of the energy term
)38 ) and the gravitational/geometric work function term

with those obtained in [13] via the GNC construction under
the purview of Einstein gravity.

V. CONCLUSION

In the present work, we have investigated whether the
components Rablalb and Rablakb can be provided with any
physical interpretation in a covariant fashion. Our starting
point in both the cases have been the NRC equation (for la

and ka fields), which is a covariantly formulated geomet-
rical relationship involving the evolution of a particular
geometrical quantity with either Rablalb or Rablakb.
For Rablalb, we started with the NRC for the null

generators la (13), and then provided a virtual displace-
ment δλðlÞ. We then integrated the resulting equation
onto the transverse spacelike 2-surface St and obtained
relevant thermodynamical structures, (17) and (25). We
have provided two alternative interpretations of the result-
ing thermodynamic identity. In the first interpretation (17),
we recognized that, under the virtual displacement process
δλðlÞ, an amount of energy δλðlÞE sweeps across through the
null surfaceH. The expression of the energy is provided in
(18). This energy flow results in the heat exchanged as a
result of the entropy variation of the null surface. The
temperature of H is associated with the nonaffinity param-
eter κ of the null generators and the entropy density is
proportional to

ffiffiffi
q

p
of the area element of St. In our second

interpretation (25), we have identified the energy variation
δλðlÞE and the irreversible heat δλðlÞQdis that flows (as a
result of the virtual displacement process) across through
the null surface H. These quantities are given by (22) and
(24), respectively. This results in the heat energy generation
(20) due to the variation of the entropy density of the null
surface identified as δλðlÞs, where s is again proportional
to

ffiffiffi
q

p
of the area element of St. The irreversible heat

generation (24) is due to the viscous dissipative effects
present in the null surface. We also identified that this
dissipative heat generation must be entirely due to geo-
metric fluxes since the dissipation term contains only
geometrical quantities established on H. Finally, we
showed for the explicit case of a stationary black hole
system that the integrated form of the NRC (for la) over the
virtual displacement produces the generalized Smarr for-
mula (31). We also showed that the energy term (in both
our interpretations) is proportional to the Komar energy
term (28) for this special case.
Next we focused on the more relevant component

Rablakb for providing the thermodynamical interpretation
in a covariant fashion. In literature, previous works
[13,27,28] had solidified the fact that Rablakb can provide
a thermodynamical relationship which is structurally quite
similar to the first law of thermodynamics. However, they
had been proposed in an adapted coordinate system called
the GNC system. This results in the expression of the
energy being dependent on the GNC coordinates. Here, we
have tried to show whether a similar interpretation can be
provided without the need of adapting any coordinate
system with respect to the null surface. In our approach,
we started out with the NRC equation (for ka field) (33) and
provided a virtual displacement δλðkÞ. We then integrated
the resulting equation over the 2-surface St. This procedure
allowed us to obtain our required thermodynamic inter-
pretation in a covariant fashion. However, our proposed
interpretation does have major differences with the pre-
vious approaches. We have not invoked in our analysis any
specific gravitational field equations and hence proposed
that our interpretation is not specific to any particular
theory of gravity. This required us to propose that the
entropy density of the null surface is actually the entangle-
ment entropy density assigned to H by a null observer
moving along the integral curves of the null generators la.
This is because in our case the entropy density is actually
proportional to

ffiffiffi
q

p
of our area element on the 2-surface St.

The temperature is again found to be proportional to the
nonaffinity parameter κ associated with the null gen-
erators la. To have a consistent thermodynamic interpre-
tation irrespective of any particular theory of gravity we
have defined a so-called geometric pressure P ¼ −1=
ð8πGÞðRijlikj þ 1

2
RÞ. This is in contrast with the earlier

methods defining the pressure entirely through the matter
energy tensor. Moreover, the identified energy here is in
covariant form and so can be applied to any metric adapted
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to the null surface. This added advantage of our formalism
must be very useful for further progress of this field.
In this present work we have considered only a

Riemannian manifold with the Levi-Civita connection;
i.e., our spacetime geometry has no torsion. An interesting
perspective to look at is to see if analogous physical/
thermodynamic interpretations can be provided to R̄ablalb,
R̄ablakb, and R̄ablaqbc, where R̄ab is the Ricci tensor
corresponding to spacetimes with torsion. The idea of
Jacobson of deriving the gravitational field equations from
a local constitutive relation [20] has been extended to the
case of spacetimes with torsion in [23]. The equilibrium
Clausius relation has been replaced by the entropy balance
law to incorporate the internal irreversible entropy gen-
eration term. The authors of [23] obtain the Einstein-
Cartan-Kibble-Sciama gravitational field equations under
such a procedure and identify the corresponding internal
entropy generation term. It would be a fruitful exercise to
carry out our procedure of taking the NRC for la along with
the virtual displacement δλðlÞ for the case of spacetimes
with torsion and provide an analogous thermodynamic
interpretation. However, the terms like energy and dis-
sipation need to be properly understood in this context.
Similarly, it would be quite instructive to work out the NRC
corresponding to the auxiliary null vector field ka under the
inclusion of torsion. The corresponding attachment of a
thermodynamic interpretation under a virtual displacement
δλðkÞ needs to be analyzed carefully by understanding
the nature of the energy and geometric work function.
Similarly seeing what modifications arise to the DNS
equation under the consideration of R̄ablaqbc is quite
interesting. We certainly aim towards such directions and
hope to report it in future.
Finally, we feel that the present results are very generic to

any null surface as the underlying dynamics of background
has not been explicitly used. Instead the construction is
purely based on the geometrical properties of the aforesaid
surface. We hope that this new foray into the well-known
study of the thermodynamical structure of a generic null
hypersurface via our covariant approach will help to shed
some light on it.

APPENDIX A: DERIVATION OF EQ. (33)

Upon taking the trace on both sides of Eq. (32), let
us now concentrate on the lhs first. The irreducible
decomposition of the transversal deformation rate tensor
is given by

Ξab ¼
1

2
qabθðkÞ þ σðkÞab ; ðA1Þ

where θðkÞ is the trace part and σðkÞab is the traceless
symmetric part. Therefore, the trace of the lhs of (32) can be
expressed as

qij£lΞij ¼ θðlÞθðkÞ þ £lθðkÞ þ qij£lσðkÞij : ðA2Þ

Focusing on the term qij£lσðkÞij in (A2), and using the fact
that

∇alb ¼ Θab þ ωalb − laðki∇ilbÞ; ðA3Þ

and σðkÞij being orthogonal to li, we have

qij£lσðkÞij ¼ 2σðkÞabσ
ab; ðA4Þ

where σab is the shear tensor associated with the null
generators la of the null hypersurfaceH. As a result the lhs
of the trace of Eq. (32) yields

qij£lΞij ¼ θðlÞθðkÞ þ li∇iθðkÞ þ 2σðkÞabσ
ab: ðA5Þ

Having done this, we now focus on trace of the rhs of
Eq. (32). This is given by

2DaΩa þΩaΩa −
1

2
2Rþ 1

2
qijRij

−
�
κ þ θðlÞ

2

�
θðkÞ −

1

2
θðlÞθðkÞ þ 2ΘabΞab:

Upon using the irreducible decomposition of both Θab ¼
ð1=2Þqabθ þ σab and Ξab [see Eq. (A1)] we obtain the rhs
of Eq. (32) as

2DaΩa þ ΩaΩa −
1

2
2Rþ 1

2
qijRij

− κθðkÞ þ 2σabσ
ab
ðkÞ: ðA6Þ

Note that the term 1
2
qijRij is equal to 1

2
Rþ Rijlikj. Using

this, (A6) goes over to

2DaΩa þ ΩaΩa −
1

2
2Rþ 1

2
Rþ Rijlikj

− κθðkÞ þ 2σabσ
ab
ðkÞ: ðA7Þ

Finally, equating (A5) and (A7) we obtain the identity (33).

APPENDIX B: DERIVATION OF EQ. (49)

Before delving into the derivation, we note two relations
involving the covariant derivatives of the null normals la

and ka, which we are going to put to heavy usage,

∇alb ¼ Θab þ ωalb − laðki∇ilbÞ; ðB1Þ

and

∇akb ¼ Ξab − Ωakb − kaωb − laðki∇ikbÞ: ðB2Þ
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We start with the Ricci identity for the null normals la

and ka,

lað∇a∇bkcÞ ¼ lað∇b∇akcÞ − Rabfclakf: ðB3Þ

We focus on the lhs of Eq. (B3). Upon using Eq. (B2), we
obtain

lað∇a∇bkcÞ ¼ lað∇aΞbcÞ − ðla∇aΩbÞkc −Ωbðla∇akcÞ
− ðla∇akbÞωc − kbðla∇aωcÞ
− ðla∇albÞðki∇ikcÞ − lbla∇aðki∇ikcÞ:

ðB4Þ

Upon using the relations la∇alb ¼ κlb, la∇akb ¼ ωb, and
ωa ¼ Ωa − κka, we contract the above Eq. (B4) with kblc

to have

lað∇a∇bkcÞkblc ¼ −ΩbΩb þ κlckið∇ikcÞ
þ lcla∇aðki∇ikcÞ: ðB5Þ

We now focus on the first term of the rhs of Eq. (B3), i.e.,
la∇bð∇akcÞ. Again upon using Eq. (B2), we have

la∇bð∇akcÞ ¼ −Ξacð∇blaÞ þ Ωað∇blaÞkc
− ðla∇bkaÞωc þ∇bωc: ðB6Þ

Contracting the above equation (B6) with kblc and using
the fact that Ωala ¼ 0, Ωaka ¼ 0 and ωala ¼ κ we obtain

lað∇b∇akcÞkblc ¼ −Ωað∇blaÞkb − κkblað∇bkaÞ
þ kblcð∇bωcÞ

¼ lakbð∇bΩaÞ − κlckið∇ikcÞ
þ kblcð∇bωcÞ: ðB7Þ

We focus on the first term of the rhs of Eq. (B7), i.e.,
lakbð∇bΩaÞ,

lakbð∇bΩaÞ ¼ ðqab − gab − kalbÞð∇bΩaÞ
¼ qabðδibδkað∇iΩkÞÞ − ð∇bΩbÞ
þ lbΩað∇bkaÞ: ðB8Þ

Upon using the completeness relation δab ¼ qab − lbka −
lakb, we have, after some simple algebra,

lakbð∇bΩaÞ ¼ qabð2DbΩaÞ − ð∇aΩaÞ þ ΩaΩa: ðB9Þ

Putting Eq. (B9) into Eq. (B7), we obtain

lað∇b∇akcÞkblc ¼ qabð2DbΩaÞ − ð∇aΩaÞ
þ ΩaΩa − κlckið∇ikcÞ
þ kblcð∇bωcÞ: ðB10Þ

We now contract the Ricci identity, i.e., Eq. (B3), on both
sides with kblc. Following this, we use the relations (B5)
and (B10) onto the contracted Ricci Identity to obtain

Rabcdlakbkcld ¼ qabð2DbΩaÞ − ð∇aΩaÞ
þ 2ΩaΩa − 2κlckið∇ikcÞ
þ kblcð∇bωcÞ − lcla∇aðki∇ikcÞ: ðB11Þ

The term −2κlckið∇ikcÞ can further be manipulated as

−2κlckið∇ikcÞ ¼ −2κðqci − gci − kcliÞð∇ikcÞ
¼ −2κθðkÞ þ 2κð∇akaÞ: ðB12Þ

Putting Eq. (B12) in Eq. (B11) we obtain, as a result,

Rabcdlakbkcld ¼ 2DbΩb − ð∇aΩaÞ þ 2ΩaΩa

− 2κθðkÞ þ 2κð∇akaÞ þ kblcð∇bωcÞ
− lcla∇aðki∇ikcÞ: ðB13Þ

Following this result, we focus on the last term on the rhs of
Eq. (B13), i.e., lcla∇aðki∇ikcÞ and manipulate it in the
following sense:

lcla∇aðki∇ikcÞ ¼ lcωið∇ikcÞ þ lclaki∇að∇ikcÞ:

Upon using Eq. (B2), we have

lcla∇aðki∇ikcÞ ¼ ΩiΩi − κlcðki∇ikcÞ þ lclaki∇að∇ikcÞ:
ðB14Þ

We proceed to manipulate the last term on the rhs of
Eq. (B14) with the help of Eq. (B2),

lclaki∇að∇ikcÞ ¼ laðqic − gic − likcÞ∇að∇ikcÞ
¼ qicla∇aΞic − laqicΩið∇akcÞ
− laqicð∇akiÞωc − la∇að∇ikiÞ
− lckað∇cωaÞ: ðB15Þ

Putting Eq. (B15) in Eq. (B14) we obtain, along with the
use of Eq. (B2),
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lcla∇aðki∇ikcÞ ¼ ΩiΩi − κlcðkf∇fkcÞ þ qicðla∇aΞicÞ
− 2laΩcð∇akcÞ − la∇að∇ikiÞ
− lckað∇cωaÞ

¼ −ΩiΩi − κlcðkf∇fkcÞ þ qicðla∇aΞicÞ
− la∇að∇ikiÞ − lckað∇cωaÞ: ðB16Þ

Putting the value of lcla∇aðki∇ikcÞ from Eq. (B16) in
Eq. (B13), we obtain

Rabcdlakbkcld ¼ 2DbΩb − ð∇aΩaÞ þ 3ΩaΩa − κlckið∇ikcÞ
− qabðli∇iΞabÞ þ la∇að∇ikiÞ
þ ðlckb þ kclbÞð∇cωbÞ

¼ 2DaΩa − ð∇aΩaÞ þ 3ΩaΩa − κlckið∇ikcÞ
− qabðli∇iΞabÞ þ la∇að∇ikiÞ
þ ðqcb − gcbÞð∇cωbÞ: ðB17Þ

Expanding the above result and after a few lines of simple
manipulations we obtain

Rabcdlakbkcld ¼ 2DaΩa − ð∇aΩaÞ þ 3ΩaΩa − κlckið∇ikcÞ
− qabðli∇iΞabÞ þ qabð∇aωbÞ
− ð∇aliÞð∇ikaÞ − Rablakb: ðB18Þ

To this end, we focus at the −qabðli∇iΞabÞ-term and using
the fact,

£lΞab ¼ li∇iΞab þ Ξaið∇bliÞ þ Ξibð∇aliÞ

along with Eq. (B1), we have

−qabðli∇iΞabÞ ¼ −qab£lΞab þ 2ΞabΘab

¼ −qab£lΞab þ θðlÞθðkÞ þ 2σabσ
ab
ðkÞ: ðB19Þ

Upon using the irreducible decomposition of the trans-
versal deformation rate tensor Ξab, it is fairly straightfor-
ward to show that,

qab£lΞab ¼ θðlÞθðkÞ þ 2σabσ
ab
ðkÞ þ li∇iθðkÞ: ðB20Þ

Using Eq. (B20) in Eq. (B19), we obtain

−qabðli∇iΞabÞ ¼ −li∇iθðkÞ: ðB21Þ

Upon using Eq. (B21) and the relation −κlckið∇ikcÞ ¼
−κθðkÞ þ κð∇akaÞ in Eq. (B18), we have as a result,

Rabcdlakbkcld ¼ 2DaΩa − ð∇aΩaÞ þ 3ΩaΩa − κθðkÞ
þ κð∇akaÞ − li∇iθðkÞ þ qabð∇aωbÞ
− ð∇aliÞð∇ikaÞ − Rablakb: ðB22Þ

Let us now take a look at the term ð∇aliÞð∇ikaÞ. Using the
relations (B1) and (B2), it can manipulated quite simply
to be

ð∇aliÞð∇ikaÞ ¼ ΘabΞba þ ΩaΩa − ka∇aκ þ lakbð∇bωaÞ:
ðB23Þ

Looking at the last term on the rhs of Eq. (B23), i.e.,
lakbð∇bωaÞ, we obtain the following in the process of
manipulation:

lakbð∇bωaÞ ¼ ðqab − gab − lbkaÞð∇bωaÞ
¼ qabð∇bωaÞ − ð∇bω

bÞ þ ΩaΩa: ðB24Þ

Equating Eq. (B24) in Eq. (B23), we have

ð∇aliÞð∇ikaÞ − qabð∇bωaÞ ¼ ΘabΞba þ 2ΩaΩa

− ka∇aκ − ð∇bω
bÞ: ðB25Þ

Looking at Eq. (B22), we manipulate the terms ð∇aΩaÞ −
κð∇akaÞ using the relation ωa ¼ Ωa − κka,

ð∇aΩaÞ − κð∇akaÞ ¼ ð∇aω
aÞ þ ðka∇aκÞ: ðB26Þ

To this end, we obtain, using Eq. (B26) and Eq. (B25),

− ð∇aΩaÞ þ κð∇akaÞ þ qabð∇aωbÞ − ð∇aliÞð∇ikaÞ
¼ −ΘabΞab − 2ΩaΩa

¼ −
1

2
θðlÞθðkÞ − σabσ

ab
ðkÞ − 2ΩaΩa: ðB27Þ

Finally, putting Eq. (B27) in Eq. (B22) we obtain our
desired result,

Rabcdlakbkcld ¼ 2DaΩa þ ΩaΩa − κθðkÞ − li∇iθðkÞ

−
1

2
θðlÞθðkÞ − σabσ

ab
ðkÞ − Rablakb:

APPENDIX C: DERIVATION OF EQ. (34)

We have, by definition,

Ξab ¼
1

2
qacqbd£kqcd: ðC1Þ

Taking the trace of the above equation, and using the
irreducible decomposition of Ξab, i.e., Ξab ¼ 1=2qabθðkÞþ
σabðkÞ, we have
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θðkÞ ¼
1

2
qab£kqab: ðC2Þ

Using the definition of the projection tensor and the Lie
derivative, it is quite simple to show

θðkÞ ¼ qijð∇ikjÞ ¼
1

2
qij£kqij ¼

1ffiffiffi
q

p £k
ffiffiffi
q

p
: ðC3Þ

Now we show that θðkÞ is actually equivalent to
− 1ffiffi

q
p d

dλðkÞ

ffiffiffi
q

p
. For that we note that the basis vectors eaA

are actually Lie transported along the ka fields, i.e.,
£keaA ¼ 0. As a result we can write

d
ffiffiffi
q

p
dλðkÞ

¼ 1

2

ffiffiffi
q

p
qAB

d
dλðkÞ

qAB ¼ 1

2

ffiffiffi
q

p
qAB

d
dλðkÞ

ðgabeaAebBÞ

¼ −
1

2

ffiffiffi
q

p
qABki∇iðgabeaAebBÞ: ðC4Þ

Now using the fact that ki∇ieaA ¼ eiA∇ika, we have

d
ffiffiffi
q

p
dλðkÞ

¼ −
1

2

ffiffiffi
q

p
qABðeaAeiB∇ika þ ebBeiA∇ikbÞ

¼ −
ffiffiffi
q

p
qabð∇akbÞ: ðC5Þ

Hence, the result of (34) follows.

APPENDIX D: DERIVATION OF li∇iθðkÞ = ki∇iθðlÞ

Here we sketch an outline of the proof of li∇iθðkÞ ¼
ki∇iθðlÞ,

li∇iθðkÞ

¼ d
dλðlÞ

�
−

1ffiffiffi
q

p d
dλðkÞ

ffiffiffi
q

p �

¼ 1ffiffiffi
q

p 2

�
d

dλðkÞ

ffiffiffi
q

p ��
d

dλðlÞ
ffiffiffi
q

p
�
−

1ffiffiffi
q

p
�

d
dλðkÞ

d
dλðlÞ

ffiffiffi
q

p �

¼ d
dλðkÞ

�
−

1ffiffiffi
q

p
�

d
dλðlÞ

ffiffiffi
q

p þ
�
−

1ffiffiffi
q

p
�

d
dλðkÞ

�
d

dλðlÞ

ffiffiffi
q

p �

¼ −
d

dλðkÞ

�
1ffiffiffi
q

p d
dλðlÞ

ffiffiffi
q

p �
¼ ki∇iθðlÞ: ðD1Þ

APPENDIX E: CONNECTION WITH
EXISTING RESULTS

In Sec. IV we landed ourselves with a covariant expres-
sion of the energy (38) of the null surface St associated with
a virtual displacement δλk in the outgoing auxiliary null
direction. We now aim to compute this expression of the
energy in the GNC system. To this end, we mention that the
metric expressed in the GNC ðu; r; xAÞ reads

ds2 ¼ −2rαdu2 þ 2dudr − 2rβAdudxA þ qABdxAdxB;

ðE1Þ

where the six independent parameters ðα; βA; qABÞ are
dependent on the coordinates ðu; r; xAÞ. The null hyper-
surface in this system is stationed at r ¼ 0. The relevant
inverse metric as well as its Christoffel connection coef-
ficients have been calculated in [34]. The components of
the null normal and the auxiliary null normal in this
coordinate system are

la ¼ ð0; 1; 0; 0Þ ka ¼ ð−1; 0; 0; 0Þ
la ¼ ð1; 2rαþ r2β2; rβAÞ ka ¼ ð0;−1; 0; 0Þ: ðE2Þ

Before proceeding ahead, we now invoke the Einstein’s
field equations and note that the work function previously
defined as P ¼ −1=ð8πGÞðRijlikj þ 1

2
RÞ, when evaluated

on the null hypersurface r ¼ 0, yields P ¼ −1=ð8πGÞ×
ðRijlikj þ 1

2
RÞ ¼ ð−TijlikjÞ ¼ ð−TijlikjÞ ¼ −Ta

blakb ¼
Tur ¼ Tr

r ¼ Tur ¼ Tu
u. In static spherically symmetric

spacetimes, Tr
r has the interpretation of being the radial or

the normal pressure [41,48]. Hence, the integral of the
work function F ¼ R

St
d2x

ffiffiffi
q

p
P in the static spherically

symmetric case is F¼ R
St
d2x

ffiffiffi
q

p
P¼ R

St
d2x

ffiffiffi
q

p
Tr

r, which
is to be interpreted as the average normal force on St.
We note that all the quantities in the integrand of the

expression of energy (38) are to be evaluated on the null
hypersurface, i.e., at r ¼ 0. Looking at the term θðlÞ, we
obtain

θðlÞ ¼ qab∇alb ¼ −qABΓr
AB: ðE3Þ

The value of Γr
AB,

Γr
AB ¼ −

1

2
∂uqAB −

1

2
ðr2β2 þ 2rαÞ∂rqAB

þ 1

4
rð2DAβB þ 2DBβAÞ: ðE4Þ

Evaluating θðlÞ on the null hypersurface,

θðlÞjr¼0
¼ −qABΓr

ABjr¼0
¼ 1

2
qAB∂uqAB

¼ 1ffiffiffi
q

p ð∂u
ffiffiffi
q

p Þ ¼ ∂uðln
ffiffiffi
q

p Þ: ðE5Þ

Computation of ki∇iθðlÞ on the null hypersurface, with the
components of ki given in (E2), yields

ki∇iθðlÞjr¼0
¼ −∂r

�
1ffiffiffi
q

p ∂u
ffiffiffi
q

p �
: ðE6Þ

Looking at the computation of θðkÞ, we have
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θðkÞ ¼ qab∇akb ¼ qABΓu
AB: ðE7Þ

The value of Γu
AB is − 1

2
∂rqAB. Evaluating θðkÞ on the null

hypersurface,

θðkÞjr¼0
¼ qABΓu

ABjr¼0
¼ −

1ffiffiffi
q

p ð∂r
ffiffiffi
q

p Þ: ðE8Þ

This allows us to have

θðlÞθðkÞjr¼0
þ ki∇iθðlÞjr¼0

¼ −
1ffiffiffi
q

p ∂r∂u
ffiffiffi
q

p
: ðE9Þ

Next, noting that Ωa ¼ ωa þ κka, we have ΩaΩa ¼ ωaω
a,

where ωa refers to the rotation one-form defined in the
manifold. For the evaluation of ωa ¼ li∇ika, with li and ka
provided from (E2), we have

ωu ¼ 0 ωr ¼ 0: ðE10Þ

As a consequence of this, we have ωaω
a ¼ ωAω

A. The
relevant quantities are

ωA ¼ 1

2
βA þ 1

2
rð∂rβAÞ −

1

2
rβBð∂rqABÞ

ωA ¼ qAC
�
1

2
βC þ 1

2
rð∂rβCÞ −

1

2
rβBð∂rqBCÞ

�
: ðE11Þ

An evaluation of ΩaΩa on the null hypersurface at r ¼ 0
yields

ΩaΩa
jr¼0

¼ ωAω
A
jr¼0

¼ 1

4
βAβ

A: ðE12Þ

Finally, we are left with the evaluation of 2DAΩA on the null
hypersurface. The calculations follow as

ΩA ¼ qABωB

¼ qAB
�
1

2
βB þ 1

2
rð∂rβBÞ −

1

2
rβDð∂rqBDÞ

�
ðE13Þ

2DAΩA ¼ 1ffiffiffi
q

p ∂A

� ffiffiffi
q

p �
1

2
βA þ 1

2
rqABð∂rβBÞ

−
1

2
rqABβDð∂rqBDÞ

��
ðE14Þ

2DAΩA
jr¼0

¼ 1

2

1ffiffiffi
q

p ∂Að ffiffiffi
q

p
βAÞ: ðE15Þ

In the GNC coordinates, the virtual displacement δxa ¼
dxa
dλðkÞ

δλ ¼ −kaδλ ¼ ð0; δλ ¼ δr; 0; 0Þ. Finally, putting the

values of the relevant quantities obtained in (E9), (E12),
and (E15) into the expression of the energy in (38), we
obtain

E ¼ 1

2

Z
dr

�
χ

2G

�
−

1

8πG

Z
dr

�Z
St

d2x
ffiffiffi
q

p �
1ffiffiffi
q

p ∂r∂u
ffiffiffi
q

p

þ 1

4
βAβ

A

�
þ 1

2

1ffiffiffi
q

p ∂Að ffiffiffi
q

p
βAÞ

�
: ðE16Þ

We note that,

Z
r¼2

r¼1

dr
Z
St

d2x
ffiffiffi
q

p �
1ffiffiffi
q

p ∂r∂u
ffiffiffi
q

p �
¼

Z
St

d2x∂u
ffiffiffi
q

p jr¼2
r¼1:

ðE17Þ

With this, the energy of the null hypersurface manifests as

E ¼ 1

2

Z
dr

�
χ

2G

�
−

1

8πG

Z
St

d2x∂u
ffiffiffi
q

p

−
1

16πG

Z
dr

Z
St

d2x
ffiffiffi
q

p �
1

2
βAβ

A þ 1ffiffiffi
q

p ∂Að ffiffiffi
q

p
βAÞ

�
:

ðE18Þ

We find that the expression of the energy obtained in the
GNC (E18) via the covariant form of the expression of
the energy (38) matches with Eq. (53) in [13]. Provided the
two-dimension surface St is compact, the above expression
can be simplified to

E ¼ 1

2

Z
dr

�
χ

2G

�
−

1

8πG

Z
St

d2x∂u
ffiffiffi
q

p

−
1

16πG

Z
dr

Z
St

d2x
ffiffiffi
q

p �
1

2
βAβ

A

�
: ðE19Þ

The reason as to why (E19) is called the energy term is
because it provides the expression of the energy in quite a
few well-known cases. For a review of these specific cases
please see [13]. As an example, for the Schwarzchild metric
the energy term (E19) reduces to the mass.
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