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Kerr–Vaidya metrics are the simplest nonstationary extensions of the Kerr metric. We explore their
properties and compare them with the near-horizon limits of the spherically symmetric self-consistent
solutions (the ingoing Vaidya metric with decreasing mass and the outgoing Vaidya metric with increasing
mass) for the evaporating and accreting physical black holes. The Newman–Janis transformation relates the
corresponding Vaidya and Kerr-Vaidya metrics. For nonzero angular momentum, the energy-momentum
tensor violates the null energy condition (NEC). However, we show that its structure differs from the
standard form of the NEC-violating tensors. The apparent horizon in the outgoing Kerr–Vaidya metric
coincides with that of the Kerr black hole. For the ingoing metric, its location is different. We derive the
ordinary differential equation for this surface and locate it numerically. A spherically symmetric accreting
black hole leads to a firewall—a divergent energy density, pressure, and flux as perceived by an infalling
observer. We show that this is also true for the outgoing Kerr–Vaidya metric.
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I. INTRODUCTION

Black holes are described both as “the most perfect
macroscopic objects in the universe” [1] and as one of the
“most mysterious concepts conceived by the human mind”
[2]. Thanks to the successes of the gravitational wave
astronomy and direct observations of ultracompact objects
(UCOs), the old debate about the physical relevance of
black hole solutions [3] has been reframed as a question
about the nature of UCOs [4–6].
Diversity of opinions about black holes and their

significance are matched by absence of a universally
accepted definition [7]. However, the core idea of a black
hole as a spacetime region from which nothing can escape
is formalized in the notion of a trapped region. Gravity
there is so strong that both ingoing and outgoing future-
directed null geodesics originating at a spacelike two-
dimensional surface with spherical topology have negative
expansion [8–10]. The apparent horizon is its evolving
outer boundary.
A physical black hole contains such a trapped region

[11]. To be relevant to distant observers with a finite
lifespan it has to be formed in finite time according to their
clocks [12]. Otherwise, black hole solutions can have only
approximate or asymptotic meaning. A physical black hole
may possess other classical features, such as an event
horizon and a singularity, or be a singularity-free regular
black hole. One of the issues at stake is whether the

observed astrophysical black hole candidates contain light-
trapping regions, i.e., they are black holes or do not, and
thus they are horizonless UCOs.
Quantum effects make the black hole physics particu-

larly interesting [9,10,13–17]. On the one hand, an apparent
horizon is accessible to an observer at infinity (Bob) only if
the classical energy conditions [8,18–20] are violated [8].
The Hawking radiation [9,13,14] has precisely this prop-
erty. On the other hand, the Hawking radiation precipitates
the infamous information loss paradox [16,17]. One way to
resolve the paradox is to have a horizonless UCO or a
regular black hole as the final product of the gravitational
collapse [4,5]. These objects also require a violation of the
energy conditions for their existence. Another resolution of
the information loss paradox posits that the infalling
observer (Alice) does not see a vacuum at the black hole
horizon, but instead encounters a large number of high-
energy modes [16,21], known as the firewall.
A self-consistent approach [12,22–24] starts with the

assumption that physical black holes do form. Once the
assumption of formation of a singularity-free apparent
horizon is translated into mathematical statements, it allows
to obtain a number of concrete results. In spherical
symmetry there are only two possible classes of black
hole solutions, and it is possible to identify the amount of
violation of the energy conditions that they require.
Accreting physical black hole solutions lead to divergent
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energy density, pressure, and flux as experienced by Alice,
while the curvature scalars remain finite.
Real astrophysical objects are rotating. Hence it is

important to verify that the firewall is not an artifact of
the spherical symmetry. The Kerr metric is the asymptotic
result of the classical collapse [1,8,9]. The simplest models
that allow for an axially symmetric variable mass distri-
bution are given by the so-called Kerr–Vaidya metrics [25–
27]. In Sec. II we review the relevant properties of the
spherically symmetric solutions. In Sec. III we discuss their
axially symmetric counterparts, focusing on the violation of
the energy conditions, location of the apparent horizons and
presence of a firewall.

II. NEAR-HORIZON REGIONS OF SPHERICALLY
SYMMETRIC BLACK HOLES

Working in the framework of semiclassical gravity
[15,28,29] we use classical notions (horizons, trajectories,
etc.), and describe dynamics via the Einstein equations
Gμν ¼ 8πTμν, where the Einstein tensor Gμν is equated to
the expectation value Tμν ¼ hT̂μνiω of the renormalized
energy-momentum tensor (EMT). For simplicity we con-
sider an asymptotically flat space. We do not make any
specific assumptions apart from (i) the apparent horizon
was formed at some finite time of Bob, (ii) it is regular, i.e.,
the curvature scalars, such as T ≔ Tμ

μ ≡ −R=8π and T ≔
TμνTμν ≡ RμνRμν=64π2 are finite at the horizon. (Here Rμν

and R ≔ Rμ
μ are the Ricci tensor and the Ricci scalar,

respectively).
A general spherically symmetric metric in the

Schwarzschild coordinates is given by

ds2 ¼ −e2hðt;rÞfðt; rÞdt2 þ fðt; rÞ−1dr2 þ r2dΩ; ð1Þ

where r is the areal radius. The Misner-Sharp mass [10,30]
Mðt; rÞ is invariantly defined via 1 − 2M=r ≔ ∂μr∂μr, and
fðt; rÞ ¼ 1–2Mðt; rÞ=r. The apparent horizon is located
at the Schwarzschild radius rg that is the largest root of
fðt; rÞ ¼ 0 [10,31].
Only two near-horizon forms of the EMT and the metric

are consistent with the above two assumptions. Here we
consider the generic form that agrees with the ab initio
calculations of the EMT on the background of the
Schwarzschild solution [32]. In this case the leading terms
in the expansion of the metric functions in terms of x ≔
r − rgðtÞ are

2Mðt; rÞ ¼ rg − w
ffiffiffi
x

p þOðxÞ; ð2Þ

hðt; rÞ ¼ −
1

2
ln
x
ξ
þOð ffiffiffi

x
p Þ; ð3Þ

where the function ξðtÞ is determined by the choice
of the time variable (and requires for its determination

knowledge of the full solution of the Einstein equations),
and w2 ≔ 16πϒ2r3g characterizes the leading behavior of
the EMT [12].
In particular, in the orthonormal basis the ðt̂ r̂Þ block of

the EMT near the apparent horizon is given by

Tâ b̂ ¼ −
ϒ2

f

�
1 �1

�1 1

�
: ð4Þ

The upper (lower) signs of Tt̂ r̂ correspond to evaporation
(growth) of the physical black hole. Consistency of the
Einstein equations results in the relation

r0g=
ffiffiffi
ξ

p
¼ �4

ffiffiffi
π

p
ϒ

ffiffiffiffi
rg

p ¼ �w=rg: ð5Þ

The null energy condition (NEC) requires Tμνlμlν ≥ 0 for
all null vectors lμ [8,19,20]. It is violated by radial vectors
lâ ¼ ð1;∓ 1; 0; 0Þ for the evaporating and the accreting
solutions, respectively [12].
Null coordinates allow to represent the near-horizon

geometry in a simpler form. The advanced null coordinate v,

dt ¼ e−hðehþdv − f−1drÞ; ð6Þ

is useful in the case r0g < 0. A general spherically symmetric
metric in ðv; rÞ coordinates is given by

ds2 ¼ −e2hþ
�
1 −

Cþ
r

�
dv2 þ 2ehþdvdrþ r2dΩ: ð7Þ

Using the Einstein equations and the relationships between
components of the EMTin two coordinates systems [24] one
can show that

Cþðv; rÞ ¼ rþðvÞ þ w1ðvÞxþ…; ð8Þ

hþðv; rÞ ¼ χ1ðvÞxþ…; ð9Þ

where rþðvÞ is the radial coordinate of the apparent horizon,
Cþðv; rþÞ≡ rþ, x≕ r − rþðvÞ. As a result, at the apparent
horizon both the metric corresponds to the Vaidya geometry
with C0þðvÞ ¼ 2M0ðvÞ < 0.
If r0g > 0 it is useful to switch to the retarded null

coordinate u. The near-horizon geometry is then described
by the Vaidya metric with C0

−ðuÞ > 0.
A static observer finds that the energy density

ϱ ¼ Tμνuμuν ¼ −Tt
t, the pressure p ¼ Tμνnμnν ¼ Tr

r,
and the flux ϕ ≔ Tμνuμnν (where uμ is the four-velocity
and nμ is the outward-pointing radial spacelike vector),
diverge at the apparent horizon. A radially infalling Alice
moves on a trajectory xμAðτÞ ¼ ðTðτÞ; RðτÞ; 0; 0Þ. Horizon
crossing happens not only at some finite proper time τ0,
rgðTðτ0ÞÞ ¼ Rðτ0Þ, but thanks to the form of the metric also
at a finite time Tðτ0Þ of Bob.
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However, experiences of Alice are different at the
apparent horizon of an evaporating and accreting physical
black holes. For an evaporating black hole, r0g < 0, energy
density, pressure and flux are finite. For example, if we
approximate the near-horizon geometry by a pure outgoing
Vaidya metric with M0ðvÞ < 0, Alice’s energy density at
the horizon crossing is

ϱ<A ¼ p<
A ¼ ϕ<

A ¼ −
ϒ2

4 _R2
; ð10Þ

at rg ¼ R. For an accreting black hole, r0g > 0, Alice
experiences the divergent values of energy density, pressure
and flux,

ϱ>A ¼ p>
A ¼ −ϕ>

A ¼ −
2 _R2ϒ2

F2
þOðF−1Þ; ð11Þ

in the vicinity of the apparent horizon, as F≔ fðT;RÞ→ 0.
Thus an expanding trapped region is accompanied by a

firewall—a region of unbounded energy density, pressure,
and flux—that is perceived by an infalling observer. Unlike
the firewall from the eponymous paradox, it appears as a
consequence of regularity of the expanding apparent
horizon and its finite formation time. The divergent energy
density leads to a violation [23,24] of the inequality that
bounds the amount of negative energy along a timelike
trajectory in a moderately curved spacetime [33]. As a
result a physical black hole, once formed, can only
evaporate. Another possibility is that the semiclassical
physics breaks down at the horizon scale.

III. KERR–VAIDYA METRIC

A general time-dependent axisymmetric metric contains
seven functions of three variables (say, t, r and θ) that enter
the Einstein equations via six independent combinatons [1].
However, to verify that certain predictions of the self-
consistent approach (such as a firewall at an expanding
apparent horizon) are not an artefact of the spherical
symmetry, it is enough to consider a simpler geometry.
The Kerr metric can be represented using either the

ingoing [34]

ds2 ¼ −
�
1 −

2Mr
ρ2

�
dv2 þ 2dvdr −

4aMr sin2 θ
ρ2

dvdψ

− 2a sin2 θdrdψ þ ρ2dθ2

þ ðr2 þ a2Þ2 − a2Δ sin2 θ
ρ2

sin2 θdψ2; ð12Þ

or the outgoing null congruences [1],

ds2 ¼ −
�
1 −

2Mr
ρ2

�
du2 − 2dudr −

4aMr sin2 θ
ρ2

dudψ

þ 2a sin2 θdψdrþ ρ2dθ2

þ ðr2 þ a2Þ2 − a2Δ sin2 θ
ρ2

sin2 θdψ2; ð13Þ

where ρ2 ≔ r2 þ a2 cos2 θ, Δ ≔ r2 − 2Mrþ a2, and a ¼
J=M is the angular momentum per unit mass.
The easiest way to obtain this result is to follow the

complex-valued Newman–Janis transformation [35] start-
ing with the Schwartzschild metric written in the ingoing or
the outgoing Eddington–Finkelstein coordinates. The sim-
plest nonstationary generalizations of the Kerr metric are
obtained by introducing evolving masses MðvÞ and MðuÞ.
The metric of Eq. (13) with a variable MðuÞ is obtained
from the retarded Vaidya metric [36,37]. By using the
advanced Vaidya metric of Eq. (7) as the seed metric, the
metric of Eq. (12) can be obtained following the same
procedure (Appendix A).

A. Energy conditions

A schematic form of the EMT in both cases is

Tμν ¼

0
BBBBB@

Too 0 Toθ Toψ

0 0 0 0

Toθ 0 0 Tθψ

Toψ 0 Tθψ Tψψ

1
CCCCCA
; ð14Þ

where o ¼ u, v. Using the null vector kμ ¼ ð0; 1; 0; 0Þ [25]
the EMT can be represented as

Tμν ¼ Tookμkν þ qμkν þ qνkμ; ð15Þ

where the components of Tμν and of the auxiliary vector qμ,
qμkμ ¼ 0, for both cases are given in Appendix B. The
EMT [for the metric Eq. (13)] was identified in Ref. [38] as
belonging to the type ½ð1; 3Þ� in the Segre classification
[18], i.e., to the type III of the Hawking–Ellis classification
[8,19], indicating that the NEC is violated for any a ≠ 0.
A detailed investigation reveals some interesting proper-

ties of this EMT. We use a tetrad in which the null
eigenvector kμ¼kâeμâ has the components kâ¼ð1;1;0;0Þ,
the third vector e2̂ ∝ ∂θ and the remaining vector e3̂ is
found by completing the basis, the EMT takes the form

Tâ b̂ ¼

0
BBBBB@

ν ν q2̂ q3̂

ν ν q2̂ q3̂

q2̂ q2̂ 0 0

q3̂ q3̂ 0 0

1
CCCCCA
: ð16Þ
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Explicit expressions for the tetrad vectors and the matrix
elements are given in Appendix B.
For an arbitrary null vector lâ ¼ ð−1; nâÞ, nâ ¼

ðcos α; sin α cos β; sin α sin βÞ the NEC becomes

νð1 − cos αÞ þ 2 sin αðq2̂ cos β þ q3̂ sin βÞ ≥ 0: ð17Þ

This inequality is satisfied if and only if ν ≥ 0 and
q2̂ ¼ q3̂ ¼ 0. The condition q2̂ ¼ q3̂ ¼ 0 holds only when
a ¼ 0, so the metric reduces to its Vaidya counterpart and
the EMT becomes a type II tensor. Only in this case the
NEC may be satisfied.
Each type of the EMT is characterized by its Lorentz-

invariant eignevlaues [18,19]. These are the eigenvalues of
the matrix Tâ

b̂
, i.e., the roots of the equation

detðTâ b̂ − ληâ b̂Þ ¼ 0; ηâ b̂ ¼ diagð−1; 1; 1; 1Þ: ð18Þ

The EMT of Eq. (16) has a single quadruple-degenerated
Lorentz-invariant eigenvalue λ ¼ 0. On the other hand, two
of the eigenvalues λ̃ of the matrix Tâ b̂ are nonzero,

λ̃1;2 ¼ ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðq2

2̂
þ q2

3̂
Þ þ ν2

q
: ð19Þ

As a result the EMT tensor (16) cannot be brought to a
generic type III form by an arbitrary similarity trans-
formations unless λ̃1¼−λ̃2, which is impossible for M0≠0
(see Appendix B for the details).

B. Apparent horizon

The apparent horizon of the Kerr black hole coincides
with its event horizon. It is located at the largest root of
Δ ¼ 0,

r0 ≔ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð20Þ

For both the ingoing and the outgoing Vaydia metrics the
apparent horizon is located at rg ¼ r0 ¼ 2M. For the metric
(13) the relation rg ¼ r0 also holds [39], but it fails for the
metric (12) [27]. In this case the difference rgðv; θÞ − r0ðvÞ
is of the order jMvj.
We now identity its location in the foliations with the

hypersurfaces v ¼ const. The standard approach [40,41]
for constructing the ordinary differential equation for the
apparent horizon is based on exploiting properties of a
spacelike foliation. It cannot be used in this case as the
foliating hypersurfaces are timelike. However, since the
approximate location of the apparent horizon is known, we
obtain the leading correction inMv by using the methods of
analysis of null congruences and hypersurfaces [34].
Assume that at some advanced time v the apparent

horizon S0ðvÞ is located at rg ¼ r0ðvÞ þ zðθÞ, where the
function zðθÞ is to be determined. Once the future-directed

outgoing null geodesic congruence orthogonal the surface
is identified, calculating the expansion ϑ and equating it to
zero results in the differential equation for zðθÞ. There are at
least two equivalent ways to obtain this equation.
The outward and inward-pointing null vectors lμ and Nμ,

respectively, are defined on S0. They are orthogonal to its
tangents and can be normalized by the condition
Nμlμ ¼ −1. These vectors can be extended to the fields
of tangent vectors to the families of affinely parameterized
null geodesics in the bulk.
One approach to calculation of the expansion uses its

geometric meaning as a relative rate of change of the two-
dimensional cross-section area [8,34]. Consider an infini-
tesimal geodesic triangle ðxinxθxψ Þ on the surface S0. It is
defined by three vertices

xμin; xμψ ¼ xμin þ bμψδψ ; xμθ ¼ xμin þ bμθδθ: ð21Þ

The two tangent vectors

bμψ ≔
∂xμ
∂ψ

����
S0

; bμθ ≔
∂xμ
∂θ

����
S0

; ð22Þ

introduce a metric two-tensor

σAB ≔ gμνb
μ
Ab

ν
B; A; B ¼ θ;ψ : ð23Þ

The area of the triangle ðxinxθxψÞ is δA ¼ 1
2

ffiffiffi
σ

p
δθδψ , where

σ ¼ σ11σ22 − σ212 is the determinant of the two-dimensional
metric. Under the geodesic flow xμ → xμ þ lμðxÞdλ the
coordinates θ and ψ are comoving and thus constant for the
three vertices, but both the metric g and the vectors bA
evolve with λ.
Calculating the ratio of the first-order area change

δAðλþ dλÞ − δAðλÞ to the initial area of the triangle allows
to obtain the expansion by using the relation

ϑ ¼ 1ffiffiffi
σ

p d
ffiffiffi
σ

p
dλ

; ð24Þ

where λ is the affine parameter. Solution of the second-
order differential equation ϑðzÞ ¼ 0 gives the desired
function zðθÞ. An alternative derivation is based on the
direct evaluation of ϑ ¼ lμ;μ on S0 (see Appendix C for the
details).
If both zðθÞ and its derivatives are much smaller than r0,

we obtain a linear ordinary differential equation for z,

8r20ða2 þ r20Þ2ðz00 þ cot θz0Þ
− ðr20 − a2Þða4 þ 7a2r20 þ 8r40 þ a2ðr20 − a2Þ cos 2θÞz
− 8r30a

2ða2 þ r20Þ sin2 θMv ¼ 0; ð25Þ

where the regular singular term ðcot θz0 þ z00Þ is a standard
feature of the apparent horizon equations [40,41].
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Symmetry considerations lead to the condition zð0Þ¼
zðπÞ¼0. The second initial condition z0ðπÞ ¼ 0 ensures
that the surface of the apparent horizon is smooth [40].
A typical result of the numerical solution is depicted in

Fig. 1. It was obtained by imposing the boundary con-
ditions zð0Þ ¼ 0 and z0ðπ=2Þ ¼ 0, that enforces the equa-
torial symmetry. The assumption of jz0j ≪ r0 fails near the
poles, where z ¼ 0. This is not an artefact of the approxi-
mation. Using the series solutions of Eq. (25) with the
conventional initial conditions zð0Þ ¼ 0, z0ð0Þ ¼ 0 [40,41],
i.e., in the regime where the assumption jz0j ≪ r0 is clearly
valid, leads to

zser ¼
a2Mvr0

16ða2 þ r20Þ
θ4 þOðθ5Þ: ð26Þ

For Mv > 0 it implies that at least near the poles rg > r0,
i.e., at r ¼ r0 the expansion is still negative. However, this
is impossible: at the poles the null congruence that is
orthogonal to the two-dimensional surface r ¼ r0 [27]
has ϑ > 0. Moreover, using this solution to provide the
initial values zðθÞ, z0ðθÞ at some θ ¼ ϵ ≪ 1 leads to
inconsistencies.
We investigated stability of this result in numerical

experiments. For a fixed Mv ¼ −κ=M2 the initial value
problem zðπ=2Þ ¼ z0, z0ðπ=2Þ ¼ 0, where z0 is some
number, leads to a well-behaved numerical solution.
However, the conditions zð0Þ ¼ zðπÞ ¼ 0 are satisfied
within a prescribed tolerance only for a very narrow range
of the values z0 around zm ¼ zðπ=2Þ of the numerical
solution of the above boundary value problem. We will
provide a full analysis of the apparent horizon in a
future work.

C. Firewall

All components of the EMT (14) are finite at the
apparent horizon. Divergences of the comoving parameters
can appear only as a result of divergences in the compo-
nents of the four-velocity of Alice. We now show that
similarly to the spherically symmetric geometries density
and pressure in Alice’s frame are finite if Alice crosses the
apparent horizon in the metric of Eq (12), but diverge for
the metric of Eq. (13).
In the spherically symmetric case Alice was a zero

angular momentum observer (ZAMO) [9,34]. In axially
symmetric spacetimes the ZAMO condition results in a
nontrivial angular velocity ΨZ. We begin with the retarded
Kerr–Vaidya metric, where the apparent horizon is located
at rg ¼ r0. Alice’s four-velocity is

uμA ¼ ð _U; _R; _Θ; _ΨZÞ; ð27Þ

where the ZAMO condition ξψ · uA ¼ 0, where the Killing

vector ξψ¼∂ψ , implies _ΨZ ¼−ðguψ _Uþgrψ _RÞ=gψψ . During
the fall _R < 0. The velocity component _U > 0 is obtained
from the normalization condition u2A ¼ −1,

_U¼−
_R2

Δ
ðr2þa2Þþ 1

Δρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔð1þρ2 _Θ2Þþρ2 _R2ÞΣ

q
; ð28Þ

where Σ¼ða2þr2Þρ2þ2a2rMsin2θ. As X ≔ RðτÞ −
r0ðUðτÞÞ → 0 the derivative _U diverges as Δ−1,

_U ¼ −
2r0 _RM

Xðr0 −MÞ þOðXÞ: ð29Þ

The energy density in Alice’s frame is given then by

ρA¼
�
TuuþTψψ

�
guψ
gψψ

�
2

−2Tuψ
guψ
gψψ

�
_U2þOðΔ−1Þ; ð30Þ

resulting in

ρA ≈
ð−2M0 − ð2M − r0Þ sin2 θM00Þr20 _R2

8πX2ðr0 −MÞ2

¼ ð−2r0M0 − a2 sin2 θM00Þr0 _R2

8πX2ðr0 −MÞ2 : ð31Þ

We choose the spacelike direction analogously to the
spherically symmetric case,

nAμ ¼ ð− _R; _U; 0; 0Þ: ð32Þ

Then (after setting _Θ ¼ 0),

pA ¼ Tμνn
μ
An

ν
A ≈

ð−2r0M0 − a2 sin2 θM00Þr0 _R2

8πX2ðr0 −MÞ2 : ð33Þ

FIG. 1. Location of the apparent horizon relative to r0 for
M ¼ 1, a ¼ 0.1, Mv ¼ −κ=M2 ¼ 0.01. The equation was first
solved as a boundary value problem zð0Þ ¼ 0, z0ðπ=2Þ ¼ 0,
resulting in zm ≔ zðπ=2Þ ≈ 3.57 × 10−5. Solution of the initial
value problem zðπ=2Þ ¼ zm, z0ðπ=2Þ ¼ 0 coincides with the
previous one within the relative precision of 2 × 10−15 outside
δ ¼ 10−6 interval from the poles.
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It is easy to see that for a ¼ 0 we recover the firewall of the
outgoing Vaidya metric.
Violations of the NEC are bounded by quantum energy

inequalities (QEIs) [20,42]. For spacetimes of small curva-
ture explicit expressions that bound time-averaged energy
density for a geodesic observerwere derived inRef. [33]. For
any Hadamard state ω and a sampling function fðτÞ of
compact support, negativity of the expectation value of the
energy density ρ ¼ hT̂μνiωuμuν as seen by a geodesic
observer that moves on a trajectory γðτÞ is bounded by

Z
γ
f2ðτÞρdτ ≥ −BðR; f; γÞ; ð34Þ

where B > 0 is a bounded function that depends on the
trajectory, the Ricci scalar and the sampling function [33].
Consider a growing apparent horizon, r00ðuÞ > 0. For

simplicity we consider a polar trajectory θ ¼ 0. For a
macroscopic black hole the curvature at the apparent
horizon is low and thus Eq. (34) is applicable. Horizon
radius (and mass, as in this model a ¼ const), do not
appreciably change while Alice moves in its vicinity. Hence
dM=dτ ¼ M0ðUÞ _U ≈ const and _X ≈ _R. Given Alice’s tra-
jectory we can choose f ≈ 1 at the horizon crossing and
f → 0 within the NEC-violating domain (as Eq. (12) can be
valid only in the vicinity of the horizon). As the trajectory
passes through X0 þ rg → rg the lhs of Eq. (34) behaves as

Z
γ
f2ρAdτ ≈ −

Z
γ

M0r20 _R
2dτ

4πX2ðr0 −MÞ2

≈
Z
γ

Mτr0dX
8πMðr0 −MÞX ∝ logX0 → −∞; ð35Þ

where Mτ ¼ M0 _U and we used _R ∼ const. The rhs of
Eq. (34) remains finite, and thus the QEI is violated. This
violation indicates that the apparent horizon cannot expand,
similarly to the spherically symmetric case.
On the other hand, nothing dramatic happens to the

comoving density and pressure in the ingoing Kerr–Vaidya
metric. Following the same steps we find that, e.g., the
comoving energy density for the motion in the equatorial
plane (Θ ¼ π=2, _Θ ¼ 0), is

ρA ¼ Tvv

4 _R2
þOða2Þ: ð36Þ

This quantity is finite and for a ¼ 0 reduces to Eq. (10).

IV. DISCUSSION

Extending the self-consistent approach of horizon analy-
sis to the axially symmetric spacetimes is difficult. Kerr–
Vaidya metrics are the simplest nonstationary extension of
the Kerr solution. All Kerr–Vaidya metrics violate classical
energy conditions. While it could have been previously
considered as a drawback, this violation is a necessary

condition to describe an object with a trapped region that is
accessible, even in principle, to a distant observer.
Moreover, Kerr–Vaidya metrics are related by the
Newman–Janis transformation to the pure Vaidya metrics
that describe the geometry of physical black holes near their
apparent horizons.
These simple geometries have several remarkable prop-

erties. The EMT of the Kerr-Vaidya metric, while violating
the NEC for all a ≠ 0 is a special case of type III form of the
EMT in the Segre–Hawking–Ellis classification. An
expanding spherically symmetric apparent horizon leads
to a firewall and violates the quantum energy inequality that
bounds the amount of negative energy in spacetimes of low
curvature. The outgoing Kerr-Vaidya metric has the same
property, showing that the firewall is not an artifact of
spherical symmetry.
The apparent horizon of the outgoing Kerr-Vaidya metric

coincides with the event horizon r0 ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
of

the Kerr metric, MðuÞ ¼ const. For the ingoing the two
surfaces are different. However, the difference zðθÞ ¼ rg −
r0 is small if jM0ðvÞj ≪ 1, as in this case z ∝ M0. However,
while at the poles zð0Þ ¼ zðπÞ ¼ 0, a commonly used
assumption z0ð0Þ ¼ 0 does not hold. As a result, the
apparent horizon is not a smooth surface.
The assumption a ¼ const is incompatible with the

continuous eventual evaporation of a physical black hole,
as for M < a the equation Δ ¼ 0 has no real roots and the
Hawking temperature

T ¼ 1

2π

�
r0 −M
r20 þ a2

�
; ð37Þ

that is proportional to the surface gravity, goes to zero as
M → a. Moreover, the semiclassical analysis [9] shows that
during evaporation a=M decreases faster than M [43,44].
The variability of a ¼ J=M ratio should not affect

existence of the firewall for accreting PBHs, as it is
exhibited as a result Δ → 0 effect in ðvrÞ coordinates
and holds for a ¼ 0. We will drop the assumption a ¼
const in the future work, and will to use the-self consistent
approach to match the semiclassical results [43–45], as it
was done in the spherically symmetric case.
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APPENDIX A: THE NEWMAN-JANIS
TRANSFORMATION OF THE ADVANCED

VAIDYA METRIC

The procedure follows the Newman-Janis prescription
[35,37] that is applied to the Vaidya metric in advanced
coordinates as the seed metric. We use the null tetrad that
consists of a pair of real [1]

lμ ¼ δμv þ 1

2
fðv; rÞδμr ; ðA1Þ

nμ ¼ −δμr ðA2Þ

and a pair of complex-conjugate vectors

mμ ¼ 1ffiffiffi
2

p
r

�
δμθ þ

i
sin θ

δμψ

�
; m̄μ ¼ ðmμÞ�; ðA3Þ

that satisfy the standard completeness and orthogonality
relations,

lμlμ ¼ lμmμ ¼ lμm̄μ ¼ 0;

nμnμ ¼ nμmμ ¼ nμm̄μ ¼ mμmμ ¼ 0;

lμnμ ¼ −mμm̄μ ¼ −1: ðA4Þ

The metric

ds2¼−fðv;rÞdv2þ2dvdrþ r2dθ2þ r2 sin2 θdψ2; ðA5Þ

where fðv; rÞ ¼ 1 − 2MðvÞ=r, is rewritten as

gμν ¼ −lμnν − lνnμ þmμm̄ν þmνm̄μ: ðA6Þ

We treat r and v is complex-valued coordinates and
introduce a real-valued function

f ¼ 1 −M

�
1

2
ðvþ v�Þ

��
1

r
þ 1

r�

�
; ðA7Þ

that coincides with fðv; rÞ for real values of the
coordinates, v ¼ v�, r ¼ r�. The complex coordinate
transformation

x0μ ¼ xμ − iaðδμr þ δμvÞ cos θ; ðA8Þ

i.e.,

v0 ¼ v − ia cos θ; θ0 ¼ θ; ðA9Þ

r0 ¼ r − ia cos θ; ψ 0 ¼ ψ ; ðA10Þ

leaves M invariant and transforms the tetrad as

l0μ ¼ δμv þ 1

2
F ðv; r; θÞδμr ; n0μ ¼ −δμr ; ðA11Þ

m0μ ¼ 1ffiffiffi
2

p ðr− iacosθÞ

�
iaðδμvþδμrÞsinθþδμθþ

i
sinθ

δμψ

�
;

ðA12Þ

where after restricting to the real-valued coordinates

F ¼ 1 − 2MðvÞr=ρ2: ðA13Þ

Substituting these explicit expressions into the transformed
metric

g0μν ¼ −l0μn0ν − l0νn0μ þm0μm̄0ν þm0νm̄0μ; ðA14Þ

produces the Kerr-Vaidya metric in the advanced coordi-
nates that is given in Eq. (12).

APPENDIX B: ENERGY-MOMENTUM
TENSOR AND THE NEC VIOLATION FOR

KERR-VAIDYA METRIC

The nonzero components of the energy-momentum
tensor for the Kerr–Vaidya metric in advanced coordi-
nates are

Tvv ¼
r2ða2 þ r2Þ − a4 cos2 θ sin2 θ

4πρ6
Mv −

a2r sin2 θ
8πρ4

Mvv;

ðB1Þ

Tvθ ¼ −
a2r sin θ cos θ

4πρ4
Mv; ðB2Þ

Tvψ ¼ −a sin2 θTvv − a sin2 θ
r2 − a2 cos2 θ

8πρ4
Mv; ðB3Þ

Tθψ ¼ a3r sin3 θ cos θ
4πρ4

Mv; ðB4Þ

Tψψ ¼ a2 sin4 θTvv þ a2 sin4 θ
r2 − a2 cos2 θ

4πρ4
Mv: ðB5Þ

The non-zero components of the energy-momentum
tensor for the Kerr–Vaidya metric in retarded coordinates
are

Tuu ¼ −
r2ða2 þ r2Þ − a4 cos2 sin2 θ

4πρ6
Mu −

a2r sin2 θ
8πρ4

Muu;

ðB6Þ

Tuθ ¼ −
2a2r sin θ cos θ

8πρ4
Mu; ðB7Þ
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Tuψ ¼ −a sin2 θTuu þ a sin2 θ
r2 − a2 cos2 θ

8πρ4
Mu; ðB8Þ

Tθψ ¼ 2a3r sin3 θ cos θ
8πρ4

Mu; ðB9Þ

Tψψ ¼ a2 sin4 θTuu−a2 sin4 θ
ðr2−a2 cos2 θÞ

4πρ4
Mu: ðB10Þ

In the advanced coordinate the decomposition (15) of the
EMT is obtained with the vectors

kμ ¼ ð1; 0; 0;−a sin2 θÞ; ðB11Þ

and

qμ ¼
�
0; 0; Tvθ;−a sin2 θ

r2 − a2 cos2 θ
8πρ4

Mv

�
: ðB12Þ

The orthonormal tetrad with where kμ ¼ eμ
1̂
þ eμ

0̂
is

given by

eμ
0̂
¼ ð−1; rM=ρ2; 0; 0Þ; ðB13Þ

eμ
1̂
¼ ð1; 1 − rM=ρ2; 0; 0Þ ðB14Þ

eμ
2̂
¼ ð0; 0; 1=ρ; 0Þ ðB15Þ

eμ
3̂
¼ 1

ρ
ða sin θ; a sin θ; 0; csc θÞ: ðB16Þ

Hence the EMT is given by Eq. (16) with ν ¼ Tvv and
qμ ¼ q2̂eμ

2̂
þ q3̂eμ

3̂
with

q2̂ ¼ −
a2rMv

8πρ5
sin 2θ; ðB17Þ

q3̂ ¼ −
aðr2 − a2 cos2 θÞMv

8πρ5
sin θ: ðB18Þ

A generic form [19] of a type III EMT is

Tâ b̂ ¼

0
BBBBB@

ϱ 0 φ 0

0 −ϱ φ 0

φ φ −ϱ 0

0 0 0 p

1
CCCCCA
: ðB19Þ

All four Lorentz-invariant eigenvalues are zero if and only
if ϱ ¼ p ¼ 0. In this case the nonzero eigenvalues of the
matrix Tâ b̂ are

λ̃1;2 ¼ �
ffiffiffi
2

p
φ: ðB20Þ

APPENDIX C: APPARENT HORIZON IN THE
OUTGOING VAIDYA METRIC

On a hypersurface v ¼ const we introduce the surface
coordinates ðr̆; θ;ϕÞ where the bulk coordinate r is
expressed in terms of the coordinates r̆ and θ as

r ¼ r̆þ zðθÞ; ðC1Þ

for some function z. Locating the apparent horizon rgðv; θÞ
is then expressed as a problem of finding the function zðθÞ
such that rg ¼ r0ðvÞ þ zðθÞ. While the function z also
depends on v, it does not affect the derivation below and
this dependence is omitted.
Two spacelike vectors that are tangent to the surface r̆ ¼

const are

bμθ ¼ z0ðθÞδμr þ δμθ; bμψ ¼ δμψ : ðC2Þ

We obtain the outward- and inward-pointing future-
directed null vectors lþ ≡ l and l− ≡ N by using the
orthogonality condition l�μ b

μ
A ¼ 0. Before the rescaling

lv ¼ 1 and the normalization N · l ¼ −1 the two null
vectors are given by

l�μ ∝ ð−1;l�;−l�z0ðθÞ; 0Þ: ðC3Þ

The two values of l� are obtained from the null condition
l� · l� ¼ 0,

l� ¼ 1

Δþ z02
�
r2þa2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2rM sin2 θþρ2ða2þ r2Þ−a2z02 sin2 θ

q �
: ðC4Þ

After setting lv ¼ 1 the leading order components of the
future-directed outward-pointing null vector orthogonal to
the two-surface r ¼ r0 þ zðθÞ are

lv ¼ 1; ðC5Þ

lr ¼ ðr20 − a2Þz0
2r0ðr20 þ a2Þ ; ðC6Þ

lθ ¼ −
z0

r20 þ a2
; ðC7Þ

lψ ¼ a
r20þa2

þaða4−7a2r20−10r40−a2ðr20−a2Þcos2θÞz
4r0ðr20þa2Þ ;

ðC8Þ

where we assume that jzj ≪ r0 and jz0j ≪ r0.
We now consider the change in the two-dimensional area

after one infinitesimal step δλ of the evolution xμin → xμfn,
where
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xμin ¼ ðv; r0 þ zðθÞ; θ; 0Þ; ðC9Þ

xμfn ¼ xμin þ lμðxμinÞdλ; ðC10Þ

and λ is the affine parameter.
The determinant of the two-dimensional metric σAB is

given by Eq. (23). To obtain the initial area the Kerr-Vaidya
metric is evaluated at xin and the vectors bA are given by
Eq. (C2). To calculate the final area we evaluate the four-
dimensional metric at the point xfn. In addition, since the
points xψ and xθ that are defined by Eq. (21) evolvewith the
vectors

lμðxψ Þ ¼ lμðxinÞ; ðC11Þ

and

lμðxθÞ ≈ lμðxinÞ þ ∂θlμðxinÞδθ; ðC12Þ

respectively, the cross section tangents evolve as

bμψ → bμψ ; bμθ → bμθ þ ∂θlμðxinÞdλ: ðC13Þ

The area differential dδA ∝ ðd ffiffiffi
σ

p
=dλÞdλ is evaluated by

subtracting
ffiffiffiffiffiffiffiffiffiffiffiffi
σðxinÞ

p
from the first-order expansion in dλ of

ffiffiffiffiffiffiffiffiffiffiffiffi
σðxfnÞ

p
. The desired Eq. (25) is obtained by setting

dδA ¼ 0.
An alternative derivation is based on extending the

vector field lμ from the hypersurface v ¼ const to the bulk

in such a way that the new field l
∘ μ

satisfies the geodesic

equation l
∘ μ
;ν l

∘ ν ¼ 0. In fact, this needs to be done only on
the hypersurface itself, where it is realized by setting

l
∘ μ

≔ lμ; ðC14Þ

and thus l
∘ 0 ¼ l0 ¼ 1,

l
∘ μ
;m ≔ lμ;m; ðC15Þ

for m ¼ 1, 2, 3, and setting the covariant derivative
over v as

l
∘ μ
;0 ≔ −lμ;mlm; ðC16Þ

For the affinely parametrized geodesic congruence ϑ ¼ l
∘ μ
;μ,

and Eq. (25) follows from

ϑ ¼ −l0;mlm þ lm;m ¼ 0: ðC17Þ
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Phys. (N.Y.) 23, 2339 (1982).

[37] S. G. Ghosh and S. D. Maharaj, Eur. Phys. J. C 75, 7 (2015).
[38] Th. Christoulakis, Th. Grammenos, and Ch. Kolassis, Phys.

Lett. 149A, 354 (1990).
[39] D.-Y. Xu, Classical Quantum Gravity 16, 343 (1999).
[40] M. Shibata, Numerical Relativity (World Scientific,

New Jersey, 2016).
[41] J. Thornburg, Living Rev. Relativity 10, 3 (2007).
[42] C. J. Fewster, Quantum energy conditions, in Wormholes,

Warp Drives and Energy Conditions, edited by F. N. S.
Lobo (Springer, New York, 2017), p. 215.

[43] R. Dong, W. H. Kinney, and D. Stojkovic, J. Cosmol.
Astropart. Phys. 10 (2016) 034.

[44] A. Arbey, J. Auffinger, and J. Silk, Mon. Not. R. Astron.
Soc. 494, 1257 (2020).

[45] A. Levi, E. Eilon, A. Ori, and M. van de Meent, Phys. Rev.
Lett. 118, 141102 (2017).

PRAVIN KUMAR DAHAL and DANIEL R. TERNO PHYS. REV. D 102, 124032 (2020)

124032-10

https://doi.org/10.1103/PhysRevD.100.064054
https://doi.org/10.1103/PhysRevD.100.064054
https://doi.org/10.1103/PhysRevD.100.124025
https://doi.org/10.1103/PhysRevD.101.124053
https://doi.org/10.1103/PhysRevD.1.3220
https://doi.org/10.1103/PhysRevD.1.3220
https://doi.org/10.1016/0003-4916(77)90263-9
https://doi.org/10.1016/0003-4916(77)90263-9
https://doi.org/10.1088/0264-9381/32/18/189501
https://doi.org/10.1088/0264-9381/32/18/189501
https://doi.org/10.1103/PhysRevD.80.044011
https://doi.org/10.1103/PhysRevD.80.044011
https://doi.org/10.1088/1361-6382/aad70e
https://doi.org/10.1088/1361-6382/aad70e
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1103/PhysRevD.95.024008
https://doi.org/10.1103/PhysRevLett.117.231101
https://doi.org/10.1103/PhysRevD.91.104005
https://doi.org/10.1103/PhysRevD.91.104005
https://doi.org/10.1063/1.1704350
https://doi.org/10.1063/1.1704350
https://doi.org/10.1063/1.524156
https://doi.org/10.1063/1.524156
https://doi.org/10.1063/1.525325
https://doi.org/10.1063/1.525325
https://doi.org/10.1140/epjc/s10052-014-3222-7
https://doi.org/10.1016/0375-9601(90)90892-R
https://doi.org/10.1016/0375-9601(90)90892-R
https://doi.org/10.1088/0264-9381/16/2/002
https://doi.org/10.12942/lrr-2007-3
https://doi.org/10.1088/1475-7516/2016/10/034
https://doi.org/10.1088/1475-7516/2016/10/034
https://doi.org/10.1093/mnras/staa765
https://doi.org/10.1093/mnras/staa765
https://doi.org/10.1103/PhysRevLett.118.141102
https://doi.org/10.1103/PhysRevLett.118.141102

