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Cosmography is an ideal tool to investigate the cosmic expansion history of the Universe in a model-
independent way. The equations of motion in modified theories of gravity are usually very complicated;
cosmography may select practical models without imposing arbitrary choices a priori. We use the model-
independent way to derive fðzÞ and its derivatives up to fourth order in terms of measurable cosmographic
parameters. We then fit those functions into the luminosity distance directly. We perform the MCMC
analysis by considering three different sets of cosmographic functions. Using the largest supernovae Ia
Pantheon sample, we derive the constraints on the Hubble constant H0 and the cosmographic functions,
and find that the former two terms in Taylor expansion of luminosity distance work dominantly in fðQÞ
gravity.
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I. INTRODUCTION

At the beginning of the 20th century, Albert Einstein
proposed the general theory of relativity (GR), which
changes our understanding of the Universe. It is growing
by a prominent number of correct observations and
exploring the hidden scenarios of the Universe in modern
cosmology. Later on, a group of supernovae observations
confirms that our Universe is currently going through the
accelerated expansion phase [1]. This causes the existence
of high negative pressure in the Universe, which is
produced by the unknown form of energy and matter
called dark energy and dark matter. To know the unknown
form of energy is a challenging task for the researchers in
the modern era. In GR, the cosmological constant Λ is the
simplest candidate, which explains the vacuum energy [2].
Rather than this, it fails to overcome some problems such as
the age problem [3] or the coincidence problem [4]. In this
regard, it is considered that GR may not be the correct
proposal to describe gravity in large-scale structures.
Modified gravity theories are the generalization of the
general theory of relativity, and it violates the strong
equivalence principle [5]. Despite little progress so far in
understanding cosmic acceleration [6], modified gravity
studies are important as they provide reliable, logical
alternatives to GR and may ease some of the current
problems. In the last two decades, many works were carried

out in modified gravity theories to explore and understand
the profile of the Universe (see Ref. [7]).
In GR, we use the Levi-Civita connection to describe its

gravitational interaction in Riemannian space-time. This
choice is built on the hypothesis of free geometry of torsion
and nonmetricity. Besides this, we have to keep in mind
that the general affine connection has a more generic
expression [8], and GR can also be derived in different
space-time other than Riemannian. Teleparallel gravity is
an alternative theory to GR, whose gravitational interaction
is described by the torsion, T [9]. Its teleparallel equivalent
of general relativity used the Weitzenböck connection,
which implies zero curvature and nonmetricity [10]. The
Weitzenböck connection of the disappearance of the sum of
the curvature and the scalar torsion is considered in Weyl-
Carten space-time for a cosmological model [11]. The
motion equations can be derived from the Einstein-Hilbert
type of variational principle, and they completely depend
on the Lagrange multiplier (see details [12]). The case of
Riemann-Cartan space-times with zero nonmetricity, which
mimics the teleparallel theory of gravity, was also consid-
ered. Symmetric teleparallel gravity is also an alternative
theory, where zero curvature and torsion are considered
[13]. In this theory, the nonmetricity Q described the
gravitational interaction. In past decades, researchers have
been attracted toward the modified theories of gravity
because they describe the current phenomena of the
Universe. As a result, the gravitational interactions have
been derived by using different types of geometrics [14].
Moreover, by assuming the affine connection, one

specifies the metric-affine geometry [15]. As we know,
the metric tensor gμν is the generalization of gravitational
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potential used to define the distances, angles, and volumes,
whereas the affine connection defines the covariant deriv-
atives and parallel transport. In differential geometry, the
general affine connection can be written as

Γλ
μν ¼ f λ

μνg þ Kλ
μν þ Lλ

μν; ð1Þ

where the Levi-Civita connection of the metric is

f λ
μνg≡ 1

2
gλβð∂μgβν þ ∂νgβμ − ∂βgμνÞ; ð2Þ

the contortion is

Kλ
μν ≡ 1

2
Tλ

μν þ TðμλνÞ; ð3Þ

with the torsion tensorTλ
μν ≡ 2Γλ½μν�, and thedisinformation

Lλ
μν can be written in terms of the nonmetricity tensor as

Lλ
μν ≡ 1

2
Qλ

μν −QðμλνÞ: ð4Þ

Here, the nonmetricity tensor Qβμν is defined as the minus
covariant derivative of themetric tensor i.e.,Qβμν ≡ −∇βgμν
[16]; it can be written as

Qβμν ¼ −
∂gμν
∂xβ þ gνλf λ

μβg þ gλμf λ
νβg: ð5Þ

In this article, we will work on symmetric teleparallel
gravity in which the gravitational interaction is completely
described by the nonmetricity Q with torsion and curvature
free geometry. As this is a novel approach to exploring
some Universe insights, so far, a few works have been done
in this approach. Exploring this formulation will hopefully
provide some insight into the current scenario of the
Universe. Lazkoz et al. have analyzed the different form
of fðQÞ by transferring it to redshift form fðzÞ with
observational data. They proposed various polynomial
forms of fðzÞ including additional terms which causes
the deviation from the ΛCDM (Lambda cold dark matter)
model and checks their validity [17]. Mandal et al. studied
the energy conditions in order to check the stability of their
assumed cosmological models and constrained the model
parameters with the present values of cosmological param-
eters in fðQÞ gravity [18]. Lu et al. studied symmetric
teleparallel gravity comparing with fðTÞ and fðRÞ gravity,
and found some interesting results. Besides, they inves-
tigated one fðQÞ model and showed five critical points in
the symmetric teleparallel gravity model [19]. Rünkla and
Vilson [20] and Gakis et al. [21] studied the extension of
symmetric teleparallel gravity in which they have been
reformulated the scalar nonmetricity theories, derived the
field equations, and discussed their properties. Harko et al.
[22], in their interesting work, proposed the extension of

symmetric teleparallel gravity by considering the
Lagrangian of the form of nonminimal coupling between
the nonmetricityQ and the matter Lagrangian. Besides this,
they studied several cosmological aspects by presuming
power law and exponential forms of f1ðQÞ and f2ðQÞ.
They also found that their model shows the accelerated
expansion of the Universe. The motivation of working in
symmetric teleparallel gravity is that in this approach,
the field equations are in second order, which is easy to
solve. Furthermore, the advantage is that it overcomes the
problem which is generated by the higher-derivative
property of the scalar R such as for a density of a canonical
scalar field ϕ; the nonminimal coupling between geometry
and the matter Lagrangian produces an additional kinetic
term which is not an agreement with the stable Horndeski
class [23]. In this work, we focus on constraining the
functions of the cosmographic set using the cosmographic
idea, which provides the maximum amount of information
from the luminosity distances of SNe Ia. To constrain those
functions, we have adopted a Bayesian statistical analysis
using Markov chain Monte Carlo (MCMC) simulation with
the latest large Pantheon dataset.
The outline of the paper is as follows. In Sec. II, we

discuss the Einstein Lagrangian for the symmetric tele-
parallel geometry. We briefly present the formalism of
fðQÞ gravity in Sec. III. In Sec. IV, we discuss the
cosmographic parameters with their origin and use. After
this, we express the fðQÞ and its derivatives in terms of
cosmographic parameters in Sec. V. Then, we constrain
three models of the function of the cosmographic set in
Sec. VI. There we use the MCMC method to constrain
the parameters with the latest Pantheon dataset. Finally, we
conclude our outcomes in Sec. VII.

II. COVARIANT EINSTEIN LAGRANGIAN

Albert Einstein presented a simple Lagrangian for his
motion equations using the Levi-Civita connection defined
in Eq. (2), in 1916 [24], which is given by

LE ¼ gμνðf α
βμgf β

ναg − f α
βαgf β

μνgÞ: ð6Þ

Nevertheless, the standard Lagrangian formulation was
proposed by Hilbert in 1915. The Lagrangian is described
by the Ricci scalar R, which contains the metric tensor’s
second-order derivatives. Moreover, the Ricci scalar for this
formulation can be written as

R ¼ LE þ LB; ð7Þ

where LB is the boundary term, and it is given by

LB ¼ gαμDαf ν
μνg − gμνDαf α

μνg: ð8Þ

The symbol Dα represents the covariant derivative with the
Levi-Civita connection in Eq. (2). The Lagrangian defined
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in Eq. (6) is not a covariant one; therefore, the higher-order
derivative mechanism result the standard one. Also, one can
upgrade the Christoffel symbol to a covariant one using
partial derivatives. Hence, one can write Eq. (4) with the
covariant derivative ∇α as

Lα
βγ ¼ −

1

2
gαλð∇γgβγ þ∇βgλγ −∇λgβγÞ: ð9Þ

Now, the nonmetricity Q can be written as

Q ¼ −gμνðLα
βμLβ

να − Lα
βαLβ

μνÞ: ð10Þ

Whenever the covariant derivative reduces to the partial
derivative at that time, the nonmetricity Q will be equiv-
alent to the negative of the Einstein Lagrangian in Eq. (6)
i.e.,

∇α ≗ ∂α; Q ≗ −LE; ð11Þ

where ‘o’ in the above expressions was called the gauge
coincident, and it is consistent in the symmetric teleparallel
geometry [25]. In symmetric teleparallel geometry, the
connection Γα

μν does not depend on the curvature and
torsion. However, the connection in Eq. (2) and its curvature
still show their physical roles. Remember that the Dirac
Lagrangian, connected with the connection Γα

μν in the
symmetric teleparallel geometry, filters out everything but
the Christoffel symbols (2) from Γα

μν ¼ f α
μνg þ Lα

μν. As a
consequence, the symmetric teleparallel mechanism is a
good and stable modification of GR. Since (minimally
coupled) fermions are still metrically connected [26], and
although the pure gravity field is now trivially intercon-
nected, nothing actually changes, but only the higher-
derivative boundary term LB disappears from this operation.

III. MOTION EQUATIONS IN f ðQÞ GRAVITY

Let us consider the action for fðQÞ gravity given by [25]

S ¼
Z

1

2
fðQÞ ffiffiffiffiffiffi

−g
p

d4xþ
Z

Lm
ffiffiffiffiffiffi
−g

p
d4x; ð12Þ

where fðQÞ is a general function of the Q, Lm is the matter
Lagrangian density and g is the determinant of the metric
gμν. The nonmetricity tensor and its traces are such that

Qγμν ¼ ∇γgμν; ð13Þ

Qγ ¼ Qγ
μ
μ; Q̃γ ¼ Qμ

γμ: ð14Þ

Moreover, the superpotential as a function of the non-
metricity tensor is given by

4Pγ
μν ¼ −Qγ

μν þ 2QðμγνÞ −Qγgμν − Q̃γgμν − δγðγQνÞ; ð15Þ

where the trace of the nonmetricity tensor [25] has the form

Q ¼ −QγμνPγμν: ð16Þ

Another relevant ingredient for our approach is the energy-
momentum tensor for the matter, whose definition is

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð17Þ

Taking the variation of action (12) with respect to the metric
tensor, one can find the field equations

2ffiffiffiffiffiffi−gp ∇γð
ffiffiffiffiffiffi
−g

p
fQPγ

μνÞ þ
1

2
gμνf

þ fQðPμγiQν
γi − 2QγiμPγi

νÞ ¼ −Tμν; ð18Þ

where fQ ¼ df
dQ. Besides, we can also take the variation of

(12) with respect to the connection, yielding

∇μ∇γð
ffiffiffiffiffiffi
−g

p
fQPγ

μνÞ ¼ 0: ð19Þ

Here we are going to consider the standard Friedmann-
Lemaître-Robertson-Walker line element, which is explic-
itly written as

ds2 ¼ −dt2 þ a2ðtÞδμνdxμdxν; ð20Þ

where aðtÞ is the scale factor of the Universe. The previous
line element enables us to write the trace of the non-
metricity tensor as

Q ¼ 6H2:

Now, let us take the energy-momentum tensor for a perfect
fluid, or

Tμν ¼ ðpþ ρÞuμuν þ pgμν; ð21Þ

where p represents the pressure and ρ represents the energy
density. Therefore, by substituting (20) and (21) in (18) one
can find

3H2 ¼ 1

2fQ

�
−ρþ f

2

�
; ð22Þ

_H þ 3H2 þ
_fQ
fQ

H ¼ 1

2fQ

�
pþ f

2

�
; ð23Þ

as the modified Friedmann equations for fðQÞ gravity.
Here the dot ð:Þ represents one derivative with respect
to time.
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IV. COSMOGRAPHIC PARAMETERS

Modern cosmology is growing by a prominent number
of observations. Therefore, the reconstruction of the
Hubble diagram (i.e., the redshift-distance relation) is
possible for higher redshift. The parametrization technique
is a good method to study cosmological models. But, this
type of procedure is entirely dependent on the models, and
we check the viability by contrasting it against the
observational data and putting limits on its model param-
eters. So, there are some doubts about its characterizing
parameters for the present-day values of the age of the
Universe and the cosmological quantities. To overcome all
these issues, one may adopt cosmography. Cosmography is
the study of a scale factor by expanding it through the
Taylor series with respect to the cosmic time. This type of
expansion gives us the distance-redshift relation and is also
independent of the solution of the motion equations of the
cosmological models. To study cosmography, it is worth
introducing the cosmographic parameters as follows:

H ¼ 1

a
da
dt

; ð24Þ

q ¼ −
1

a
d2a
dt2

H−2; ð25Þ

j ¼ 1

a
d3a
dt3

H−3; ð26Þ

s ¼ 1

a
d4a
dt4

H−4; ð27Þ

l ¼ 1

a
d5a
dt5

H−5; ð28Þ

where H, q, j, s, and l represent the Hubble parameter,
deceleration parameter, jerk parameter, snap parameter,
and lerk parameter, respectively. These quantities are
completely independent of the model. After some algebraic
computation of Eqs. (24)–(28), one can derive the follow-
ing relations:

_H ¼ −H2ð1þ qÞ; ð29Þ

Ḧ ¼ H3ðjþ 3qþ 2Þ; ð30Þ

H⃛ ¼ H4½s − 4j − 3qðqþ 4Þ − 6�; ð31Þ

HðivÞ ¼H5½l−5sþ10ðqþ2Þjþ30ðqþ2Þqþ24�; ð32Þ

where the dot ð:Þ represents the one time derivative with
respect to cosmic time (t) and HðivÞ ¼ d4H

dt4 . The degeneracy
problem is one of the most common issues of the
cosmological models. Cosmography is one of the best
methods to deal with it. Furthermore, another advantage of

cosmography is that the luminosity distance can relate to
the cosmographic parameters. In this concern, the direct
measurement of luminosity distance can overcome the
statistical error propagations, which was discussed in
[27]. Therefore, the theoretical prediction can be directly
comparable to the observed data, without assuming an
a priori form ofH and fðQÞ [28]. The idea of cosmography
was extensively studied by Capozziello and his group in a
modified fðRÞ and fðTÞ gravity. They also proposed a
novel approach built on Padé and Chebyshev polynomials
to overcome standard cosmography limits based on Taylor
expansion. Besides, they did a numerical analysis to
constrain the functions of cosmographic sets using
MCMC simulation [29]. The series expansion of the scale
factor aðtÞ up to its fifth order in terms of the cosmographic
set is

aðtÞ ¼ aðt0Þ
�
H0ðt − t0Þ −

q0
2
H2

0ðt − t0Þ2

þ j0
3!
H3

0ðt − t0Þ3 þ
s0
4!
H4

0ðt − t0Þ4

þ l0
5!
H5

0ðt − t0Þ5 þO½ðt − t0Þ6�
�
: ð33Þ

By definition, the scale factor and redshift relation reads

aðtÞ
aðt0Þ

¼ 1

1þ z
; ð34Þ

and the luminosity distance reads

dL ¼
ffiffiffiffiffiffiffiffiffiffi
L

4πF

r
¼ r0

aðtÞ ; ð35Þ

where L and F are the luminosity and flux, respectively,
and

r0 ¼
Z

t0

t

dη
aðηÞ : ð36Þ

Its physicalmeaning is thedistance traveled by a photon from
a source at r ¼ r0 to the observer at r ¼ 0. Now, one can
express the luminosity distance as a series expansion of
redshift z with the cosmographic set and also in terms of
fðzÞ and its derivatives, those are written in the Appendix.
Moreover, we can express fðQÞ ¼ fðQðzÞÞ ¼ fðzÞ in terms
of the cosmographic set i.e., fðzÞ ¼ fðHðzÞ; qðzÞ; jðzÞ;
sðzÞ; lðzÞÞ. To do this, we rewriteQ in terms of redshift z as

QðzÞ ¼ 6HðzÞ2; ð37Þ

using the definition of redshift in terms of cosmic time:
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d logð1þ zÞ
dt

¼ −HðzÞ: ð38Þ

Therefore, we are able to calculateQ and its derivatives with
respect to z and present them in z ¼ 0. We ended up with the
following results:

Q0 ¼ 6H0; ð39Þ

Qz0 ¼ 12H0Hz0; ð40Þ

Q2z0 ¼ 12½H2
z0 þH0H2z0�; ð41Þ

Q3z0 ¼ 12½3Hz0H2z0 þH0H3z0�; ð42Þ

Q4z0 ¼ 12½3H2
2z0 þ 4H0H3z0 þH0H4z0�: ð43Þ

Here, Q0 ¼ QðzÞjz¼0, Qz0 ¼ dQ
dz jz¼0, Q2z0 ¼ d2Q

dz2 jz¼0, etc.

Similarly,H0¼HðzÞjz¼0,Hz0¼ dH
dz jz¼0,H2z0¼ d2H

dz2 jz¼0, etc.
In order to express Q and its derivatives in terms of

cosmographic parameters, we have to evaluate the deriv-
atives of HðzÞ in terms of cosmographic parameters.

To do so, we used (38) in (29)–(32) and got the following
results:

Hz0

H0

¼ 1þ q0; ð44Þ

H2z0

H0

¼ j0 − q20; ð45Þ

H3z0

H0

¼ −3j0 − 4j0q0 þ q20 þ 3q30 − s0; ð46Þ

H4z0

H0

¼ 12j0 − 4j20 þ l0 þ 32j0q0 − 12q20 þ 25j0q20

− 24q30 − 15q40 þ 8s0 þ 7q0s0: ð47Þ

Then using above equations, we are able to express Q and
its derivatives in terms of the cosmographic set.

V. f ðzÞ DERIVATIVES VS COSMOGRAPHY

As discussed above, the study of cosmological models
by presuming an arbitrary form of fðQÞ and then solving

FIG. 1. The marginalized constraints on the cosmographic parameters of M1 are shown by using the Pantheon SNe Ia sample.
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the modified Friedmann equations creates doubt on its
model parameters. So, in this section we try to express the
derivatives of fðzÞ in terms of the present values of the
cosmographic parameters ðq0; j0; s0; l0Þ. Doing this gives
us a hint about the functional form of fðQÞ which could be
able to compel the observation.
The modified motion Eqs. (22) and (23) can be

rewritten as

H2 ¼ 1

12f0ðQÞ ½−QΩm þ fðQÞ�; ð48Þ

_H ¼ 1

4f0ðQÞ ½QΩm − 4H _Qf00ðQÞ�; ð49Þ

where Ωm represents the dimensionless matter density
parameter.

The fðzÞ derivatives can be written as the functional
dependence

fz ¼ f0ðQÞQz;

f2z ¼ f00ðQÞQ2
z þ f0ðQÞQ2z;

f3z ¼ f000ðQÞQ3
z þ 3f00ðQÞQzQ2z þ f0ðQÞQ3z; ð50Þ

and so on. Furthermore, following [17,18], we know that
fðQÞ ¼ −Q mimics ΛCDM. Now, we are going to
compare our results with the ΛCDM by fixing the bounds
on ΛCDM:

Ωm0 ¼
2

3
ð1þ q0Þ; f0ðQ0Þ ¼ −1: ð51Þ

Using (51) in (48) we get

FIG. 2. The marginalized constraints on the cosmographic parameters of M2 are shown by using the Pantheon SNe Ia sample.
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f0
6H2

0

¼ Ωm0 − 2; ð52Þ

fz0
6H2

0

¼ −
Qz0

6H2
0

; ð53Þ

f2z0
6H2

0

¼ −
Q2z0

6H2
0

; ð54Þ

and so on. Now, we can write the fðzÞ and its derivatives as

f0
4H2

0

¼ −2þ q0; ð55Þ

fz0
12H2

0

¼ −1 − q0; ð56Þ

f2z0
12H2

0

¼ −1 − 2q0 − j0; ð57Þ

FIG. 3. The marginalized constraints on the cosmographic parameters of M3 are shown by using the Pantheon SNe Ia sample.
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f3z0
12H2

0

¼ 3q0 þ q0j0 − q20 þ s0; ð58Þ

f4z0
12H2

0

¼ −j20 − 12q40 þ 19j0q20 þ 16j0q0 − 8q20

− 12q30 þ 4s0 þ l0 þ 7q0s0: ð59Þ

Now, our aim is to put constraints on the values of f0, fz0,
f2z0, f3z0, and f4z0. In order to do this, we have expressed
the luminosity distance in terms cosmographic parameters
as well as fðzÞ and its derivatives for the present time in the
Appendix.

VI. OBSERVATIONAL CONSTRAINTS

In this section, we deal with the luminosity distance dL to
constrain H0; f0; fz0; f2z0; f3z0, and f4z0, with the obser-
vational data. For this, we have presented three statistical
models with different maximum orders of parameters; this
method, commonly accepted in the literature, corresponds
to a hierarchy of parameters. Now, we are going to
constrain the following models:

M1 ≔ fH0; f0; fz0; f2z0g; ð60Þ

M2 ≔ fH0; f0; fz0; f2z0; f3z0g; ð61Þ

M3 ≔ fH0; f0; fz0; f2z0; f3z0; f4z0g: ð62Þ

The motivation of doing such a hierarchical analysis of the
cosmographic functions is that the extension of the sampled
distributions by adding more parameters is optimistically
expected. The resulting numerical effects on the measured
quantities lead to a large distribution error, due to the higher
orders of the Taylor expansion. We are concerned with
measuring these effects and resolving the cosmographic
functions limitations. The numerical study is done by the
MCMC analysis using SNe Ia data. As we know, SNe Ia is
a powerful distance indicator to study the background
evolution of the Universe. In this study, to implement the
cosmological constraints, we use the largest “Pantheon”
SNe Ia sample, which integrates SNe Ia data from the Pan-
STARRS1, SNLS, SDSS, low-z and HST surveys and

contains 1049 spectroscopically confirmed data points in
the redshift range z ∈ ½0.01; 2.3� [30].
To perform the standard Bayesian analysis, we employ a

Markov chain Monte Carlo method to obtain the posterior
distributions of cosmographic parameters. The best fits of
the parameters are maximized by using the probability
function

L ∝ expð−χ2=2Þ; ð63Þ

where χ2 is the pseudo-chi-squared function [31]. The
marginalized constraining results are displayed in Figs. 1–3
and Table I. In Table I, the best fits are shown by the
maximum likelihood function of the samples; the cited
errors represent the 68% confidence limits. From Figs. 1–3,
one can see marginalized posteriors lose Gaussianity when
we apply additional parameters to model M1. We conclude
that considering model M3 over model M2 has the benefit
of having more details on the cosmographic fðQÞ param-
eters without expanding the dispersion, model M3 is less
suitable for poststatistical treatment.

VII. DISCUSSION AND CONCLUSIONS

Cosmography provides a legitimate instrument for
investigating cosmic expansion without a cosmological
model. The constraints on the cosmographic parameters
ðq0; j0; s0; l0Þ are obtained by fitting to SNe Ia data. Also,
these data completely support the cosmological principle.
In certainty, any cosmological model should predict the
cosmographic parameter values, which align with these
values. Such a supposition makes it clear why the study of
cosmography allows us, as an interpretation of the cosmic
speed observed, to verify its viability.
In this manuscript, we dealt with the reconstruction of

the correct form of the fðQÞ function in fðQÞ gravity using
the cosmographic parameters. We used the cosmographic
parameters as a tool to derive fðzÞ and its derivatives
[called functions of cosmographic set (FCS)] in terms of
cosmographic parameters. Also, we estimated the bounds
on FCS using statistical analysis with the 1048 data points
from Pantheon SNe Ia sample, which includes Pan-
STARRS1, SNLS, SDDS, low-z, and HST surveys data
points.

TABLE I. The marginalized constraining results on three cosmographic fðQÞ models M1, M2 and M3 are shown
by using the Pantheon SNe Ia sample. We quote 1σ (68%) errors for all the parameters here.

Model M1 M2 M3

H0 79.5� 2.5 79.2� 3.1 79.5� 2.6
f0 −0.68þ0.14

−0.12 × 105 −0.66þ0.23
−0.17 × 105 −0.67þ0.14

−0.12 × 105

fz0 ð−0.22� 0.73Þ × 105 −0.04þ0.86
−0.74 × 106 −0.61þ0.46

−0.56 × 105

f2z0 ð−0.30� 0.74Þ × 106 −0.17þ0.87
−0.66 × 106 −0.87þ1.7

−1.2 × 105

f3z0 � � � ð0.1� 1.9Þ × 107 −4þ12
−11 × 105

f4z0 � � � � � � ð1� 3Þ × 106
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We did the expressions for FCS in terms of cosmographic
parameters. Then we rewrote the expression of luminosity
distance in terms of FCS. Now, one can easily constrain fðzÞ
and its derivatives using numerical analysis. In our manu-
script, we adopted the MCMC statistical analysis and found
the numerical bounds on FCSwith the largest Pantheon SNe
Ia sample, which are presented in Table I.
In this profile, we were able to constrain the FCS with the

cosmographic values. Using the Pantheon data, we
obtained a relatively high H0 value, which is basically
stable aroundH0 ¼ 79.5 km s−1 Mpc−1 in all three cosmo-
graphic models. Furthermore, we gave primary constraints
on the cosmographic parameters and found that only f0
is nonzero beyond 2σ confidence level. Indeed, this implies
that the former two terms in the Taylor expansion of
luminosity distance work dominantly.
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APPENDIX: LUMINOSITY DISTANCE IN TERMS
OF COSMOGRAPHIC PARAMETERS

In this appendix, we have written the expressions for the
luminosity distance dL in terms of cosmographic param-
eters and fðzÞ with its derivatives. The expression of dL
reads

dLðzÞ ¼
1

H0

�
zþ 1

2
ð1 − q0Þz2 −

1

6
ð1 − q0 þ j0 − 3q20Þz3 þ

1

24
ð2þ 5j0 − 2q0 þ 10j0q0 − 15q20 − 15q30 þ s0Þz4

þ
�
−

1

20
−
9j0
40

þ j20
12

−
l0
120

þ q0
20

−
11j0q0
12

þ 27q20
40

−
7j0q20
8

þ 11q30
8

þ 7q40
8

−
11s0
120

−
q0s0
8

�
z5 þOðz6Þ

�
: ðA1Þ

The above equation can be written in terms of fðzÞ and its derivatives as

dLðzÞ¼
1

H0

�
z−

4H2
0þf0
8H2

0

z2þ 1

288H4
0

ð9f20þ168f0H2
0−4fz0H2

0þ4f2z0H2
0þ720H4

0Þz3

þ 1

4608H6
0

ð−45f30þ16H4
0ð−846f0þ23fz0−23f2z0þf3z0Þ−12H2

0f0ð113f0−3fz0þ3f2z0Þ−44160H6
0Þz4

þ 1

92160H8
0

½279f40þ16H4
0ð11268f20−417f0fz0þ417f0f2z0−8f0f3z0þ3f2z0−6fz0f2z0þ3f22z0Þ

þ12f20H
2
0ð967f0−26fz0þ26f2z0Þþ64H6

0ð19350f0−549fz0þ549f2z0−23f3z0−f4z0Þþ3162624H8
0�z5

�
: ðA2Þ
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