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We study the gravitational waves emitted by an inspiraling compact binary system in massive Brans-
Dicke theory. In addition to the two tensor polarizations, which have been obtained in previous work, we
explicitly and analytically calculate the expressions for the time-domain waveforms of the two scalar
polarizations. With the stationary phase approximations, we obtain the Fourier transforms of the two tensor
polarizations. We find that when the scalar field is light, the waveforms can be mapped to the parametrized
post-Einsteinian (ppE) framework, and we identify the ppE parameters. However, when the scalar field is
heavy, the ppE framework is not applicable. We also obtain the projected constraints on the parameters of
this theory by gravitational wave observations of future ground-based detectors. Finally, we apply our result
to the model proposed by Damour and Esposito-Farese, f(R) gravity, and screened modified gravity.
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I. INTRODUCTION

Direct detection by the LIGO-Virgo Collaboration of
gravitational waves (GWs) emitted by a binary black hole
system has opened a new window to test gravity in the
strong dynamical regime [1]. Although general relativity
(GR), as the most successful theory of gravity, has passed
all the observational tests, it still has a lot of shortcomings
[2]. Based on different theoretical (e.g., a quantum theory
of gravity) and observational (e.g., the accelerating expan-
sion of the Universe) considerations, various extensions of
GR have been proposed [3.4].

In this work, we focus on the gravitational waves emitted
by a binary system in massive Brans-Dicke theory, an
extension of GR with a massive scalar field [5]. In GR,
GW has only two tensor polarizations (h, and h,), and
gravitational radiation begins at quadrupole order [6], while
in massive Brans-Dicke theory, the scalar field can introduce
extra GW polarizations and dipole radiation. Thus far, a
number of studies have investigated the effects of the scalar
field on the motion and gravitational radiation of a binary
system [7]. When the velocity of the binary system is slow
and the gravitational field is weak, the post-Newtonian (PN)
expansion method can be used to compute the orbital motion
and gravitational radiation [8,9]. The time derivative of the
orbital period of the binary system due to the scalar dipole
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radiation was worked out by Eardley [10]. The GW wave-
forms emitted by a binary system in Brans-Dicke theory
have been calculated to Newtonian quadrupole orderin [11].
Then, by adapting the direct integration of the relaxed
Einstein equation formalism to Brans-Dicke theory, the
scalar waveform was calculated to 1.5PN order, and the
tensor waveform was calculated to 2PN order [12-15].
Using the Fokker action of point particles, the equation of
motion of a binary system was obtained up to 3PN order
[16,17]. Recently, the tidal effect due to the scalar field,
which starts at 3PN order, has been incorporated into the
phase of the waveforms [18].

All of the above works [10—-18] focused on the massless
scalar field. For a massive scalar field, there exist some
unique features. A massive scalar field can induce two
polarizations, the breathing polarization /,, and the longi-
tudinal polarization #;, while a massless scalar field
induces only 4, [19]. The screen mechanism can be
imposed when the scalar field is massive [20]. The scalar
field can develop an environment-dependent mass. In the
high density environment, the scalar field is heavy, and the
scalar force is screened. This can help the gravitational
theory pass the local solar system test. In the low density
cosmological background, the scalar field is light, and the
scalar force is long range, which can accelerate the
Universe. A scalar-tensor theory with the screen mecha-
nism is called screened modified gravity (SMG). The four
GW polarizations emitted by a binary system in screened
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modified gravity have been calculated to Newtonian
quadrupole order [21-23]. There is another surprising
effect of the massive scalar field. In an extreme mass ratio
inspiral (EMRI) system, where a stellar mass object spirals
into a supermassive black hole, the massive scalar field may
produce floating orbits [24-27]. Due to superradiance, the
energy flux emitted by the stellar mass object at the horizon
of the rotating supermassive black hole may be negative.
The negative energy flux at the horizon can compensate for
the positive energy flux at infinity. Therefore, the orbital
decay rate of the stellar mass object becomes zero and it
floats around the supermassive black hole. For the EMRI
on a quasicircular orbit, the phase of the tensor waveforms
has been worked out by the black hole perturbation
method [28].

More recent attention has focused on the effects of the
massive scalar field. For an EMRI system, the self-force
equation for the stellar mass object moving on an accel-
erated world line in the black hole background spacetime
has been obtained through the perturbation method [29,30].
The response of the gravitational wave interferometer to the
massive scalar wave has been analyzed in [31]. The
gravitational radiation power and the tensor waveforms
of a binary system in massive Brans-Dicke theory have
been calculated to Newtonian quadrupole order [32,33].
The effective field theory approach has been used to study
this problem in [34]. Using relativistic hydrodynamical
simulations, the binary neutron star mergers in the presence
of a massive scalar field have been studied numerically
in [35].

In this paper, we continue these efforts to study GWs in
massive Brans-Dicke theory. We work out the GW wave-
forms emitted by an inspiral compact binary system on a
quasicircular orbit in massive Brans-Dicke theory. We
obtain the expressions of the four polarizations in the time
domain. The waveforms of the two tensor polarizations
have been obtained in [33]. The waveforms of the two
scalar polarizations are the new results. We find that when
the scalar field is light, the Fourier transforms of the tensor
polarizations can be mapped to the parametrized post-
Einsteinian (ppE) framework [36]. We identify the ppE
parameters in this situation. When the scalar field is heavy,
the waveforms become complicated and the ppE frame-
work is not applicable. We also study the constraints on the
parameters of massive Brans-Dicke theory that future
ground-based GW detectors will impose. Then, we apply
our result to the model proposed by Damour and Esposito-
Farese (DEF) [37] and its extension with a massive scalar
field [38,39]. Since f(R) gravity can be rewritten as
massive Brans-Dicke theory with coupling function
o(¢) = 0 [40-42], we also apply the result to f(R) gravity.
Finally, we compare massive Brans-Dicke theory with
SMG models, including the chameleon model [43,44]
and the symmetron model [45].

The paper is organized as follows. Sections II and III
review the relevant results of [32]. In Sec. II, we rederive
the weak-field expansion of the field equations. In Sec. III,
we investigate the motion of point particles. Section IV
begins to demonstrate the new results. In Sec. IV, we obtain
the GW waveforms of an inspiral compact binary. In Sec. V,
we compare our results with the ppE framework and apply
them to different models. Section VI concludes and points
to possible directions for future research.

For the metric, Riemann, and Ricci tensors, we follow
the conventions of Misner, Thorne, and Wheeler [6]. We set
the units so that ¢ = 7 = 1. We do not set G equal to 1
since the effective gravitational constant depends on the
background value of the scalar field, which will vary over
the history of the Universe.

II. MASSIVE BRANS-DICKE THEORY

In this section, we review some relevant results from
[32]. The action of massive Brans-Dicke theory in the
Jordan frame takes the form [32]

S =162 [ a0 - 2P 0,000+ ()

+ Sm[gmnlpm]’ (1)

where g = det g, and w(¢) is the coupling function which
is responsible for the spontaneous scalarization phenome-
non [37]. The function M(¢) can provide the effective
cosmological constant and the mass of the scalar field.
Here, ¥, denotes the matter fields collectively. The matter
action for a system of pointlike particles can be written
as [46]

m = _zA:/mA<¢)dTA (2)

where 74 is the proper time of body A, and the mass of body A
depends on the scalar field ¢ because the scalar field can
influence the self-gravity of the compact object. This
approach was first proposed by Eardley [10]. Gralla repro-
duced this relation in a more general framework [29].
Variation of the action (1) yields the field equations [32]

L 1M()
v Eg/wR - 579];1/
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where ' = % and (1 = V_V”. The stress-energy tensor takes
the form [46]

S W @ -x0. )
A

™ =

where | is the four-velocity of body A and x4 is its position.
Note that T = ¢*T, is the trace of the stress-energy tensor.

Then, we expand the metric tensor g, about the
Minkowski background 7,, and the scalar field ¢ around
its constant background value ¢,

¢ = ¢0 + @, 9w = M + hmn (6)
0,=h, -y, -2 (7)
v =M — 5y — = My
H o M g
where ¢, h,,, and 0,, are small perturbations, and h =

n"h,, is the trace of the metric perturbation. In terms of
0, the tensor field equation (3) can be transformed into a
standard wave equation. (For more details, see Appendix C
of [47].) In order to expand the field equations in the weak-
field limit, we need to expand the two functions M(¢) and

@(¢) around the scalar background ¢y,

M(B) = M(go) + M (o) +5M" B+ (8)

w($) =wo+ w19+ )
where wy = w(¢y) and @, = @' (¢o).
We assume that g,, =1, and ¢ = ¢, is a vacuum

solution of the field equations (3) and (4). That is, the
spacetime is asymptotically flat [48]. Therefore, we have [32]

M(po) = M'(¢hy) = 0. (10)

We also need to expand the mass of the point particle around
the scalar background ¢,

2
ma() = my 1+SA§O+;<S3+S;_SA)<Z)> +]
(11)

where m, = m, (). Here, s, and s/, are the sensitivity and
its derivative of point particle A [10],

_dinmy(g)

dZ lnmA(¢)
N g |, T
ng |y,

The sensitivity of a black hole is % [10]. The typical value of
the sensitivity of a neutron star is about 0.2 [32].

The tensor field equation (3) in the weak-field limit
becomes [32]

01,6

WO = —1677,,, (13)

where U, = #*9,0, and 7, =T, /¢, + t,,. Here, t,, =
0(6?,¢*,0¢---) denotes the quadratic and higher-order
terms of the perturbations collectively. We have chosen the

gauge condition [32]
=0 (14)

to simplify the field equation. As a result of this condition,
we have the conservation law [32]

=0. (15)

Substituting M (¢p) =1 M" (¢)¢* into the scalar field
equation (4) and expanding this equation in the weak-field
limit, we have

(0, —m¥)p = —1678, (16)
where the mass of the scalar field m; is given by

m =P gy, (17)

_20)0+3

and the source S is given by

1 1 o
S =— onv _ a
167 ( P+ (¢0 2wy + 3) $.af
1 10}
— —m200 — ! 22
7 Ms® <¢0 w13

1 2010 1 7 oT
— - ——o-—L N\ (T =202

+O0(6°,6%0. 007 - - ). (18)

The first two lines represent the field contribution to the
source, and the third line represents the contribution from
the stress-energy tensor of the particles.

III. MOTION OF POINT PARTICLES

Since we are going to calculate the gravitational wave-
form to quadrupole order, we only need to solve the
equation of motion of the point particles which generate
the gravitational waves to Newtonian order. In this section,
we rederive the equation of motion obtained in [32] to make
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this paper self-contained. To Newtonian order, the tensor
field equation (13) becomes [32]

V2, — - 9%, (19)
bo

with

Too = p* + O(p*e?),

To = O(p’e),

T;;= 0(/’*€2>7 (20)
where we have defined the density p* = 3, m48%) (x — x,)

and e is the typical velocity of the point particles. Then, the
solution for 6, to order O(e?) is [32]

4
900 - %U
90[ = 0,
0;; =0, (21)
where
my
U= . 22
Z X — X4 (22)

To Newtonian order,
becomes [32]

the scalar field equation (16)

(V2—m?)p 2w0+3ZmA (1-25,)6%) (x—x4). (23)
The solution is
2
= U 24
¢ 2600 + 3 * ( )

with

e—m.y|X—XA‘

U, = ZmA —2s,)

Using the definition of 6, in (7), we obtain the metric
perturbation to Newtonian order [32],

2 2

ol (25)

hy = —U~+—-——U,,
g0 po2wy +3)
h:: =296 2 U 2 U
Yo o do(Rwo +3) *]°
hg; = 0. (26)

Using the Bianchi identity and the field equations (3) and
(4), we obtain the equation of motion

VAT, — g—;abdl =0. (27)

We can also obtain this equation by using the invariant
property of the matter action S,,[g,,,%¥,,] under diffeo-
morphisms [29,49]. Substituting the stress-energy tensor
(5) for a single particle A into the above equation, we obtain
the modified geodesic equation [10]

dm (o)

In the Newtonian limit, the modified geodesic equation
becomes

SR g4 =0 (29)

where I, is the Christoffel symbol. It can be seen that the
world line of a free particle with nonzero sensitivity is not a
geodesic. Substituting (24) and (26) into the above equation
yields

dQXA 1 mprap
=—— 14 (1=2s3)(1 -2
== S 1 (1= 2501 - 23)

e_msrAB
X (1+mrap) m] (30)
0

with ryp = X4 —Xp. This is the equation of motion of
particle A to Newtonian order, which is consistent with (52)
in [32].

We can use the above results to obtain the post-
Newtonian expansion of the source S (18). Substituting
(11), (24), and (26) into (5), we have

—T+2¢a¢ *[(1—25)—3G(1—§)(1—2S)U
1 5 4
——(1=28)v" +3(1—-2s —=a, |GEU,
2 3
+ O(e)] (31)
where we have used the following parameters from [32]:
GEL4+2wO’ &= ! ,
¢03+2600 20)0+4
1 1
G(l1-¢&) =—, a,=s>+s —=s. (32
(1-8= : )

The body labels in s and a, are omitted since the delta
function in p* will pick up the labels. We do not set the
gravitational constant G equal to 1 since it depends on
the background scalar field ¢, which will evolve with the
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expansion of the Universe [50]. Therefore, the post-
Newtonian expansion of the source S is

S=S8c+Sr (33)
where

*

P
4&)0"’6

+G§US{3<1 —2s—:as> —2(1 —2s)(2+,11)}

Se— [(1—2s)—G(1—§)(1—25)U—%(1—2s)v2

+0(€3):|, (34)
Sp = ———|G(1=&)(1 = 2) —2— V. (U,VU,)
T Y 2w, + 3)2
—4m?G(1 =& (A +2) ——5 U?
g ( é)( 1+ )(20)0+3)2 s
+4m2GEULU + higher order|. (35)
The parameter 4; is given by
19
= ) 36
! 20)0+3 ( )

Here, Sc denotes the compact terms, and Sy originates
from the second line in (18), which represents the nonlinear
field contribution. In the limit m; = 0, the expansion of §
(33) is consistent with Egs. (3.10a) and (3.10b) in [14]. In
the limit A; = 0, the compact part S (34) agrees with the
equation below Eq. (35) in [32]. It is shown in the following
section that only the first term in S will contribute to the
waveform at quadrupole order. Since Sy is of higher PN
order relative to p*, we will ignore its contribution.

IV. GRAVITATIONAL WAVES GENERATED
BY THE COMPACT BINARY

A. Time-domain GW waveforms

In this section we will calculate the gravitational wave-
forms emitted by a compact binary system and its gravi-
tational radiation power. Using the method of Green’s
function and multipole expansion, we obtain the quadru-
pole formula of the tensor wave [32],

0 = R dt2 ZmAxAxA (37)

Specializing to a two-body system in the center-of-mass
frame, we have [32]

0 (g

where m = m; + m, is the total mass of the binary system.
Here, y = ™" is the reduced mass, and r’ = x} — x} and
v' = vl — v} are the relative variables. Note that R is the
coordinate distance of the field point relative to the center
of mass, and § = G(1 = &)[1 + 5,5 (1 = 2s1)(1 = 2s;) x
(1 + mgr)e™™s"]. We have used (30) to eliminate ¥/,.

To obtain the solution of the scalar wave equation (16),
we use the retarded Green’s function G(x), which satisfies

Q, - m?)G(x) = —4x6™ (x) (39)

where 6 (x) is the four-dimensional delta function. The
retarded Green’s function is [51]

G(1,R) = oU—R)_ O(t—R) s (n;‘ _t;_ K) . (40)

where © is the Heaviside function and J; is the Bessel
function of the first kind, which is of order one. (For a
detailed derivation, see Sec. 12 in [51].) The first term is
supported on the future light cone of the source. The second
term is supported within the future light cone. In the limit
my, =0, G(¢t,R) reduces to the Green’s function of the
wave operator [],. Now, the solution to the scalar wave
equation (16) is [32]

9= p5+ O (41)
where
. r)o(t—1¢ —|R -1
(pB(t,R):4/d3r’dt’SC( T =[R=]) )
R —r|
om(t,R) = —4/d3r’dt’®(t— ! —|R-7|)
L msSc(t 1) (ms/(1 = 1) — R —¥'])
V=7 -R=7] |
(43)

The spatial integration is taken over the near zone. Note that
we have discarded the contribution from Sy. Taking the
field point to be far away, R > |r’|, and keeping only the
leading order 0(%) part, we obtain the multipole expansion
of the scalar wave [32],

4 S /
=— APr'Se(t—R,Y)(n- )k, (44)
R;k'at"

— 3/ k[
__Zk'atk/d n- r)/o dz

Se(r= /R +G2r) 1)
X b
(1 +(#J€)2)(k+l)/2

(45)

where n = R/R. Substituting the post-Newtonian expan-
sion of the source S in (34) into the above equations, we
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can obtain the post-Newtonian expansion of the scalar field.
Since we only consider the quadrupole contribution to the
tensor wave, we will keep only the terms up to order O(msz)
in the scalar wave. Specializing to a two-body system, we
have

2 I 1
on =" [—2G<1 B
—2S(n-v)+F(n-v)2—l“gr—21(n-r)2}, (46)
o= =2 | 260 -0 2] = S

— Gepl, [% e—msr] —28L[n - v] + TL[(n - v)?]
T, B—T (n- r)z} ] , (47)

where we have used the definition from [32],

L= [ ® g JUZRONGE) g

u’l

with u=,/1+ (ﬁ)z. We have defined the parameters
_ 1
2w + 3’
I'=1-s;—s,,
S=s51— 9,
r— (1 =2sy)my + (1 —2s5)m; ,

p=(1-2s))[4a, + (1 —2s;)(1 +24))]
+ (1 =2s))[dagn + (1 =2s,)(1 +24)]. (49)

The scalar dipole terms in (46) and (47) are proportional to
S. The scalar quadrupole terms are proportional to I'. In the
previous work [32], the coupling function w(¢) is set as a
constant. Comparing with Egs. (86) and (87) in [32], we
find that the derivative of the coupling function w(¢) only
modifies the monopole terms in the scalar wave.

The observational consequence of the gravitational
waves in the long wavelength limit can be described by
the geodesic deviation equation [52,53]. The gravitational
waves can influence the distance between the freely
moving test particles. Assuming that the distance & is
small compared with the wavelength of the GWs and the
test particles move slowly, the geodesic deviation equation
becomes the approximate form d?&/dr* = —Rpy;&,
where Ry,p; is the Riemann tensor generated by the
GWs. The GW field h;; is defined by the Riemann tensor,

0%h;;/0r* = —2R;. In a metric theory of gravity, there
can be up to six polarizations of gravity [52,53]. For a wave
traveling in the z direction, these polarizations become

hy +h hy h,
hl](t) — h>< hb - th hy . (50)
h, h, hy
Maggiore and Nicolis [19] showed that the massive scalar
field can induce two polarizations, the breathing polariza-
tion h;, and the longitudinal polarization /;. Now, we
calculate the polarizations of the gravitational waves
generated by a binary system in detail. For simplicity,
we specialize to a quasicircular orbit. In this situation,
the monopole terms in (46) and (47) have no wavelike
behavior. Therefore, we can discard these terms.
To linear order in the metric perturbation h
Riemann tensor is given by

s the

1
R/u/aﬂ = 5 (_h/m,uﬁ + hba./.tﬂ + hﬂﬁ,ua - huﬁ,/m)' (51)

Substituting the tensor wave in (38) and the scalar wave in
(46) and (47) into the above equation, we have

10° @
Roi; = Y {‘91‘7 - %(5 nin;)

2 oo 1
_”"”qu%;/o dzJ\(z) (;— 1)14, (52)

where 0] is the transverse-traceless part of 6;; and
gm(n-r
pgm@-r)

Y= {_2S(n-v) F(n-v)z_ gm

ij —

2

u2 u3 r3 u3

}FRU. (53)

We can read the four polarizations in massive Brans-Dicke
theory from the Riemann tensor (52).

GM )5/3 1 2
h, — _45< Rc) /3 +cos lcos(Z(D), (54)
GM,)"
h, — _45%0)2/3 cossin(2®), (55)
@
h —_ = 56
s o

_ 2 [= 1
hy = ¢0RA dle(z)<u2 l)w, (57)

2

where 6= (1—-&3[1+a(1—=2s,)(1=25,)(1+m,r)e™™T],
M, = 1> m?*? is the chirp mass, @ is the orbital frequency,
@ is the orbital phase, and 1 is the inclination angle between
the binary orbital angular momentum and the line of sight.
The scalar field ¢ is given by
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20

Q= : [Tv?sin1 cos(2®) — 2Swsincos(D)],_g
200 [
- S dZJl (Z)
0
I'v? 28
X {—UQ sin?z cos(2®) — — vsint cos(CD)] . (58)
uw u —Ru

We have used the relations n-v = v sin ¢ cos(®) and

1+ (ﬁ)z.
In Appendix A, we calculate the asymptotic behavior of
the integrals in h;, and h; when R — oco. After performing
these integrals, the two scalar polarizations take the form

n-r=rsin:sin(®). We recall that u =

hy = hyy + by, (59)
2G
hy, = %2S(§m)'/3 sin tw'/3
2 2R
x4/1 —m—;cos <7ms + CD)@(a) —my) ,
@ (1)2 - m? t—Ru,
(60)
2G 2
hyy = —%F( m)?/3sin’ 1w2/3( 07 )
2R
X cOS <m—+2¢>>®(2w—ms) . (61)
\/ 40)2 —m t—Ru,
and
hy = hpy + hps, (62)
22G
= 5’“28( m)!/3 sin 10'/3

’

2 2R
x 1/1—m—;cos <L+®)®(w—ms)
w wz—mg

t—Ru,
(63)
m? 2GEu m;
n=-3 g R (gm)?/3 sin? 1?3 <1 107
IR
X COS <ms + 2¢>> 02w —my) . (64)
4a* — m? 1—Ru,

where u, = nw/+/n*w?* — m?|,_g. We have used the rela-
tion v = (gmw)'/? to eliminate v and discarded the terms

of order 0(%). Due to the existence of the Heaviside
function @, a binary system can radiate scalar waves only if
the orbital frequency w is high enough. The phase of the

scalar wave satisfies the dispersion relation

+ CD) -m2.  (65)

2 2
miR miR
0, o) (7
"\V? —m? Vo —m?
If we ignore the time evolution of the orbital frequency w,
then the phase takes a familiar form,

m2R

w* —m?

+ @ = wr — kR + constant, (66)

where k = \/w? — m? is the wave number. It can be seen
that there is a simple linear relation between the breathing
polarization /4, and the longitudinal polarization A,

2 2

m? m
hpy = —hp, hpy =
®

40;2 (67)

This is a result of the linearized scalar wave equation (16)
[19,22]. Each of these two polarizations has two frequency
modes. The lower frequency mode, proportional to S,
originates from the scalar dipole. The higher frequency
mode, proportional to I', originates from the scalar quadru-
pole. In the limit m; = 0, h; = 0 and the waveforms of
the other three polarizations become that of Brans-Dicke
theory (Sec. II C in [54]).

We can use the above results to estimate the ratios between
the amplitudes of different polarizations. If the scalar field is
heavy enough, m, ~ 107! eV, then the parameter & can be
of order 1072 [32]. For a black hole-neutron star binary
system with mpy =5 Mg and myg = 1.4 Mg, when the
frequency of the tensor wave is about 100 Hz, the ratio of the
amplitude of the breathing polarization to that of the plus
polarization is about

~ 1072, (68)

and the ratio of the amplitude of the longitudinal polarization
to that of the breathing polarization is about

el oo

~1077. (69)

|y

The signal received by a GW detector is given by the
response function [8]

h(t) = Foh, + Fyhy + Fyhy, +F by, (70)

where the detector antenna pattern functions Fy(A =
+,%,b,L) depend on the geometry and orientation of
the detector. For the explicit expressions of the antenna
pattern functions, refer to [31] and Sec. 13.4.3 in [8]. The
expressions of the tensor waveforms (55) and (54) have
been obtained in [33]. The expressions of the scalar
waveforms (59)—(64) are the new results. These results
will be helpful in future search for the massive scalar field.
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B. GW radiation power

Following [32], we derive the GW radiation power of a
binary system in massive Brans-Dicke theory. The GW
energy-momentum tensor is [47]

Po ¢ P9,
o = (0T, + o 5+ 200) 222) (71

where (---) represents the average over several wave-
lengths of GWs. The GW radiation power in massive
Brans-Dicke theory is [55]

dEcw _ / dQR{°R
dt

b0 crrorr Do PoP R
— [ dor? OITOTT — 20 (3 4 20py) LOTR Y
/ <32 1620 200"

(72)

where d€ denotes the solid angle element. If both the scalar
and the tensor gravitational waves are massless, then °F =

1 + O(35) [55]. However, when the scalar field is mas-
sive, 1% # 1% + O(5). Will studies massless scalar waves

in [56]. The radiation power due to the tensor field is given
by [32]

dE, Po srryrr\ _ $o / 2 | 2
dQR?{ 22O dQR2(I2 +
dr / <32 T (i + hix)

32
— o ¥ (GM)" ", (73)

where we have used the expressions (54) and (55) of the
two tensor polarizations. The radiation power due to the
scalar field is given by

dEs 3 + 26()0

dt 16z, Rz/d9<€0.0(/7,1e>- (74)

Using (46) and (47), we have

oo — 20gmu {—41“((“ ‘r)(m-v) I {(n : r)gn : v)})

R r
+25<%—12 [%D] (75)

_20@# [_4F<(n : r)gn-v) L [(n-r)gn .V)D

s} e

Note that p g # —p r + 0( ;) for the massive scalar wave.
In Sec. VIIB in [32], the energy loss rate due to the scalar

field is given by 4E= 315{'/‘)’;’ R? [dQ(p @), which

assumes @ = —@ + O(% z7)- Actually, the frequency-
domain GW waveforms in [33] are based on this radiation
power.

Substituting (75) and (76) into (74) yields

w

PR =

Jormn (52 fonlas 1] (1)

+ 1612 <<“ : r)rgn Y, {(n T

dE, Gég2 20 (16
dt M 15

+ C3(R;2w)C4(R; 2w) + S3(R; 2w)S4(R; 2w)]

zgn-v)]> ((n-r)rgn-v) L {(n-rign-v)])>’ -

—TI22%[1 — cos(20R) (C3(R; 2w) + C4(R; 2w)) — sin(2wR)(S3(R; 2w) + S4(R; 2w))

+ gSz[l —cos(wR)(Cy(R; w) + C3(R; ®)) — sin(wR) (S, (R; w) + S3(R; w))

+ G2 (R, w)C3(R; w) + S>(R; )S3(R; w))] }

where we have used the following integrals from [32],

C,(Ryw) = /m dz cos(a)Ru)Jlu(nZ),

0

We recall that u =

JI(Z)'

S, (R w) = / ® dzsin(wRu) 11U (79)

0

1+ (G- R)2. In the integrals C, and S,, the orbital frequency @ is assumed to be a constant. This

assumption is also used when we calculate the tensor radiation power dE,/dt. The asymptotic expansion of C,, and S, for

R — o0 is [32]
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/ n—1
cos(wR) — <#) cos(Ry/@w?> —m?) o> my
C,(R;w) ~ o (80)
cos(wR) — <%) e~Ry/mi=o? COSM_TU” w < my,
7 n—1
sin(wR) — <—wam2> sin(R/w?* —m2) @ > my
S, (R; ) ~ o (81)
sin(wR) — (ﬂ) e RVmi=0 jp (2 21) ® < my.

(For the details of obtaining the asymptotic expansion of these two inte rals,' see Appendix B in [32].) Using these results,
g ymp P g pp g

we have the scalar radiation power

dE, Gfg2 2u? [161_‘2 2<\/4w2—m§

dt r 15 2w

The first term represents the scalar quadrupole radiation, and
the second term represents the scalar dipole radiation. In the
limit m; = 0, the radiation power is consistent with that of
Brans-Dicke theory, Eq. (16) in [54]. Actually, we can also
use the waveform of the breathing polarization to obtain the
scalar radiation power. Using (56) and (74), we have

dE; _ (3 + 2w0)o 2/
= RO R [ aQhy ohyg). (83)

Substituting (59)—(61) into the above equation yields (82).

Since the waveform h,, begins at dipole order, which is of
—0.5 PN order relative to the quadrupole term, the 0.5 PN
term(s) in &, will contribute to the scalar radiation power at
quadrupole order. However, the 0.5 PN contribution to 4, is
beyond the scope of this paper.

C. Frequency-domain GW waveforms

In GW data analysis, one often works with the Fourier
transforms of the GW waveforms. In order to obtain the
frequency-domain GW waveforms, we need the time evo-
lution of the orbital frequency w. Using the energy balance

condition ‘fl—f di‘;w with E = —Jpuv* = -1 u(Gma)3, we
have the time derivative of the orbital frequency
96

& == (GM, (1 =&)L +a(l =25 (1~ 2s,)

x (14 myr)e™™ iws

16 2\3
+3GEuw’ | —T2(gmw)i( 1 - msz 2@(260 —my)
15 4o
4 m2\3
+§Sz<1 _E) ®(a)—ms)} (84)

should

"There is a typo in Eq. (B12) in [32], where i""—(z—i)”"
n—1
be replaced by #

>5®(2w —my) + %Sz <

2 2

w-ﬂmf@@_mﬂ. (2)

()

|

We only consider the Fourier transforms of the tensor
polarizations since the dominant observational constraint
comes from these polarizations [23]. The Fourier transform
of the plus polarization /., is given by

ho(f) = / h(t)e /1dt. (85)
Using the stationary phase approximation, we have

(GM )31 + cost

Ry (f) = 26 ot} [——e+,  (86)

R 2 a(t,)
where ¢, is determined by
wo(t,) =xf, (87)
and
W, = 27fR - 20(t,) + 2aft, — g. (88)

We use the relation
o 2nf—2
2aft, —20(1,) = / 220 ot onf 20, (89)
o 0}

to express t, in terms of f, where 7. is determined by
(t.) = oo and ®, = ®(z.). We evaluate the integral in
different cases. When the scalar mass is light, m; < zf, the
integral becomes
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=2 -2 ~f 5 2
/ Mda)_/ dw(2nf—2w)95—6(GMC)-§af7{1+§§_§a(1 —2s51)(1 = 25,)
oo @ ~

1 2 4 2 2
ig _6r2 l_éﬁ + - S . 1_§ﬁ
32°|15 8w’) 3 (Gmw): 2 @’

3 5 2 0[ 1 & m,\2

2 mg\ 2
—— (154 =25( — . 90
( (ﬂf> I} 0
For a light scalar mass (m; < 2.5 x 10720 eV), the Cassini spacecraft has constrained @, to be larger than 40 000 [32], i.e.,
& < 107°. Therefore, we retain only terms to order O( ) in the above equation. Then, the phase ¥, in the light scalar mass

situation becomes

/4
‘P+—2”f<R+tc)_2ch_Z+ﬁ(

5{11648((;57;)% (208— 105(?—})2) +6I;20 <154 25< f>2>]} (91)

The Fourier transforms of the tensor polarizations in the light scalar mass situation are

GMcﬂ'f)_%{l +§§ —%a(l —2s51)(1 =2s,)

ho) =~ P05 (30 14 e Lt -20)1-25)

a5 (-3 G) ) S 03 () )} o

- GM, ) 52\%, . 5 1
hy(f) = —é%cos(ﬁ) (zf) 6{1 +2é—gall=2s)(1-25,)

5 _[16 5( mg\? 4 & 3 (mg\? ~
"t {EW(l_E(Zﬂf) )Wrmﬂfﬁ (1_5<E> )H” ’ )

with ¥, =¥, +7, and ¥, is given by (91). In the limit wy — co, { = @ = 0 and § = 1, the expressions of h.(f) and
hy (f) reduce to that of GR.

When the scalar mass is m of order z f, the experiments do not exclude that wy is of order one [32]. Therefore, we cannot
linearize in &. The integral in the phase ¥, becomes

/ﬂf 2nf — 2w

0 ()

f 2 %
a’a)—/fa'a)(271'f—260)95—6(GMC(1—(f))_ij __{1—§1—§§F2<1—4m—a;> 02w —my)

53 (Gmo) i 5>%52<1 _Z_i%)%@(w_mS)}

S (OML(1 = Bf17 = e 0ey —m)(GM) S S ﬁfd“’(%f—zu))w‘%(l—mgzy

T 128 144 (1-&) 4w
25 Somi—t g [ w127
m@(ﬂf my)(GM,.)73(Gm) »(1 _5)?5 Ap‘ do(2rf — 2w)w™: <1 a)2> . (94)

We have discarded the constant terms which are independent of the frequency f since they can be absorbed into ®,.. The two
integrals in the last two lines can be expressed in terms of hypergeometric functions (see Appendix B). Using the results of

these two integrals, we can obtain the frequency domain waveforms of 7z+ (f) and h (f). However, in order to have a better
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understanding of this result, we calculate these integrals in two limits and use (88) and (89) to obtain the phase ¥, of the

waveforms in these two limiting cases.
In the limit m; — zf, the phase ¥, becomes

3 5 40 s
‘I’+:27rf(R+tC)—2d>C—4 128 [GM (1 —f)ﬂf]‘i{l—ﬁling [0.1034—0.662(1—%)}
40f 5 ) \:
In the limit m; — 2zf, the phase ¥, becomes
W =20 f (R4 1) - 20, ~ "+ 2 (6M (1 - 1= V200 ey € pa (1o VL (g
* 4 1280 7¢ ' 1701 Y1-¢ 2zf) |’

Therefore, in these two limits the frequency domain waveforms are

() = 5 M) 1+C°“<><f> (1-¢r {1+25r2<1 m§2>%®(2ﬂf—ms)

R 2
254( maf) (1:55):%82<1_7;2n—;2>%®
hy(f) = =6
+;—4(Gmﬂf)‘%(1_§§)§82(1 ’f;z

where ¥, =¥, + 7 and ¥, is given by (95) or (96). We
recall that § is defined below (57). It can be seen that when
mg — 00,5 = (1 —¢)°/3 and the expressions of /. (f) and
h (f) reduce to that of GR, except for replacing the chirp
mass M. with M (1 —¢).

The sensitivity of a black hole in massive Brans-Dicke
theory is sgy = % [22]. As a result, for a binary black hole
system, I' = S = 0, and the waveforms are identical to that
of GR, apart from the replacement M, — M (1 — &), which
are the same as that in the limit m, — oo. This is because in
both cases the binary system has no scalar radiation.

V. PARAMETRIZED POST-EINSTEINIAN
PARAMETERS AND OBSERVATIONAL
CONSTRAINTS

The ppE framework is a waveform model to describe the
GWs emitted by a binary system on a quasicircular orbit in
metric theories of gravity. In the original ppE framework,
Yunes and Pretorius [36] proposed that the GW waveform
of a binary during the inspiral is A(f) = her(f)(1 +

Appe(GM [ )3) e/Proe(GM ”f), where hgg(f) is the GR
Fourier waveform and (appe, fppe. @, b) are the four ppE

31—-¢ 4nf

(sf =)} e 97)

@TWCOSZ(S ) i -oifi+ 25 e (1 i f@(znf—m»

31-¢ 477

>3®(ﬂf m )}_iel’“’x, (98)

parameters that describe the non-GR correction to the GW
amplitude and phase. Note that the original ppE framework
only considers the two tensor polarizations 4, and h,.
Clearly, this parametrization cannot describe the wave-
forms in the previous section. We need a more general
framework,

h(f) = her(f) (1 + Zaj(GMcnf)‘;—’) Y pomant
J

(99)
From (91)—(93), we obtain four sets of the ppE parameters

of massive Brans-Dicke theory in the light scalar mass
situation,

5 2,2
[ /5 — 2 2/5
a; = —2, bl == —7, (100)

5
02 = 2B (GMm . o= g ESPI (GMom, ),

53248

612:—8, b2:— (101)
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1 1
= —— 2, = —— 172,
as 12‘5 P 2565
a; =0, by = -5, (102)
a :isz(GM‘m,)z By = i<§F2(GM mg)?
* 796 o) + 730424 sl
a, = —6, by = —11. (103)

The first two sets of ppE parameters correspond to the
scalar dipole radiation, and the last two sets correspond
to the scalar quadrupole radiation. The first set of ppE
parameters (o, 31, a,,b,) is consistent with the ppE
parameters of massless Brans-Dicke theory obtained in
the previous work [57].

Chamberlain and Yunes studied the observational con-
straints on f3,,. with future ground-based GW detectors, the
LIGO-class expansions A+, Voyager, Cosmic Explorer,
and the FEinstein Telescope [58]. They considered the
GWs emitted by a black hole-neutron star system with
mpy =5 Mg and mys = 1.4 Mg, at a distance 150 Mpc.
Assuming that the detection is consistent with GR, they
obtained the constraints on /3, listed in the second column
in Table I. The typical value of the sensitivity of a neutron
star is syg = 0.2 [7]. Using the expressions of ppE
parameters of massive Brans-Dicke theory, we obtain the
constraints on the parameters in this theory, listed in the
third column in Table I.

However, when the scalar mass m; is comparable to zf,
the Fourier waveforms (97) and (98) cannot be described
by the ppE framework. Therefore, there is no available
constraint on the parameters of massive Brans-Dicke theory
in this situation.

Let us now apply our result to specific models.

A. DEF model

This scalar-tensor theory was proposed by Damour and
Esposito-Farese to study the spontaneous scalarization of
neutron stars [37,59]. The action is given in the Einstein
frame,

TABLE 1. Projected constraints on f3,,. and the parameters of
massive Brans-Dicke theory as a function of the exponent
parameter b [58]. Note that m,, = 10720 eV.

Upper bound

b on [Bopel Parameter constraint
-5 3.48 x 1074 £<041

-7 2.88 x 1078 E<23x10™*

~11 1.88 x 10713 E(m, /myp)? < 4.9 x 1010
—-13 6.95 x 10~1° E(my/myg)? < 4.0 x 108

1 1
si= [ g [m R. = 30,006, ~ V()

+ Sm [A2 (¢*)g;w ‘Pm]v (104)
where R, is the Ricci scalar of the Einstein frame metric
G- 9« 18 the determinant of g,,, G, denotes the gravita-
tional constant, V(¢, ) is the scalar potential, and A(¢,) is
the conformal coupling function. Using the conformal
transformation g,, = A*(¢,)g;, between the Jordan frame
and the Einstein frame, we obtain the relation between
these two frames,

o 4G, (dinA(g,)\?
b= GGy zw<¢>+3( i, )
M(@:_%;f;) (105)

The coupling function in the DEF model is given by [37]

a0 =exp 3. (3) |

p

(106)

where f, is a constant and M, = 1/./87G,. The scalar
field is massless in the original DEF model. Then,
Ramazanoglu and Pretorius [38] extended this model to
study the spontaneous scalarization of neutron stars with a
massive scalar field. The potential term in the extended
DEF model is given by

Vip.) = 3, (107

with m, the scalar mass in the Einstein frame. In [38] the
background scalar field is the minimum of the potential
V(g,), ¢, = 0. From (105), we have

wy = +o00. (108)
Combining with (17) and (32), we obtain
my =0, E=0. (109)

As a result of the special background scalar field value, the
extended DEF model can satisfy the constraints in Table I.

Since the original DEF model has no potential terms, its
background scalar field ¢ is determined by the cosmo-
logical evolution. Using (32) and (105), we have

()
e=ym ().

p

(110)

124035-12



GRAVITATIONAL WAVEFORMS FROM THE QUASICIRCULAR ...

PHYS. REV. D 102, 124035 (2020)

Applying the constraints in Table I, we have

bo

« 2.1 x 1072
B <21 %

(111)

In the (original and extended) DEF model, for a suffi-
ciently negative f3,(<—4), the neutron star will cause an
activation of the scalar field above its background value, thus
influencing its sensitivity. As a result, this scalarization can
affect the GW waveforms of the binary system containing a
neutron star [50,60,61]. We ignore the scalarization effect in
this paper and leave it for a future work.

B. f(R) gravity

We note that f(R) gravity is a well-studied model to
explain the late time accelerated expansion of the Universe
[62]. The action for f(R) gravity takes the form [40]

1
S pu—
167G,

/ dxy=Gf(R) + Splgw- Bl (112)

where f(R) is a function of the Ricci scalar. After the field
redefinition [40], f(R) gravity can be rewritten as massive
Brans-Dicke theory with w(¢) = 0 and the potential term

M(#) = 5 F(R) = OR (13)

where the scalar field is defined by ¢ = 2-f/(R). Since
&=1in f(R) gravity, the scalar degree of freedom must be
heavy enough to satisfy the Cassini constraint. Therefore,
we should apply the waveforms (97) and (98) to f(R)
gravity or use the results of Appendix B to obtain the
waveforms. Our results are applicable to a general f(R)
model. Now, take the R? model as an example [35]:

f(R) =R + dR? (114)
where d is a positive constant. In the R> model, the
potential term is [40]

G 12
Mp)=—-——"(¢p—— 115
W=-5(¢-5) (115)
The mass squared of the scalar field is
m? = 1 (116)
s 6d N

In the heavy scalar mass situation, the phase of the GW
waveforms is complicated, and the ppE framework is not
applicable. Because of this, there is no available projected
GW constraint for f(R) gravity. However, when m, > 2zf,
the phase W in (96) is identical to that for GR except that
the chirp mass is multiplied by a factor (1 — &). Therefore,
when

my>4.1x 10713 eV <f—’) (117)

100 Hz

with f, the highest sensitive frequency of the GW detector,
f(R) gravity can satisfy the GW constraint. For the R?
model, we have

-2
d<42x1077 Hz™2 (fi’> . (118)

100 Hz

C. Screened modified gravity

SMG is a kind of massive scalar-tensor theory with
screening mechanisms to suppress the scalar force in high
density regions [20]. The action of SMG is given in the
Einstein frame (1). The behavior of the scalar field in SMG
is controlled by the effective potential [20]

Veff(d)*) = V(¢*) +,0A(¢*)’

where p is the conserved density in the Einstein frame. As a
result, the mass and the coupling to matter of the scalar field
can vary in different environments. SMG can behave as a
dark energy scalar and avoid solar system constraints. For
comparison, the mass of the scalar field in massive Brans-
Dicke theory is determined by the bare potential M(¢),
which does not depend on the environment. In this section,
we ignore the screening mechanism of the following two
SMG models and investigate the consequences.

(119)

g j

W:vig)=néen(5z). A =ew(5). 120
* P

1 A 2

Q) Vi) ==y B+ A =1+15

(121)

Model (1) is the chameleon model [43,44]; A corresponds
to the dark energy scale, and & and f are the positive
dimensionless constants. Model (2) is the symmetron
model [45]; A is a positive dimensionless constant, fi and
M are two mass scales.

Using the transformation relation (105), we obtain the
potential function M(¢) and the coupling function w(¢) in
the Jordan frame:

(1): M(¢) = —162A*G>¢? exp [(%) a],
o) = 1325 (122)
() M(g) = ~162G22 |~ 3271 - G.)
+§M“(1 - G*r/»)z},
Mm? 3
() SWE(1-Gp) 2 (123)
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Since A(¢,) > 1 in these two models, from (105), we have
0<¢<1/G,. In model (1), M(¢) is monotonically
decreasing. Therefore, we cannot define the mass of the
scalar field ¢, and our result is not applicable to the
chameleon model. This shows that SMG models and massive
Brans-Dicke theory have no one-to-one correspondence.

In model (2), from M'(¢y) =0, we obtain the scalar
background

~2

ji
¢0 /1M2 ( )
and the mass squared of the scalar field is
A8rdy oy~
2= 2 Gt MP. 125
"= 2wy 130 (125)

In [45], the authors impose two relations between the
parameters of the symmetron model. Note that ji>M? is

around the current cosmic density
fi*M* ~ H3M?. (126)

The strength of the scalar force is comparable to gravity,

i 1
—~—. 127
Vi~ i, (127)
Using these two relations, we have
Wy~ 1, my~ Hy~ 1073 eV. (128)

It can be seen that these parameters do not satisfy the GW
constraints in Table I. However, if we consider the screen-
ing mechanism, following the discussion of Sec. VB in
[22], the GW constraint in Table I only imposes a weak
bound on A,

A>4.9x 107110, (129)

This result indicates the necessity of applying the screening
mechanism.

VI. CONCLUSION AND DISCUSSION

We have calculated the GW waveforms of a compact
binary on a quasicircular orbit to quadrupole order in
massive Brans-Dicke theory. The massless tensor field
induces two tensor GW polarizations, 4, and h,. The
massive scalar field induces two scalar GW polarizations,
hy, and hy. Our work, with a general coupling function
@(¢), confirmed the waveforms of the tensor polarizations
obtained in [33], which assumed a constant coupling
function and additionally found the waveforms of the
scalar polarizations which contribute to the signal received
by a gravitational wave detector. These will be useful in the
search of the massive scalar field.

Using the SPA method, we also calculate the Fourier
transforms of the two tensor GW polarizations 7., (f) and

h, (f). The expressions of &, (f) and /,(f) depend on w,
but not on the derivative of the coupling function w(¢).
This is because the binary system on a circular orbit has no
monopole radiation, while the derivative of the coupling
function only appears in monopole terms. In the light scalar
mass situation the waveforms 7 (f) and h,(f) can be
mapped to the ppE framework, and we obtain the ppE
parameters. However, when the scalar mass is comparable
to the GW frequency, the phases of these waveforms
contain hypergeometric functions which cannot be
described by the ppE framework. Yunes and Pretorius
[36] designed this framework, trying to incorporate all
metric theories of gravity. We demonstrate explicitly that
the applicability of the ppE framework depends on the
parameter of the gravitational theory. In the limit m; — oo,
the binary system has no scalar radiation, and the wave-
forms of i, (f) and h,(f) will be identical to that of GR
except that the chirp mass M, is replaced by M (1 —¢).
Since a binary black hole system also has no scalar
radiation, the waveforms of the binary black hole system
take the same form. In the limit m; = 0, the GW waveforms
and radiation power are consistent with those of Brans-
Dicke theory. Considering the potential observations of the
GWs emitted by a black hole—neutron star binary by future
ground-based GW detectors, we obtain the constraints on
the parameters ¢ and m,. Then, we apply our results to
specific models, including the DEF model, f(R) gravity,
and screened modified gravity. The parameter constraints
are based on the previous work [58], which considers only
the phase correction to the tensor polarizations. Therefore,
we need to further study the influence of the amplitude
correction and the scalar polarizations on the parameter
constraints, especially when the scalar field is heavy. We
leave this to future work.

It can be seen that the sensitivity s of a compact body
always appears in the combination of (1 —2s). This is
because the source terms in the scalar field equation (4)
have the form T — 2¢ g—{i The trace of the energy-momen-
tum tensor depends on the scalar field through the mass of
the compact body, T ~ m(¢). Therefore, T — 2¢g—£ ~

m(¢)(1 —2s). Actually, (1 —2s) is proportional to the
scalar charge defined by Damour and Esposito-Farese in
[37]. For black holes, a sensitivity of % is equivalent to
saying that black holes have no scalar hair [48]. However,
when the scalar background ¢, is time dependent [63,64]
or has a spatial gradient [65], a scalar hair can arise [2]. We
need to further investigate gravitational waveforms emitted
by the hairy black holes in future work.
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APPENDIX A: INTEGRALS IN &, AND h;

We follow the method described in Appendix B of [32]
to evaluate the integrals with the Bessel function in (56)
and (57):

o0 1
11=/ dzJ,(z) o
0

% ) (1 Ru)cos (1 — Ru)),
,47 a2, (2) % ) (t—Ru)icos (2d(t— Ru)),
(A1)

with u =, /1 + (-%5)? and w(t) = d®(r)/dt, which can-
not be evaluated exactly Now we calculate the asymptotic
behavior of these integrals in the wave zone R — oo.
Choosing a parameter A such that m RA> 1 while
wRA* < 1 and splitting /5 into two parts, the first part is

= —Jo(2) <12_

u

mgRA

1)u1 w(t — Ru)icos (®(t — Ru))

0

+ ...
2

(1_;_17/12)2(”(2‘_1?
X cos(d)(t—R 1 +/12)> +

1
= Jo(m,R2) 1+ 12)3

(A2)

All terms are dependent on A. They can be exactly canceled
by the second part when we perform integration by parts.
Therefore, the asymptotic behavior of /5 is determined by
the second part.

Substituting the asymptotic expression of the Bessel
function,

I (x) =

into the second part, the integral can be approxi-

mated by

P R/oo J \/Ecos(mSRv w—1-3x)Vu? -1
=-m u\/=
’ B VS T mR(u?—1)i u?

x cos(® (1 — Ru))w(t — Ru)s

B 2mgR / (U2 = 1)
V 1+22 M3

z (myRV u?— —ZIT+CD + ez (myRVu>— ——IT D) ]

w(t — Ru)3

(A4)

where N denotes the real part of the argument. In the
previous work [22], we worked out the asymptotic behavior
of I when @ > m. Now we focus on the situation @ < m.
In this situation, the first derivative of the exponential part of
the two terms of the integrand cannot vanish on the real axis;
we must consider the analytic properties of the exponential
part. We use the method of steepest descent [66].
The saddle point of the first term b, is determined by

b
p(by) = z<m szll—w(t—Rbl)R> =0, (AS)
>
that is,
w .z
b, = 3 A6
1 mz_wze (A6)

where p(u) = i(mRVu?> —1 =37+ ®(t — Ru)) is the
exponential part of the first term of (A4). Deforming the
integration contour to pass this saddle point, we obtain
the dominant contribution to the integral 7}:

i [2m,R(b? — 1) 1 27

I~ 9| —= - t — Rby)ier(b) ,
2 b3 b3 ol 1ye p"(by)

(A7)

% 2w
S~ R == w(t — Rb; )ierbr)
[ w S s
/ 2
R—Z=
xcos< +a) 2>

Therefore,
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Iy ~ m3\/m? — w(t — R)2w(t — R) e RVm-o(=R)* ¢og (q)(t —R) + @R — g) . (A9)

In the same way, we can work out the asymptotic behavior of I, I,, and /5 in the situation o < my,

I ~w(t—R)cos(®(t—R)) + w(t — R %”w(t— le RVmi-oli=R)? cos< (t- )+a)R+2>

I, ~w(t — R)icos(2®(t — R)) —w(t — R < _W>ER m~4(i=R)* o5 (20 (¢ — R) + 2wR),

2 2
= <1 - 4a)(:n - R)2) (1 = R)ie™ "V o=k cos(20(t — R) + 2wR). (A10)

It can be seen that all four of these integrals include terms of order O(e~®). When substituted into /,, and 4, , these terms can

be discarded. In the above calculations, we assume that w(t — Ru) is real. Actually, the imaginary part of @(¢ — Ru) cannot
be ignored for some values of 7. However, in these situations, e”*) in (A4) will always contribute a term of order O(e%).
Therefore, this assumption will not influence the expressions of 4, and h;.

We collect the asymptotic behavior of these integrals in the situation @ > my to facilitate Ref. [22]

m3
I, ~w(t — R)icos(®(r — R)) — w(t — Rul)‘%\/a)(t — Ru;)* — m2 cos <\/a)(t = R‘:)z — + (1 - Ru1)> ,

m2 ) ( mZR )
1- s cos : +2®(t — Ruy) |,
( 4o (1 = Ru,)? V4o(t = Ruy)? — m? ( 2)

’

t—Ru,

PNy

I ~ (1 = R)} cos20(t = R)) - w(t - Ruy);

2 2
m miR
Iy ~— a)z—m%cos<++tb>
w3 Vo —m?

2 2 2R
I~ (1= 25 ) o cos (e + @ (A1)
4w 4w w2 —_ m%

’

t—Ru,

where u, is given by

nw(f— R)
N e Py (A12)

APPENDIX B: TWO INTEGRALS
The results of the two integrals in (94) are obtained by the software Mathematica. Here, ,F,(a, b; c; z) is the ordinary

hypergeometric function,
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nf 13 m? %
do(2zf - 2w)o™ 5| 1 - —
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1 12 2
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