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We revisit Weyl’s unified field theory, which arose in 1918, shortly after general relativity was discovered.
As iswell known, in order to extend the programof geometrization of physics started byEinstein to include the
electromagnetic field, H. Weyl developed a new geometry which constitutes a kind of generalization of
Riemannian geometry. However, despite its mathematical elegance and beauty, a serious objection was made
by Einstein, who considered Weyl’s theory not suitable as a physical theory since it seemed to lead to the
prediction of a not yet observed effect, the so-called “second clock effect”. In this paper, our aim is to discuss
Weyl’s proposal anew and examine its consistency and completeness as a physical theory. Finally, we propose
new directions and possible conceptual changes in the original work. As an application, we solve the field
equations assuming a Friedmann-Robertson-Walker universe and a perfect fluid as its source. Although we
have entirely abandoned Weyl’s attempt to identify the vector field with the 4-dimensional electromagnetic
potentials, which here must be simply viewed as part of the space-time geometry, we believe that in this way
we could perhaps be led to a rich and interesting new modified gravity theory.
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I. INTRODUCTION

In his attempt to unify gravity with electromagnetism
H. Weyl discovered a new geometry, which in a certain
way, constitutes a kind of generalization of Riemannian
geometry [1]. As he wrote in the introduction of his original
paper, the insight which led him to a new geometry came
from the perception that the Riemann theory of parallel
transport was entirely dependent on concepts directly taken
from our intuition of the “rigid” Euclidean spaces. Indeed,
in this geometric setting the parallel transport of a vector V
along a certain path is required to preserve the length of V.
In more technical terms, this requirement imposed on a
manifold endowed with a metric tensor g and a connection
∇ arises as a direct consequence of what is known in the
literature as the compatibility condition between g and ∇.
Then, from Koszul formula, it follows the celebrated Levi-
Civita theorem, which states that for torsion-free manifolds
there exists a unique connection completely determined by
the metric [2]. Weyl, however, found the Riemannian
compatibility condition too restrictive, and replaced it by
a much weaker form, which then allows for the variation of
the length of vectors along parallel transport, this process

being regulated by a new geometric object, namely a
1-form field σ, later to be identified with the electromag-
netic four-potential. The introduction of the 1-form field σ
leads, in turn, to a new notion of curvature, a sort of “length
curvature” (Streckenkrummung) in addition to the “direc-
tion curvature” (Richtungkrummung), the latter represented
by the Riemann tensor. The length curvature is quantified
by the 2-form F ¼ dσ, whose mathematical properties
present striking similarities with those possessed by the
electromagnetic tensor. After this first development,
another important discovery made by Weyl was that his
geometric construction exhibited a new kind of symmetry.
Indeed, he found that his modified compatibility condition,
as well as the length curvature, were both invariant under a
certain group of transformations involving g and ∇. It is
worth mentioning that the discovery of this new symmetry,
later to be called gauge symmetry (in addition to the already
known general relativistic invariance under space-time
diffeomorphisms) is now viewed as a most significant fact
in the history of physics: it represents the birth of modern
gauge theories [3]. It turned out that Weyl’s Principle of
Gauge Invariance played an essential role in the develop-
ment of the unified field theory. Indeed, in building the
action for the gravitational and the (geometric) electro-
magnetic fields, Weyl was primarily guided by this prin-
ciple and chose the simplest of all possible invariants. He
also took advantage of the principle to work out the field
equations in a particular gauge (the “natural” gauge), where
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the field equations look much more simple. Enriched by the
property of gauge symmetry, the geometric structure of
space-time in Weyl’s theory became more complex, rather
similar to what is known as a conformal structure, that is, a
manifold equipped with an equivalence class of triples
M ¼ fðg;∇; σÞg, in which the members of the class are
related by Weyl transformations and satisfy a particular
compatibility condition. It is to be expected that in such
space-time only invariants (in the sense of Weyl’s principle)
may have physical meaning. (For instance, as Weyl put it
clearly, the usual metric concept of length is no longer
meaningful [1].) This entirely new framework has far-
reaching consequences as far as it selects which physical
scenarios are allowed to come in, and it is our aim in the
present work to investigate some of these possibilities
under the guide of gauge invariance hoping in this way to
carry on with Weyl’s original program. With regard to the
latter point we think two questions must be addressed. First,
to what extent did Weyl succeed in constructing a unifying
theory of gravity and electromagnetism? Second, is the
theory free from inconsistency and/or incompleteness? (For
the reader interested in historical and philosophical issues
concerning Einstein’s critical review of Weyl’s unified
theory see, for instance, [4], and references therein.)
The paper is organized as follows. InSec. II,wegive a brief

summary of Weyl geometry. We then proceed to Sec. III to
present the Weyl field equations, both written in an arbitrary
and in the natural gauge. In Sec. IV, we discuss the field
equations in the limitwhen space-timebecomesRiemannian,
and give an interpretation for the constant that appears in the
natural gauge. Section V contains a discussion of the nature
of the geometric electromagnetism introduced by Weyl and
the conceptual problems arising from this identification.
SectionVI is devoted to the notion of time inWeyl theory and
the related problemof the second clock effect. In Sec.VII, we
touch on the question of how to extend Weyl theory to
include matter. In Sec. VIII, we outline the axiomatic
structure of the new approach with the aim at defining a
gauge-invariant procedure to extend theWeyl field equations
to include matter fields. As an application, in Sec. IX we
solve the field equations assuming a Friedmann-Robertson-
Walker universe and a perfect fluid as its source.We conclude
with some remarks in Sec. X.

II. A BRIEF SUMMARY OF WEYL GEOMETRY

Weyl geometry is perhaps one of the simplest general-
izations of Riemannian geometry, the only modification
being the fact that the covariant derivative of the metric
tensor g is not zero, but instead given by1

∇αgβλ ¼ σαgβλ; ð1Þ

where σα denotes the components of a one-form field σ in a
local coordinate basis. This weakening of the Riemannian
compatibility condition is entirely equivalent to requiring
that the length of a vector field may change when parallel-
transported along a curve in the manifold [5]. We shall refer
to the triple ðM; g; σÞ consisting of a differentiable manifold
M endowed with both a metric g and a 1-form field σ as a
Weyl gauge (or,Weyl frame). Now one important discovery
made by Weyl was the following. Suppose we perform the
conformal transformation

ḡ ¼ efg; ð2Þ

where f is an arbitrary scalar function defined onM. Then,
the Weyl compatibility condition (1) still holds provided
that we let the Weyl field σ transform as

σ̄ ¼ σ þ df: ð3Þ

In other words, the Weyl compatibility condition does not
change when we go from one gauge ðM; g; σÞ to another
gauge ðM; ḡ; σ̄Þ by simultaneous transformations in g
and σ.
If we assume that the Weyl connection∇ is symmetric, a

straightforward algebra shows that one can express the
components of the affine connection in an arbitrary vector
basis completely in terms of the components of g and σ:

Γα
βλ ¼ fαβλg −

1

2
gαμ½gμβσλ þ gμλσβ − gβλσμ�; ð4Þ

where fαβλg represents the Christoffel symbols. It is not
difficult to see that the connection and, consequently, the
geodesic equations are invariant with respect to the trans-
formations (2) and (3).
We now present Weyl’s second great discovery. Suppose

we are given two vector fields V and U parallel-transported
along a curve α ¼ αðλÞ. Then, (1) clearly leads to the
following equation:

d
dλ

gðV;UÞ ¼ σ

�
d
dλ

�
gðV;UÞ; ð5Þ

where d
dλ denotes the vector tangent to α. If we integrate this

equation along the curve α, starting from a point
P0 ¼ αðλ0Þ, we obtain [5]

gðVðλÞ; UðλÞÞ ¼ gðVðλ0Þ; Uðλ0ÞÞe
R

λ

λ0
σð ddρÞdρ: ð6Þ

Setting U ¼ V and denoting by LðλÞ the length of the
vector VðλÞ at a point P ¼ αðλÞ of the curve, it is easy to
verify that in a local coordinate system fxαg the equation (5)
becomes

1This article was written in parallel with the authors’ contribu-
tion to the Proceedings of the 10th Alexander Friedmann Seminar
on Gravitation and Cosmology, and should be considered as a
completed and streamlined version of the latter. Therefore identical
prose may be found in some parts between the two texts.
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dL
dλ

¼ σα
2

dxα

dλ
L: ð7Þ

Let us now consider the set of all closed curves
α∶½a; b� ∈ R → M, i.e., with αðaÞ ¼ αðbÞ. Then, either
from (6) or (7) it follows that

L ¼ L0e
1
2

H
σαdxα ;

where L0 and L denotes the values of LðλÞ at a and b,
respectively. From Stokes’s theorem we then can write2

L ¼ L0e
−1
4

R R
Fμνdxμ∧dxν ;

where Fμν ¼ ∂νσμ − ∂μσν. We thus see that, according to
the rules of Weyl geometry, the necessary and sufficient
condition for a vector to have its original length preserved
after being parallel transported along any closed trajectory
is that the 2-form F ¼ dσ ¼ 1

2
Fμνdxν ∧ dxμ vanishes.

Therefore Weyl realized that in his new geometry
there are two kinds of curvature, a direction curva-
ture (Richtungkrummung) and a length curvature
(Streckenkrummung). The first is responsible for changes
in the direction of parallel-transported vectors and is given
by the usual curvature tensor Rα

βμν, while the other regulates
the changes in their length, and is given by Fμν. Weyl’s
second great discovery was that the 2-form F is invariant
under the gauge transformation (3). The analogy with the
electromagnetic field is now clear and becomes even more
so when we take into account that F satisfies the iden-
tity dF ¼ 0.3

III. THE FIELD EQUATIONS OFWEYL’S UNIFIED
FIELD THEORY

As we know, the Weyl transformations (2) and (3) define
a whole equivalence class in the set fðM; g; σÞg of all Weyl
gauges. It is then natural to expect that, as in conformal
geometry the geometrical objects of interest are conformal-
invariant, here we should look for those that are gauge-
invariant.4 Surely, these invariants will be fundamental to
build the action that is expected to give the field equations
of the geometrical unified theory. Some basic invariants are
easily found: the affine connection Γα

βλ, the curvature tensor
Rα
βμν, the Ricci tensor Rμν ¼ Rα

μαν, and the length curvature

Fμν ¼ ∂νσμ − ∂μσν. The simplest invariant scalars, in four-
dimensional space-time, that can be constructed out of
these are:

ffiffiffiffiffiffi−gp
R2,

ffiffiffiffiffiffi−gp
RαβμνRαβμν,

ffiffiffiffiffiffi−gp
RαβRαβ, andffiffiffiffiffiffi−gp

FαβFαβ, where R ¼ gαβRαβ denotes the Ricci scalar
calculated with the Weyl affine connection. (Curiously, the
first of these invariants appears in the action of some F(R)
theories, for instance, in the well known Starobinky’s
model of inflation [7].)
For reasons of consistency of his physics with the new

geometry, Weyl required his theory to be completely
invariant with respect to change between gauges (or
frames). On the other hand, he chose the simplest of all
possible invariant actions, namely,

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p
½R2 þ ωFμνFμν�; ð8Þ

where ω is a constant.5 This action describes the gravita-
tional-electromagnetic sector only.6 (Incidentally, it is odd
that Weyl did not consider the coupling with matter, which
clearly constitutes an element of incompleteness of the
theory. We shall return to this point later.) Carrying out
variations with respect to σμ and gμν will lead, respectively,
to the following field equations:

1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 3

2ω
gμνðRσν þ ∂νRÞ; ð9Þ

R

�
RðμνÞ −

1

4
gμνR

�
¼ ωTμν −Dμν; ð10Þ

where RðμνÞ stands for the symmetric part of Rμν, Tμν ¼
FμαFα

ν þ 1
4
gμνFαβFαβ and Dμν¼∇ðμ∇νÞRþ1

2
Rðσμ;νþσν;μÞþ

RσμσνþR;μσνþR;νσμ. Note that the presence of the term
Dμν introduces derivatives of third and forth order in the
theory. This fact was readily pointed out by Pauli, who
considered it to be a flaw of Weyl theory [9]. (However, as
is well known, present-day researchers welcome higher-
derivative theories since, as was later shown, they allow
renormalizability of divergences in the quantum corrections
to the interactions of matter fields [10].)
The above equations are drastically simplified if we

choose the so-called natural gauge, defined by Weyl as
R ¼ Λ ¼ const ≠ 0. In this case (9) and (10) reduce to

2Here we are assuming that the region of integration is simply
connected.

3In a local coordinate system, this identity takes the form
∂μFαβ þ ∂βFμα þ ∂αFβμ ¼ 0, which looks identical to one pair
of Maxwell’s equations.

4In conformal geometry, one basic invariant is the Weyl tensor
Wα

βμν. In conformal gravity, this tensor is used to form the scalar
WαβμνWαβμν, which, then, defines the gravitation sector of the
action [6].

5Here we are not considering the matter action.
6The question why a term proportional to RμνRμν was not

included in the action of the original Weyl theory is interesting
and deserves a comment. We believe that Weyl’s choice was
motivated not only by simplicity, but also because, by using a
particular gauge transformation, he could formally rewrite (8) as
similar to the Einstein-Hilbert’s action coupled to a (massive)
vector field, in which the cosmological constant arises in a rather
natural way. Let us mention that recently some generalizations of
the Weyl action have been considered (See, for instance, [8].).
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1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 3Λ

2ω
σμ; ð11Þ

R̃μν −
1

2
R̃gμν þ

Λ
4
gμν þ

3

2

�
σμσν −

1

2
gμνσασα

�
¼ ω

Λ
Tμν;

ð12Þ

where R̃μν and R̃ are now Riemannian and defined with
respect to the metric gμν.

7 At this point, let us note that we
can reobtain the field equations in a general gauge (9) and
(10) in an elegant and straightforward way by using the
gauge transformations (2) and (3) only, avoiding the long
and tedious calculations involved in the process of carrying
out variations in the action (8) (see Appendix).
It is worth mentioning that Weyl’s theory correctly

predicts the perihelion precession of Mercury as well as
the gravitation deflection of light by a massive body [9].
This is a consequence of the fact that all vacuum solutions
of Einstein’s equations (including the Schwarzschild sol-
ution) satisfy (9) and (10) when we set σμ ¼ 0.
Now before we start our discussion of the Einstein’s

objection to Weyl’s theory, we would like to stress that to
build his theory Weyl adopted a very strong and, at the
same time, rather restrictive principle, the so-called
Principle of Gauge Invariance, which requires all physical
quantities to be invariant under the gauge transformations
(2) and (3). This principle was strictly followed by Weyl
and guided him to choose the action (8). It should also be
noted here that any invariant scalar of this geometry must
necessarily be formed from both the metric gμν and the
Weyl gauge field σμ. These two fields constitute an
essential and intrinsic part of the geometry and neither
of them can be neglected when we want to construct an
invariant scalar, so they are, in this sense, inseparable, and
must always appear together.

IV. THE GENERAL RELATIVISTIC LIMIT

In this section, let us briefly examine how we can recover
general relativity from the Weyl field equations. First, let us
assume that in a certain gauge we have σ ¼ 0, which then
means that the geometry becomes Riemannian and
RðμνÞ ¼ Rμν ¼ R̃μν. In this case, Fμν and Tμν vanishes,
and then from (9) we have R ¼ R̃ ¼ Λ ¼ constant, which
in turn implies Dμν ¼ 0. Now from (10) we are left with
two possibilities: R̃ ¼ 0 or R̃μν ¼ 1

4
Λgμν. In the first case,

this means that all solutions of Einstein vacuum equations
(with vanishing cosmological constant) are included. In the
second case, the Weyl vacuum solutions correspond to

spaces of constant Ricci curvature (Einstein spaces), and
this seems to make the cosmological constant appear in a
natural way, deduced directly from the field equations.8

(Incidentally, if Λ > 0, one may be tempted to consider this
fact as an indication that Weyl theory might naturally lead
to the idea that the empty space-time of special relativity
should be identified to the de Sitter space, a speculation
which has gained more attention recently after the discov-
ery of the acceleration expansion of the Universe [11].)
However, if Λ is sufficiently small its effects in the field
equations can be neglected, and then Weyl’s field equations
becomes identical to the Einstein vacuum equations and the
results of the so-called solar system tests satisfied by
general relativity will be in accordance with Weyl theory.
Moreover, if Λ ¼ 0 then Weyl’s theory includes special
relativity as a particular case.

V. THE GEOMETRIZED ELECTROMAGNETIC
FIELD

It is certainly undeniable that the geometric structure
found by Weyl in his attempt to unify gravity and
electromagnetism leading in a very natural way to the
appearance of the geometric tensor Fμν whose algebraic
and invariant properties exhibit striking similarities with
Faraday tensor. However, looking into the field equations
derived from the action (8) chosen by Weyl deviations from
Maxwell equations become apparent. For instance, let us
consider the field equations written in the natural gauge.
The equation (11) tells us that the electromagnetic field is
coupled to itself, i.e., it acts as its own source. On the other
hand, in (12) there are nonlinear terms in σ, which are more
characteristic of nonlinear theories of electrodynamics. It is
also instructive to have a look at the action (8), which, when
it is written in the natural gauge [12] is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R̃þ ω

2Λ
FμνFμν þ 3

2
σμσ

μ −
Λ
2

�
;

which is equivalent to the action of the Proca’s neutral
spin-1 field in curved space-time with the cosmological
constant [13].
Another problem of Weyl’s geometrized electromagnet-

ism concerns the motion of neutral and electric charged
particles. Because the affine geodesics are the only curves
which are gauge-invariant one would expect that they
would describe the motion of particles interacting only
with the gravitational and electromagnetic field. However,
it is clear that from the geodesic equations one cannot
obtain the equation of motion for a charged particle moving
in a curved space-time, i.e., the Lorentz force equation. Let
us recall that in special or general relativity the Lorentz
force appears when we perform variations in the action

7Let us recall that in Weyl theory the so-called natural gauge is
defined by R ¼ Λ ¼ const. It should be clear, however, that in
this choice here R refers to the Ricci scalar calculated with the
Weyl connection, and not with the Christoffel symbols in general
relativity.

8Note that the same results follow easily from the Weyl
equations written in the natural gauge.
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S ¼ R d4x ffiffiffiffiffiffi−gp
Aμdxμ containing the interaction of charged

particle with the electromagnetic 4-potential Aμ. In Weyl
theory, there is no prescription of how matter interacts with
the gravitation and the (geometric) electromagnetic field,
an element of "incompleteness" that we shall consider later,
in Sec. VII.

VI. THE PROBLEMOF TIME INWEYL’S THEORY

It has been recognized in recent years that the notion of
time inWeyl’s theory is rather problematic. To beginwith, let
us recall Einstein’s objection contained in an addendum to
Weyl’s original paper concerning the dependence of the
clock rate of ideal clocks on their paths [1]. This is now
referred to as the second clock effect [14]. In order to examine
Einstein’s objection, let us first make more explicit the
hypotheses upon which the argument is based, which may
be stated as follows:

(i) The proper time △τ measured by a clock travelling
along a curveα ¼ αðλÞ is given as ingeneral relativity,
namely, by the (Riemannian) prescription

△τ ¼ 1

c

Z
½gðV; VÞ�12dλ ¼ 1

c

Z
½gμνVμVν�12dλ; ð13Þ

where V denotes the vector tangent to the clock’s
world line and c is the speed of light. This supposition
is known as the clock hypothesis and clearly assumes
that the proper time only depends on the instantaneous
speed of the clock and on the metric field [15]. (Note
that the gauge field σ, which is also an essential and
unseparable part of the Weyl space-time geometry
does not appear in the above expression [15].)

(ii) The clock rate of a clock (in particular, atomic
clocks) is modeled by the (Riemannian) length L ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðϒ;ϒÞp

of a certain vector ϒ. As the clock moves
in space-time ϒ is parallel-transported along its
worldline from a point P0 to a point P; hence,

L ¼ L0e
1
2

R
σαdxα , L0 and L denoting the duration of

the clock rate of the clock at P0 and P, respectively.
(Later, this assumption was made explicit by Ehlers,
Pirani, and Schild [16].)

Let us now examine more closely these two assumptions.
We start with the first hypothesis (A). First, for consistency
with the Principle of Gauge Invariance proper time should
be a gauge-invariant concept, and clearly this requirement is
not fulfilled by (13). It turns out, however, that up to this date
no such invariant notion of proper time consistent with
Weyl’s theory (and which does not lead to the second clock
effect) is known.9 Secondly, in the second hypothesis, gauge

invariance is again violated as the concept of clock rate is not
modeled as a gauge-invariant physical quantity, let alone the
fact that the Weyl geometrical field plays no role in its
determination.
Incidentally, it should be mentioned that a new notion of

proper time, entirely consistent with the Principle of Gauge
Invariance, was given by V. Perlick [17]. His line of
reasoning is the following. In Riemannian geometry, the
compatibility condition between the metric and the con-
nection may be given, as we know, by the equation

∇V ½gðW;UÞ� ¼ gð∇VW;UÞ þ gðW;∇VUÞ; ð14Þ

where V, W and U are vector fields. Now consider a curve
α ¼ αðλÞ and set V ¼ W ¼ U ¼ d

dλ, the vector tangent to α.
Then, d

dλ gð ddλ ; d
dλÞ ¼ 2gð∇ d

dλ

d
dλ ;∇ d

dλ

d
dλÞ, and we can say that λ

is the arc-length parameter s of the curve α (up to an affine
reparametrization) if and only if gð∇ d

dλ

d
dλ ;

d
dλÞ ¼ 0. If this

condition, which may be taken to characterize the arc-
length parameter in Riemannian geometry, is carried over
to Weyl geometry, then we have a definition of proper time
which is completely invariant with respect to Weyl trans-
formations. This was, in fact, the starting point of Perlick’s
definition of proper time, which, amazingly enough, also
leads to the second clock effect [18]. By replacing the
(noninvariant) general relativistic parametrization condition
gð ddλ ; d

dλÞ ¼ 1 by the gauge-invariant equation gð∇ d
dλ

d
dλÞ ¼ 0

it can be shown that the proper time elapsed between two
events corresponding to the parameter values λ0 and λ in the
curve α is given by

ΔτðλÞ ¼
 

dτ=dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβ _xα _xβ

q
!

λ¼λ0

Z
λ

λ0

e
−1
2

R
u

u0
σρ _xρds½gμν _xμ _xν�1=2du;

ð15Þ

where dot means derivative with respect to the curve’s
parameter [18]. It has also been shown that Perlick’s notion
of time has all the properties a definition of proper time in a
Weyl space-time should have, such as, Weyl invariance,
positive definiteness, additivity. Moreover, in the limit in
which the length curvature Fμν goes to zero Perlick’s time
reduces both to the Einsteinian proper time and to the
proper time defined in Weyl geometric scalar-tensor the-
ories [19]. Furthermore, it has been proved the equivalence
between Perlick’s definition of proper time and the one
given in the paper by Ehlers, Pirani, and Schild (EPS)
[16,18], which was entirely based on an axiomatic
approach [16,18,20].
It is interesting to note that Perlick’s proposal leads to a

new kind of geometry. Indeed, one can view the equation (1)
as a prescription of how to define length of curves in an
entire class of Weyl manifolds. In other words, Perlick’s
proper time endows space-time with new metric properties

9In 1986, V. Perlick proposed a new notion of proper time
defined in a Weyl manifold that is invariant by Weyl trans-
formations [17] and reduces to the WIST and general relativistic
definitions in the appropriate limits. However, it has been shown
that Perlick’s time also leads to the second clock effect [18].
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which are distinct from the Riemannian metric of each
member of the class. At this point, one may ask the
question: What are the “geodesics” of this geometry?
This question is motivated both by geometry and physics.
Indeed, one may be interested in knowing whether it is
possible or not to define “distance” between points. Or, one
may regard the geodesics as describing the paths of freely
falling particles. In any case, the equation of the curve
which extremizes Perlick’s functional is needed. The
answers to these questions have not been found yet as
the extremization of the functional (15) does not seem easy
to carry out. However, preliminary results yield the
following: i) Perlick’s geodesics do not coincide with the
affine geodesics of Weyl geometry; ii) they exhibit a
nonlocal character in the sense that they depend on the
whole past of world line of the particle. In fact, Perlick’s
geometry is completely nonlocal and this nonlocality
should not be unexpected since the second clock effect
may also be viewed as a nonlocal phenomenon. In addition
to the fact that Perlick’s time introduces great mathematical
difficulties (in spite of being a gauge-invariant notion), it is
not operational when it comes to consider matter in Weyl’s
theory, a question to be dealt with in the next section.

VII. MATTER COUPLING IN WEYL’S THEORY

Let us begin by quoting some words by the British
mathematician M. Atiyah regarding Einstein’s historical
objection to Weyl’s theory: “Given this devastating critique
it is remarkable but fortunate that Weyl’s paper was still
published... Clearly the beauty of the idea attracted the
editor...” [21] Certainly this “devastating” critique was what
prevented Weyl from going ahead and completing his
elegant and aesthetically appealing theory by adding matter
to his universe and get the full field equations in the
presence of matter. In what follows we shall briefly discuss
this point and suggest a possible way of carrying out this
completion while maintaining consistency with the prin-
ciple of gauge invariance. In this article we shall just outline
the general theoretical construction, a preliminary step in
this direction, leaving applications for future work.
We start by calling attention of the reader to the fact that

in the case of the so-called geometric scalar-tensor gravity
theories the definition of proper time is given by the gauge-
invariant equation [22]

Δτ ¼
Z

b

a
e−

ϕ
2

�
gμν

dxμ

dλ
dxν

dλ

�1
2

dλ: ð16Þ

These theories are framed in a geometric structure known in
the literature as WIST (Weyl integrable space-time) [19]. It
can be viewed as a “weak” version of Weyl’s geometry
when the 1-form σ representing the gauge field is exact, i.e.,
σ ¼ dϕ. Thus instead of the geometrizing the electromag-
netic field we shall geometrize a scalar field. In this case,
the Weyl transformations (2) and (3) become ḡ ¼ efg and

ϕ̄ ¼ ϕþ f, and the compatibility condition now is
given by

∇V ½gðW;UÞ�¼gð∇VW;UÞþgðW;∇VUÞþdϕðVÞgðW;UÞ;

in which U, V, and W are vector fields. The relevant point
we wish to highlight here is that (16) is nothing more than
the clock hypothesis redefined in terms of the gauge-

invariantmetric γμν ¼ e−
ϕ
2gμν. This gives us a clue to tackle

the problem of matter coupling in the nonintegrable case.
For this purpose, let us recall the procedure used to define
an invariant energy-momentum tensor in geometric scalar-
tensor theories. Let SðmÞ ¼ R d4x ffiffiffiffiffijηjp

LmðψA; ∂ψAÞ denote
the action of the matter fields ψA (which we want to couple
with the geometry) in Minkowski space-time. We next
apply the principle of minimal coupling ημν → γμν,
∂ψA → ∇ψA, where ∇ stands for the covariant derivative
with respect to the metric connection determined by γμν. We
proceed to define the gauge-invariant energy-momentum
tensor Tμν (the source of the gravitational field) by the well-
known Hilbert prescription

δSðmÞ ¼ k
Z

d4x
ffiffiffiffiffi
jγj

p
TðmÞ
μν δγμν; ð17Þ

with k denoting the coupling constant. In this way we have
an invariant procedure to obtain the coupling between
matter and space-time.
Our aim at this point is to obtain a gauge-invariant

procedure which enables us to construct the coupling
between matter and geometry in Weyl theory by following
a somehow similar procedure as above. Clearly, the “non-
locality” of the functional (15) makes the use of Perlick’s
metric virtually impossible. Therefore we need to find out
another gauge-invariant metric tensor. It turns out that
Weyl’s idea of working out the field equations in a
particular gauge, namely, the natural gauge defined by
the condition R ¼ Λ may be of great help. Indeed, by just
picking up this idea we are now able to define a metric
tensor which may be regarded as the representative of the
whole conformal structure M ¼ fðg;∇; σÞg of the Weyl
manifold. Indeed, let ðg;∇; σÞ be an arbitrary member of
M and define the tensor γ ¼ R

Λ g for some Λ > 0.10 Now
suppose that ðḡ;∇; σ̄Þ is another member of M. Clearly
both members are related by the transformations ḡμν ¼
efgμν, σ̄α ¼ σα þ ∂αf, for some function f. Thus, the fact
that R̄ ¼ ḡμνR̄μν ¼ ḡμνRμν ¼ e−fgμνRμν ¼ e−fR immedi-

ately implies γ̄ ¼ R̄
Λ ḡ ¼ R

Λ g ¼ γ, and this means that γ is
a gauge-invariant object, which can be computed from any
member of the conformal structure M. Note that in Weyl
natural gauge (determined by the chosen Λ) the metric

10If R ¼ 0 it is easy to verify that Weyl field equations become
trivial and we have no longer an electromagnetic field.
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tensor γ assumes its simplest form, namely, γ ¼ g. The
same reasoning leads us to define a second gauge-invariant
object, namely, the 1-form given by ξ ¼ σ þ dðlnRÞ.
Therefore, we can regard ξ as the 1-form representative
ofM. Once we have the gauge-invariant metric tensor γ we
can then adopt the same procedure used in WIST theories
to obtain a gauge invariant energy-momentum tensor in

Weyl theory by defining δSðmÞ ¼ κ
R
d4x

ffiffiffiffiffijγjp
TðmÞ
μν δγμν.

Therefore, our strategy will be to reframe Weyl’s theory
in terms of γ and ξ.

VIII. A NEW APPROACH TO WEYL’S THEORY

In this section we summarize the ideas developed so far
in the following set of postulates:

P1. We still consider space-time modeled by the con-
formal structureM, whose members are related by the
group of transformations (2) and (3). However, all
relevant geometric objects will be constructed from γ
and ξ.

P2. The field equations of the theory will be given
by varying the action S ¼ ffiffiffiffiffijγjp ½R2 þ ωFμνFμν þ
ϰLm�d4x with respect to γ, ξ, and ψA, where ϰ is a
coupling constant and LmðψA;∇ψAÞ denote the
Lagrangian of the matter fields. In the Weyl gauge,
these variations will have the form

δS ¼ δ

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ ω

2Λ
FμνFμν −

Λ
2
þ κLm

�
¼ 0;

ð18Þ

yielding the equations

R̃μν−
1

2
R̃gμνþ

Λ
4
gμνþ

3

2

�
σμσν−

1

2
gμνσασα

�

¼ω

Λ
Tμν−κTðmÞ

μν ; ð19Þ

1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 3Λ

2ω
σμ;

ΦA ¼ 0; ð20Þ

where δ
R
d4x

ffiffiffiffiffiffi−gp ½κLm� ¼
R
d4x

ffiffiffiffiffiffi−gp ΦAδψA, and
κ ¼ ϰ

2Λ.
Finally, to complete the theoretical framework we

assume the following postulates:
P3. The motion of free-falling test particles will be given
by Riemannian geodesics with respect to the metric
tensor γ.

P4. The gauge-invariant proper time of a standard clock
will be given by assuming the usual clock hypothesis,
namely, that

△τ ¼ 1

c

Z
½γðV; VÞ�12dλ;

which in Weyl gauge reduces to (13).
P5. The clock rate of standard clocks is strictly deter-
mined by the metric properties of γ and its corre-
sponding Levi-Civita connection.

As an application of the ideas developed so far, we shall
now solve the field equations (18) and (19) assuming a
simple cosmological scenario.

IX. A SIMPLE COSMOLOGICAL SOLUTION

Although general relativity is still considered the best
available theory of gravity, and as such has been applied to
the study of the universe with enormous success, we are
currently seeing a great interest (which can be justified for
several reasons) in alternative theoretical proposals, gen-
erally referred to as “modified theories of gravity.” This
kind of research is particularly connected and stimulated by
the recent advances in the field of observational cosmology
[23]. We thus thought it could be interesting to apply the
present new approach to Weyl’s theory in searching for a
solution of the field equations in a simple cosmological
setting.
The model assumes homogeneity and isotropy both in

the metric and the vector field, the first being assumed to be
given by a Friedmann-Robertson-Walker line element, in
which, for simplicity, we have chosen a flat spatial section
(k ¼ 0). As to the matter distribution of the universe, we
admit that it is described by the energy-momentum tensor

of a perfect fluid TðmÞ
μν ¼ ðρþ pÞuμuν − pgμν, where ρ, p,

and uμ denote the energy-density, the pressure, and the 4-
velocity of the fluid (Here we are employing a comoving
coordinate system, so that uμ ¼ δμ0.). (We do not assume a
particular equation of state, leaving it to be determined by
the solution of the field equations.)
We thus write ds2 ¼ dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ for

the line element, and σμ ¼ ðϕðtÞ; θðtÞ; θðtÞ; θðtÞÞ for the
Weyl vector field. A direct calculation give us

Fμν¼ _θ
a2

0
BB@

0 1 1 1

−1 0 0 0

−1 0 0 0

−1 0 0 0

1
CCA and Tμν ¼ _θ2

2

0
BBB@

3
a2 0 0 0

0 1 −2 −2
0 −2 1 −2
0 −2 −2 1

1
CCCA,

where dot denotes derivative with respect to t.
Let us now work with the equations in the natural gauge.

Setting μ ¼ 0 in (20) will give us

∂0ða3F0νÞ ¼ 3Λ
2ω

a3σ0 ¼ 0; ð21Þ
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which then implies ϕðtÞ ¼ 0. On the other hand, setting
μ ¼ 1 in the same equation leads us to

θ̈ þ
�
_a
a

�
_θ ¼ 3Λ

2ω
θ: ð22Þ

Now let us consider the equation (19). For μ ¼ 1 and ν ¼ 2
we obtain

_θ

θ
¼ �

ffiffiffiffiffiffiffiffiffiffi
−
3Λ
2ω

r
;

which immediately yields the solutions

θ ¼ e�
ffiffiffiffiffiffi
−3Λ
2ω

p
t;

in which the integration constant was set equal to unity by
rescaling the line element.11 Choosing the negative solution
above and inserting it in (22) gives for the scale factor
aðtÞ12

aðtÞ ¼ e2
ffiffiffiffiffiffi
−3Λ
2ω

p
t;

in which the integration constants were set equal to unity
just by rescaling the line element and choosing appropriate
initial conditions. Setting μ ¼ ν ¼ 0 in we obtain

ρ ¼ −
Λ
κ

�
18

ω
þ 1

4

�
−

9

2κ
e−6

ffiffiffiffiffiffi
−3Λ
2ω

p
t;

whereas putting μ ¼ ν ¼ 1 leads to

p ¼ Λ
κ

�
18

ω
þ 1

4

�
:

The solution obtained above represents a typical non-
singular and expansive model, that is, a de Sitter universe.
Solutions of this kind have been found in different contexts
suggesting the possibility of describing dark energy in our
present universe or inflation in the early universe. It is
interesting to note that σðtÞ → 0 when t → ∞. In other
words, theWeyl field tends to fade away with the expansion
of the universe, while the equation of state of the cosmo-
logical fluid becomes p ¼ −ρ, which is typical of dark
energy models. It should be mentioned that inhomogeneous
time-dependent equations have also been considered in
dark some energy scenarios [24]. Finally, in connection
with the simple model outlined above, we would like to call
attention of the reader to the fact that, although most
versions of inflationary cosmology require a scalar field,
previous results found in the literature show that inflation

can also be driven by vector fields, including the particular
case of massive fields13 [25].

X. FINAL REMARKS

Wewould like to conclude this work with a few remarks.
First of all, it is important to stress the fact that the adoption
of a very special set of gauge-invariant tensors playing the
role of representatives of the space-time modeled as a
conformal structure leads to two unexpected consequences:
i) nonlocal effects, such as the second clock effect are no
longer predicted; ii) the coupling between space-time and
matter is carried out in an invariant way following the
traditional prescription contained in the principle of min-
imal coupling of general relativity.14

In deriving the equation for the Weyl field σ when matter
fields are present we have implicitly made the assumption
that Lm does not depend on σ, or, in other words, that the
vector field does not couple directly with matter. Surely, if
one wishes a more general framework, it is possible to
weaken this restriction by just adding a current term jμ,
given by δ

R
d4x

ffiffiffiffiffiffi−gp ½κLm� ¼
R
d4x

ffiffiffiffiffiffi−gp
jμδσμ.

Finally, the original identification of the 1-form field σ
with the electromagnetic potential is no longer assumed
here. Instead, the pair (γ, ξ) constitutes what would we
would call the complete gravitational field. In this way, we
are simply left with a modified gravity theory instead of a
unified theory as in the Weyl’s original program.
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APPENDIX: DERIVATION OF THE WEYL FIELD
EQUATIONS

In what follows we show how to obtain the Weyl field
equations (9) and (10), written in an arbitrary gauge,

11Because we would like to interpret Λ as the cosmological
constant we are restricting ourselves to negative values of ω.

12Choosing the positive sign here leads to a rather nonphysical
scenario, which merely describes a contracting universe.

13If we rewrite the field equations (12) in the form
R̃μν− 1

2
R̃gμνþΛ

4
gμν ¼ ω

ΛTμν− 3
2
ðσμσν− 1

2
gμνσασαÞ− κTðmÞ

μν , then it
is easy to verify that both sides are spatially isotropic tensors. In
fact, the right-hand side of the above equation may be viewed as
being formed by two tensors: the energy-momentum tensor of
matter and the energy-momentum tensor of the (massive) Proca
field σμ, and both are isotropic as can readily be seen. Inciden-
tally, it is an interesting fact that, at least in this particular case, it
is the mass term of the latter that guarantees the required isotropy.

14It should be mentioned that, in principle, extra terms could be
added to the Lagrangian of the theory, or more general non-
minimal matter couplings could be included (provided that the
gauge symmetry is preserved) generating new gravitational
theories which obey this additional symmetry principle.

SANOMIYA, LOBO, FORMIGA, DAHIA, and ROMERO PHYS. REV. D 102, 124031 (2020)

124031-8



directly from the equations (11) and (12), the latter valid in
the natural gauge only.
We start by looking for a Weyl transformation (2) and (3)

which allows us to go from an arbitrary gauge ðM; ḡ; σ̄Þ to a
particular gauge ðM; g; σÞ, in which R ¼ Λ ≠ 0, where Λ is
an arbitrary constant. From the fact that the Ricci tensor is
gauge-invariant it is not difficult to verify that the desired
transformation is givenby takingf ¼ lnðR̄ΛÞ,where R̄denotes
theRicci scalar in the arbitrary gauge ðM; ḡ; σ̄Þ.We thus have
gμν ¼ R̄

Λ ḡμν and σμ ¼ σ̄μ þ 1
R̄ ∂μR̄. Let us now rewrite the

equation (12) in terms of Rμν and R (respectively, the Ricci
and scalar curvature calculated with the Weyl connection),
also recalling the identity which relates the two Ricci tensors
Rμν and R̃μν, the first calculatedwith theWeyl connection and
the second with the Christoffel symbols:

R̃μν ¼ RðμνÞ þ
1

2
ð∇̃μσν þ ∇̃νσμ þ gμν∇̃ασ

αÞ

þ 1

2
ðσμσν − gμνσασαÞ; ðA1Þ

the symbol ∇̃ standing for the Riemannian covariant deriva-
tive. Contracting the above equation with gμν yields

R̃ ¼ R −
3

2
σασ

α; ðA2Þ

where we have used the fact that (11) implies ∇̃ασ
α ¼ 0.

Substituting (A1) and (A2) into (12) leads to

RðμνÞ−
1

2
gμνRþΛ

4
gμνþ

1

2
ð∇μσνþ∇νσμÞþσμσν¼

ω

Λ
Tμν;

ðA3Þ

in which we have taken into account the following
relation between the Weylian and Riemannian covariant
derivatives:

∇μσν ¼ ∇̃μσν þ σμσν −
1

2
gμνσασα:

Recalling the expression of Tμν in Sec. III we now see that all
terms in (A3) possess awell-defined transformationunder (2)
and (3). Therefore, choosing the latter as being given by
gμν ¼ R̄

Λ ḡμν and σμ ¼ σ̄μ þ 1
R̄ ∂μR̄ we get, after a straightfor-

ward calculation,

R̄ðμνÞ −
1

4
ḡμνR̄þ∇ðμσ̄νÞ þ

1

R̄
∇ðμ∇νÞR̄

þ σ̄μσ̄ν þ
1

R̄
σ̄ðμ∇νÞR̄ ¼ ω

R̄
T̄μν: ðA4Þ

Multiplying the above equation by R̄ clearly leads to (10).
Finally, the equation (9) is directly obtained by the same
procedure.
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