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The Ashtekar-Streubel fluxes give a proposed definition of the angular momentum emitted by an
isolated gravitationally radiating system. This was based on identifying a “phase space of radiative modes,”
independent of any internal degrees of freedom, and using the Hamiltonian functions conjugate to the
action of the Bondi-Metzner-Sachs (BMS) group as the energy-momentum, supermomentum, and angular
momentum. However, there are some difficulties in formulating this phase space so as to get the proper
degrees of freedom. I consider how to address this point, and also to identify circumstances in which the
radiative modes are sufficiently decoupled that they can be assigned their own angular momentum. Two
different phase spaces are considered. One, which seems to reflect what previous workers have done (it
leads to the usual formulas for the Ashtekar-Streubel fluxes), is mathematically simpler, but this has
unwanted degrees of freedom and is difficult to interpret physically. The second is a quotient of the first; it
is better justified (at least in terms of degrees of freedom), and plausibly decouples the radiative angular
momentum from internal modes (at least for systems which ultimately become stationary). The symplectic
form for this quotient and the corresponding angular momentum flux involve highly nonlocal correlations.
Both phase spaces are shown to have Poisson brackets implementing the BMS algebra. For both phase
spaces, for axisymmetric spacetimes vacuum near null infinity, there can be no gravitational radiation of
angular momentum about the axis of symmetry, although matter can carry off angular momentum in such
cases.
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I. INTRODUCTION

In an important paper, Ashtekar and Streubel [1] intro-
duced the idea of defining a phase space of radiative modes
of the gravitational field and proposed using natural
structures there to quantify the kinematics—in particular,
the energy-momentum and angular momentum—of gravi-
tational radiation. The resulting formulas have been called
fluxes (although they are in effect the time-integrals of what
are usually called fluxes).
This work was a significant advance, for most previous

attempts to deal with the question had had ad hoc features.
The Ashtekar-Streubel approach, by contrast, was an
attempt to build the analysis by appealing to general
principles we may have some confidence in: symplectic
mechanics, and the relation between symmetries and
conserved quantities.
Their starting point was the introduction of a “phase

space of radiative modes” ΓAS of the gravitational field—
essentially, the space of allowable Bondi shears σ at future
null infinity Iþ. There is a natural candidate ωAS for a
symplectic form on ΓAS, given by formally taking the limit

of the known symplectic form in terms of data on an
acausal Cauchy surface.
Although no exact isometries can be expected to exist,

there is what one might call a weak symmetry group, the
Bondi-Metzner-Sachs (BMS) group of motions preserving
the universal structure of Iþ.1 The BMS group will act on
the space of Bondi shears, and Ashtekar and Streubel
solved the equation

dHξ ¼ ωASðVξ; ·Þ ð1Þ

to deduce the Hamiltonian functions Hξ conjugate to the
Hamiltonian vector fields Vξ on ΓAS associated with the
BMS generators ξa. It is these Hamiltonian functions that
are called fluxes; they are given by Ashtekar and Streubel
as certain integrals of the radiative data over Iþ. Those
conjugate to BMS translations they showed agreed with the
Bondi-Sachs energy-momentum emitted in radiation; those
conjugate to supertranslations gave the emitted Geroch
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1The BMS group, although certainly expressing the invariance
of the regime in question, is an infinite-dimensional object,
introduced to compensate for lack of structure (or, equivalently, to
take into account the breadth of allowable general-relativistic
structures). It is in this sense I call it weak.
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supermomenta [2]; and those conjugate to BMS Lorentz
motions they interpreted as the angular momentum emitted
in radiation.2

That this can be done in a relatively straightforward way
is a consequence of a great deal of gauge control built into
the structure. The construction is phrased in terms of
characteristic data (equivalent to the Bondi shear) for
the radiation at Iþ; the gauge freedom is considerably
reduced for such data.
The proposal is natural, and is attractive in that it appeals

to a structure (symplectic mechanics) we believe is deep,
and does so in a way which is formally parallel to
successful theories. It is fair to say that this attractiveness
is to some degree counterbalanced by the weakness of the
BMS group—it is not clear how this very large family of
motions will produce as focused a notion of conserved
quantities as one has in non-general-relativistic physics.
But one would certainly like to push this analysis and see
where it goes, taking as a guide the power of symplectic
mechanics.
This program turns on the degree to which we can

confidently identify the phase space. It must encompass the
relevant degrees of freedom; if there are any gauge degrees
of freedom, they must be identified and controlled; finally,
we must have good reason to think that these degrees of
freedom can be isolated from others for the purposes of
defining energy-momentum and angular momentum.
In this paper, I will examine the proposal in light of these

concerns. There are two, interrelated, issues.
The first is the question of the precise definition of the

phase space, and in particular how it accommodates shears
which do not vanish as the Bondi retarded time parameter
u → �∞ and how it is acted on by supertranslations.
The difficulty here is that one does want to allow shears
with nontrivial u → �∞ behavior, but at the same time
one wants to carefully control any gauge freedom. This
is a somewhat delicate degrees-of-freedom issue. The
Ashtekar-Streubel paper does not directly address this.
The second issue is to justify, for the purposes of

computing the angular momentum, the assumed decou-
pling of the radiative modes. This is not a simple thing.
Within the canonical framework, one would have to start
from data for the entire system—radiation and internal
modes—extend the BMS group action to at least the
asymptotics of the internal modes, but then show that,
for at least a suitable class of systems, one could compute
the kinematics (energy-momentum, angular momentum,
supermomentum) of the emitted radiation without reference
to the internal modes.

The difficulty comes in splitting the physical degrees of
freedom from the gauge modes. This is delicate for angular
momentum, because the degrees of freedom are typically
functions of three real variables, but to account for the
supertranslational freedom we must control the freedom
even down to functions of two variables. This issue does
not appear explicitly in the Ashtekar-Streubel paper; it is
evidently bound up with the degrees-of-freedom issue
mentioned above.
As a particular example, suppose a system evolves to

become significantly asymmetric, and then for an interval
of retarded time emits gravitational waves, leaving a
memory effect. (This might happen, for instance, when a
star becomes unstable, oscillates asymmetrically, and then
supernovas.) One physically plausible contribution to the
emitted angular momentum would come from the “cross
product” of the memory-induced supertranslation with the
mass aspect.3 This term would be first order in the radiation
data (and first order in the matter, as reflected in the
momentum aspect). A term such as this, coupling matter
and radiation, if present, could well swamp the purely
radiative effects.4 So we do need to know why, or in what
circumstances, we may decouple the radiative angular
momentum from other contributions.
One should also note that, to the extent the radiative

angular momentum does decouple, it is difficult to assess
its connection with other physics. One really wants an
accounting in which one can talk about the exchange of
other forms of angular momentum with that in gravita-
tional waves.
Although the focus of this paper is on angular momen-

tum, the identification of the radiative phase space is
evidently of interest beyond that. This space is used in
an important way in Strominger’s [8,9] argument that the
Ashtekar-Streubel supermomenta are conserved and relate
data on past and future null infinities.
Much of what is at issue in this paper depends on the

u → þ∞, u → −∞ behavior of the shear, and it will be
helpful to have some terminology for this. I will say a shear
has standard asymptotics if it takes u-independent and
purely electric5 values in the two regimes. The values in the
two regimes may be distinct; if they are, one (borrowing
terminology from quantum field theory) says the shear lies

2These classifications are relative to a given choice of Bondi
retarded time parameter u. Because of the supertranslation
freedom in choosing this, in a BMS-based approach like this,
there will be an infinite-dimensional family of angular momenta,
indexed by the different cuts of Iþ.

3The mass aspect is the quantity integrated over a cut of Iþ to
give the Bondi-Sachs energy-momentum. The important thing in
this example is that the asymmetry means many multipoles may
be present in the mass aspect, and these may pair against the
multipoles in the supertranslation.

4Such terms do occur in the twistorial treatment of angular
momentum [3]. See also [4–7] for investigations of possible such
contributions from other definitions.

5The “electric” and “magnetic” parts of the shear are conven-
tional terms for parity-natural and parity-unnatural. The precise
rates of falloff as u → �∞ will not be very important; for
conceptual simplicity, I will assume that for juj large enough the
limiting values are actually attained.
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in an infrared sector. Otherwise, it is in the vacuum sector.
Radiation memory is associated with shear in the infrared
sectors.
When Ashtekar and Streubel define their phase space

[see the paragraph in their paper containing their Eq. (4.3)],
they actually exclude infrared sectors: the shear must fall
off at least as fast as a power of u. This is presumably an
oversight; when they argue for the nondegeneracy of their
symplectic form, they do allow for the possibility of
infrared-sector behavior. One can also check that their
calculations of their fluxes do not depend on being in the
vacuum sector. For clarity, I will refer to the space of shears
with standard asymptotics as the extended phase space Γe.
This is presumably along the lines of what Ashtekar and
Streubel intended.

A. Results

The results are of two sorts. First, there are conceptual
clarifications, particularly of the possible structure of the
phase space, but it should be made clear that conjectural
elements remain. Accepting these, however, the second
class of results are flux formulas appropriate to shears
which need not vanish as u → �∞ (in the case of the
extended phase space, these just reproduce the Ashtekar-
Streubel fluxes), and consequences of those.

1. The phase spaces

The main conceptual points go to the question of how to
define the phase space so that infrared sectors are allowed
but one is, as nearly as possible, isolating the physically
relevant degrees of freedom and justifying, again as far as
possible, the decoupling of the radiation’s angular momen-
tum from other contributions.
We will see that there is a tension between using Iþ as a

hypersurface on which we collect the outgoing radiation
profiles (its usual function) and wanting to use it for freely
specifying data (its function in the flux approach to
defining the phase space). Also, even if we are ultimately
interested in radiation, if from the start we only consider
radiative data, we have no way of taking up the question of
whether its angular momentum decouples from other
physics.
It is possible to get a working compromise addressing

these issues by appealing to considerationsofwell-posedness.
We want to begin by considering all possible degrees of
freedom, but also to (as well as we can) split those into
radiative ones and internal ones. To do this, at least at a formal
level, we may think of specifying data on a Cauchy surface Σ
which would contain not all of Iþ but the portion ΣIþ of it
prior to some late retarded time, together with an internal
portion Σint; see Fig. 1. Physically, this corresponds to
considering systems’ radiation before the (late) retarded time.
Within this scheme, one can make a plausible case that the
angular momentum of the radiation decouples, if the final
system (represented by the data on Σint) is stationary.

Certainly, in many practical cases it is reasonable to suppose
the final systems are stationary.
As noted above, there are some choices to be made in the

Ashtekar-Streubel paper in the precise definition of the
phase space. By the extended phase space ðΓe;ωeÞ, I will
mean the set of all shears with standard asymptotics,
together with the Ashtekar–Streubel symplectic form on
this space.6 It is this phase space which leads to the usual
Ashtekar-Streubel fluxes. We learn, though, from the
considerations of well-posedness, that this space has
unwanted gauge degrees of freedom—for instance, it
allows multiple representations of Minkowski space. It
may be possible to interpret these extra degrees of freedom
as information needed to embed the isolated system
represented by the Bondi-Sachs spacetime in the larger
cosmos.
There is a formally natural way of defining a quotient Γ

of Γe which does not have the unwanted freedom, and there
is a natural symplectic form ω on Γ, whose integral
expression differs from ωAS by the addition of some
interesting boundary terms at u ¼ �∞. I do not have a
proof that ðΓ;ωÞ is the “correct” phase space, but it is
suggested by two lines of thought.

2. The fluxes

The BMS group acts naturally on each phase space
ðΓ;ωÞ, ðΓe;ωeÞ, and one can work out the Hamiltonian
functions conjugate to those motions—the fluxes. The
results for the extended phase space agree with those of
Ashtekar and Streubel. One striking feature is that the
Ashtekar-Streubel fluxes are inhomogeneous in the shear,
with the angular momenta and energy-momentum being
purely second order but the supermomenta having also
first-order contributions. (In one natural way of writing the
fluxes, these first-order contributions appear as “boundary”

FIG. 1. A schematic representation of the Cauchy surface
Σ ¼ ΣIþ ∪ Σint. The cone is future null infinity Iþ, and the
spacetime is below it. The portion Σint contains interior data and
meets Iþ at a cut C; the portion ΣIþ is the part of Iþ to the past of
that cut.

6This has no obvious relation to the “extended” BMS algebra
which has been considered by some authors (e.g., Ref. [10]).
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terms associated with the limits u → �∞.) I will return to
this discrepancy at the end of this subsection.
For the phase space ðΓ;ωÞ, there are nonzero boundary

contributions (in general) for the emitted angular momenta,
but not for the emitted energy-momentum or emitted
supermomenta. There is no homogeneity discrepancy,
however: all the fluxes are second order in the shear.
An important point is that for each of the phase spaces

ðΓ;ωÞ, ðΓe;ωeÞ the Poisson brackets of the fluxes imple-
ment the BMS algebra. The boundary contributions are
necessary for this. This result is expected but also is not
quite trivial; it is certainly desirable, at least within the
general framework of using the weak symmetry group as a
basis for the program.
For spatial angular momentum about a given axis, I work

out the fluxes in terms of a sum over spherical harmonic
modes. For each of these modes, the component of the
shear can be thought of as a point λl;mðuÞ in the complex
plane, depending on u. As λl;mðuÞ moves, the radius from
the plane’s origin to the point will sweep out a fan. The
signed area of this, as u ranges from −∞ to þ∞ (times
some factors) turns out to be the mode’s contribution to the
extended angular momentum [that is, for ðΓe;ωeÞ], denoted
He;c. This is a formally attractive result. See Fig. 2.
For the angular momentum Hc for ðΓ;ωÞ, there is an

additional, boundary, contribution, which turns out to be
minus the signed area one would have for a straight-line
trajectory from λl;mð−∞Þ to λl;mðþ∞Þ. Alternatively, one
can think of this as corresponding to the signed area of the
fan swept out by the closed trajectory got by completing
λl;mðuÞ with the line segment. This is an odd result, and one

would like to know whether it is a hint of interesting
unsuspected structure or a signal of pathology.
I also work out corresponding results for the Hamiltonian

function conjugate to a boost, the center of energy. (The
expression for the decomposition of the shear in these
modes appears to be new.) The results are parallel to those
for spatial angular momentum, taking into account the
modes in this case form a continuum.
As I pointed out above, for the extended phase space

there is a discrepancy in the order of the shear in the
supermomentum vs the other fluxes. The reader may note
that this is odd, since in a BMS-based approach such as
this, one can define the angular momentum using any cut as
the origin, and the change in passing from one cut to
another brings in the supermomentum. The discrepancy
means there are no first-order terms when the cut is in the
Bondi system, but angular momenta about supertranslated
cuts will have first-order contributions. This raises ques-
tions about the naturality of the angular momentum fluxes.
Part of the resolution is that—as the previous discussion

indicated—the extended phase space contains nondynam-
ical modes. In order to understand its significance in the
case of weak dynamics (what we would ordinarily think of
as weak gravitational waves), we should consider shears
σ ¼ σ0 þ σ1, where σ0 is nondynamical (purely electric
and u-independent) and σ1 is dynamical but uniformly
small. For such shears, the extended angular momentum
has terms which are first order in σ1 (and first order in σ0).
This is important, because first-order terms have the
potential to dominate the second-order ones. However,
as the scheme (as so far developed) is silent about how to
assign or interpret σ0, this represents an uncomfortable,
potentially dominant, uncontrolled contribution to the
extended angular momentum.

3. Consequences

At the moment, it is not possible to argue definitively for
(or against) any of these proposed formulas. Each has what
can be considered to be attractive features from some
perspectives, but also properties which are odd enough to
raise concerns. I already noted that the boundary contri-
bution to the angular momentum Hc was curious, and that
interpretational issues need to be resolved for a secure
application of He;c. Beyond these, there are some conse-
quences of these results worth noting.
Although in one sense the modification of the phase

space to ðΓ;ωÞ is quite minor, in another it is effectively a
far less localizable concept (even at Iþ) than in the
Ashtekar-Streubel treatment. This is because the boundary
terms are not simply a difference of some expression
between u ¼ þ∞ and u ¼ −∞, but involve products
correlating the behaviors in those limits.
Consider a system which is stationary except between

two intervals I1 and I2 of Bondi retarded time; these
intervals themselves may be very greatly separated in

FIG. 2. The mode function λl;mðuÞ determines a fan of radii
from the origin in the complex plane, whose signed area weights
the mode’s contribution to the emitted extended angular mo-
mentum He;c. The trajectory is the heavy line with arrows, and
some of the radii of the fan are drawn. For the angular momentum
Hc there is also a term from the straight-line trajectory from
λl;mð−∞Þ to λl;mðþ∞Þ (here shown dashed) counted with the
opposite sign.
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retarded time. One would like to suppose that one could
model the changes of angular momentum due to each
interval of emission by such a scheme, in other words,
assuming that each of I1 and I2 could “effectively” be
considered to have a retarded time parameter u running
from −∞ to þ∞, and that the total angular momentum
emitted would be the sum of these two contributions.
However, the boundary terms in general preclude this from
holding. (It does hold for momenta or supermomenta, but
not for angular momentum.)
It is not clear what to make of this. On the one hand, in a

practical sense one would indeed hope to be able to sum up
the contributions to the angular momentum from these
different intervals—this is the principle behind the concept
of flux (in the standard usage of the word). On the other, the
canonical or symplectic approach depends very strongly on
considering a system as a whole; one cannot generally split
it into subsystems without careful justification. In this
connection, it is important to remember that Iþ is a null
hypersurface, and so points on it can influence others—
although in a formal sense the radiation data can be freely
specified on Iþ, one cannot regard the physics on one part
of Iþ as truly independent of the physics on another,
causally related, part. It may be that the nonadditivity is
reflecting this.
But all of the previous paragraph is to say that there are

points on both sides and we await a better understanding
of this.
Finally, both definitions of angular momentum have a

remarkable property: for an axisymmetric spacetime (but
without any other symmetry hypotheses) vacuum near Iþ,
there will be no emission of angular momentum about the
axis of symmetry. This is curious, for it is easy to devise
examples where material null radiation does lead to
emission of angular momentum.7 Why should it be so
easy (in axially symmetric spacetimes) for matter to carry
off angular momentum, but strictly forbidden for gravita-
tional radiation to do so?
It is not hard to see that, if we accept the expressionR
Tabξ

adΣb for the angular momentum (where Tab is the
stress-energy and now Σ is a spacelike hypersurface
extending to a cut of Iþ), we are led directly to the
conclusion that only matter can carry it off (in the axially
symmetric case). In this sense the result is quite general.
It is worth contrasting this with the situation for timelike

Killing vectors. There, the corresponding conserved quan-
tity is the energy, and in a stationary spacetime neither
material nor gravitational energy can be emitted.

B. Outline

Section II reviews the elements of the Bondi structure
which will be relevant.

Section III clarifies the class of spacetimes we may
expect the analysis to apply to, by applying considerations
of well-posedness. Several conceptual points are uncov-
ered, but the most important for the overall program is that
even in the most favorable circumstances one must consider
some coupling between the outgoing radiation and the final
state of the internal spacetime, and this coupling brings out
issues of gauge freedom which were present but not
apparent in the original work. Building on this discussion,
the definitions of the phase spaces ðΓ;ωÞ and ðΓe;ωeÞ
are given.
Section IV computes the Hamiltonian functions and

establishes some of their properties, in particular, that the
Poisson brackets implement the BMS algebra.
Section V gives the expressions for the spatial angular

momentum and center of energy in terms of the modes of
the rotation and boost operators, respectively.
The final section is given to discussion.

C. Notation, conventions, and background

While Ashtekar and Streubel worked in Geroch’s [2]
formalism, it is more convenient here to use that of
Newman and Penrose [11]; see Penrose and Rindler [12]
for this. The papers of Dray and Streubel [13] and Dray
[14] provide useful formulas for comparing the formalisms.
The speed of light and Newton’s constant are taken to
be unity.
Many of the expressions in this paper include several

terms and finish with the phrase “þconjugate.” Unless this
appears within parentheses, it is always to be understood as
applying to all the preceding terms of the member. Integrals
over Iþ are with respect to the standard volume form in a
Bondi chart there; integrals over the sphere are denoted

H
and are with respect to the standard area form. The symbols
⟦ � � � ⟧ and h� � �i, giving the difference and average between
quantities in the two regimes u → �∞, are defined in
Eqs. (5) and (6).

II. PRELIMINARIES

I will review here the key properties which will be used
in this paper. This section is not meant to be an exposition
of the technical details (for which, see Penrose and Rindler
[12]), but to give the reader an overall picture of the main
structural features of null infinity and related concepts
which will be important.
Throughout this paper, I will be concerned only with

spacetimes admitting Bondi-Sachs asymptotics. For such
spacetimes, future null infinity Iþ is a null hypersurface
which has naturally the structure of a bundle of affine real
lines over the two-sphere S2. It is conventionally para-
metrized by ðu; θ;φÞ, where u is a Bondi retarded time
parameter, and of course ðθ;φÞ are polar coordinates on the
sphere. For Minkowski space, we can obtain Iþ as a limit
r → ∞ of xa ¼ uta þ rla, where ta is a unit future-directed

7Consider a spinning ring, which at some time emits null
radiation along its tangential directions, axisymmetrically.
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timelike vector, la is a null future-directed vector in the
ðθ;φÞ direction, normalized by lata ¼ 1, and r is the usual
radial coordinate.
It is convenient to use the spin-coefficient formalism

[11,12]. In this, the two dimensionality of S2 and its
orthocomplement are used to reduce tensorial quantities
to components which have spin weight (values in tensor
products of the holomorphic and antiholomorphic line
bundles). The antiholomorphic angular derivative ð and
its conjugate ð0 play key roles.
The BMS group acts on Iþ, respecting the fibration. It is

the semidirect product of the proper orthochronous Lorentz
group with the supertranslations, which are the maps
ðu; θ;φÞ ↦ ðuþ αðθ;φÞ; θ;φÞ, with α a smooth real-
valued function on the sphere. A supertranslation is a
translation iff ð2α ¼ 0.
A key quantity is the Bondi shear σðu; θ;φÞ, which has

units length. The Bondi news is − _̄σ (an overdot indicates
differentiation with respect to u); the news is a measure of
the gravitational radiation. We can always write σ ¼ ð2λ for
some spin-weight zero function λ, but in general λ must be
taken to be complex. (And λwill be unique up to a complex
translation.) The electric andmagnetic parts of the shear are
σel ¼ ð2ℜλ and σmag ¼ ið2λ. (These terms are traditional;
perhaps a better expression is that these are the natural-
parity and unnatural-parity parts of the shear.)
Under a passive BMS supertranslation the shear changes

by σ ↦ σ − ð2α, so the electric part of the shear changes
but not the magnetic.8 In a nonradiating regime, the electric
part of the shear can be gauged away by a supertranslation.
While magnetic shear is expected to be present generically,
it is not clear that a u-independent purely magnetic shear
can persist indefinitely, and the possibility is usually
considered exotic.
For these reasons, a system which radiates only within a

bounded (but perhaps very large) interval of Bondi retarded
time is generally modeled as having purely electric, and u-
independent, shears in the regimes u → �∞. Exactly how
fast the shear should become u-independent, and how
uniformly this should apply, are technical issues. For
simplicity, in this paper I am going to say a shear has
standard asymptotics if for juj sufficiently large it is purely
electric and _σ ¼ 0.9

Although in each of these regimes one could eliminate
the shear by a supertranslation, there will usually be a
gauge mismatch between them. This is one face of what is
known as the supertranslation problem. Physically, it
means the two regimes cannot, even asymptotically, be

related by a Poincaré motion. This is the main source of
difficulties in giving a good treatment of angular momen-
tum at null infinity. Roughly speaking, the shear (or more
properly its potential λ) contributes a ðu; θ;φÞ-dependent
problematic correction to the origin dependence.
A cut with vanishing Bondi shear (in a Bondi coordinate

system for which it is u ¼ const) is called good, and a cut
with nonzero shear is bad. In a stationary Bondi-Sachs
spacetime, a Bondi coordinate system adapted to the
stationarity will have vanishing Bondi shear.
One point we shall have to consider is how much

geometry at Iþ, beyond the shear, might enter into the
physics under investigation. For our purposes, it will be
enough to bear in mind the following.
In measuring the energy momentum at any cut, the

mass aspect, denoted Ψ0
2 þ σ _̄σ in the Newman-Penrose

scheme, enters, where Ψ0
2 is an asymptotic curvature

coefficient. For a knowledge of the emitted energy momen-
tum between two cuts, however, one does not need Ψ0

2, but
only j _σj2. For the angular momentum at a cut, all workers
would agree the curvature coefficient Ψ0

1 should enter; for
the angular momentum emitted between two cuts, different
proposed definitions require different knowledge. In the
Ashtekar-Streubel scheme, knowledge of the shear would
be enough.
In a stationary regime, considerable simplifications

occur if the stationarity is expressed at Iþ by ∂=∂u in a
Bondi system. In particular, the mass aspect is constant
over Iþ. (Recall that a mass aspect with multipoles,
coupled with a memory effect, could plausibly contribute
to emitted angular momentum.)

III. THE PHASE SPACE

Ashtekar and Streubel aimed to define a phase space of
radiative modes of the gravitational field. They took these
to be modeled essentially by the Bondi shear, with a
particular symplectic form ωAS; this can be justified as a
formal limit of what one has when one takes an acausal
Cauchy surface to null infinity (and ignores internal
contributions). While it is certainly expected that radiation
is coded in the Bondi shear, it is less clear that such a
complete decoupling of internal degrees of freedom from
radiative is justified for the problems at hand.
I will here consider the construction of the phase space. I

will show that there is a class of spacetimes for which the
idea of considering the shears as radiative modes, for
analyzing emitted angular momentum, does seem quite
plausible. These are the spacetimes which eventually
become stationary. Although this is a teleological require-
ment, that at first seems not a serious restriction, because in
many cases of practical interest we do expect the final
system to be stationary. There is, however, a subtlety, the
nonlocality mentioned in the Introduction, which does
make the teleology a practical matter, and I will return

8So, strictly speaking, the Bondi shear should be regarded, not
as an ordinary function on Iþ, but as a functional also depending
on the choice of Bondi coordinatization.

9One can check that all that will actually be used in the
computations is that σ approaches u-independent electric limits as
u → þ∞ and u → −∞, and _σ → 0 as u → �∞.
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to this later. But leaving that aside, we have a structure
which largely supports the Ashtekar-Streubel idea of
defining a phase space of radiative modes.
When we come to include shears with nontrivial (but

purely electric) limits as u → �∞, there are also gauge
degrees of freedom which must be considered. This occurs
because the shear is not wholly independent of the internal
modes of the spacetime. I will argue below that the most
natural way of taking this freedom into account leads, not to
the extended phase space ðΓe;ωeÞ of all shears with
standard asymptotics, but to the quotient ðΓ;ωÞ, and the
fluxes for this quotient differ from those of Ashtekar and
Streubel.

A. Formal well-posedness

To identify the degrees of freedom, we may begin with
an initial-data surface. (“Initial” here is used just to indicate
where the data are given. It does not imply the surface
lies in some distant past.) To have a formally well-posed
problem, it is not enough to have data on null infinity; we
must also make some assumptions about the interior of
spacetime.

1. Cauchy surfaces

In the case of outgoing radiation, it is natural to take an
M-shaped Cauchy surface Σ ¼ Σint ∪ ΣIþ , where Σint is an
achronal hypersurface in the interior but meeting Iþ in a
cut C, and ΣIþ is the portion of Iþ to the past of C; see
Fig. 1. Physically, this would correspond to looking at
systems whose internal data were known at Σint, and
radiation emitted prior to C. The portion of spacetime to
the future of Σint would be determined by the Cauchy data
on Σint, but the portion with the radiation we are tracking
would have data on the whole of Σ (so the Bondi shear on
ΣIþ would also be given)—so Σwould be a final-data (in a
temporal sense) surface for this regime.
It is clear that there is no objection, at a formal level, to

using such a Cauchy surface. There is nevertheless some-
thing very different here from one’s usual view, in the
interpretation given to the data on the different portions.
The issue is that usually we do not think of specifying data
freely at Iþ—far from it. In most physical problems, we
think of the degrees of freedom which will generate the
radiation as specified on some internal hypersurface. Future
null infinity Iþ is important, but as a place to record the
outgoing wave profiles, not to adjust data at will.
It is worth noting that the time-reversed situation is more

conventional. In this case, one has a W-shaped Cauchy
surface Σpast

int ∪ ΣI− , with Σpast
int an achronal internal hyper-

surface meeting I− at a cut Cpast, and ΣI− the portion of I−
to the future of Cpast. Here one thinks of internal data as
given on Σpast

int , and data for radiation incoming thereafter
freely specified.

In either one of these cases, the full phase space can be
usefully thought of as having a sort of bundle structure,
with the data at null infinity fibering over the space of data
on the interior part of the Cauchy surface.10 (The radiation
data must match up with the internal data at the rel-
evant cuts.)
There is a further issue to consider, which is the question

of what restrictions we place on the data on Σint. If we want
to think of the data on ΣIþ as representing all of the
outgoing radiation, then we want no radiation to arise to the
future of Σint, and the data there must meet this condition.
The simplest way to do this (and the only known way of
ensuring it) is to require the spacetime to be stationary to
the future of Σint; this also seems to be the most likely
condition for decoupling the internal from the radiative
angular momentum.11

While this split into internal and radiative data is
formally attractive, it does require knowing (or hypoth-
esizing) the future evolution of the system. We will look at
consequences of this below.

2. Gauge issues

We now turn to the question of what sort of gauge issues
there will be in this scheme, where stationary data are given
on some internal hypersurface Σint and radiative data
compatible with them are given on ΣIþ . We will see that
this leads to a difficulty due to the weakness of the
BMS group.
Let us break the problem down. There will be two sorts

of gauge motions: those corresponding to deformations
of Σint which fix its boundary C, and those which alter
the boundary. The former are not troublesome; they
correspond to evolution within the stationary portion of
the spacetime, do not bear on radiative effects, and are not
of interest to us.
The difficulty comes because we must also allow

motions which give rise to supertranslations of C ¼
Σint ∩ ΣIþ . This means that (even discounting the “inter-
nal” deformations of the previous paragraph), the data
specifying the spacetime are not unique. For instance,
Minkowski space would be represented by any purely
electric u-independent shear. More precisely, the data for
Σint in this case would amount to embedding it into
Minkowski space, with its boundary C some, generally
bad, cut of Iþ, and the shear would be determined from
that. The same multiplicity-of-representation issue will
apply to any of the spacetimes considered. This is at odds

10In principle, one could think of doing the fibration the other
way, with base space the radiation data. This seems not as natural,
particularly if one considers the time-reversed case.

11The argument for the decoupling is necessarily loose in the
absence of a full understanding of angular momentum. But the
idea is that coupling is likely to occur through a mass aspect with
high multipoles, but a stationary spacetime will have only a
monopole term in the frame determined by the stationarity.
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with the basic idea of introducing a phase space which
accurately codes the physical degrees of freedom.
The unwanted degrees of freedom are precisely the

quotient supertranslations/translations, or equivalently the
u-independent purely electric shears—the weakness of
the BMS group. We must either alter the basic strategy
of Ashtekar and Streubel or find a way of eliminating this
freedom. We will consider both possibilities below.
This difficulty of getting the degrees of freedom cor-

rect leads to an awkwardness, or at least an unexpected
behavior, which is worth pointing out. Suppose we consider
how, within this program, we assign fluxes to a particular
spacetime. We imagine that we have the spacetime, and we
know in particular its shear.What the argument above shows
is that not quite all of the information in the shear should
enter—we should in some sense reduce that information by
an action of supertranslations/translations, but there is no
obvious candidate for such an action.12 We will see more
specifically how this plays out as we pursue the program.

B. The phase spaces

The discussion above supports Ashtekar and Streubel’s
idea of using a suitable space of shears as a phase space of
radiative modes, at least for spacetimes which become
stationary for sufficiently late Bondi retarded time, pro-
vided we find some way of dealing with the unwanted
freedom supertranslations/translations.
I will consider two possible resolutions of this. One

attempts to interpret the extra degrees of freedom; the other
eliminates them.

1. The extended phase space ðΓe;ωeÞ
Let Γe be the set of all shears with standard asymptotics;

I will call this the extended phase space. (It is most natural
to take these shears to have conformal weight −1.) The
space Γe is attractive in its mathematical simplicity, but we
saw above that it has unwanted degrees of freedom (for
instance, all u-independent purely electric shears would
specify Minkowski space).
The Ashtekar-Streubel symplectic form would be, on

these shears and in this notation,13

ωeðs1; s2Þ ¼ ð8πÞ−1
Z
Iþ
fs1 _̄s2 − _s1s̄2g þ conjugate: ð2Þ

Here s1 and s2 are tangent vectors at some point in Γe; these
are functions on Iþ which are thought of as infinitesimal

perturbations of the shear. Ashtekar and Streubel show that
this is weakly nondegenerate.14

To suggest an interpretation of Γe, let us note that Bondi-
Sachs spacetimes are mathematical idealizations which are
meant to model isolated systems within the cosmos. Any real
isolated system will be modeled by a Bondi-Sachs space-
time out to some finite but large regime “near” Iþ; beyond
that, it must be matched to the larger, ambient cosmos.
Matching the metric will involve the full Bondi-Sachs data,
not reduced by supertranslations/translations. So it would
seem reasonable to interpret the extra degrees of freedom of
Γe as reflecting information needed to specify the embedding
of the Bondi-Sachs spacetime in the larger cosmos.
This is only the germ of an idea, but it at least colorably

suggests an interpretation of ðΓe;ωeÞ. Note, though, that
with this view the extra degrees of freedom represent a
coupling with the rest of the cosmos, and so any fluxes we
define may depend on this coupling as well as information
intrinsic to the Bondi-Sachs spacetime.

2. The phase space ðΓ;ωÞ
I nowcome to the issue of trying to factor out the unwanted

freedom fromΓe. I do not have a first-principles resolution of
this, butwill suggest a solutionwhichmanifestly has the right
degrees of freedom, comes independently out of two natural
constructions, and is mathematically attractive.
I will first point out one possible approach, which I will

reject. Recall that the extra degrees of freedom are precisely
of the size supertranslations/translations. One might try to
find a BMS-induced action of this quotient group on Γe and
reduce by that action. Doing this would presumably mean
finding a splitting

supertranslations

≅ ðpure supertranslationsÞ ⊕ translations; ð3Þ
one would project any supertranslation onto its “pure”
(“translation-free”) part, and then use the BMS action of
that. There are several difficulties in doing this, however.
The most severe is that the symplectic form (2) fails badly
to respect such a reduction, since one would have to allow
s1 and s2 to be independently acted on—altered by different
pure supertranslations.15

12It may be worth emphasizing that we certainly do not want to
reduce by anything beyond this quotient, since we wish to express
the spacetime’s fluxes in terms of the Iþ at hand. If we reduced
by the Lorentz motions, we should not be able to assign any
directional quantity, and so neither angular momentum nor center
of energy. If we reduced by the translations, it is immediately
clear we would lose the center of energy; we would also lose the
angular momentum, on account of its origin dependence.

13I have adjusted the prefactor to give conventional normal-
izations for the fluxes.

14Weak nondegeneracy means that if ωeðs; ·Þ ¼ 0, then s ¼ 0.
This is the appropriate nondegeneracy condition for a symplectic
form in the present infinite-dimensional context.

15Beyond that, making the split involves breaking Lorentz
invariance (selecting a time axis), and there is in this context no
attractiveway of doing that. One could use the value of the Bondi-
Sachs energy-momentum at C, but that would make the con-
struction depend onmore than the purely radiative data. One could
use the total energy-momentum emitted in gravitational waves,
but this would make the phase space singular at the stationary
spacetimes (since each of them has zero emitted energy-
momentum, but is the limit of spacetimes with energy-momenta
pointing in all different directions), and this would make the
discussion of the weak-radiation-field limit problematic.

ADAM D. HELFER PHYS. REV. D 102, 124036 (2020)

124036-8



It is better to consider physically how the extra degrees
of freedom arose. It was because we did not enforce
matching conditions between the Bondi shear and data
for the internal degrees of freedom. We could eliminate the
excess by considering, not the Bondi shear, but its u-
derivative _σ (equivalently, the news), as the quantity coding
the gravitational radiation. Then there are no matching
conditions (we do, as before, require _σ to vanish for
sufficiently large juj); the idea is to use whatever shear
is induced by the internal data at the matching cut C, and
find σ elsewhere by integrating _σ with that initial value.
This gets the degrees of freedom correct. It is also
conceptually attractive, in that one then has the data given
cleanly as internal parts on Σint and radiation (just _σ, not σ)
on ΣIþ .
It is convenient to represent this as a quotient Γ of Γe; we

regard two elements of Γe as equivalent if they differ by a
purely electric u-independent term. In doing this, we are
representing each _σ by the equivalence class of σ which
give rise to it. The freedom in this class is not one of
supertranslations, but of “constants” of integration with
respect to u, in recovering σ from _σ.
At first, it appears this too will lead to a difficulty with

the symplectic form, for ωe depends not only on the u
derivatives of the linearized shears but on the linearized
shears themselves. However, the issue here turns out to be
much less problematic than for the attempt at reduction by
supertranslations/translations.
Just how confident should we be in the form ωe? The

argument for it is partly formal and partly rigorous. One
takes the conventional symplectic form for Einstein’s
theory and deforms its initial-data hypersurface to Iþ.
The points of concern will be the control of the gauge,
particularly at C and in the asymptotic regime encompass-
ing u → −∞ on Iþ and the asymptotics of the spatial
hypersurface. What I will show is that, while there is a
strong sense in which the integrand of (2) does arise locally
at Iþ from this limiting procedure, one cannot discount the
possibility that there are also boundary contributions, at
u ¼ þ∞ (our stand-in for C) and u ¼ −∞.
If one starts with linearized perturbations in the Bondi-

Sachs gauge (that is, perturbations which near Iþ amount
to changes in the nonuniversal fields in the Bondi-Sachs
expansions), then there is no difficulty in deforming
compact regions of the initial-data surface to Iþ and the
integrand (2) will arise as a matter of course. Also, as
Ashtekar and Streubel pointed out, Geroch and
Xanthopoulos [15] showed that a broad class of linearized
fields could, by a change of gauge, be cast in that form. But
these arguments do not speak to what happens as we try to
deform the entire initial surface to Iþ, and moreover the
conventional symplectic form is itself not gauge-invariant
unless restrictions are made on the linearized perturbations
asymptotically; indeed, gauge changes give rise to boun-
dary terms.

It therefore seems plausible to keep the integrand of
Eq. (2), but look for a “boundary” contribution to the
symplectic form, involving the limits u → �∞, which will
render it well-defined on the elements _s.
My proposal is to use

ωðs1; s2Þ ¼ ð8πÞ−1
Z
Iþ
fs1 _̄s2 − _s1s̄2g

þ ð8πÞ−1
I
S2
f⟦s1⟧hs̄2i − hs1i⟦s̄2⟧g

þ conjugate; ð4Þ

where

⟦ϕ⟧ ¼ ϕju¼þ∞ − ϕju¼−∞; ð5Þ

hϕi ¼ ð1=2Þðϕju¼þ∞ þ ϕju¼−∞Þ ð6Þ

are the difference and average of the asymptotic values of a
function of ϕ on Iþ having well-defined limits, which may
be functions of angle, as u → �∞. It is straightforward to
check that the formula (4) does respect the equivalence
relation and is weakly nondegenerate. That it is BMS
invariant is shown by direct calculation, and the particulars
of this will be discussed in the next section.
The boundary contribution in Eq. (4) is really a sort of

cross term between the regimes u → �∞: it can also be
written

ð8πÞ−1
I
S2
fs1ju¼þ∞s̄2ju¼−∞ − s1ju¼−∞s̄2ju¼þ∞g

þ conjugate: ð7Þ

For this reason, it cannot be realized via Stokes’s theorem
as the integral of the exterior derivative of some locally
defined expression in s1 and s2.
I noted above that there is a second way of arriving at the

phase space ðΓ;ωÞ. We could have started with Γe, and then
tried to fix the gauge. There are, however, more ways than
one of doing this. We might have required the shear to
vanish as u → þ∞, for example.16 Doing this would have
the effect of replacing the sj in the symplectic form by
sj − sjju¼þ∞. Alternatively, we could ask for the shears to
vanish as u → −∞.17 In this case one would work
with sj − sjju¼−∞.

16This would fit naturally with the discussion of well-posed-
ness, and the idea of simplifying the data at C.

17One motivation for this comes from the fact that the
symplectic form ωAS is derived as a limit of integrals over
acausal Cauchy surfaces. To make such a limit rigorous, one must
control the behavior of the integrands as the portions of these
Cauchy surfaces near spatial infinity approach null infinity. In
such cases, tails of shears as u → −∞ could be problematic.
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Actually, these two possibilities, and more, lead to the
structure ðΓ;ωÞ. If we consider a weighted combination of
these asymptotic conditions, say by working with

ŝj ¼ sj − asjju¼þ∞ − ð1 − aÞsjju¼−∞; ð8Þ

for some real parameter a, then a short calculation shows

ωeðŝ1; ŝ2Þ ¼ ωðs1; s2Þ; ð9Þ

independent of a. So we see that any of the gauge-fixings
effected by Eq. (8) would be equivalent to working
with ðΓ;ωÞ.

IV. BMS ACTION AND HAMILTONIANS

At this point, the phase space Γ has been defined as a
space of shears (modulo a certain gauge freedom),
equipped with a symplectic form ω (which is a “conven-
tional” term plus some boundary contributions). The action
of the BMS group on the shears is well-known (and
respects the gauge freedom). We have therefore to invert
the equation

dHξ ¼ ωðVξ; ·Þ ð10Þ

for the action Vξ of each BMS generator ξ on Γ to find the
corresponding Hamiltonian function Hξ. This section does
that, and verifies that the Poisson brackets implement the
BMS algebra.
A few general points are worth recalling. The phase

space Γ here is a vector space. The condition that a linear
map s ↦ Vs on this space infinitesimally preserve the
symplectic form is ωðVs1; s2Þ þ ωðs1; Vs2Þ ¼ 0. If this
condition holds, the associated Hamiltonian function will
be HV ¼ ð1=2ÞωðVσ; σÞ. IfW is also an infinitesimal sym-
plectomorphism, then the Poisson bracket fHV;HWg ¼
∇VσHW ¼ −∇WσHV ¼ −ωðVσ;WσÞ.

A. Supertranslations

The effect of an infinitesimal supertranslation by a
function α on S2 is to change the shear by α _σ − ð2α.
More formally, the vector field on Γ will be

VðαÞ ¼ ðα _σ − ð2αÞ δ

δσ
þ conjugate; ð11Þ

where δ=δσ is a functional derivative and on the right-hand
side an integration over Iþ is understood.
The vector field VðαÞ does not appear to be a linear

function on Γ, because of the inhomogeneous term −ð2α,
but we must remember that Γ is actually a quotient by such
terms. Therefore

ωðVðαÞ; sÞ ¼ ωðα _σ − ð2α; sÞ
¼ ωðα _σ; sÞ; ð12Þ

and it is easy to see that VðαÞ is an infinitesimal symplecto-
morphism. We will have

Hα ¼ ð1=2Þωðα _σ; σÞ

¼ ð16πÞ−1
Z
Iþ
fαj _σj2 − ασ̈ σ̄g þ conjugate

¼ ð4πÞ−1
Z
Iþ

αj _σj2: ð13Þ

This is the emitted Geroch supermomentum.
Suppose, on the other hand, we had used instead the

extended phase space. In this case, we would have

ωeðV; sÞ ¼ ωeðα _σ − ð2α; sÞ

¼ ð8πÞ−1
Z
Iþ
fðα _σ − ð2αÞ _̄s − ασ̈ s̄g þ conjugate

¼ ð4πÞ−1
Z
Iþ

α _σ _̄s−ð8πÞ−1
I

ð2α⟦s̄⟧

þ conjugate; ð14Þ

which (one checks) would give the Hamiltonian function

He;α ¼ ð4πÞ−1
Z
Iþ

αj _σj2

− ð8πÞ−1
I

fðð2αÞ⟦σ̄⟧þ ðð02αÞ⟦σ⟧g: ð15Þ

This is the Ashtekar-Streubel formula for the supermo-
mentum flux. The boundary term is first order in the change
in shear ⟦σ⟧. It would vanish for momenta, but not
generally for supermomenta.

B. Lorentz motions

A Lorentz motion is generated by a vector field cma þ
c̄m̄a on the sphere, where c has spin weight −1 and satisfies
ð0c ¼ 0. I will denote the effect of this on the shear by

Δσ ¼ ðcðþ c̄ð0Þσ þ kð−1þ u∂uÞσ þ 2ððcÞσ; ð16Þ

where

k ¼ ð1=2Þððcþ ð0c̄Þ: ð17Þ

[The BMS vector field is ξa ¼ cma þ c̄m̄a þ ku∂u.
Because σ is not really a scalar, but has spin-weight two,
the action of the angular terms on it is cðσ þ c̄ð0σ þ
2ððcÞσ. Because σ has conformal weight −1, one also gets
a term −kσ in Eq. (16).]
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It is straightforward to verify that these BMS actions preserve both ω and ωe. (Equivalently, the three-surface
integral terms and the boundary terms in the formula (4) for ω are separately preserved.) It follows that corresponding
Hamiltonians are

Hc ¼ ð1=2ÞωðΔσ; σÞ

¼ ð8πÞ−1
Z
Iþ
ðΔσÞ _̄σ − ð16πÞ−1

I
½ðcðþ c̄ð0 − kþ 2ððcÞÞσ�σ̄

þ ð16πÞ−1
I

f⟦ðcðþ c̄ð0 − kþ 2ððcÞÞσ⟧hσ̄i − hðcðþ c̄ð0 − kþ 2ððcÞÞσi⟦σ̄⟧g þ conjugate

¼ ð8πÞ−1
Z
Iþ
ðΔσÞ _̄σ − ð8πÞ−1

I
hðcðþ c̄ð0 − kþ 2ððcÞÞσi⟦σ̄⟧g þ conjugate; ð18Þ

He;c ¼ ð1=2ÞωeðΔσ; σÞ

¼ ð8πÞ−1
Z
Iþ
ðΔσÞ _̄σ − ð16πÞ−1

I
½ðcðþ c̄ð0 − kþ 2ððcÞÞσ�σ̄ þ conjugate

¼ ð8πÞ−1
Z
Iþ
ðΔσÞ _̄σ − ð16πÞ−1

I
fhðcðþ c̄ð0 − kþ 2ððcÞÞσi⟦σ̄⟧þ ⟦ðcðþ c̄ð0 − kþ 2ððcÞÞσ⟧hσ̄ig þ conjugate

¼ ð8πÞ−1
Z
Iþ
ðΔσÞ _̄σ þ conjugate: ð19Þ

(In passing to the last line, the boundary integrals cancel
against their conjugates by integration by parts.) Again, the
formula He;c is the Ashtekar-Streubel flux, in this case for
angular momentum.
There are several points about these formulas worth

noting:
(a) We may write

Hc ¼ ð8πÞ−1
Z
Iþ

ðΔσ − hΔσiÞ _̄σ þ conjugate; ð20Þ

where hΔσi is the average of the values of Δσ at u → þ∞
and u → −∞. This suggests that at least in some circum-
stances the effect of the boundary term in Eq. (18) is to
cancel the preceding term. As we will see below, this
certainly need not always happen, but we note for now one
case where the cancellation is exact: Suppose σ is a simple
linear interpolation between its initial value σ− and its final
value σþ, say

σ ¼

8>><
>>:

σ− for u ≤ u−
uþ−u
uþ−u−

σ− þ u−u−
uþ−u−

σþ for u− ≤ u ≤ uþ
σuþ for u ≥ uþ:

ð21Þ

Then it is easy to see that one does have Hc ¼ 0.
(b) The reader may notice something odd about the

extended angular momentum: the formula (19) gives it as a
purely degree-two function of the shear, but this refers only
to the angular momentum relative to the family of cuts
u ¼ const in the chosen Bondi system. In another, super-
translated, Bondi system, there would be supermomentum

contributions, and these [according to Eq. (15)] would be
first degree in the shear. This seems unphysical, in that the
angular momentum should not depend so sensitively on the
choice of cuts.
The issue here (which is bound up with the unresolved

interpretational concerns about the extended phase space) is
that there are nondynamical degrees of freedom. In par-
ticular, a supertranslation is not supposed to change the
intrinsic physics, but it will change the shear inhomoge-
neously and therefore not preserve the degree of an
expression in the shear.
We may get a more precise sense of what is going on by

considering shears of the form σ ¼ ð2λþ σ1, where λ is
real and u-independent, and σ1 is uniformly small; these
may be considered to have first-order dynamical content σ1.
Then we will have

He;c ¼ ð8πÞ−1
I

ðΔð2λÞ⟦σ̄1⟧þ conjugate; ð22Þ

He;α ¼ −ð8πÞ−1
I

ðð2αÞ⟦σ̄1⟧þ conjugate; ð23Þ

to first order in σ1. We see that in this case the angular
momentumHe;c relative to the Bondi system, as well as the
supermomentum, does have a first-order dynamical term,
although those terms are present only if ⟦σ1⟧ ≠ 0.
The appearance of a contribution to the angular momen-

tum which is first degree in the dynamics is noteworthy. On
the other hand, that He;c also depends on the nondynamical
ð2λ underlines how important it is to sort out the interpreta-
tional issues. Finally, I should comment that, although this
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first-degree behavior calls to mind the “supernova” exam-
ple of the Introduction, the two cases are significantly
different. The kind of term considered in the Introduction
was a sort of cross product between the change in shear ⟦σ⟧
and the mass aspect. However, the mass aspect depends on
more than just the radiation data, and so it cannot enter in
the flux program.
(c) Let us consider spacetimes which are axisymmetric,

with (the Bondi system and) c chosen to give a rotation
about the axis of symmetry. For these, the angular
momentum about the axis of rotation vanishes, for both
the phase space ðΓ;ωÞ and the extended phase space
ðΓe;ωeÞ. In other words, using either of these definitions,
at least in the vacuum case, no angular momentum about
the axis of symmetry can be radiated by gravita-
tional waves.
In the case of the phase space ðΓ;ωÞ, since the curvature

coefficient ψ3 ¼ −ð _̄σ will be axisymmetric, the news will
be too (since ð is an injective rotation-preserving map from
the spin-weight −2 to the spin-weight −1 functions). We
may then choose a representative shear to be axisymmetric,
the condition for which is cðσ þ c̄ð0σ þ 2ððcÞσ ¼ 0. This,
together with k ¼ 0 (which holds for rotations), immedi-
ately leads to the vanishing of Hc.
The argument for the extended phase space ðΓe;ωeÞ is a

bit different. In this case, while, as before, the news is
axisymmetric, the shear could have a u-independent
electric nonaxisymmetric term. Only such a term could
give a nonzero contribution to He;c in Eq. (19), and such a
contribution could come only through the first factor in the
integrand. So we may replace Δσ there by hΔσi, giving

He;c ¼ ð8πÞ−1
I

hΔσi⟦σ̄⟧þ conjugate: ð24Þ

However, an integration by parts converts this to

He;c ¼ −ð8πÞ−1
I

hσi⟦ ¯ðcðþ c̄ð0 − 2ðð0c̄ÞÞσ⟧

þ conjugate; ð25Þ

and this vanishes, since only the axisymmetric part of the
shear can contribute to ⟦σ⟧.

C. Poisson brackets

As noted in the beginning of this section, in the case that
the phase space is a symplectic vector space and the
infinitesimal symplectomorphisms are linear, the Poisson
brackets of their Hamiltonian functions will implement the
Lie algebra of the infinitesimal symplectomorphisms. In
our case, that means the BMS algebra is implemented by
the Poisson brackets of the Hamiltonian functions Hα and
Hc on ðΓ;ωÞ; one can also verify this directly.
For the extended phase space ðΓe;ωeÞ, the supertrans-

lations do not act linearly, and one needs a separate
argument. I will give one by explicit calculation.
It is easy to see that the brackets fHe;α1 ; He;α2g ¼ 0 of the

supertranslations among themselves vanish. Also, although
Γe should physically be considered a space with no
preferred origin, it is mathematically a vector space, and
the Lorentz motions are represented by linear maps on Γe
and their Poisson brackets will implement the BMS Lorentz
motions. It remains only to check the Poisson bracket of a
supertranslation and a Lorentz motion.
Let us denote by ∇α the derivative in Γe along the

direction determined by the supertranslation (11) generated
by α. Then we have

∇αHe;c ¼ ð8πÞ−1
Z
Iþ
fðΔðα _σ − ð2αÞ _̄σ þ ðΔσÞα ̈σ̄g þ conjugate

¼ ð8πÞ−1
Z
Iþ
fðΔðα _σ − ð2αÞ _̄σ − αð∂uΔσÞα _̄σg þ conjugate

¼ ð8πÞ−1
Z
Iþ

ð½Δ; α∂u�σÞÞ _̄σ − ð8πÞ−1
I

ðΔð2αÞ⟦σ̄⟧þ conjugate

¼ ð8πÞ−1
Z
Iþ

ðððcðαþ c̄ðαÞ − αkÞ _σÞ _̄σ − ð8πÞ−1
I

ðΔð2αÞ⟦σ̄⟧þ conjugate

¼ He;ðcðαþc̄ðα−kαÞ; ð26Þ

where the last step requires a short spin-coefficient calcu-
lation to verify ð2ðcðαþ c̄ðα − kαÞ ¼ Δð2α. This is the
correct Poisson bracket, and one should note that the
boundary term for the extended-phase space supermomen-
tum enters essentially; without it, the Poisson brackets
would not implement the BMS algebra.

V. ANGULAR MOMENTUM

The previous section derived the Hamiltonian functions
conjugate to the motions induced by the BMS vector fields,
for the two phase spaces ðΓ;ωÞ and ðΓe;ωeÞ. In particular,
those which are in the flux program interpreted as the
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relativistic angular momenta Hc and He;c were found, and
they differed by a boundary term; the boundary term had,
roughly, the effect of canceling some of the other con-
tributions to Hc.
In this section, I examine the relativistic angular momen-

tum in more detail, in both the case of (ordinary) spatial
angular momentum and the center of energy (more often
called center of mass). In each case, the shear is decom-
posed into suitable modes, each is one-complex-dimen-
sional, and the angular momentumHc is shown to be equal
to a sum (or integral) over these of what might be called the
phase area swept out in each of these complex planes by
the component of the system in that mode over the course
of the system’s evolution. The effect of the boundary term
is to remove the phase area corresponding to a straight-line
motion, from the initial to the final point, in each of these
planes.
One consequence of this is that emission of angular

momentum requires a change in the argument (angle in the
complex plane) of at least some modes of the system.

A. Spatial angular momentum

For the case of spatial angular momentum we will
choose cma þ cma to be the generator of rotations about
(say) the þz axis. We may write

σ ¼ ð2
X
l;m

λl;mYl;m; ð27Þ

where the coefficients λl;m are complex-valued functions of
u. Here only the values l ¼ 2; 3;… will contribute, and m
ranges from −l to l, as usual. Then we have

He;c ¼ ð8πÞ−1
Z
Iþ

�
ð2
X
l;m

imλl;mYl;m

��
ð02

X
l;m

_̄λl;m ¯Yl;m

�

þ conjugate

¼ ð8πÞ−1
X
l;m

I
ðð2Yl;mð02 ¯Yl;mÞm

×
Z

ðiλl;m _̄λl;m − i ¯λl;m _λl;mÞdu

¼ ð8πÞ−1
X
l;m

ð1=4Þðlþ 2Þðlþ 1Þlðl − 1Þm

×
Z

ðiλl;m _̄λl;m − i ¯λl;m _λl;mÞdu: ð28Þ

For each pair ðl; mÞ of mode indices, the integral is twice
the signed area in the complex λl;m-plane swept out by the
radii from the origin to λl;mðuÞ. We might call this the phase
area of the mode, for the change is the change in phase.
See Fig. 2.
The contribution of the boundary term would evidently

be minus what one would have by linearly interpolating

between the end points, which is to say minus the signed
area of the triangle connecting the end points. An equiv-
alent statement is that the total contribution got by the
signed area of the fan determined by first moving along the
trajectory λl;mðuÞ, and then closing this by the segment from
λl;mðþ∞Þ back to λl;mð−∞Þ.

B. Center of energy

It turns out that it is possible to get results for the center
of energy (sometimes called the center of mass) parallel to
those for the spatial angular momentum. The analysis is a
bit different, though, for two reasons. First, we must take
account of an explicit contribution from moments of the
radiated energy momentum, which is not present in the
spatial case; and second, the eigenvalues of the generator of
boosts form a continuum.
As before, I will first discuss the flux He;c without the

boundary terms. Recall that this is given by

He;c ¼ ð8πÞ−1
Z
Iþ
ðΔσÞ _̄σ þ conjugate; ð29Þ

where

Δσ ¼ ðcðþ c̄ð0Þσ þ kð−1þ u∂uÞσ þ 2ððcÞσ: ð30Þ

We will take c ¼ ð0 cos θ (in standard polar coordinates);
this generates a unit boost in the þz direction. Then
k ¼ − cos θ.
The contribution to He;c explicitly involving a moment

of the radiated energy momentum is

Hrad;c ¼ ð4πÞ−1
Z
Iþ

kuj _σj2: ð31Þ

It is always possible to remove this by a supertranslation. In
fact, in generic circumstances, one can do much more. To
see this, note that for each generator of Iþ, there will be a
unique real value u0 ¼ u0ðθ;φÞ such that

Z
ðu − u0Þj _σj2du ¼ 0; ð32Þ

as long as (what will be true generically) j _σj2 is nonzero
somewhere along the generator. Moreover, this value of u0
will be BMS covariant, since along each generator u
changes only by an affine motion under a BMS trans-
formation. Therefore, as long as j _σj2 is nonzero somewhere
along each generator, we can by a unique supertranslation
arrange to have u0ðθ;φÞ ¼ 0 and in particular Hrad;c ¼ 0.
To take care of the nongeneric cases, note first that, if _σ

vanishes identically, the result is trivial. Otherwise kwill be
nonzero almost everywhere (in fact, except at θ ¼ π=2),
and we can find some generator where k ≠ 0 and we have
_σ ≠ 0 somewhere. Then by choosing u0ðθ;φÞ to be a
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suitably scaled bump function in a neighborhood of this
generator, we can arrange a supertranslation giving Hrad;c

vanishing.
We now assume that by a suitable supertranslation we

have Hrad;c ¼ 0, so that

He;c ¼ ð8πÞ−1
Z
Iþ

ððcðþ c̄ð0Þσ − kσ þ 2ððcÞσÞ _̄σ

þ conjugate: ð33Þ

We now make the usual polar-coordinate choice of spin
frame. The angular operator D appearing in this integral
given by

Dσ ¼ ðcðþ c̄ð0Þσ − kσ þ 2ððcÞσ
¼ − sin θ∂θσ − cos θσ

¼ −∂θðsin θσÞ ð34Þ

is evidently anti-self-adjoint with respect to the usual
Hermitian inner product (of spin-weight 2 functions) on
the sphere. A short calculation shows the eigenfunction
with eigenvalue iμ is

εμ ¼ π−1=2 csc θ

�
1þ cos θ
1 − cos θ

�
iμ=2

ð35Þ

and an arbitrary dependence on φ. The normalization has
been chosen so that we have the orthonormality condition:

Z
εμðθÞεμðθ́Þdμ

¼ 2 csc θ csc θ́δ

�
log

�
1þ cos θ
1 − cos θ

·
1 − cos θ́

1þ cos θ́

��

¼ 2 csc θ csc θ́δðcos θ − cos θ́Þðsin2θÞ=2
¼ δðcos θ − cos θ́Þ: ð36Þ

(In passing from the second to the third line, we use the
identity δðfðxÞÞ ¼ δðx − x0Þ=jf0ðx0Þj when f has a single
simple zero at x0.)
The complementary relation

Z
π

0

εμ́εμ sin θdθ ¼ δðμ − μ́Þ ð37Þ

can be derived by integrating by parts

Z
π−η

η
ðεμ́Dεμ − εμDεμ́Þ sin θdθ ¼ −εμ́εμsin2θjπ−ηη

iðμ − μ́Þ
Z

π−η

η
εμ́εμ sin θdθ ¼ −π−1

�
1þ cos θ
1 − cos θ

�
iðμ−μ́Þ=2����

π−η

ηZ
π−η

η
εμ́εμ sin θdθ ¼ −

2

π

sin ðμ−μ́
2
log 1−cos η

1þcos ηÞ
μ − μ́

ð38Þ

and taking the limit η↓0.
Thus any shear σ can be written as

σ ¼
Z

σμεμdμ; ð39Þ

for

σμ ¼
Z

π

0

σεμ sin θdθ; ð40Þ

where σμ will also generally depend on u and φ. In terms of
this, we have

He;c ¼ ð8πÞ−1
Z �

μ

Z
Iþ

ðiσμ _σμ − iσμ _σμÞ
�
dμ: ð41Þ

The formula (41) just derived, for the “extended” center
of energy, is a close parallel to the one (28) for the
“extended” spatial angular momentum, and parallel com-
ments apply. The inner integral of (41) gives twice what I
called the phase area of the mode. Also the same parallel
applies to the difference between He;c and Hc: the con-
tribution of the boundary term would be to subtract, mode
for mode, the phase area got from the straight-line
trajectory from the initial to the final point.

VI. DISCUSSION

Ashtekar and Streubel proposed to define the angular
momentum emitted in gravitational radiation by identifying
a phase space of radiative modes and treating the BMS
motions as symmetries which should have conjugate
constants of motion—those conjugate to Lorentz motions
would be angular momenta. This idea is formally attractive
and offers the opportunity to connect gravitational radiation
with canonical mechanics. At the same time, one should
bear in mind that the BMS motions constitute only what I
called a weak symmetry group, an infinite-dimensional one
introduced to compensate for lack of structure.
There was a technical question, though, of just how to

define the phase space; and also whether one could justify
the assumed decoupling of the radiative angular momentum
from other details of the geometry of the system. This paper
has been concerned primarily with those issues. (See
Refs. [4–7] for other work related to the second issue.)
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I was led to two candidate phase spaces ðΓ;ωÞ and
ðΓe;ωeÞ, on each of which the BMS group acted, and on
each of which fluxes could be defined whose Poisson
brackets implemented the BMS algebra. The extended
fluxes are just those of Ashtekar and Streubel, but the
fluxes for ðΓ;ωÞ differ, outside of the vacuum sector, by
certain boundary contributions (at u ¼ �∞). There are
unresolved questions about each. I will sketch the argu-
ments leading to these.
There was, to begin with, a tension between thinking of

Iþ as the hypersurface where outgoing wave profiles are
tracked (its usual interpretation) and thinking of it as a place
to freely specify data for gravitational processes (the idea
behind a phase space of radiative modes)—usually we do
not think of the modes in the future as freely specifiable.
I suggested what appears to be a working compromise,
based on formal well-posedness, by using data on a Cauchy
surface ΣIþ ∪ Σint, with Σint representing the final state of
the system and ΣIþ the portion of Iþ on which the
radiation is recorded. I took the final state to be stationary,
which both ensured that all the radiation had been
accounted for on ΣIþ and made the separation of radiative
from other angular momenta plausible.
Taking into account the gauge freedom led to the phase

space ðΓ;ωÞ, where it was necessary to introduce a
boundary term to the integral for the symplectic form in
order to maintain the proper invariance. This boundary term
is arguably formally attractive, but it does have the effect of
making the expression for ω far more nonlocal than ωe.
The assumption that the final state be stationary is

teleological, but at first does not seem very problematic
practically, since in practice many systems of interest will
have stationary final states. There is, however, a subtlety,
which comes on account of the nonlocality of the boundary
terms in the symplectic form: Suppose that a system
radiates only in two intervals I1 and I2 of Bondi retarded
time, very separated from each other. We would like to
think that we could view each of these intervals as
“effectively” extending from −∞ to þ∞, and compute
the total angular momentum emitted as the sum of the
emissions from the two intervals. But the boundary terms
prevent us from thinking of the phase space ðΓ;ωÞ as a
direct sum of phase spaces ðΓI1 ;ωI1Þ and ðΓI2 ;ωI2Þ, and of
taking the total angular momentum emitted to be the sum of
the emissions for the two intervals.
So the issue for ðΓ;ωÞ is not just one of teleology, but of

comprehension: the construction does not give a well-
defined emitted angular momentum unless we are sure that
we have included all the radiative periods. While arguably
the structure of ðΓ;ωÞ is attractive, both mathematically and
in bringing in an element of physical globality, the issue of
comprehension does present a difficulty for its practical
application.
I also considered the extended phase space ðΓe;ωeÞ,

which does not involve the same passage to a quotient, but

(as a result) contains non-dynamical modes. (For instance,
Minkowski space had an infinity of representations.)
I suggested that these extra degrees of freedom may be
interpretable as needed for specifying the isolated system’s
embedding within the cosmos, but, until this is made
precise, the structure is not fully controlled. In particular,
if we accept this interpretation, the angular momentum of
the radiation cannot be wholly separated from the
embedding.
The extended phase space does not suffer from the

problem of comprehension. Its angular momentum flux is
significantly different in that the extended angular momen-
tum fluxHe;c may have contributions which are first degree
in the dynamical modes, although these contributions are
also proportional to nondynamical terms. Such terms could
well dominate in many cases, and this underscores the need
for an interpretation of the nondynamical modes.
A formula for the spatial angular momentum in terms of

the rotational modes (spin-weighted spherical harmonics)
was worked out. For the spatial angular momentum, the
shear was a sum of the mode functions times complex
coefficients λl;mðuÞ, and the angular momentum was a sum
of integrals determined by the trajectories λl;mðuÞ.
Curiously, the effect of the boundary terms for ðΓ;ωÞ
was to close each of these trajectories by a line segment
from λl;mðþ∞Þ to λl;mð−∞Þ. Parallel results hold for the
center of energy.
An especially interesting question is whether axisym-

metric spacetimes can radiate gravitational angular momen-
tum. In special relativity, the angular momentum is given
by

R
Tabξ

adΣb (where Tab is the stress energy and Σ is a
suitable spacelike hypersurface), and it has long been
suggested that this formula can be taken over to general
relativity, at least when ξa is genuinely a Killing vector. If
this is accepted, then all the angular momentum arises
locally from the stress energy, and in particular, if no stress
energy escapes to Iþ, there can be no purely gravitational
radiation of angular momentum. Both of the flux defini-
tions considered here have this feature.
To appreciate the force of this, I will temporarily invoke

some common but potentially problematic concepts, and
consider that the gravitational field might be described by
“gravitons,” and—what will be the key point—that these
and other quanta can, to some degree, interconvert. This is
done loosely in many places, and indeed it is a generic
feature of any naive attempt to quantize general relativity in
parallel to other field theories (see, e.g., [16] and references
therein). It is extensively considered in discussions of the
Gertsenshtein process [17], an interconversion of photons
and gravitons in the presence of a classical electromagnetic
field. It is important to understand that, while this language
is supposed to describe underlying microphysics, we are
still assuming that, macroscopically, the situation can be
modeled by classical relativity with a classical stress-
energy.
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Consider a variant of the system described earlier. As
before, there will be an axisymmetric rotating body, which
at some point emits, axisymmetrically and tangentially,
some matter (“matter” just means something carrying
stress-energy), and that matter will partially convert into
gravitons. The loss of the converted quanta will alter the
angular momentum, but the gravitons, or more properly, the
gravitational disturbance created, cannot compensate for
this by carrying any of that angular momentum across Iþ.
It must remain in the combination of the modified field and

the remaining matter. There is necessarily a backreaction,
so that

R
Tabξ

adΣb is preserved.
In particular, this means that, if matter does not escape to

Iþ, there is some limit to its conversion to gravitons, for
enough matter must remain to carry the angular momentum.
As I noted above, it is a bit dubious to speak of

“gravitons”; the arguments here are really only suggestive.
But they are enough to make us ask what constraints
conservation of angular momentum puts on matter in the
axisymmetric case.
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