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We study asymptotically flat black holes with massive graviton hair within the ghost-free bigravity
theory. There have been contradictory statements in the literature about their existence—such solutions
were reported some time ago, but later a different group claimed the Schwarzschild solution to be the only
asymptotically flat black hole in the theory. As a result, the controversy emerged. We have analyzed the
issue ourselves and have been able to construct such solutions within a carefully designed numerical
scheme. We find that for given parameter values there can be one or two asymptotically flat hairy black hole
solutions in addition to the Schwarzschild solution. We analyze their perturbative stability and find that they
can be stable or unstable, depending on the parameter values. The masses of stable hairy black holes that
would be physically relevant range form stellar values up to values typical for supermassive black holes.
One of their two metrics is extremely close to Schwarzschild, while all their “hair” is hidden in the second
metric that is not coupled to matter and not directly seen. If the massive bigravity theory indeed describes
physics, the hair of such black holes should manifest themselves in violent processes like black hole
mergers and should be visible in the structure of the signals detected by LIGO/VIRGO.
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I. INTRODUCTION

Theories with massive gravitons provide a natural
modification of the general relativity (GR) in the infrared
regime and can be used to explain the current acceleration
of our Universe [1,2]. Such theories have a long history
pioneered by the work of Fierz and Pauli [3] and marked
by subsequent discoveries of many interesting features,
such as the vDVZ discontinuity [4,5], the Vainshtein
mechanism [6], the Boulware-Deser ghost [7], culminating
in the discovery of the ghost-free massive gravity [8] and
ghost-free bigravity [9] theories.
The ghost-free bigravity theory is the most interesting

physically. It contains two dynamical metrics, usually
called gμν and fμν, describing together two gravitons,
one of which is massive and the other is massless.
The theory admits self-accelerating cosmological solutions

[10–12] whose properties can agree with the observations
[13–17], with the Λ term mimicked by the graviton mass.
The theory also admits solutions describing black holes
[18], wormholes [19], and other interesting solutions (see
[20] for a review). In what follows we shall be discussing
black holes.
The bigravity black holes can be either “bald” or “hairy.”

The bald black holes are described by the known GR
metrics. Such solutions were first discovered long ago
[21–23] within the old bigravity theory inspired by physics
of strong interactions [24]. In the simplest case, their two
metrics are both Schwarzschild–(anti-)de Sitter and can be
conveniently represented in the Eddington-Finkelstein
coordinates as [25,26]

gμνdxμdxν ¼ −Σgdv2 þ 2dvdrþ r2dΩ2;

fμνdxμdxν ¼ C2ð−Σfdv2 þ 2dvdrþ r2dΩ2Þ; ð1:1Þ

with Σg ¼ 1–2Mg=rþ Λg=ð3r2Þ and Σf ¼ 1–2Mf=rþ
Λf=ð3r2Þ, where values of constants C;Λg;Λf are fixed
by the field equations. Passing to the Schwarzschild
coordinates, one can diagonalize one of the two metrics,
but not both of them simultaneously. Such solutions have
been much studied [27]; they exist also within the ghost-
free bigravity [28], and they admit the charged [29] and
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spinning [30] generalizations. These solutions also admit
the massive gravity limit where Mf ¼ Λf ¼ 0 hence the f
metric is flat while the g metric remains nontrivial, and this
yields all possible static black holes in the ghost-free
massive gravity theory (it seems there can be also time-
dependent black holes in this theory [31]).
Next, it was noticed in [18] that if the parameters of

the potential are suitably adjusted, then the ghost-free
bigravity reduces to the vacuum GR when the two metrics
coincide, gμν ¼ fμν. Therefore, all vacuum black holes,
as for example the Schwarzschild solution (to be called
bald to distinguish it from the “hairy Schwarzschild” to be
described below),

gμνdxμdxν ¼ fμνdxμdxν ¼ −
�
1 −

2M
r

�
dt2

þ dr2

1 − 2M=r
þ r2dΩ2; ð1:2Þ

or its spinning generalization can be imbedded into the
ghost-free bigravity. A Λ term can be included by assuming
the two metrics to be proportional to each other [18,20,26].
Such solutions are different from solutions of type (1.1), for
example they do not admit the massive gravity limit. In
addition, the solution (1.1) is linearly stable [32], whereas
(1.2) is unstable (for a smallM) with respect to fluctuations
which do not respect the condition gμν ¼ fμν [33].
These facts essentially exhaust the available knowledge

of the bald black holes in the bigravity theory. At the same
time, more general hairy black holes not described by the
classical GR metrics can exist as well. The first example of
hairy black holes in physics was found long ago [34],
followed by many other examples (see [35,36] for a
review), so that nowadays hairy black holes are considered
as something usual. One may therefore wonder if they exist
in the ghost-free bigravity theory as well.
A systematic analysis of hairy black holes in the ghost-

free massive bigravity has been carried out for the first time
by one of the authors [18], but none of the solutions found
were asymptotically flat. In that analysis both metrics were
assumed to be static and spherically symmetric. If they are
not simultaneously diagonal, then the most general solution
is given by (1.1). If they are simultaneously diagonal, then
one of the solutions is given by (1.2), but other more
general black hole solutions exist as well.
Such solutions possess an event horizon—a hypersurface

that is null simultaneously with respect to gμν and fμν.
Therefore, both metrics share the horizon [37,38], but its
radius rgH measured by gμν can be different from the radius

rfH measured by fμν. One can set rH ≡ rgH to unit value via
rescaling the system (rescaling at the same time the
graviton mass), but the ratio u ¼ rgH=r

f
H is scale invariant.

Choosing a value of u completely determines the boundary
conditions at the horizon, which allows one to integrate the

equations starting from the horizon toward large values of
the radial coordinate r. As a result, the set of all black hole
solutions can be labeled by just one parameter u, and
integrating the equations for different values of u gives all
possible black holes.
Choosing u ¼ 1 yields the Schwarzschild solution (1.2).

For u ≠ 1 one finds more general black holes supporting
a massive graviton “hair” outside the horizon, but in the
asymptotic region their two geometries do not become flat
[18]. The latter property is generic, and trying different
values of u always gives either solutions with a curvature
singularity somewhere outside the horizon, or solutions
which exist for all values of r but show nonflat asymptotics.
At the same time, these facts do not completely exclude a

possibility of some other asymptotically flat black hole
solutions different from (1.2), which would correspond to
some special values of u different from u ¼ 1. However,
even if they exist, one does not find such solutions by a
brute force via trying many different values of u, and the
reason is the following. The field equations reduce to three
coupled first order ordinary differential equations (ODEs)
[18], whose local at large r solution has schematically the
following structure when it is linearized around flat space
(A, B, C being integration constants):

A
r
þ Be−r þ Ceþr: ð1:3Þ

Here r ¼ mr is the dimensionless radial coordinate, with m
and r being the graviton mass and dimensionful radial
coordinate (we assume the graviton mass to have the
dimension of inverse length, so that this is rather the
inverse Compton wavelength mc=ℏ). The Newtonian mode
A=r in (1.3) arises due to the massless graviton present in
the theory, while the decaying mode Be−r and the growing
mode Ceþr are due to the massive graviton. Now, when
integrating from the horizon, the growing mode Ceþr will
be inevitably present in the numerical solution at large r
and will drive the solution away from flat space. This is
why one does not find asymptotically flat solutions in
this way.
To get them, one should suppress the growing mode by

setting C ¼ 0, hence the local solutions at large r will
comprise a two-parameter set labeled by A and B. The next
step is to numerically extend this local solution toward
small r, extending at the same time the local solution at the
horizon labeled by u toward large r, until the two solutions
meet at some intermediate point. For these solutions to
agree, three (the number of the ODEs) matching conditions
should be satisfied via adjusting the three parameters u, A,
B. In practice, this can be done within the numerical
multiple-shooting method [39]. Once u, A, B are adjusted,
this yields global asymptotically flat solutions.
The difficulty, however, is that the numerical scheme

requires some input values for u, A, B, which should be
close to the “true values,” otherwise the iterations do not
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converge. It was a priori unclear how to choose these
input values, whereas choosing them randomly does not
give the convergence. Some additional information was
needed to properly choose these input values, but at the
time of writing the article [18] such information was not
available. As a result, the conclusion of that work was that
asymptotically flat hairy black holes may exist, but they
should be parametrically isolated form the Schwarzschild
solution (1.2).
It is interesting that by adding an extra matter source to

obtain not a black hole but a regular object like a star,
asymptotically flat solutions can be easily constructed, as
was shown first in [18] and later in [40,41]. The black hole
case is more difficult.
Fortunately, the additional information was later

obtained within the analysis of perturbations of the
Schwarzschild solution (1.2) [33,42]. Denoting gSμν the
Schwarzschild metric, the two perturbed metrics are
gμν ¼ gSμν þ δgμν and fμν ¼ gSμν þ δfμν. Linearizing the
field equations with respect to δgμν and δfμν, one finds
that perturbations grow in time and hence the background
Schwarzschild black hole is unstable if rH ≡mrH ≤
0.86. On the other hand, for rH > 0.86 the perturbations
are bounded in time so that the background is stable [33].
Curiously, the mathematical structure of the perturbation
equations is identical [33] to that previously discovered by
Gregory and Laflamm (GL) in their analysis of black
strings in D ¼ 5 GR [43]. We shall therefore refer to the
Schwarzschild solution with rH ¼ 0.86 as GL point.
This change of stability at the GL point suggests that

for rH close to 0.86 there could be two different asymp-
totically flat solutions: the Schwarzschild solution (1.2) and
also some other solution which can be approximated by the
zero perturbation mode that exists at the GL point. This
new solution is different from Schwarzschild although
close to it, hence it describes an asymptotically flat hairy
black hole. To get this solution within the numerical
scheme outlined above, one should choose the input
parameters u, A, B to be close the GL point, u ≈ 1,
rH ≈ 0.86, A ≈ −rH=2, B ≈ 0, and it is this essential piece
of information that was missing when writing Ref. [18]. As
soon as the solution is obtained, one can change the value
of rH iteratively, thus obtaining “fully fledged” hairy black
holes which may deviate considerably from the parent
Schwarzschild solution.
Remarkably, this program was accomplished by the

Portuguese group [44] via explicitly constructing asymp-
totically flat hairy black holes in the theory in the region
below the GL point, for rH < 0.86. However, some time
later spherically symmetric bigravity solutions were ana-
lyzed by the Swedish group [45], and it was claimed that
the Schwarzschild solution (1.2) represents the unique
asymptotically flat black hole in the theory. As a result,
a controversy emerged and it was unclear if asymptotically
flat hairy black holes exist or not.

We have therefore reconsidered the issue ourselves and
below are our results. In brief, we were able to construct
asymptotically flat hairy black holes in the theory, thereby
confirming the finding of [44]. We apply a very carefully
designed numerical scheme to exclude any ambiguities and
to take into account the arguments of [45]. In fact, these
arguments correctly point to some drawbacks of the
numerical analysis commonly present in many publica-
tions. From the mathematical viewpoint, one has to solve a
nonlinear boundary value problem where the boundaries
are singular points of the differential equations (horizon
and infinity). Since it is difficult to approach such points
numerically, various approximations are used in practice,
which may give reasonable results in some cases but
inevitably increase the numerical errors and lead to a
numerical instability. Only very rarely does one find in
the literature a correct treatment of the problem (apart from
the relaxation approach), as for example in [46–48]. We
therefore pay special attention to the details of our
numerical scheme and describe them in a very explicit
way. From the methodological viewpoint, our paper gives
an example of how one should properly tackle a nonlinear
boundary value problem with singular endpoints.
We cross-check our results with two different numerical

codes written independently by two of us. Our results
strongly suggest that the hairy solutions exist and are
indeed asymptotically flat and regular. We discover many
new features of these solutions, for example we obtain hairy
black holes also above the GL point for rH > 0.86, and
we study for the first time the perturbative stability of the
solutions. We were able to identify regions in the parameter
space which correspond to stable solutions, and we deter-
mined subsets of these regions which agree with the
constraints imposed by the cosmological observations.
We find that the viable hairy black holes should be des-
cribed by the g metric that is very close to Schwarzschild,
but their f metric is different. Therefore, if the bigravity
theory indeed describes physics, the astrophysical black
holes should hide the hair in their f metric. We find
masses of such black holes to range from ∼0.2 M⊙
to ∼0.3 × 106 M⊙.
We have also attentively considered the arguments of

Ref. [45]. In brief, this work seems to agree that the hairy
solutions exist but judges them physically unacceptable.
We analyze the arguments and we think some of them are
interesting and should be taken into consideration, but none
of them is decisive, so that they should rather be viewed as a
conjecture. To understand its origin, we notice that the
numerical procedure adopted in that work is not suitable for
suppressing the growing at infinity mode, which generates
artificial numerical singularities. This must be the reason
why the solutions were judged unacceptable in that work.
However, no singularities appear within the properly
chosen numerical scheme, and we specially adapt our
scheme to be able to cope with the arguments of [45].
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We shall postpone a more detailed discussion of Ref. [45]
until the end of this text to be able to make a comparison
with our results.
The rest of the text is organized as follows. In Sec. II we

introduce the massive bigravity theory of Hassan and
Rosen [9]. The field equations, their reduction to the static
and spherically symmetric sector, and the simplest solu-
tions are described in Secs. III–V. In Secs. VI and VII we
describe in detail our analysis of boundary conditions at the
horizon and at infinity, and then summarize in Sec. VIII the
structure of our numerical procedure. In Sec. IX we show
our solutions for asymptotically flat hairy black holes and
also describe the duality relation yielding the solutions
above the GL point. After that, we discuss in Sec. X the
perturbations of the hairy backgrounds and the analysis
of the negative perturbation modes. Our discussion culmi-
nates in Sec. XI where we describe various limits and
identify regions in the parameter space where the solutions
exist and where they are stable. In Sec. XII we give a brief
summary of our results and discuss the arguments of
Ref. [45]. The two Appendixes contain the description
of the desingularization of the equations at the horizon, as
well as the complete set of the field equations in the time-
dependent case.

II. THE GHOST-FREE BIGRAVITY

The theory is defined on a four-dimensional spacetime
manifold endowed with two Lorentzian metrics gμν and fμν
with the signature ð−;þ;þ;þÞ. The action is [9]

S½g; f� ¼ 1

2κ1

Z
RðgÞ ffiffiffiffiffiffi

−g
p

d4xþ 1

2κ2

Z
RðfÞ

ffiffiffiffiffiffi
−f

p
d4x

−
m2

κ

Z
U

ffiffiffiffiffiffi
−g

p
d4x; ð2:1Þ

where κ1 and κ2 are the gravitational couplings, κ is a
parameter with the same dimension, and m is a mass
parameter. The interaction between the two metrics is
expressed by a scalar function of the tensor (the hat denotes
matrices)

γ̂ ¼
ffiffiffiffiffiffiffiffiffi
ĝ−1f̂

q
: ð2:2Þ

Here the matrix square root is understood in the sense that
γ̂2 ¼ ĝ−1 f̂, which can be written in components as

ðγ2Þμν ≡ γμαγ
α
ν ¼ gμαfαν: ð2:3Þ

If λa (a ¼ 1, 2, 3, 4) are the eigenvalues of γμν then the
interaction potential is

U ¼
X4
n¼0

bkUk; ð2:4Þ

where bk are dimensionless parameters while Uk are
defined by the relations

U0 ¼ 1; U1 ¼
X
a

λa ¼ ½γ�;

U2 ¼
X
a<b

λaλb ¼
1

2!
ð½γ�2 − ½γ2�Þ;

U3 ¼
X

a<b<c

λcλbλc ¼
1

3!
ð½γ�3 − 3½γ�½γ2� þ 2½γ3�Þ;

U4 ¼ λ1λ2λ3λ4 ¼ detðγ̂Þ:

Here ½γ� ¼ trðγ̂Þ≡ γμμ and ½γk� ¼ trðγ̂kÞ≡ ðγkÞμμ. The two
metrics actually enter the action in a completely symmetric
way, since the action is invariant under

gμν ↔ fμν; κ1 ↔ κ2; bk ↔ b4−k: ð2:5Þ

The action is also invariant under rescalings κ → �λ2κ,
bk → �bk, m → λm, and this allows one to impose, with-
out any loss of generality, the normalization condition
κ ¼ κ1 þ κ2. Varying the action with respect to the two
metrics gives two sets of Einstein equations,

GμνðgÞ ¼ m2κ1Tμν; GμνðfÞ ¼ m2κ2T μν; ð2:6Þ

where κ1 ≡ κ1=κ and κ2 ≡ κ2=κ, and the normalization of κ
implies that κ1 þ κ2 ¼ 1. The source terms in (2.6) are
obtained by varying the interaction potential U,

Tμ
ν ¼ gμαTαν ¼ τμν −Uδμν ; T μ

ν ¼ fμαT αν ¼ −
ffiffiffiffiffiffi−gp
ffiffiffiffiffiffi
−f

p τμν;

ð2:7Þ

where fμα is the inverse of fμα and

τμν ¼ fb1U0 þ b2U1 þ b3U2 þ b4U3gγμν
− fb2U0 þ b3U1 þ b4U2gðγ2Þμν
þ fb3U0 þ b4U1gðγ3Þμν − b4U0ðγ4Þμν: ð2:8Þ

There is an identity relation following from the diffeo-
morphism invariance of the interaction term in the action,

ffiffiffiffiffiffi
−g

p ∇
ðgÞ

μTμ
ν þ

ffiffiffiffiffiffi
−f

p ∇
ðfÞ

μT μ
ν ≡ 0; ð2:9Þ

where ∇
ðgÞ

ρ and ∇
ðfÞ

ρ are the covariant derivatives with respect
to gμν and fμν.
Equations (2.6) describe two interacting gravitons, one

massive and one massless. This can be easily seen in the
flat space limit. Setting gμν ¼ fμν ¼ ημν (the Minkowski
metric), Eqs. (2.6) reduce to
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0 ¼ −m2κ1ðP0 þ P1Þημν; 0 ¼ −m2κ2ðP1 þ P2Þημν;
ð2:10Þ

with Pm ≡ bm þ 2bmþ1 þ bmþ2. Therefore, the flat space
will be a solution if only the parameters bk fulfil the
conditions P1 ¼ −P0 ¼ −P2. Assuming this to be the case,
let us set gμν ¼ ημν þ δgμν and fμν ¼ ημν þ δfμν where the
deviations δgμν and δfμν are small. Linearizing the equa-
tions (2.6) with respect to the deviations yields

Êαβ
μνh

ð0Þ
αβ ¼ 0; ð2:11Þ

Êαβ
μνhαβ þ

m2
FP

2
ðhμν − ημνhÞ ¼ 0; ð2:12Þ

where Êαβ
μν denotes the linear part of the Einstein operator,

and where hð0Þμν ¼ κ1δfμν þ κ2δgμν and hμν ¼ δfμν − δgμν
with h ¼ ηαβhαβ. The hð0Þμν equations are the linearized
Einstein equations describing a massless graviton with two
dynamical polarizations. The hμν field fulfills the Fierz-
Pauli equations for massive gravitons with five polariza-
tions and with the mass

m2
FP ¼ P1 m2: ð2:13Þ

Therefore, one will have mFP ¼ m if

P1 ¼ 1: ð2:14Þ

This condition can be solved together with the conditions
P0 ¼ P2 ¼ −1 implied by (2.10) to express the five bk in
terms of two independent parameters, sometimes called c3
and c4,

b0 ¼ 4c3 þ c4 − 6; b1 ¼ 3 − 3c3 − c4;

b2 ¼ 2c3 þ c4 − 1; b3 ¼ −ðc3 þ c4Þ; b4 ¼ c4:

ð2:15Þ

At the same time, the theory has exactly 7 propagating
degrees of freedom also away from the flat space limit
and for arbitrary bk (see [49–51] for its Hamiltonian
formulation).
Let us finally pass from the dimensionful spacetime

coordinates xμ to the dimensionless ones,

xμ ¼ mxμ: ð2:16Þ

This is equivalent to the conformal rescaling of the metrics,

gμν ¼
1

m2
gμν; fμν ¼

1

m2
fμν; ð2:17Þ

after which the field equations (2.6) reduce to

Gμ
νðgÞ ¼ κ1Tμ

ν; Gμ
νðfÞ ¼ κ2T μ

ν; ð2:18Þ

where Tμ
ν and T μ

ν are still given by (2.7), (2.8) with

γ̂ ¼
ffiffiffiffiffiffiffiffiffiffi
ĝ−1f̂

q
. The Bianchi identities for these equations

imply that

∇
ðgÞ

ρT
ρ
λ ¼ 0; ∇

ðfÞ
ρT

ρ
λ ¼ 0; ð2:19Þ

which is consistent with (2.9). All fields and coordinates
are now dimensionless and no trace of the mass parameter
m is left in the equations. However, one has to remember
that the unity of length corresponds to the dimensionful
1=m, which is the physical length scale.
In what follows we shall be analyzing equations (2.18)

without making any assumptions about values of κ1, κ2 and
bk. However, when integrating the equations numerically,
we shall assume that κ1 þ κ2 ¼ 1 and choose bk according
to (2.15). Therefore, our solutions depend on three param-
eters of the theory, c3, c4 and η, where

κ1 ¼ cos2η; κ2 ¼ sin2η: ð2:20Þ

We shall assume in what follows that if the theory is
extended to include an extra matter variables denoted by Ψ,
then the action (2.1) becomes S½g; f� → S½g; f� þ Smat½g;Ψ�,
so that the matter couples only to the g metric. The
g-geometry is therefore physically measurable as test
particles follow its geodesics. The f-geometry is not
directly coupled to matter, hence it cannot be directly seen
and remains hidden.

III. SPHERICAL SYMMETRY

Let us introduce coordinates ðx0; x1; x2; x3Þ ¼ ðt; r;ϑ;φÞ
and choose both metrics to be static, spherically symmetric,
and diagonal,

ds2g ¼ gμνdxμdxν ¼ −Q2dt2 þ dr2

Δ2
þ R2dΩ2;

ds2f ¼ fμνdxμdxν ¼ −q2dt2 þ dr2

W2
þ U2dΩ2; ð3:1Þ

where dΩ2 ¼ dϑ2 þ sin2 ϑdφ2 while Q;Δ; R; q;W;U are
functions of the radial coordinate r ¼ mr. In fact, this is not
the most general form of the spherically symmetric fields,
since one could also include the off-diagonal metric
element f01 as shown by Eq. (B1) in Appendix B.
However, in the static case this would imply that (1.1) is
the only possible solution [18] (the situation changes in the
time-dependent case). Therefore, we choose the static
metrics to be both diagonal, which leads to nontrivial
solutions.
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The tensor γμν in (2.2) then reads

γμν ¼ diag

�
q
Q
;
Δ
W

;
U
R
;
U
R

�
; ð3:2Þ

and one obtains from (2.7)

Tμ
ν ¼ diag½T0

0; T1
1; T2

2; T2
2�;

T μ
ν ¼ diag½T 0

0; T 1
1; T 2

2;T 2
2�; ð3:3Þ

where

T0
0 ¼ −P0 − P1

Δ
W

;

T1
1 ¼ −P0 − P1

q
Q
;

T2
2 ¼ −D0 −D1

�
q
Q
þ Δ
W

�
−D2

qΔ
QW

;

u2T 0
0 ¼ −P2 − P1

W
Δ
;

u2T 1
1 ¼ −P2 − P1

Q
q
;

uT 2
2 ¼ −D3 −D2

�
Q
q
þW

Δ

�
−D1

QW
qΔ

: ð3:4Þ

Here u ¼ U=R and

Pm ¼ bm þ 2bmþ1uþ bmþ2u2;

Dm ¼ bm þ bmþ1u ðm ¼ 0; 1; 2Þ: ð3:5Þ

The independent field equations are

G0
0ðgÞ ¼ κ1T0

0; G1
1ðgÞ ¼ κ1T1

1;

G0
0ðfÞ ¼ κ2T 0

0; G1
1ðfÞ ¼ κ2T 1

1; ð3:6Þ

plus the conservation condition ∇
ðgÞ

μT
μ
ν ¼ 0, which has only

one nontrivial component,

∇
ðgÞ

μTμ
1 ¼ ðT1

1Þ0 þ
Q0

Q
ðT1

1 − T0
0Þ þ 2

R0

R
ðT1

1 − T2
2Þ ¼ 0;

ð3:7Þ

where the prime denotes differentiation with respect
to r. The conservation condition for the second energy-
momentum tensor also has only one nontrivial component,

∇
ðfÞ

μT μ
1 ¼ ðT 1

1Þ0 þ
q0

q
ðT 1

1 − T 0
0Þ

þ 2
U0

U
ðT 1

1 − T 2
2Þ ¼ 0; ð3:8Þ

but this follows from (3.7) due to the identity relation (2.9).
As a result, there are 5 independent equations in (3.6), (3.7),
which is enough to determine the 6 field amplitudes
Q;Δ; R; q;W;U, because the freedom of reparametrization
of the radial coordinate r → r̃ðrÞ allows one to fix one of
the amplitudes.

IV. FIELD EQUATIONS

Let us introduce new functions

N ¼ ΔR0; Y ¼ WU0; ð4:1Þ

in terms of which the two metrics read

ds2g ¼ −Q2dt2 þ dR2

N2
þ R2dΩ2;

ds2f ¼ −q2dt2 þ dU2

Y2
þ U2dΩ2: ð4:2Þ

The advantage of this parametrization is that the second
derivatives disappear from the Einstein tensor and the four
Einstein equations (3.6) become

N0 ¼ −
κ1
2

R
NY

ðR0YP0 þ U0NP1Þ þ
ð1 − N2ÞR0

2RN
; ð4:3Þ

Y 0 ¼ −
κ2
2

R2

UNY
ðR0YP1 þU0NP2Þ þ

ð1 − Y2ÞU0

2UY
; ð4:4Þ

Q0 ¼ −
�
κ1ðQP0 þ qP1Þ þ

QðN2 − 1Þ
R2

�
RR0

2N2
; ð4:5Þ

q0 ¼ −
�
κ2ðQP1 þ qP2Þ þ

qðY2 − 1Þ
R2

�
R2U0

2Y2U
: ð4:6Þ

The conservation condition (3.7) reads

∇
ðgÞ

μTμ
1 ¼

U0

R

�
1 −

N
Y

��
dP0 þ

q
Q
dP1

�

þ
�
q0

Q
−
NQ0U0

YQR0

�
P1 ¼ 0; ð4:7Þ

and using Eqs. (4.5) and (4.6), this reduces to

R2Q∇
ðgÞ

μTμ
1 ¼

U0

Y
C ¼ 0; ð4:8Þ

where
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C ¼
�
κ2

R4P2
1

2UY
− κ1

R3P0P1

2N
−
ðN2 − 1ÞRP1

2N
þ ðN − YÞRdP0

�
Q

þ
�
κ2

R4P1P2

2UY
− κ1

R3P2
1

2N
þ ðY2 − 1ÞR2P1

2UY
þ ðN − YÞRdP1

�
q; ð4:9Þ

with

dPm ¼ 2ðbmþ1 þ bmþ2uÞ ðm ¼ 0; 1Þ: ð4:10Þ

The conservation condition (3.8) becomes

−U2q∇
ðfÞ

μT μ
1 ¼

R0

N
C ¼ 0: ð4:11Þ

The two conditions (4.8) and (4.11) will be fulfilled if
U0 ¼ R0 ¼ 0, in which case both metrics are degenerate.
If the metrics are not degenerate, then conditions (4.8)
and (4.11) reduce to the algebraic constraint

C ¼ 0: ð4:12Þ

This constraint can be resolved with respect to q to give

q ¼ ΣðR;U;N; YÞQ; ð4:13Þ

where ΣðN; Y; R;UÞ is the (negative) ratio of the coeffi-
cients in front of Q and q in (4.9).
As a result, we obtain four differential equations (4.3)–

(4.6) plus one algebraic constraint (4.12). The same
equations can be obtained by inserting the metrics (4.2)
directly to the action (2.1), which gives

S ¼ 4π

m2κ

Z
Ldtdr; ð4:14Þ

where, dropping a total derivative,

L ¼ 1

κ1

�ð1 − N2ÞR0

N
− 2RN0

�
Q

þ 1

κ2

�ð1 − Y2ÞU0

Y
− 2UY 0

�
q −

QR2R0

N
P0

−
�
QR2U0

Y
þ qR2R0

N

�
P1 −

qR2U0

Y
P2: ð4:15Þ

Varying L with respect to N, Y,Q, q gives Eqs. (4.3)–(4.6),
while varying it with respect to R, U reproduces conditions
(4.8) and (4.11). The equations and the Lagrangian L are
invariant under the interchange symmetry (2.5), which now
reads

κ1 ↔ κ2; Q ↔ q; N ↔ Y; R ↔ U; bm ↔ b4−m:

ð4:16Þ

Equations (4.3)–(4.6) contain R0 and U0 which are not yet
known. One of these two amplitudes can be fixed by
imposing a gauge condition, but the other one should be
determined dynamically. We need therefore one more
condition, and the only way to get it is to differentiate
the constraint. Since the constraint should be stable, this
gives the secondary constraint:

C0 ¼ ∂C
∂N N0 þ ∂C

∂Y Y 0 þ ∂C
∂QQ0 þ ∂C

∂q q0 þ ∂C
∂R R0 þ ∂C

∂UU0

¼ 0: ð4:17Þ

Expressing here the derivatives N0, Y 0, Q0, q0 by
Eqs. (4.3)–(4.6) and using the relation (4.13), this condition
reduces to

C0 ¼ AðR;U;N; YÞR0 þ BðR;U;N; YÞU0 ¼ 0; ð4:18Þ

where the functions AðR;U;N; YÞ and BðR;U;N; YÞ are
rather complicated and we do not show them explicitly.
When the radial coordinate changes, both R0 and U0
change,

r → r̃ðrÞ; R0 → R̃0 ¼ R0 dr
dr̃

; U0 → Ũ0 ¼ U0 dr
dr̃

;

ð4:19Þ

but the relation (4.18) between R0 and U0 remains the
same. The secondary constraint can be resolved with
respect to U0,

U0 ¼ −
AðR;U;N; YÞ
BðR;U;N; YÞ R

0 ≡DUðR;U;N; YÞR0: ð4:20Þ

We can now use the gauge symmetry (4.19) to impose the
coordinate condition

R0 ¼ 1 ⇒ R ¼ r; ð4:21Þ

and then (4.20) reduces to

U0 ¼ DUðr; U;N; YÞ: ð4:22Þ

Now, U0 appears in the right-hand sides of Eqs. (4.3) and
(4.4), and replacing it there by the value (4.22), these two
equations together with (4.22) form a closed system of
three equations
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N0 ¼ DNðr;U;N; YÞ;
Y 0 ¼ DYðr; U;N; YÞ;
U0 ¼ DUðr; U;N; YÞ: ð4:23Þ

The amplitudes Q, q are determined as follows. Injecting
(4.13) to (4.5) yields the equation

Q0 ¼ −
r

2N2

�
κ1ðP0 þ Σðr; U;N; YÞP1Þ þ

N2 − 1

r2

�
Q

≡ F ðr;U;N; YÞQ; ð4:24Þ

which determines Q, and when its solution is known, q is
determined algebraically from (4.13).
Solutions of (4.23), (4.24) and (4.13) are automatically

compatible with (4.3)–(4.6) and with the constraint (4.12).
For example, the algebraic solution for q given by (4.13) is
compatible with its differential equation (4.6) because the
latter contains U0 not defined by (4.3)–(4.6). To determine
U0 one needs to differentiate the constraint (4.12) whose
algebraic solution is (4.13) and to use (4.3)–(4.6). This
completes the procedure in a consistent way.
In what follows we shall mainly focus on the three

coupled equations (4.23) determining N, Y, U. As soon as
their solution is obtained, the amplitudes Q, q are deter-
mined from (4.24) and (4.13).

V. ANALYTICAL SOLUTIONS

Some simple solutions of the equations can be obtained
analytically [18,52], for which it is convenient to use the
equations in the form (4.3)–(4.6).

A. Proportional backgrounds

Choosing the two metrics to be conformally related
[18,52],

ds2f ¼ C2ds2g; ð5:1Þ

with a constant C, the solution is given by

Q2 ¼ N2 ¼ Y2 ¼ 1 −
2M
r

−
ΛðCÞ
3

r2; R ¼ r;

q ¼ CQ; U ¼ CR; ð5:2Þ

which describes two proportional Schwarzschild–(anti-)de
Sitter geometries. The constant C and the cosmological
constant ΛðCÞ are determined by

κ1ðP0 þ CP1Þ ¼
κ2
C
ðP1 þ CP2Þ≡ ΛðCÞ: ð5:3Þ

Since Pm defined by (3.5) are polynomials in
u ¼ U=R ¼ C, this yields an algebraic equation for C
that can have up to four real roots. If the parameters bk are

chosen according to (2.15), then one of the roots is C ¼ 1,
in which case Λ ¼ 0.
The value of the dimensionful cosmological constant Λ

should agree with the observation, hence one should have

Λ ¼ m2Λ ∼ 1=R2
Hub ð5:4Þ

where RHub is the Hubble radius of our Universe. One way
to fulfill this relation is to assume that the graviton mass is
extremely small such that the Compton length is of the
order of the Hubble radius,

1=m ∼ RHub: ð5:5Þ

However, the relation can also be fulfilled by assuming that
Λ is very small, which is possible if there is a hierarchy
between the two couplings: κ1 ≪ κ2 ¼ 1 − κ1 ∼ 1.
Equation (5.3) implies then that Λ ∼ κ1 and that C should
be very close to a root ofP1 þ CP2. The hierarchy between
the two couplings is in fact necessary to reconcile with the
observations the perturbation spectrum of the massive
bigravity cosmology, because it contains an instability in
the scalar sector [53–55]. For this one should assume that
[13–17]

κ1
κ2

≈ κ1 ≤
�
Mew

MPl

�
2

∼ 10−34 ≪ 1; ð5:6Þ

where Mew ∼ 100 GeV is the electroweak energy scale and
MPl ∼ 1019 GeV is the Planck mass. Here 10−34 is the
upper bound for κ1 imposing which shifts the instability
toward early times making it unobservable. However, κ1
can also be less then this bound [13], hence

κ1 ¼ γ2 × 10−34 with γ ∈ ½0; 1�: ð5:7Þ

As a result,

1=m ∼
ffiffiffiffi
Λ

p
RHub ¼

ffiffiffiffiffi
κ1

p
RHub ¼ γ ×

�
Mew

MPl

�
RHub

∼ γ × 106 km; ð5:8Þ

which is of the order of the solar size if γ ∼ 1. However, in
what follows we shall not be always assuming κ1 to be
small and shall present our results for arbitrary κ1 ∈ ½0; 1�.

B. Deformed AdS background

Choosing U, q to be constant,

U ¼ U0; q ¼ q0; ð5:9Þ

solves Eqs. (4.6) and (4.8), while Eqs. (4.3)–(4.5) then can
be integrated in quadratures [18]. However, such solution
is unacceptable, since the f metric degenerates if U0 ¼ 0.
At the same time, there are other, more general solutions
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which approach (5.9) for r → ∞, and for these solutionsU0
vanishes only asymptotically, hence they are acceptable.
The leading at large r terms of such solutions are

N2 ¼ −κ1
b0
3
r2 − κ1b1U0rþOð1Þ;

Y ¼ −
ffiffiffi
3

p
κ2b1

4U0

ffiffiffiffiffiffiffiffiffiffiffiffi
−κ1b0

p r2 þOðrÞ;

Q ¼ q0
4U0

rþOð1Þ; U ¼ U0 þO
�
1

r

�
;

q ¼ q0 þO
�
1

r

�
: ð5:10Þ

The g metric approaches the AdS metric in the leading
Oðr2Þ order, but the subleading terms do not have the AdS
structure.
It turns out that solutions of Eqs. (4.3)–(4.6) generically

approach for r → ∞ either (5.2) or (5.10) (or they show a
curvature singularity at a finite r), hence they are not
asymptotically flat [18].

VI. BOUNDARY CONDITIONS AT THE HORIZON

Let us require the g metric to have a regular event
horizon at some r ¼ rH by demanding the metric compo-
nents g00 ¼ Q2 and grr ¼ N2 to show simple zeroes at this
point. Therefore, we demand that close to this point one has
Q2 ∼ N2 ∼ r − rH and we consider only the exterior region
r ≥ rH where Q2 > 0 and N2 > 0. Such a behavior is
compatible with the field equations if only the f metric also
shows a regular horizon at the same place, hence
q2 ∼ Y2 ∼ r − rH. As a result, both metrics share a horizon
at the same place r ¼ rH, in agreement with [37,38].
However, the horizon radius measured by the g metric,
rH, can be different from the radius measured by the
second metric, UðrHÞ. We therefore introduce the param-
eter u≡ uðrHÞ ¼ UðrHÞ=rH.
As a result, the local solutions close to the horizon are

expected to have the form

N2 ¼
X
n≥1

anðr − rHÞn; Y2 ¼
X
n≥1

bnðr − rHÞn;

U ¼ urH þ
X
n≥1

cnðr − rHÞn; ð6:1Þ

the two other amplitudes being

Q2 ¼
X
n≥1

dnðr − rHÞ; q2 ¼
X
n≥1

enðr − rHÞn: ð6:2Þ

The equations then allow one to recurrently determine the
coefficients an, bn, cn, dn, en. It turns out they all can be
expressed in terms of a1, which should fulfil a quadratic
equation

Aa21 þ Ba1 þ C ¼ 0 ⇒ a1 ¼
1

2A
ð−B þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p
Þ;

σ ¼ �1; ð6:3Þ

where A, B, C are functions of u; rH and of the theory
parameters bk; κ1; κ2. It turns out that one should choose
σ ¼ þ1, since choosing σ ¼ −1 always yields singular
solutions. Therefore, for a chosen a value of the horizon
size rH, the local solutions (6.1), (6.2) comprise a set
labeled by a continuous parameter u. These local solutions
determine the boundary conditions at the horizon, and they
can be numerically extended to the region r > rH.
The surface gravity for each metric is [18]

κ2g ¼ lim
r→rH

Q2N02 ¼ 1

4
d1a1; κ2f ¼ lim

r→rH
q2
�
Y
U0

�02
¼ e1b1

4c21
;

ð6:4Þ

and using the values of the expansion coefficients deter-
mined by the equations yields the relation κg ¼ κf, hence
the two surface gravities coincide, as coincide the Hawking
temperatures,

T ¼ κg
2π

¼ κf
2π

: ð6:5Þ

One has close to the horizon NðrÞ ∼ YðrÞ ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rH

p
hence the derivatives N0 and Y 0 are not defined at the
horizon. The usual practice would then be to start the
numerical integration not at r ¼ rH but at a nearby point
r ¼ rH þ ϵ. However, although the dependence on ϵ is
expected to be small, still its presence in the procedure may
lead to numerical instabilities. This point was emphasized
in [45]. This difficulty can be resolved as follows. Setting

NðrÞ ¼ SðrÞνðrÞ; YðrÞ ¼ SðrÞyðrÞ with

SðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rH
r

r
; ð6:6Þ

the functions νðrÞ, yðrÞ and all their derivatives assume
finite values at r ¼ rH. Making this change of variables in
(4.23) gives a “desingularized” version of the equations
that allows us to start the numerical integration exactly
at r ¼ rH. This form of the equations is described in
Appendix A.
To recapitulate, all black holes for a given rH can

be labeled by only one parameter u. If u ¼ 1 then
the two metrics coincide everywhere and the solution
is Schwarzschild (1.2). If u ¼ C where C is a root of
the algebraic equation (5.3), then the solutions is
Schwarzschild–(anti-)de Sitter and is described by (5.1)
and (5.2). For other values of u the numerical integration
produces more general solutions which describe hairy
black holes and which can be of the following
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three qualitative types, depending on their asymptotic
behavior [18].
(a) Solutions extending up to arbitrarily large values

of r and asymptotically approaching a proportional
AdS background (5.1), (5.2). At large r one has
N ¼ N0ð1þ δNÞ, Y ¼ Y0ð1þ δYÞ, U ¼ U0ð1þ δUÞ
where N0, Y0, U0 are given by (5.2), while the
deviations δN; δY; δU approach zero. In the linear
approximation, the latter are described by

δN ¼ A
r3
; δU ¼ B1eλ1r þ B2eλ2r; δY ¼ OðδUÞ;

ð6:7Þ
where A;B1; B2 are integration constants and real parts
of λ1 and λ2 are negative. All of these three perturba-
tion modes vanish for r → ∞, and since the number of
equations (4.23) is also three, it follows that the AdS
background is an attractor at large r.

(b) Solutions extending up to arbitrarily large values of r
and asymptotically approaching a deformed AdS
background (5.10). The latter is also an attractor at
large r.

(c) Solutions extending only up to r ¼ rs < ∞ where
derivatives of some metric functions diverge, which
corresponds to a curvature singularity.

This exhausts the possible types of generic solutions. If
one integrates the equation for many different values of u,
one always obtains solutions of the above three types and
one does not find asymptotically flat solutions other than
Schwarzschild. For example, choosing u ¼ 1þ ϵ yields
solutions which are almost Schwarzschild in a region close
to the horizon, but for larger values of r they deviate from
the Schwarzschild metric more and more [18] (this means
the Schwarzschild solution is Lyapunov unstable [45]).
All of this does not mean that the Schwarzschild is the
only asymptotically flat black hole solution. There may
be others, but they are not parametrically close to the
Schwarzschild solution and should correspond to some
discrete values of u which are difficult to detect by a “brute
force” method.

VII. BOUNDARY CONDITIONS AT INFINITY

Let us suppose the solutions to approach flat space with
gμν ¼ fμν ¼ ημν at large r and set

N ¼ 1þ δN; Y ¼ 1þ δY; U ¼ rþ δU: ð7:1Þ

In fact, a more general possibility would be to require
the g metric to approach the flat Minkowski metric
diagð−1; 1; 1; 1Þ and the f metric to approach just a flat
metric, as for example diagð−a2; b2; b2; b2Þ with constat
a, b. This would lead to solutions whose Lorentz invariance
is broken in the asymptotic region [27,28]. However, we
shall not analyze this option.

Inserting (7.1) to (4.23) yields

δN0 ¼ −
1

r
ðκ2δN þ κ1δYÞ − κ1δU þN N;

δY 0 ¼ −
1

r
ðκ2δN þ κ1δYÞ þ κ2δU þN Y;

δU0 ¼
�
1þ 2

r2

�
ðδY − δNÞ þN U; ð7:2Þ

where N N , N Y , N U are the nonlinear in δN; δY; δU parts
of the right-hand sides DN , DY , DU in (4.23). Neglecting
the nonlinear terms, the solution of these equations is

δN ¼ A
r
þ Bκ1

1þ r
r

e−r þ Cκ1
1 − r
r

eþr;

δY ¼ A
r
− Bκ2

1þ r
r

e−r − Cκ2
1 − r
r

eþr;

δU ¼ B
r2 þ rþ 1

r2
e−r þ C

r2 − rþ 1

r2
eþr; ð7:3Þ

where A, B, C are integration constants. The part of this
solution proportional to A is the Newtonian mode describ-
ing the massless graviton subject to the linearized Einstein
equations (2.11). The other two modes proportional to B
and C fulfill the Fierz-Pauli equations (2.12) and describe
the massive graviton, hence they contain the Yukawa
exponents (remember that r ¼ mr).
As one can see, among the three modes only two are

stable for r → ∞ while the third one diverges in this limit,
hence flat space is not an attractor. This is why one cannot
get asymptotically flat solutions by simply integrating from
the horizon—trying to approach flat space in this way,
the unstable mode eþr rapidly wins and drives the solution
away from flat space. The only way to proceed is to
suppress the unstable mode from the very beginning by
requiring the solution at large r to be

δN ¼ A
r
þ Bκ1

1þ r
r

e−r þ…;

δY ¼ A
r
− Bκ2

1þ r
r

e−r þ…;

δU ¼ rþ B
r2 þ rþ 1

r2
e−r þ…; ð7:4Þ

where the dots denote nonlinear corrections. The usual
practice would be to neglect the dots and assume that the
linear terms approximate the solution everywhere for
r > r⋆, where r⋆ is some large value. However, one can
check that already the quadratic correction contains an
additional factor of lnðrÞ and hence dominates the linear
part for r → ∞. Therefore, nonlinear corrections are
important, but if all of them are taken into account, it is
not obvious that the solution will remain asymptoti-
cally flat.
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Fortunately, problems of this kind have been studied—
see, e.g., [47]. To take the nonlinear corrections into
account, the procedure is as follows. Let us express
δN; δY; δU in terms of three functions Z0; Zþ; Z−:

δN ¼ Z0 þ κ1
1þ r
r

Zþ þ κ1
1 − r
r

Z−;

δY ¼ Z0 − κ2
1þ r
r

Zþ − κ2
1 − r
r

Z−;

δU ¼ 1þ rþ r2

r2
Zþ þ 1 − rþ r2

r2
Z−: ð7:5Þ

Equations (7.2) then assume the form

Z0
0 þ

Z0

r
¼ S0ðr; Z0; Z�Þ≡ κ1N Y þ κ2N N;

Z0þ þ Zþ ¼ Sþðr; Z0; Z�Þ≡ r2 − rþ 1

2r2
ðN N −N YÞ

þ r − 1

2r
N U;

Z0
− − Z− ¼ S−ðr; Z0; Z�Þ≡ r2 þ rþ 1

2r2
ðN Y −N NÞ

þ rþ 1

2r
N U: ð7:6Þ

Terms on the left in these equations are linear in Z0; Z�,
while those on the right are nonlinear. Neglecting the
nonlinear terms, the solution is Z0 ¼ 1=r, Zþ ¼ e−r,
Z− ¼ eþr, and if we set

Z0 ¼
A
r
; Zþ ¼ Be−r; Z− ¼ 0; ð7:7Þ

this reproduces the linear part of (7.4). Now, to take the
nonlinear terms into account, one converts Eqs. (7.6) into
the equivalent set of integral equations,

Z0ðrÞ ¼
A
r
−
Z

∞

r

r̄
r
S0ðr̄; Z0ðr̄Þ; Z�ðr̄ÞÞdr̄;

ZþðrÞ ¼ Be−r þ
Z

r

r⋆
er̄−rSþðr̄; Z0ðr̄Þ; Z�ðr̄ÞÞdr̄;

Z−ðrÞ ¼ −
Z

∞

r
er−r̄S−ðr̄; Z0ðr̄Þ; Z�ðr̄ÞÞdr̄; ð7:8Þ

where r⋆ is some large value. These equations determine
the solution for r > r⋆, and they are solved by iterations. To
start the iterations, one neglects the nonlinear terms, which
gives the configuration (7.7). The next step is to inject this
configuration to the integrals, which gives the corrected
configuration, and so on. In practice, one introduces
variables x ¼ r⋆=r and x̄ ¼ r⋆=r̄ assuming values in the
interval [0, 1], and then one discretizes the interval to
compute the integrals.
To see the convergence of the iterations, we compute for

each Z and for each discretization point the difference
ΔZi ¼ Ziþ1 − Zi of the results of the consecutive (iþ 1)th
and ith iterations, and then we take the averageΔZi over all
discretization points. Computing similarly the average Z̄i of
Zi, the ratios ΔZi=Z̄i decrease with i exponentially fast, as
seen on the left panel in Fig. 1, hence the iterations
converge. The solution of the integral equations is shown
on the right panel in Fig. 1: the amplitudes Z0 and Z�
against x ¼ r⋆=r (for r⋆ ¼ 25rH). One can see that the
amplitude Z− is always small but nonvanishing, and that all
the three amplitudes vanish for x ¼ 0, hence the solution is
indeed asymptotically flat.
This yields an asymptotically flat solution in the region

r > r⋆. To extend this solution to the region rH < r < r⋆
one only needs its values at r ¼ r⋆,

Z0ðr⋆Þ ¼
A
r⋆

−
Z

∞

r⋆

r̄
r
S0ðr̄; Z0ðr̄Þ; Z�ðr̄ÞÞdr̄;

Zþðr⋆Þ ¼ Be−r⋆ ;

Z−ðr⋆Þ ¼ −
Z

∞

r⋆
er⋆−r̄S−ðr̄; Z0; Z�Þdr̄: ð7:9Þ

FIG. 1. Left: convergence of the iterations of the integral equations (7.8). Right: the amplitudes Z0, Z� against x ¼ r⋆=r, where the
insertion shows a closeup of Z−.
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To recapitulate, the described above procedure yields the
boundary values for the fields at a large r⋆ and makes sure
that the solution for r > r⋆ exists and is indeed asymp-
totically flat. It is worth noting that the parameter A
determines the Arnowitt-Deser-Misner (ADM) mass,

M ¼ −A: ð7:10Þ

VIII. NUMERICAL PROCEDURE

Summarizing the above discussion, the asymptotically
flat black holes are described by solutions of the three
coupled first order ODEs (4.23) for the three functions
NðrÞ, YðrÞ, UðrÞ [which determines also QðrÞ, qðrÞ] with
the following boundary conditions. At the horizon r ¼ rH
one has

NðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−

rH
r

r
νðrÞ; YðrÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

rH
r

r
yðrÞ; ð8:1Þ

where the horizon values νðrHÞ≡ νH and yðrHÞ≡ yH are
finite and determined by the Eqs. (A8), (A6) in
Appendix A, while UðrHÞ≡UH ≡ urH can be arbitrary.
Therefore, all possible boundary conditions at the horizon
are labeled by just one free parameter u, and choosing some
value for it, the equations can be integrated directly from
the horizon, as explained in Appendix A, to the outer
region r > rH.
Far from the horizon, at r ¼ r⋆ ≫ rH, one has

Nðr⋆Þ ¼ 1þ Z0ðr⋆Þ þ κ1B
1þ r⋆
r⋆

e−r⋆ þ κ1
1 − r⋆
r⋆

Z−ðr⋆Þ;

Yðr⋆Þ ¼ 1þ Z0ðr⋆Þ − κ2B
1þ r⋆
r⋆

e−r⋆ − κ2
1 − r⋆
r⋆

Z−ðr⋆Þ;

Uðr⋆Þ ¼ r⋆ þ B
1þ r⋆ þ r2⋆

r2⋆
e−r⋆ þ 1 − r⋆ þ r2⋆

r2⋆
Z−ðr⋆Þ;

ð8:2Þ

where Z0ðr⋆Þ and Z−ðr⋆Þ are functions of A, B determined
by (7.9) via iterating the integral equations (7.8).
As a result, we have the boundary conditions at r ¼ rH

labeled by u and the boundary conditions at r ¼ r⋆ labeled
by A, B. We use them to construct solutions in the region
rH ≤ r ≤ r⋆. To this end, we choose some value of u and
integrate numerically the equations starting from r ¼ rH as
far as some r ¼ r0 < r⋆ and we obtain at this point some
values which will depend on rH and u:

Nðr0Þ≡ NhorðrH; uÞ; Yðr0Þ≡ YhorðrH; uÞ;
Uðr0Þ≡UhorðrH; uÞ: ð8:3Þ

Then we choose A, B and numerically extend the large r
data (8.2) from r ¼ r⋆ down to r ¼ r0, thereby obtaining

Nðr0Þ≡ NinfðA; BÞ; Yðr0Þ≡ Y infðA;BÞ;
Uðr0Þ≡UinfðA; BÞ: ð8:4Þ

If the two sets of values agree, hence if

ΔNðrH; u; A; BÞ≡ NhorðrH; uÞ − NinfðA; BÞ ¼ 0;

ΔYðrH; u; A; BÞ≡ YhorðrH; uÞ − Y infðA;BÞ ¼ 0;

ΔUðrH; u; A; BÞ≡UhorðrH; uÞ −UinfðA;BÞ ¼ 0; ð8:5Þ

then the solution in the interval r ∈ ½rH; r0� merges
smoothly with the solution in the interval r ∈ ½r0; r⋆� to
represent one single solution in the interval r ∈ ½rH; r⋆�.
The extension to the region r > r⋆ is then provided by the
integral equations (7.8), finally yielding an asymptotically
flat black hole solution in the region r ∈ ½rH;∞Þ. It is
worth noting that these solutions will depend neither on r0
nor on r⋆; these values could be varied without affecting the
global solution (which is a good consistency check).
In some cases using just two zones ½rH; r0� and ½r0; r⋆�

produces too large numerical errors. To keep the numerical
instability under control, one should then integrate through
many smaller zones ½rH; r0�, ½r0; r1�; ½r1; r2�…½rk; r⋆� and
perform matchings at r0; r1;…rk (see Sec. 7.3.5 in [56]).
This yields numerically stable results.
In the case of just two zones, the problem reduces to

solving thematching conditions (8.5) by adjusting the values
u, A, B. At least one solution to these three conditions
certainly exists and corresponds to the Schwarzschild
solution, for which

u ¼ 1; A ¼ −
rH
2
; B ¼ 0: ð8:6Þ

Are there other solutions? Since there are three matching
conditions for the three variables, their solutions must
constitute a discrete set of points ðuk; Ak; BkÞ in the 3-space
spanned by u, A, B. This implies that different black hole
solutions with the same rH are parametrically isolated from
each other. This creates a problem, since in order to solve
numerically algebraic equations (8.5), an input configuration
u, A, B is needed to start the numerical iterations within the
Newton-Raphson procedure [39]. However, unless the input
configuration is close to the solution, the numerical iterations
do not converge, hence some additional information is
necessary to specify where to start the iterations.
As explained in the Introduction, the additional infor-

mation is provided by the stability analysis of the
Schwarzschild solution (1.2) [33,42]. In this analysis one
considers the two metrics of the form (4.2) with

Q ¼ Sþ δQ; N ¼ Sþ δN; R ¼ r

q ¼ Sþ δq; Y ¼ Sþ δY; U ¼ rþ δU;

f01 ¼ δα; ð8:7Þ
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where S ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1 − rH

r

p
while the perturbations δQ; δN; δq;

δY; δU; δα are assumed to be small and depend on t, r. It
turns out that at the GL point, for rH ¼ 0.86, the perturba-
tion equations admit a static solution (zero mode) for which
δQ; δN; δq; δY; δU depend only on r and are bounded
everywhere in the region r ≥ rH while δα ¼ 0. This
solution can be viewed as a perturbative approximation
of a new solution that merges with the Schwarzschild
solution for rH ¼ 0.86.
This suggests that to get new solutions of the matching

conditions (8.5), one should choose the event horizon size to
be close rH ¼ 0.86 and choose the input configuration u, A,
B to be close to (8.6). Then the numerical iterations should
converge to values u, A, B which are slightly different from
(8.6) and correspond to an almost Schwarzschild black hole
slightly distorted by amassive hair. Changing then iteratively
the value of rH yields solutions which deviate considerably
from the Schwarzschild metric close to the horizon, but
always approach flat metric in the asymptotic region.

IX. ASYMPTOTICALLY FLAT HAIRY
BLACK HOLES

Applying the procedure outlined above, we were able to
construct asymptotically flat hairy solutions. We confirm
the results of Ref. [44] and obtain many new results.

First of all, we find that for rH approaching from below
the GL value, rH ≈ 0.86, there are asymptotically flat
hairy black hole solutions for any c3; c4; η. They are very
close to the Schwarzschild solution: one has u ¼ UH=
rH ≈ 1 and the ADM mass M ≈ rH=2. However, for
smaller values of rH the solutions deviate more and more
from Schwarzschild. To illustrate this, we plot in Fig. 2 the
functions N=S, Q=S, Y=S, q=S, and U0. If these functions
all equal to one, then the solution is Schwarzschild. As one
can see, they indeed approach unity far away from the
horizon, but close to the horizon they deviate considerably
from unity, hence the massive graviton hair is concentrated
in this region.
Solutions are regular for rH close to 0.86; however,

for smaller rH and depending on values of c3; c4; η, the
amplitudes Y; q;U0 may show additional zeros outside
the horizon, whereas Q, N always remain positive. This
implies that the f metric is singular, because the invariants
of its Riemann tensor diverge where the zeros are located.
An example of this is shown on the lower two panels in
Fig. 2, and also on the lower two panels in Fig. 3 where one
can see that the phenomenon occurs when η approaches
π=2. The fact that the f metric becomes singular does not
invalidate the solutions because the f-geometry is not
directly measurable and its singularities are not seen, while
the g metric, which can be probed by test particles, remains

FIG. 2. Profiles of N=S, Y=S, Q=S, q=S with S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rH=r

p
and that of U0 for solutions with η ¼ π=4 but for various values of

rH; c3; c4. Solution with c3 ¼ −c4 ¼ 3=2 shown on the two lower panels is singular because the amplitudes q; Y; U0 develop zeros
outside the horizon.
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always regular. We shall therefore keep such solutions in
our consideration.
Solutions in Fig. 2 are shown up to large but still

finite values of the radial coordinate, r=rH ≤ 100 or
r=rH ≤ 1000. What is shown is the combination of the
solutions of differential equations (4.23) in the region
rH ≤ r ≤ r⋆ and of the integral equations (7.8) for
r > r⋆ where r⋆=rH ¼ 25. At the same time, our pro-
cedure yields solutions in the whole region r ∈ ½rH;∞Þ.
Introducing the compactified radial variable

ξ ¼ r − rH
rþ rH

∈ ½0; 1�; ð9:1Þ

we plot in Fig. 3 the amplitudes N, Y, Q, q against ξ. As
seen, the amplitudes approach unity as ξ → 1 (same is true
for U0) hence the solutions are indeed asymptotically flat.
The disadvantage of this parametrization is that the slope of
the functions does not vanish for ξ → 1. Indeed, for large r
one has N ¼ 1 −M=rþ � � � and ξ ¼ 1 − rH=rþ � � � hence
at infinity dN=dξ ¼ M=rH.
If η ¼ π=2 then κ1 ¼ 0 and the g metric becomes

Schwarzschild. The theory reduces then to the massive
gravity for the dynamical f metric on a fixed Schwarzschild
background. The solution for the f metric is shown on the

lower right panel inFig. 3. Similarly, for η ¼ 0 onehas κ2 ¼ 0
and the f metric is Schwarzschild, while the g metric is a
solution of the massive gravity on the Schwarzschild back-
ground shown on the upper left panel in Fig. 4. One should
emphasize that the radii of the background Schwarzschild
black holes for η ¼ 0 and for η ¼ π=2 are not the same.
For example, for η ¼ π=2 the Schwarzschild black hole has
rH ¼ 0.18 for the solution shown in Fig. 3, while for η ¼ 0
the event horizon size is determined not by rH but by UH ¼
urH where u ≈ 5 (as seen in Fig. 4) hence this time the
Schwarzschild blackhole ismuch larger.As a result, solutions
on these different backgrounds look quite different—the
solution for the f metric on the lower right panel in Fig. 3
shows zeros hence it is singular, while the solution for the g
metric on the upper left panel in Fig. 4 is regular.
Solutions for η ¼ π=2 will play an important role below.

We shall call them “hairy Schwarzschild” because their g
metric is Schwarzschild but their f metric supports hair.
Figure 4 shows the η dependence of u ¼ UH=rH and of

the ADM mass M expressed in units of the Schwarzschild
massMS ¼ rH=2, as well as the temperature T expressed in
units of the Schwarzschild temperature TS ¼ 1=ð4πrHÞ. As
one can see, the dependence is rather strong for small rH, in
particular for u. The decrease of the mass M with η can be
understood by noting that the mass is the same with respect

FIG. 3. Profiles ofN=S, Y=S,Q=S, q=Swith S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rH=r

p
against ξ ¼ ðr − rHÞ=ðrþ rHÞ for solutions with the same c3; c4; rH but

for different values of η. When η approaches π=2 then the amplitudes Y, q start showing zeroes. For η ¼ π=2 the g metric is
Schwarzschild with N=S ¼ Q=S ¼ 1.
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to each metric (the same is true for the temperature). If
η ¼ π=2 then the g metric is Schwarzschild henceM ¼ MS
and T ¼ TS. If η ¼ 0 then the f metric is Schwarzschild
with a larger radius UH ¼ urH, hence the mass is larger,
M ¼ UH=2 ¼ uMS, while the temperature is smaller,
T ¼ TS=u. Therefore, if η ¼ 0 then M=MS ¼ u so that,
for example, u ≈ 5 for rH ¼ 0.18, as seen in Fig. 4.
Figure 5 shows the dependence of u and M on c3 in the

case where c3 ¼ −c4. One can see that the solutions exist if
only the value of c3 ¼ −c4 is not too small. Similarly, not all

hairy black holes exist for however small values of rH. As
was noticed in [44], small rH black holes exist if the
coefficient b3 in the potential (2.4) vanishes so that the cubic
part of the potential is absent. In view of (2.15), this requires
that c3 ¼ −c4, but this is not the only condition. Depending
on the parameter values, one can distinguish the following
two cases:

I∶ c3 ≠ −c4 or c3 ¼ −c4 < 1; II∶ c3 ¼ −c4 ≥ 1:

ð9:2Þ

FIG. 4. Upper left: N=S, Y=S, Q=S, q=S with S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − UH=U

p
against the compact variable ξU ¼ ðU − UHÞ=ðU þUHÞ for η ¼ 0.

One has Y=S ¼ q=S ¼ 1 hence the f metric is Schwarzschild. The other three panels show u ¼ UH=rH, the ADM mass M, and the
temperature T against η.

FIG. 5. The M=MS (left) and u ¼ UH=rH (right) against c3 ¼ −c4.
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In case I asymptotically flat hairy black holes exist only if
0 < rminH ≤ rH < 0.86 hence they cannot be arbitrarily small.
In case II they exist for any 0 < rH < 0.86, although their f
metric may be singular for small rH. We shall see below in
Sec. XI what happens when rH approaches the lower bound.

A. Duality relation

The results described above in this section essentially
reproduce those of Ref. [44], the only important difference
being that we show solutions for different values of η,
whereas Ref. [44] shows them only for η ¼ π=4. However,
starting from this moment and in the following two
Sections we shall be describing new results.
Reference [44] finds solutions only below the GL point,

for rH ≤ 0.86. At the same time, the consistency of the
procedure requires that there should be asymptotically flat
hairy black holes also for rH > 0.86. This follows from the
symmetry (4.16) of the equations, which now reads

η →
π

2
− η; Q ↔ q; N ↔ Y; U ↔ r;

c3 → 3 − c3; c4 → 4c3 þ c4 − 6: ð9:3Þ

More precisely, this means that if for some values of
η; c3; c4 there is a solution

QðrÞ; qðrÞ; NðrÞ; YðrÞ; UðrÞ; ð9:4Þ

then for η̃ ¼ π=2 − η, c̃3 ¼ 3 − c3, c̃4 ¼ 4c3 þ c4 − 6 there
should be the “dual” solution described by

Q̃ðrÞ ¼ qðwðrÞÞ; q̃ðrÞ ¼ QðwðrÞÞ; ÑðrÞ ¼ YðwðrÞÞ;
ỸðrÞ ¼ NðwðrÞÞ; ŨðrÞ ¼ wðrÞ; ð9:5Þ

where wðrÞ is the function inverse for UðrÞ, such that
UðwðrÞÞ ¼ r. This duality correspondence relates between
themselves black holes of different size, because (9.4) has
the horizon at r ¼ rH while the horizon of (9.5) is located
where wðrÞ ¼ rH, that is at r ¼ r̃H ¼ UðrHÞ. One has

ũ ¼ Ũðr̃HÞ
r̃H

¼ rH
UðrHÞ

¼ 1

u
: ð9:6Þ

Now, for hairy solutions with rH < 0.86 one always has
UðrHÞ > 0.86 and u ¼ UðrHÞ=rH > 1. It follows that their
duals are characterized by r̃H > 0.86 and by ũH < 1.
An explicit example of the duality relation is shown in

Fig. 6, which presents on the left panel the solution for
c3 ¼ −c4 ¼ 2, η ¼ π=4, rH ¼ 0.15 for which UðrHÞ ¼
1.364, hence u ¼ 1.364=0.15 ¼ 2.42. The duality implies
that for c3 ¼ 1, c4 ¼ 0, η ¼ π=4 there must be the dual
solution with rH ¼ 1.364 and u ¼ 0.15=1.364 ¼ 0.41,
which is indeed confirmed by our numerics. Plotting the
first solution against U=UH and the second one against
r=rH, as shown in Fig. 6, yields exactly the same curves, up
to the interchange N ↔ Y, Q ↔ q.
It is unclear why solutions with rH > 0.86 were not

found in [44].
The duality is in fact a powerful tool for studying the

solutions, because sometimes their properties may look
puzzling in one description but become obvious within the
dual description.

X. STABILITY ANALYSIS

In this section we analyze the stability of the hairy
solutions by studying their perturbations within the ansatz
described in Appendix B,

ds2g ¼ −Q2dt2 þ dr2

N2
þ r2dΩ2;

ds2f ¼ −ðq2 − α2Q2N2Þdt2 − 2α

�
qþQNU0

Y

�
dtdr

þ
�
U02

Y2
− α2

�
dr2 þ U2dΩ2; ð10:1Þ

where Q, q, N, Y, α, U are functions of r and t. The full set
of the field equations in this case is shown in Appendix B.
If we set α ¼ 0 and assume that nothing depends on time,

FIG. 6. The solution with c3 ¼ −c4 ¼ 2, η ¼ π=4, rH ¼ 0.15 (left) and the dual solution with c3 ¼ 1, c4 ¼ 0, η ¼ π=4, rH ¼ 1.364
(right). The curves on the two panels are exactly the same, up to the interchange N ↔ Y, Q ↔ q, r=rH ↔ U=UH .
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then we return back to the static case studied above.
Therefore, small deviations from the static solutions are
described by (10.1) with

Qðr; tÞ ¼ Q
ð0Þ
ðrÞ þ δQðr; tÞ;

qðr; tÞ ¼ q
ð0ÞðrÞ þ δqðr; tÞ;

Nðr; tÞ ¼ N
ð0Þ
ðrÞ þ δNðr; tÞ;

Yðr; tÞ ¼ Y
ð0Þ
ðrÞ þ δYðr; tÞ;

Uðr; tÞ ¼ U
ð0Þ
ðrÞ þ δUðr; tÞ;

αðr; tÞ ¼ δαðr; tÞ; ð10:2Þ

where the functions Q
ð0Þ
ðrÞ, q

ð0ÞðrÞ, N
ð0Þ
ðrÞ, Y

ð0Þ
ðrÞ, U

ð0Þ
ðrÞ

correspond to the background black hole solution while
the perturbations δQ; δq; δN; δY; δU; δα are small.
We therefore inject (10.2) to Eqs. (B5) and (B6) and

linearize with respect to the perturbations. Linearizing the
G0

1ðgÞ ¼ κ1T0
1 equation yields

2

rNQ2
δ _N ¼ κ1

P1

Q
δα; ð10:3Þ

where N;Q;P1 relate to the static background, and we
do not write their over sign “(0)” for simplicity. In the
linear perturbation theory one can consistently separate the
time variable by assuming the harmonic time dependence
for all amplitudes (this would no longer be possible if
nonlinear corrections are taken into account), so that we
choose

δNðt; rÞ ¼ eiωtδNðrÞ δαðt; rÞ ¼ eiωtδαðrÞ; ð10:4Þ

and similarly for δY; δQ; δq; δU. Injecting to (10.3) yields
the algebraic relation

δαðrÞ ¼ 2iω
rNQP1

δNðrÞ: ð10:5Þ

Linearizing similarly theG0
1ðfÞ ¼ κ2T 0

1 equation yields a
linear relation between δαðrÞ, δYðrÞ, δUðrÞ. Using these
two algebraic relations one finds that the three equations

G0
0ðgÞ ¼ κ1T0

0, G0
0ðfÞ ¼ κ2T 0

0 and ∇
ðgÞ

μTμ
0 ¼ 0 yield

upon the linearization the same result. Therefore, among
the 8 equations (B5), (B6) only 6 are independent (at least
at the linearized level).
Taking all of this into account and linearizing similarly

the remaining 3 equations G1
1ðgÞ ¼ κ1T1

1, G1
1ðfÞ ¼

κ2T 1
1 and ∇

ðgÞ
μTμ

1 ¼ 0, one finds that all 6 perturbation
amplitudes δQðrÞ, δqðrÞ, δNðrÞ, δYðrÞ, δUðrÞ and δαðrÞ

can be expressed in terms of a single master amplitudeΨðrÞ
subject to the Schrödinger-type equation,

d2Ψ
dr2�

þ ðω2 − VðrÞÞΨ ¼ 0: ð10:6Þ

The master amplitude ΨðrÞ is a linear combination of
δNðrÞ and δYðrÞ with rather complicated coefficients
whose explicit expression is not particularly illuminating,
hence we do not show it explicitly. The potential VðrÞ is
also a complicated function of the background amplitudes
that we do not show. The tortoise radial coordinate
r� ∈ ð−∞;þ∞Þ is defined by the relation

dr� ¼
1

aðrÞ dr; ð10:7Þ

where the function aðrÞ (also complicated) varies from 0 to
1 as r changes from rH to ∞. The potential V always tends
to zero at the horizon, for r� → −∞, and it approaches unit
value at infinity, for r� → þ∞. One should remember that
our dimensionless variables are related to the dimensionful
ones via r ¼ mr, rH ¼ mrH, V ¼ V=m2, ω ¼ ω=m.
For the bald Schwarzschild background with Q ¼ q ¼

N ¼ Y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rH=r

p
and U ¼ r, one has aðrÞ ¼ Q2ðrÞ

and the potential reduces to

VðrÞ ¼
�
1 −

rH
r

�

×

�
1þ rH

r3
þ 6

rHðrH − 2rÞ þ r3ðr − 2rHÞ
ðrH þ r3Þ2

�
;

ð10:8Þ
in agreement with Ref. [42]. In the flat space limit rH → 0

this reduces to VðrÞ ¼ 1þ 6=r2, which is the potential of a
massive particle of unit mass (in units of the graviton mass)
with spin s ¼ 2.
Equation (10.6) defines the eigenvalue problem on

the line r� ∈ ð−∞;þ∞Þ. Solutions of this problem with
ω2 > 0 describe scattering states of gravitons. In addition,
there can be bound states with purely imaginary frequency
ω ¼ iσ and hence with ω2 ¼ −σ2 < 0. For such solutions
the wave function Ψ is everywhere bounded and square-

integrable, because one has eþσr� ← Ψ → e−
ffiffiffiffiffiffiffiffi
1þσ2

p
r� as

−∞ ← r� → þ∞, respectively. Such bound state solutions
grow in time as eiωt ¼ e�σt. Therefore, they correspond to
unstable modes of the background black holes.

A. Computing the eigenfrequencies

Our aim is to investigate a potential existence of negative
modes with ω2 < 0 in the spectrum of the eigenvalue
problem (10.6). If such modes exist, then the background
black holes are unstable. If they do not exist, then the black
holes are stable with respect to spherically symmetric
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perturbations,whichwould strongly suggest that they should
be stable with respect to all perturbations. Indeed, in most
knowncases theS-channel is usually theonly placewhere the
instability can reside (of course, this should be proven case
to case).
The first thing to check is the shape of the potential

VðrÞ, because if it is everywhere positive, then there are
no bound states. We therefore show in Fig. 7 the
potential VðrÞ for the hairy backgrounds for several
values of the event horizon size rH and for different
c3, c4, and we also show VðrÞ for the bald Schwarzschild
solution with the same rH (it does not depend on c3, c4).
We observe that in each case the potential vanishes at the
horizon, then shows negative values in its vicinity, and
then approaches unity as r → ∞. Since the potential is
not positive definite, bound states may exist, but their
existence is not yet guaranteed.
We know that a bound state certainly exists for the

bald Schwarzschild background with rH < 0.86 [33,42].
When looking at the potentials for the hairy solution with
rH ¼ 0.78 in Fig. 7, we notice that they are close to the
Schwarzschild potential, hence a bound state could exist for
these potentials as well.
In order to know whether bound states exist or not,

we use the well-known Jacobi criterion [57] and construct
the solution of the Schrödinger equation (10.6) with ω ¼ 0.
If this solution ΨðrÞ crosses zero somewhere, then there
are bound states. We start in the asymptotic region where
the tortoise coordinate r� becomes identical to the usual r,
hence Eq. (10.6) reduces simply to Ψ00 ¼ Ψ so that the
bounded solution is Ψ ¼ e−r. Then we extend this solution
numerically toward small values of r, and we find that,
depending on values of rH; η; c3; c4, it may indeed show
a zero as r approaches rH. Therefore, there exists a
bound state.
The next step is to actually find the bound state by

solving the eigenvalue problem (10.6) with the potential
VðrÞ obtained by numerically solving the background
equations. For this we set ω2 ¼ −σ2 and determine the
local solutions at infinity and close to the horizon,

Bðr − rHÞσrH ← ΨðrÞ → e−
ffiffiffiffiffiffiffiffi
1þσ2

p
r as rH ← r → ∞;

ð10:9Þ

where B is an integration constant. Then we apply the
multiple shooting method and numerically extend the
horizon solution toward large r, extending at the same
time the large r solution toward small r. The two solutions
meet at some intermediate point r ¼ r0, where the values of
Ψðr0Þ and Ψ0ðr0Þ should agree. This gives two conditions
to be fulfilled by adjusting the two parameters B and σ in
(10.9), which finally yields the bound state solution on the
whole line (see [58,59] for a review on the black hole
perturbation theory and the tools that can be used to solve
the perturbation equation).
The eigenfunctions Ψ against the ordinary radial coor-

dinate r are shown in Fig. 8. They vanish at the horizon,
then show a maximum, sometimes very close to the
horizon, and then approach zero for r → ∞.
As a result, we find the negative eigenvalues ω2 < 0 for

all hairy black holes obtained in [44]. Therefore, all these
solutions are unstable. It is worth emphasizing that all of
them correspond to the particular choice η ¼ π=4, hence
κ1 ¼ κ2 ¼ 1=2. In order to test our method, we have also
computed the negative mode for the bald Schwarzschild
solution as in [42].
As seen in Fig. 9, the absolute value of the negative mode

eigenvalue for the Schwarzschild solution is always larger
than that for the hairy solutions. Therefore, the instability
growth rate for the hairy black holes is not as large as for the
Schwarzschild solution. In all cases, since one has ω ¼
ω=m where ω is the dimensionful physical frequency, the
instability growth time is 1=ω ¼ 1=ðωmÞ. If we assume the
graviton mass m to be very small and given by (5.5), then
the instability growth time will be cosmologically large,
hence the instability will not play any role. However, as we
shall see below, it is preferable to assume that 1=m ≤
106 km according to (5.8), in which case the instability
growth time will be less than 103 seconds, hence the
instability is dangerous and should be avoided.

FIG. 7. Potential VðrÞ for rH ¼ 0.36 (left) and for rH ¼ 0.78 (right) for different c3, c4 with η ¼ π=4.
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As seen in Fig. 9, the eigenvalue ω2ðrHÞ < 0 approaches
zero when rH → 0.86, therefore all hairy black holes
become then stable. However, they are no longer hairy
in this limit, because they “lose their hair” and merge with
the bald Schwarzschild solution. Near rH ¼ 0.86 all
solutions are close to each other and ω2 is close to zero
for any c3; c4; η, while for smaller rH the backgrounds
and ω2 become parameter dependent. The eigenvalue
ω2ðrHÞ < 0 may approach zero also for type I solutions
for a small rH ≠ 0 when they cease to exist. For example,
for c3¼1, c4¼0, the hairy solution disappears at rH∼0.58,
and at the same time the eigenvalue ω2 approaches zero, as
seen in the insertion in Fig. 9.
The instability of hairy black holes is in fact a somewhat

puzzling phenomenon, since it is unclear what they may
decay into. Since the hairy solutions with rH < 0.86 are
more energetic than the bald Schwarzschild solution, they
probably may approach the latter via absorbing and/or
radiating away their hair during their decay. However, the
bald Schwarzschild solution is also unstable for rH < 0.86
and should decay into something.
The perturbative instability of the Schwarzschild solu-

tion in the massive bigravity theory is mathematically

equivalent [33] to the Gregory-Laflamme instability of
the vacuum black string in D ¼ 5 [43]. It is known that the
nonlinear development of the latter leads to the formation
of an infinite string of “black hole beads” in D ¼ 5, but the
event horizon topology does not change [60]. This fact
being established within the D ¼ 5 vacuum GR, a similar
scenario is not possible in the D ¼ 4 bigravity theory,
hence the fate of the bigravity black holes should be
different. One possibility is that the black hole radiates
away all of its energy within the S-channel (some radiative
solutions are known explicitly [61,62]), but it is unclear
what happens to the horizon, whether it disappears or not.
In GR the horizon cannot disappear via a classical process
[63], but in the bimetric theory the situation might be
different.
Remarkably, we find that these puzzling issues are not

omnipresent and the black holes can be stable if η is
different from π=4. In Fig. 10 we show ω2 against η for
several values of rH for solutions with c3 ¼ −c4 ¼ 2. One
can see that ω2ðηÞ < 0 approaches zero and the negative
mode disappears in the hairy Schwarzschild limit when η
approaches π=2. At the same time, the bald Schwarzschild
solutions for the same rH are certainly unstable. This is a

FIG. 8. Negative mode eigenfunctions ΨðrÞ for η ¼ π=4 and different rH , with c3 ¼ −c4 ¼ 1 (left) and c3 ¼ −c4 ¼ 2 (right). They
vanish at the horizon and at infinity.

FIG. 9. The negative mode eigenvalue ω2ðrHÞ for the hairy and
for the bald Schwarzschild black holes against rH for different
values of c3, c4. In all cases η ¼ π=4.

FIG. 10. The negative mode eigenvalue ω2ðηÞ for the hairy
black holes with c3 ¼ −c4 ¼ 2.
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very encouraging fact—we see that adding the hair to the
black hole provides the stabilizing effect. As is seen in
Fig. 10, the eigenvalue approaches zero also when η
become small, if only rH is also small, as seen in Fig. 10.
Summarizing the above discussion, for some parameter

values the hairy black holes are unstable, but for other
parameter values they can be stable. Below we shall
describe a parameter choice leading to a large set of stable
solutions.

XI. PARAMETER SPACE AND THE
PHYSICAL SOLUTIONS

In this section we give a detailed description of particular
subsets of solutions. Providing a complete classification of
solutions depending on 4 parameters rH; η; c3; c4 would be
a very difficult task. We therefore adopt the following
strategy: choosing the particular values

c3 ¼ −c4 ¼ 5=2 ð11:1Þ

which fulfill condition II in (9.2), we study the solutions for
all possible rH; η. Performing next the duality transforma-
tion gives us all possible solutions for

c3 ¼ 1=2; c4 ¼ 3=2; ð11:2Þ

which values fulfill condition I in (9.2). This approach
reveals interesting and rather complex features which are
presumably generic for any c3, c4.
Figure 11 shows the ADM massMðrHÞ and the function

UHðrHÞ for several values of η ∈ ½0; π=2�. As one can see,
all curves MðrHÞ intersect at the GL point, ðrH;MHÞ ¼
ð0.86; 0.43Þ, where all solutions bifurcate with the bald
Schwarzschild solution,

N2 ¼ Q2 ¼ Y2 ¼ q2 ¼ 1 −
0.86
r

; U ¼ r; ð11:3Þ

whereas all curves UHðrHÞ pass through the point
ðrH;UHÞ ¼ ð0.86; 0.86Þ. Away from the bifurcation point,
the g metric still remains Schwarzschild if η ¼ π=2, in
which case MðrHÞ is a linear function,

η ¼ π

2
∶ N2 ¼ Q2 ¼ 1 −

rH
r

⇒ M ¼ rH
2
; ð11:4Þ

but the f metric for these solutions is not Schwarzschild,
even though both metrics have the same mass; as explained
above, we call such solutions hairy Schwarzschild. For
η ≠ π=2 the mass depends nonlinearly on rH.
Introducing the mass function MðrÞ via N2ðrÞ ¼

1–2MðrÞ=r, Eq. (4.3) assumes the form

M0ðrÞ ¼ κ1
r2

2

�
P0 þ U0P1

N
Y

�
≡ κ1ρ; ð11:5Þ

from where the ADM mass

M ¼ Mð∞Þ ¼ rH
2
þ κ1

Z
∞

rH

ρdr≡Mbare þMhair: ð11:6Þ

Here the “bare” mass Mbare ¼ rH=2 is determined only by
the horizon radius and coincides with the mass of the
Schwarzschild solution of radius rH, whereas the mass
Mhair expressed by the integral is the contribution of the
massive hair distributed outside the horizon. As one can see
in Fig. 11, one hasM > rH=2 if rH < 0.86, hence the “hair
mass” is positive and the hairy solutions are more energetic
than the bare Schwarzschild black hole. However, the mass
of the hair becomes negative above the GL point, where
rH > 0.86, and the hairy solutions are then less energetic

FIG. 11. The mass MðrHÞ (left) and the functions UHðrHÞ (right) for the hairy solutions with c3 ¼ −c4 ¼ 5=2. The crosses mark the
points on the left of which the f metric becomes singular. The hollow circles mark the termination points beyond which the solutions
would become complex valued. When κ1 ¼ cos2 η → 0, the mass MðrHÞ develops a more and more profound minimum, while the
values of Mð0Þ and UHð0Þ grow without bounds.
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than the bare one. Therefore the energy density ρðrÞ can be
negative. In fact, there are no reasons for which the standard
energy conditions should be respected within the bigravity
theory.
Each curve in Fig. 11 is defined only in a finite interval

rH ∈ ½0; rmax
H ðηÞ�. It is very instructive to understand what

happens at the boundaries of this interval.

A. The lower limit rH → 0

All the solutions extend down to arbitrarily small values
of rH. Remarkably, as seen in Fig. 11, except for η ¼ π=2
the massM does not vanish when rH → 0 but approaches a
finite value, even though the bare massMbare ¼ rH=2 → 0.
Therefore, all mass is contained in the hair mass in this
limit, hence something remains even when the horizon size
rH shrinks to zero. A similar phenomenon is actually well
known, since in many nonlinear field theories there are
solutions describing a small black hole inside a soliton (for
example, inside the magnetic monopole) [35]. Sending the
horizon size to zero the black hole disappears, but its
external nonlinear matter fields remain and become a
gravitating soliton containing a regular origin in its center
instead of the horizon. Therefore, the rH → 0 limit of a
hairy black hole may correspond to a regular soliton.
One may expect the situation to be similar also in our

case and that there is a limiting configuration to which the
black hole solutions approach pointwise when rH → 0.
Such a limiting configuration indeed exists; however, it
seems to be singular and not of the regular soliton type.
First, as seen in Fig. 11, the value of UH which determines
the size of the f horizon remains finite when rH → 0, hence
the f geometry remains a black hole even in the limit.
Secondly, as seen in Fig. 12, one has N2=S2 ∼ r for r ≤ 0.5
for a solution with a very small rH. However, one has S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rH=r

p
→ 1 as rH → 0, hence one has in this limit

N2 ∼ r and the limiting form of the g metric is something
like a “zero size black hole.” The numerical profiles shown

in Fig. 12 suggest this limiting configuration to have the
following structure at small r:

N2 ∼ Y2 ∼Q2 ∼ q2 ∼ r; U ¼ Umin þOðrÞ: ð11:7Þ

The g geometry is singular since its Ricci invariant RðgÞ ¼
2=r2 þOð1=rÞ at small r, but the f geometry remains of
the regular black hole type because U does not vanish.
Curiously, the temperature remains finite for rH → 0
and is always the same for both metrics. The limiting g
temperature can be formally computed by assuming
N2 ¼ αr, Q2 ¼ βr with α ≈ 0.7 and β ≈ 6 from Fig. 12.
Equation (6.5) then yields T ¼ ffiffiffiffiffiffi

αβ
p

=ð4πÞ ≈ 0.163, which
is very close to the value T ¼ 0.16 for the solution with
rH ∼ 10−5 shown in Fig. 12. However, these considerations
are of course purely formal since the zero size black hole
cannot evaporate and further reduce its size, and the
standard WKB arguments for the black hole evaporation
do not apply because the geometry is singular at the
horizon.
One should say that the f metric can become singular for

small rH because the q, Y amplitudes develop additional
zeros outside the horizon. This happens along the parts of
the curves on the left of the points marked by the crosses in
Fig. 11. We have already discussed this phenomenon and
said that we do not exclude such solutions from consid-
eration because the f geometry is not observable and its
singularities are invisible, while the g geometry that can be
directly probed remains always regular. The physical
parameters of the solutions such as the ADM mass also
do not show anything special when the q, Y amplitudes
starts to oscillate. The potential V in the perturbation
equation (10.6) also remains regular. We therefore have
no reason to exclude such solutions from consideration, and
in fact they are necessary in order that the theory could
describe black holes within a broad mass spectrum.

FIG. 12. Profiles of the solution with rH ∼ 10−5 that is close to the zero size black hole (left), and of that close to the tachyon limit, with
D ∼ 10−6 (right). One has S2 ¼ 1 − rH=r. The amplitude P1 determines the graviton mass via (11.9) and the gravitons behave as
tachyons if P1 < 0.
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B. The upper “tachyon” limit rH → rmax
H ðηÞ

In this limit the solutions always remain regular and
disappear after a fusion of roots of the algebraic equa-
tion (6.3) [or (A8)]. As explained above, this equation
determines the horizon values of the solutions. Its two roots
determine two solution branches, but only the root with
σ ¼ þ1 gives rise to asymptotically flat solutions, the
other branch showing a singularity of the g metric outside
the horizon. When rH increases, the determinant of (6.3)
decreases and vanishes for some rH ¼ rtachH ðηÞ, then it
becomes positive again, decreases again and vanishes for
the second time for rH ¼ rmax

H ðηÞ > rtachH ðηÞ, after which it
becomes negative and the procedure stops. Specifically, it
turns out that the determinant of (6.3) factorizes,

D≡ B2 − 4AC ¼ P2
1ðrHÞD ⇒

ffiffiffiffi
D

p
¼ P1ðrHÞ

ffiffiffiffi
D

p
;

ð11:8Þ

where P1ðrHÞ is defined by (3.5) with u ¼ U=r replaced
by u ¼ UH=rH while D is a complicated function of
rH;UH; η; c3; c4. When rH increases, then P1ðrHÞ crosses
zero at some rH ¼ rtachH ðηÞwhile D remains positive, hence
the square root

ffiffiffiffi
D

p
changes sign. When rH continues to

increase, then D approaches zero and vanishes as
rH → rmax

H ðηÞ. No further increase of rH is possible since
D would then be negative thus rendering the solutions
complex valued.
Although the determinant D vanishes for rH ¼ rtachH ðηÞ

when P1ðrHÞ ¼ 0 and also for rH ¼ rmax
H ðηÞ when D ¼ 0,

the two solution branches never merge. Specifically, the
two horizon values νH determined by (A8) merge when
D ¼ 0, but a careful inspection reveals that yH, UH in (A5)
and (A6) remain different for the two branches when
P1ðrHÞ ¼ 0. If D ¼ 0 then all horizon values νH, yH,
UH coincide for the two branches, but the derivatives y0H
defined by (A12) remain different. This is a consequence of
the fact that the existence and uniqueness theorem applies
only to regular points of the differential equations, whereas
the event horizon r ¼ rH is a singular point.
In the interval rtachH ðηÞ < rH < rmax

H ðηÞ the solutions
show a “tachyon zone” near the horizon where the function
P1ðrÞ defined by (3.5) is negative, as shown in the right
panel in Fig. 12. Let us remember relation (2.13) for the
Fierz-Pauli mass of gravitons obtained via linearizing the
field equations around the flat background. This relation
can be written as m2

FP ¼ P1ð∞Þ m2. However, the equa-
tions can be similarly linearized around an arbitrary back-
ground solution, which yields in the spherically symmetric
case the position-dependent mass term [64]

m2
FP ¼ P1ðrÞ m2: ð11:9Þ

Therefore, if P1ðrÞ < 0 then the mass effectively becomes
imaginary. As a result, solutions for rH > rtachH show

unphysical features, hence we call rH → rmax
H ðηÞ the

“tachyon limit.” The horizon value y0H diverges in this
limit, but this seems to be an integrable divergence similar
to y0ðrÞ ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rH

p
and the limiting solution itself stays

regular. We were able to approach this solution rather
closely, as shown in Fig. 12 (right panel) which presents
“an almost limiting” solution with the horizon value of the
determinant D ∼ 10−6.
To recapitulate, hairy solutions exist only for 0 <

rH ≤ rmax
H ðηÞ.

C. The ADM mass

It is important that, unless κ1 ¼ cos2 η is very small, the
ADM mass of all hairy solutions always varies within a
finite range and can be neither very large nor very small, as
seen in Fig. 11. It seems this fact was not recognized in
Ref. [44], which always shows only the ratio M=rH which
diverges as rH → 0. However, the mass M remains finite
for rH → 0. As seen in Fig. 11, the mass actually does not
change much when rH changes and always remains close to
the GL value, which is the mass of the Schwarzschild
solution with rH ¼ 0.86,

M ∼
0.86
2

¼ 0.43: ð11:10Þ

This means that the dimensionful mass (restoring for the
moment the speed of light c and Newton’s constant G)

M ¼ c2M
Gm

ð11:11Þ

is always close to that of the Schwarzschild black hole of
size rH ¼ 0.86=m, which is close to the Compton length of
massive gravitons. As a result, one cannot assume the
graviton mass m to be very small and of the order of the
inverse Hubble radius as in (5.5). Indeed, this would imply
the hairy black holes to be as heavy as the Schwarzschild
black hole of a cosmological size—a physically mean-
ingless result. However, assuming instead that 1=m ¼ γ ×
106 km with γ ∈ ½0; 1� as in (5.8), which is consistent with
the cosmological observations if κ1 is parametrically small
as expressed by (5.6), yields a physically acceptable result.
The masses of the hairy black holes are then close to the
mass of the Schwarzschild black hole of radius γ × 106 km,
that is M ∼ 0.3 × 106γ ×M⊙. If γ ∼ 1 this gives the value
typical for supermassive astrophysical black holes observed
in the center of many galaxies.
If κ1 is very small then the mass can deviate considerably

from the GL value and can become very small or very large.
As seen in Fig. 11, for small κ1 the mass MðrHÞ shows a
minimum: first it decreases with rH, then reaches a minimal
valueMmin, and then increases up to someMðrH ¼ 0Þ. For
smaller values of κ1 the minimum becomes more and
more profound and the value Mmin approaches zero while
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MðrH ¼ 0Þ becomes larger and larger. If κ1 is extremely
small as in (5.6), κ1 ≤ 10−34, then the minimum valueMmin
is extremely close to zero. One has then MðrHÞ ≈ rH=2 for
r > ðrHÞmin where ðrHÞmin is very small, but in the region
r < ðrHÞmin the mass grows rapidly when rH → 0 up to a
very large value MðrH ¼ 0Þ.
To get an approximation forMðrHÞ for very small κ1, we

consider the hairy Schwarzschild solutions with κ1 ¼ 0.
Their g metric is Schwarzschild with all the hair contained
in the f metric. It turns out that the Y, U amplitudes of the f
metric depend very strongly on rH if the latter is small. As
seen in Fig. 13, in the horizon vicinity these amplitudes
show very large values which apparently grow without
bounds when rH → 0, although one always has YðrÞ → 1
and UðrÞ → r far away from the horizon. We inject these
solutions to (11.5) and (11.6) to obtain the radial energy
density ρðrÞ and EðrÞ ¼ R

r
rH
ρdr. They also become very

large when rH decreases, as seen in Fig. 13. The asymptotic
value Eð∞Þ is the “hair energy.” As seen in Fig. 13, the hair
energy is large for small rH, but it does not backreact and
the g metric remains Schwarzschild if κ1 ¼ 0. However, the
hair energy starts to backreact if κ1 ≠ 0. If κ1 ≪ 1 then one
can deduce from Eq. (11.6) that

M ¼ rH
2
þ κ1Eð∞Þ þOðκ21Þ; ð11:12Þ

where Eð∞Þ is computed for κ1 ¼ 0. We evaluate numeri-
cally Eð∞Þ for various values of rH and obtain the
following best fit approximation:

M ≈
rH
2
þ κ1

a
ðrHÞs

; ð11:13Þ

where a ¼ 0.0056 and s ¼ 4.61. Assuming that κ1 ¼
γ2 × 10−34, this function shows an absolute minimum at

ðrHÞmin ≈ 5.2γ0.35 × 10−7; Mmin ≈ 3.1γ0.35 × 10−7;

ð11:14Þ

whose dimensionful versions are obtained by multiplying
by 1=m ¼ γ × 106 km (restoring again the speed of light
and Newton’s constant)

ðrHÞmin ¼
ðrHÞmin

m
≈ 0.52γ1.35 km;

Mmin ¼
c2Mmin

Gm
≈ 0.2γ1.35 ×M⊙: ð11:15Þ

This determines the minimum mass for the hairy black
holes. When rH gets smaller still then the mass starts to
grow, but it grows only up to a finite although very large

FIG. 13. The amplitudes UðrÞ, YðrÞ, the “hair energy density” ρðrÞ and its integral EðrÞ whose asymptotic value Eð∞Þ is the “hair
energy” for the hairy Schwarzschild solutions with κ1 ¼ 0 and rH ≪ 1.
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value as rH → 0 because the approximation (11.13) is not
valid for however small rH.

D. Parameter regions for solutions
with c3 = − c4 = 5=2

Let us now collect all the facts together. The diagram in
Fig. 14 shows the region in the ðrH; ηÞ plane within which
there are hairy black hole solutions. The low boundary of this
region at η ¼ 0 corresponds to solutions whose f metric is
Schwarzschild, while the upper boundary at η ¼ π=2 cor-
responds to solutions whose g metric is Schwarzschild. The
left boundary corresponds to the limiting solutions with
rH ¼ 0: the zero size black holes. The right boundary marks
the tachyon limit beyond which the solutions would become
complex-valued. The upper-left corner of the diagram con-
tains solutions with a singular f geometry, but their g
geometry, which is physically measurable, is regular.
The diagram also shows lines corresponding to the zero

modes, ω2 ¼ 0, of the perturbative eigenvalue problem
(10.6). The vertical line corresponds to the GL value
rH ¼ 0.86. The eigenvalue ω2 changes sign when crossing
these lines, therefore, the lines separate sectors where
ω2 > 0 and hence the solutions are stable, from sectors
where ω2 < 0 and the solutions are unstable. There are
altogether two stable and two unstable sectors. It is worth
noting that the stability region is now much larger than for
solutions with c3 ¼ −c4 ¼ 2 considered in the previous
section. One also notices that the tachyonic solutions are in
the unstable sector.
Finally, the diagram shows the “physical region” corre-

sponding to physically acceptable solutions. As explained
above, for such solutions the coupling κ1 ¼ cos2ðηÞ should
be very small for their mass not to be too large, hence η
should be very close to π=2. The solutions should be stable,
hence they should correspond to the sector where ω2 > 0.

These conditions specify the physical region to be the thick
(green online) line at the top of the diagram.
Physical solutions are therefore described by the g metric

which is extremely close to Schwarzschild, since

GμνðgÞ ¼ κ1Tμνðg; fÞ; where κ1 ≤ 10−34: ð11:16Þ

The “hairy features” of the solutions hidden in the f metric
should be difficult to observe, unless in violent processes
like black hole collisions producing large enough Tμνðg; fÞ
to overcome the 10−34 suppression. Summarizing, the static
bigravity black holes should be extremely similar to the GR
black holes, but their strong field dynamics is expected to
be different.
As explained above, the physical region contains stable

hairy black holes whose masses range from the minimal
value ∼0.2γ1.35 ×M⊙ up to the maximal value ∼0.3 ×
106γ1.35 ×M⊙ with γ ∈ ½0; 1�. Yet heavier black holes also
exist in the theory but they cannot be hairy and should be
described by the “bald” Schwarzschild solution (1.2),
which is stable for rH > 0.86. Stable black holes with
M ≤ 0.2γ1.35 ×M⊙ can only be of the type (1.1).

E. Parameter regions for dual solutions
with c3 = 1=2, c4 = 3=2

Let us now see how the described above solutions look
after the duality transformation (9.3). This transformation
converts the parameter values (11.1) into (11.2), flips the
sign of η − π=4 and swaps the Q, N, r with q, Y, U.
Graphically, this amounts to relabelling the functions and
plotting them against U instead of r. The ADM mass and
temperature are invariant under duality. The stability
property also does not change since, for example, if a
solution is unstable and admits growing in time perturba-
tions, then its dual version will contain the same growing
modes and hence will be unstable as well.
Figure 15 shows the dual version of Fig. 11. The mass

curves MðrHÞ still intersect in the GL point but they look
quite different as compared to those in Fig. 11. In particular,
not all of them are single valued. The reason is that the
functions UHðrHÞ in Fig. 11 are not always monotone,
hence their inverses shown in Fig. 15 are not single valued.
As a result, for each η such that 0 ≤ cos2 η ≤ 0.6 there are
two different solutions with the same rH but with different
UH, hence the curves MðrHÞ are not always single valued.
The solutions now exist for rH ∈ ½rmin

H ðηÞ; rmax
H ðηÞ�. The

lower limit rmin
H ðηÞ corresponds to what used to be the upper

limit before the duality—the tachyon solutions with vanish-
ingly small horizon determinant D. The upper limit rmax

H ðηÞ
corresponds for small η to solutions whose g metric starts
being singular. Before the duality these were solutions
whose f metric started being singular while their g metric
was regular. After the duality their g metric becomes
singular, hence such solutions are no longer allowed and
should be excluded. For larger values of η the right

FIG. 14. The parameter region in the ðrH; ηÞ plane correspond-
ing to regular hairy black hole solutions with c3 ¼ −c4 ¼ 5=2.
The dashed black ω2 ¼ 0 lines separate stable and unstable
sectors. The upper left corner contains solutions with a singular f
metric; however, their g geometry is regular.

ROMAIN GERVALLE and MIKHAIL S. VOLKOV PHYS. REV. D 102, 124040 (2020)

124040-24



boundary rmax
H ðηÞ corresponds to points where the two

different solutions with the same rH but with different UH
merge to each other.
The solutions below the GL point, for rH < 0.86, are still

more energetic than the solution with η ¼ π=2, hence their
hair mass Mhair is positive, whereas above the GL point it
becomes negative. Finally, Fig. 16 shows the existence
diagram in the ðrH; ηÞ plane, together with the stability
regions. The diagram now looks quite different as com-
pared to that in Fig. 11, although it corresponds to essen-
tially the same solutions, up to the duality transformation.
Although the duality does not change stability, it inter-
changes positions of the stability sectors. Therefore, the
physical region corresponding to stable solutions with η
close to π=2 is now above the GL point, where the
hair mass is negative. The physical solutions are again
characterized by the g metric that is extremely close to
Schwarzschild, but the novel feature is that now for each

value of rH from the physical region there are two different
solutions whose g metrics are almost the same but the f
metrics are different.
As one can see, the physical region in Fig. 15 is rather

short and corresponds only to supermassive black holes
with 0.86 < rH < rmax

H . All black holes of smaller masses
are unstable. Therefore, the parameter choice c3 ¼ 1=2,
c4 ¼ 3=2 is not physically interesting.

XII. CONCLUDING REMARKS

To recapitulate, we presented above a detailed analysis
of static and asymptotically flat black holes in the ghost-
free massive bigravity theory. Extending the earlier result
of [44], we find that for given values of the theory
parameters c3; c4; η and for a given event horizon size
varying within a finite range, rH ∈ ½rmin

H ; rmax
H �, there are

one or sometimes two different black holes supporting a
nonlinear massive graviton hair, in addition to the “bald
Schwarzschild” solution with gμν ¼ fμν described by
(1.2). The hairy solutions are more energetic than the
Schwarzschild one if rH < 0.86 and they are less energetic
otherwise. When rH approaches the limiting values rmin

H or
rmax
H , the solutions either become complex valued or merge
between themselves. For some values of c3, c4 zero-size
black holes exist for which rmin

H ¼ 0 but the corresponding
UH remains finite. Depending on values of rH; c3; c4; η, the
hairy solutions can be either stable of unstable.
To avoid the hairy black holes being unphysically heavy,

one is bound to assume the massive graviton Compton
length to be 1=m ¼ γ × 106 km where the parameter γ may
range in the interval [0, 1]. The agreement with the
cosmological data is then achieved by assuming that
κ1 ¼ cos2 η ¼ γ2 × ðMew=MPlÞ2 ¼ γ2 × 10−34. The stable
hairy black holes are described by a g metric which is
extremely close to Schwarzschild, but their f metric is quite
different. These black holes have the mass and size close to

FIG. 16. The parameter region in the ðrH; ηÞ plane correspond-
ing to regular hairy black hole solutions with c3 ¼ 1=2,
c4 ¼ 3=2. The dashed black ω2 ¼ 0 lines separate stable and
unstable sectors.

FIG. 15. The mass MðrHÞ (left) and the functions UHðrHÞ (right) for the hairy black hole solutions with c3 ¼ 1=2, c4 ¼ 3=2. The
crosses mark points on the right of which the g metric becomes singular, hence these pars of the curves correspond to unphysical
solutions that should be excluded from consideration.
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those of ordinary black holes with the masses ranging from
∼0.2γ1.35 ×M⊙ to ∼0.3 × 106γ1.35 ×M⊙, the latter being
the value typical for the supermassive astrophysical black
holes if γ ∼ 1. Yet heavier black holes in the theory should
be bald. As a result, if the bigravity theory indeed applies to
describe physics, the astrophysical black holes should
support the hair hidden in the f metric.
Since the f metric is not coupled to matter and cannot

be directly probed, while the deviation of the “visible” g
metric from Schwarzschild is suppressed by the factor of
κ1 ¼ γ × 10−34, the hairy black holes should normally be
undistinguishable from the usual GR black holes. However,
in violent processes like black hole coalescences the inter-
action between the two metrics may produce an energy
momentum tensor strong enough to overcome the 10−34

suppression in GμνðgÞ ¼ κ1Tμνðg; fÞ. In this case the
deviation from GR should become visible. Therefore, it is
possible that signals from black hole mergers detected by
LIGO/VIRGO [65] may carry information about the hairy
structure of the black holes. One could expect a “hair
imprint” in the signal to be stronger for small black holes,
sincewe know that for small black holes the amplitudesU, Y
of the f metric becomevery large, which should influence the
Tμνðg; fÞ of the merger. It is therefore possible that the hair
imprints will be visible when smaller mass mergers (see [66]
for a recent review) are detected. However, to actually
determine the hair imprint in the signal would require
calculations going beyond the scope of the present paper.
We therefore leave this problem for a separate project and for
the time being simply refer to the recent preprint [67] where
calculations of this type are performed within the context of
the ghost-gree massive gravity [8] [where the only static
black holes are those described by (1.1)].
Finally, we should discuss the paper [45] that also

considers black holes in the ghost-free massive bigravity
theory. This paper presents essentially the same classification
of different types of blackholes as the one previously given in
[18] but in a more refined way, extending it and paying
attention to some subtle points. The paper addresses in
particular the issue of convergence of the solutions to the flat
background in the asymptotic region. Among other things, it
claims that the Schwarzschild solution is the only asymp-
totically flat black hole in the theory. At the same time, the
paper does not contain a rigorous proof of this statement but
gives just a number of plausibility arguments, so that the
claim should rather be viewed as a conjecture, as actually
explicitly stated in some places of [45]. These arguments are
as follows.
First of all, it was emphasized in [45] that the usual

practice of starting the numerical integration not at the
horizon r ¼ rH, which is a singular point of the differential
equations, but at a regular nearby point r ¼ rH þ ϵ, as
was done in [44], could in principle lead to numerical
instabilities. We agree with this, and it is for this reason
that we use the desingularization procedure (described in

Appendix A below) which allows us to start the numerical
integration exactly at r ¼ rH (initial conditions exactly at
r ¼ rH were described also in [45]).
The paper [45] makes also another remark concerning the

behavior at the horizon. It is known that in order to be able to
cross the horizon, for examplewhen studying geodesics, one
cannot use the Schwarzschild coordinates and one should
introduce instead regular at the horizon coordinates. These
can be, for example, Eddington-Finkelshtein (EF) coordi-
nates in which g00 ¼ g11 ¼ 0, g01 ¼ g10 ≠ 0. It was noticed
in [45] that the f metric, when expressed in the same
coordinates, generically does not have the same form, since
it has f11 ≠ 0, hence the two metrics cannot be simulta-
neously EF.We understand this, but this does not invalidate
the background solutions (Ref. [45] agrees on this). The
horizon geometries are regular, and if one wishes, one can
use the same boundary conditions at the horizon to
integrate inside the horizon to recover the interior solu-
tions.Within the parametrization described inAppendixA,
this is achieved by simply changing the sign of the
numerical integration step.
Next, small initial deviations from the Schwarzschild

solution via setting at the horizon u ¼ UH=rH ¼ 1þ ϵwere
considered in [45]. Integrating the equations toward large r
then yields metrics whose components diverge as r → ∞
instead of approaching finite values. This observation, made
already in [18], shows that there are no regular and
asymptotically flat solutions in a small vicinity of the
Schwarzschild solution. However, there can be regular
solutions corresponding to u considerably deviating from
unit value.
Finally, the paper [45] reproduces and analyzes (in

Appendix A) one of the asymptotically flat solution (with
a singular f metric) found in [44]. It obtains a pathological
result, and the reason is the following. Appendix D of [45]
describes the numerical method used—a straightforward
integration starting from the horizon with the standard
routine of Mathematica. This adequately produces the
solution with a given precision, but only within a finite
range of the radial coordinate r. If one integrates farther on
trying to approach flat space, then the growing Ceþr mode
generically present in the solution leads to a rapid accumu-
lation of numerical errors triggering a numerical instability.
Trying to suppress this mode by adjusting the horizon
boundary conditions, one typically observes the derivatives
of some functions in the solution growing without bounds at
a some finite r. Precisely this type of behavior at the end of
the integration interval is seen in Fig. 11 in [45].
One cannot get asymptotically flat solutions within the

numerical scheme adopted in [45], since pathological
features arise in this way inevitably. This must be the
reason behind the conviction that such solutions do not
exist. However, all pathologies can be eliminated within the
more elaborate numerical scheme described above—
via suppressing the growing Ceþr mode from the very
beginning.
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APPENDIX A: DESINGULARIZATION
AT THE HORIZON

The horizon r ¼ rH is a singular point of the dif-
ferential equations—the derivatives N0 and Y 0 expressed
byEqs. (4.23) are not defined at this point. The usual practice
to handle this difficulty is to use the local power series
expansions (6.1) and (6.2) to start the numerical integration
not exactly at r ¼ rH but at a nearby point with r ¼ rH þ ϵ
where ϵ is a small number. Onemay then hope that the results
will not be very sensitive to the value of ϵ. However, in such
an approach ϵ remains an arbitrary parameter not defined by
any prescription. This inevitably affects the stability of the
numerical procedure, which becomes evident when one
studies the dependence of the solutions on the parameters.

At the same time, it is possible to reformulate the
problem in such a way that the numerical integration starts
exactly at r ¼ rH. Let us make the change of variables

N ¼ Sν; Y ¼ Sy with S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rH
r

r
: ðA1Þ

The functions ν, y and their derivatives are defined also at
r ¼ rH. Equations (4.3) and (4.4) then yield

ν0 ¼ −
ν

2r
þ C1
2νyr2S2

; y0 ¼ −
yU0

2U
þ C2
2νyr2US2

; ðA2Þ

where

C1 ¼ ðr − rHν2 − κ1r3P0Þy − κ1r3P1U0ν;

C2 ¼ νr2ð1 − κ2r2P2ÞU0 − κ2r4P1y − rHUνy2: ðA3Þ

At the horizon the derivatives ν0 and y0 are finite, which
requires that

C1jrH ¼ 0; C2jrH ¼ 0; ðA4Þ

from where one obtains the horizon values

U0
H ¼ ð1 − ν2 − κ1r2P0Þy

κ1r2P1ν

����
rH

; ðA5Þ

yH ¼ 1þ ðκ2r2P2 − 1Þν2 þ κ1κ2ðP0P2 − P2
1Þr4 − ðκ1P0 þ κ2P2Þr2

κ1rP1Uν

����
rH

: ðA6Þ

At the same time, the horizon value of U0 can be obtained
from (4.23),

U0
H ¼ lim

r→rH
DUðr; U; Sν; SyÞ≡DUHðrH;UH; νH; yHÞ:

ðA7Þ
Thisvaluemust agreewith theonegivenby(A5),whichyields
a condition on νH, and using (A6), this condition reduces [if
bk are chosen according to (2.15)] to a biquadratic equation

Aðν2HÞ2 þ Bν2H þ C ¼ 0; ðA8Þ
where the coefficients A, B, C are (rather complicated)
functions of rH, UH. As a result, for given rH, UH there

are two possible horizonvalues νð1ÞH and νð2ÞH . Injecting to (A5)
and (A6), this determines the horizon values yH and U0

H.
Finally, the horizon values of ν0 and y0 are obtained from
(A2) by taking the S → 0 limit and using l’Hopital’s rule,
which yields

ν0H ¼ −
νH
2rH

þ
C0
1jrH

2rHνHyH
; y0H ¼ −

yHU0
H

2UH
þ

C0
2jrH

2rHνHyHUH
:

ðA9Þ

There remains to compute the derivatives here. One has, for
example,

C0
1jrH

¼
� ∂
∂rþ ν0H

∂
∂νþ y0H

∂
∂yþ U0

H
∂
∂U þ U00

H
∂

∂U0

�
C1ðr; U; ν; y; U0Þ

����
r¼rH;U¼UH;ν¼νH;y¼yH

ðA10Þ

where the second derivative is similarly obtained from (A7),

U00
H ¼

� ∂
∂rþ ν0H

∂
∂νþ y0H

∂
∂yþU0

H
∂
∂U

�
DUðr; U; Sν; SyÞ

����
r¼rH;U¼UH;ν¼νH;y¼yH

; ðA11Þ
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and similar expressions for C0
2jrH

. Injecting this to (A9)
yields linear in ν0H and y0H relations, which can be resolved
to give (we do not show explicit formulas in view of their
complexity)

ν0H ¼ ν0HðrH;UH; νH; yHÞ; y0H ¼ y0HðrH;UH; νH; yHÞ:
ðA12Þ

Summarizing the above discussion, the equations in the
desingularized form read

ν0 ¼ −
ν

2r
þ C1
2νyr2S2

≡ F νðr; U; ν; yÞ;

y0 ¼ −
yU0

2U
þ C2
2νyr2US2

≡ F yðr; U; ν; yÞ;

U0 ¼ DUðr; U; Sν; SyÞ≡ FUðr; U; ν; yÞ; ðA13Þ

where C1 and C2 are defined by (A3) while DU is the same
as in (4.23). These equations apply for r > rH, while at
r ¼ rH they should be replaced by

ν0 ¼ ν0HðrH;UH; νH; yHÞ;
y0 ¼ y0HðrH;UH; νH; yHÞ;
U0 ¼ U0

HðrH;UH; νH; yHÞ; ðA14Þ

where ν0H, y
0
H, U

0
H are defined by Eqs. (A5) and (A12). The

horizon values rH andUH ≡ urH can be arbitrary, while νH
is not arbitrary but must fulfil the algebraic equation (A8),
whereas yH is determined by (A6). This formulation allows
one to start the integration exactly at the horizon r ¼ rH
and then continue to the r > rH region.

APPENDIX B: FIELD EQUATIONS WITH
TIME DEPENDENCE

Let us allow both metrics to depend on time, assuming
that they are still spherically symmetric. The gauge free-
dom of reparametrizations of the t, r coordinates can be
used to make the g metric diagonal, but the f metric will in
general contain an off-diagonal term. The two metrics can
be written as [10]

ds2g ¼ −Q2dt2 þ dr2

Δ2
þ R2dΩ2;

ds2f ¼ −ðq2 − α2Q2Δ2Þdt2 − 2α

�
qþQΔ

W

�
dtdr

þ
�

1

W2
− α2

�
dr2 þ U2dΩ2; ðB1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and Q, q, Δ,W, α, U, R are
functions of r and t.

One can check that the tensor

γμν ¼

0
BBB@

q=Q α=Q 0 0

−αQΔ2 Δ=W 0 0

0 0 U=R 0

0 0 0 U=R

1
CCCA ðB2Þ

has the property γμσγ
σ
ν ¼ gμσfσν. This tensor is used to

compute the energy-momentum tensors Tμ
ν and T μ

ν

in (2.7).
One can redefine the two amplitudes similarly to (4.1)

N ¼ ΔR0; Y ¼ WU0; ðB3Þ
where the prime denotes the derivative with respect to r,
and one can impose the gauge condition

R ¼ r: ðB4Þ
As a result, the independent field equations (2.18) become

G0
0ðgÞ ¼ κ1T0

0; G1
1ðgÞ ¼ κ1T1

1; G0
1ðgÞ ¼ κ1T0

1;

G0
0ðfÞ ¼ κ2T 0

0; G1
1ðfÞ ¼ κ2T 1

1; G0
1ðfÞ ¼ κ2T 0

1;

ðB5Þ
plus two nontrivial components of the conservation con-

dition ∇
ðgÞ

μTμ
ν ¼ 0,

∇
ðgÞ

μTμ
0 ¼ 0; ∇

ðgÞ
μTμ

1 ¼ 0: ðB6Þ
Here one has explicitly

GðgÞ00 ¼
N2 − 1

r2
þ 2NN0

r
; G1

1ðgÞ ¼
N2 − 1

r2
þ 2N2Q0

rQ
;

G0
1ðgÞ ¼

2 _N
rNQ2

; ðB7Þ

where the dot denotes the partial derivative with respect
to t, while

T0
0 ¼ −P0 − P1

NU0

Y
; T1

1 ¼ −P0 − P1

q
Q
;

T0
1 ¼ P1

α

Q
; ðB8Þ

where Pm are defined in (3.5). The components of the
second stress-energy tensor are

T 0
0 ¼ −

r2

NU2A
ðP1qY þ P2ðα2N2QY þ qNU0ÞÞ;

T 1
1 ¼ −

r2

U2A
ðP1QU0 þ P2ðα2NQY þ qU0ÞÞ;

T 0
1 ¼ −

r2

NU2A
P1Yα; ðB9Þ
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where A ¼ NQYα2 þ qU0. The components of the Einstein tensor for fμν, are complicated:

GðfÞ00 ¼ −
1

U2YA3
ðN3Q3Y4α6 þ ð−NQ _U2Y4 þ N3Q3U02Y4 þ 2N3Q3UU00Y4

þ 3N2qQ2U0Y3Þα4 þ ð−2NQU _U _αY4 − 2qQU _UN0Y4 þ 2NQU _Uq0Y4

− 2NqU _UQ0Y4 þ 2NqQ _UU0Y4 − 2N3Q3UU0α0Y4 þ 2NqQU _U0Y4

þ 2N2Q2 _UU02Y3 þ 2N2Q2UU0 _U0Y3 þ 2N2Q2U _UU00Y3 − 2N2Q2U _UU0Y 0Y2Þα3
þ ð−Nq2QU02Y4 þ 2q2QUN0U0Y4 − 2NqQUq0U0Y4 þ 2Nq2UQ0U0Y4

− 2NqQU _Uα0Y4 − 2Nq2QUU00Y4 þ N2qQ2U03Y3 þ 2NqQ2UN0U02Y3

− 2N2Q2Uq0U02Y3 þ 2N2qQUQ0U02Y3 − q _U2U0Y3 − 2N2Q2U _UU0α0Y3

þ NQ _U2U02Y2 þ 3Nq2QU02Y2 þ 2N2qQ2UU02Y 0Y2 þ 2NQU _UU0 _U0Y2

− 2NQU _U _Y U02YÞα2 þ ð4Nq2QUU0α0Y4 þ 2q2 _UU02Y3 − 2qU _U _αU0Y3

þ 2N2qQ2UU02α0Y3 þ 2q2UU0 _U0Y3 − 2q2U _UU00Y3 þ 2NqQ _UU03Y2

þ 2qQU _UN0U02Y2 − 2NQU _Uq0U02Y2 þ 2NqU _UQ0U02Y2 þ 2q2U _UU0Y 0Y2

þ 2NqQUU02 _U0Y2Þα − q3Y3U03 þ qY _U2U03 þ q3YU03 − 2qU _U _Y U03

− 2q3UY2U02Y 0 þ 2NqQUY2 _UU02α0 þ 2q2UY3 _UU0α0 þ 2qUY _UU02 _U0Þ;

GðfÞ01 ¼ −
2

UYA3
ðð−Q _UN0Y4 − N _UQ0Y4 þ NQ _U0Y4Þα4 þ ð−NQ _αU0Y4

þ qQN0U0Y4 þ NqQ0U0Y4 − NQ _Uα0Y4 − NqQU00Y4 þ NQ2N0U02Y3

þ N2QQ0U02Y3 − N2Q2U0U00Y3Þα3 þ ð2NqQU0α0Y4 − _Uq0U0Y3 þ qU0 _U0Y3

þ 2N2Q2U02α0Y3 − q _UU00Y3 þQ _UN0U02Y2 þ N _UQ0U02Y2 þ q _UU0Y 0Y2

− NQ _UU0U00Y2 − NQ _YU03Y þ NQ _UU02Y 0YÞα2 þ ð−q _αU02Y3 þ qq0U02Y3

þ q _UU0α0Y3 þ NQq0U03Y2 − q2U02Y 0Y2 þ 2NQ _UU02α0Y2 − NqQU03Y 0YÞα − q _YU04 þ Y _Uq0U03Þ;

GðfÞ11 ¼ −
1

U2A3
ðN3Q3Y3α6 þ ð−NQ _U2Y3 þ N3Q3U02Y3 þ 2QU _N _U Y3 þ 2NU _Q _UY3

− 2NQUÜY3 þ 2N2Q3UN0U0Y3 þ 2N3Q2UQ0U0Y3 þ 3N2qQ2U0Y2Þα4
þ ð2NQU _U _αY3 − 2qQU _NU0Y3 þ 2NQU _qU0Y3 − 2NqU _QU0Y3

þ 2NqQ _UU0Y3 þ 2N3Q3UU0α0Y3 þ 2NqQU _U0Y3 þ 2N2Q2 _UU02Y2

þ 4N2Q2UU0 _U0Y2 − 2N2Q2U _YU02YÞα3 þ ð−Nq2QU02Y3 − 2NqQU _αU0Y3

− 2NqQUq0U0Y3 þ N2qQ2U03Y2 − 2N2Q2U _αU02Y2 þ 2NqQ2UN0U02Y2

þ 2N2qQUQ0U02Y2 − q _U2U0Y2 þ 2U _q _UU0Y2 − 2qUÜU0Y2 þ 2qU _U _U0Y2

þ NQ _U2U02Y þ 3Nq2QU02Y − 2QU _N _UU02Y − 2NU _Q _UU02Y þ 2NQUÜU02Y

− 2qU _U _Y U0Y þ 2NQU _UU0 _U0Y − 2NQU _U _Y U02Þα2 þ ð2qQUY _NU03

− 2NQUY _qU03 þ 2NqUY _QU03 þ 2NqQY _UU03 þ 2q2Y2 _UU02 þ 2q2UY _YU02

− 4NQUY _U _αU02 þ 2N2qQ2UY2α0U02 þ 2NqQUY _U0U02 − 2qUY2 _U _αU0Þα
þ q3U03 − q3Y2U03 þ q _U2U03 − 2U _q _UU03 þ 2NqQUY _αU03 þ 2qUÜU03

þ 2q2UY2 _αU02 − 2q2UY2q0U02Þ: ðB10Þ
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Finally, there are two nontrivial components of the conservation law,

∇
ðgÞ

μTμ
0 ¼ −P1

�
αN0NQþ 2αN2Qþ α0N2Qþ q _N

NQ
þ N _U0

Y
−
NU0 _Y
Y2

�

−
dP0

r
ðαN2Qþ _UÞ − dP1

r

�
αN2QU0 þ N _UU0

Y

�
;

∇
ðgÞ

μTμ
1 ¼ P1

�
_α

Q
−

α _N
NQ

−
q0

Q
þ NQ0U0

QY

�
þ dP1

r

�
α2N2 þ α _U

Q
þ qNU0

QY
−
qU0

Q

�
þ dP0

r

�
NU0

Y
−U0

�
; ðB11Þ

where dPm are defined in (4.10). Equations (B5), (B6) comprise a system of 8 equations for 6 functions Q, q, Δ,W, α, U.
For this system not to be overdetermined, only 6 equations out of 8 should be independent. As shown in Sec. X, this indeed
happens at least for small α, when the perturbative analysis of the equations shows that some of them coincide.
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