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We compute spin-orbit effects in the equations of motion, binding energy, and energy loss of binary
systems of compact objects at the next-to-leading order in the post-Newtonian approximation in the effective
field theory (EFT) framework. We then use these quantities to compute the evolution of the orbital frequency
and accumulated orbital phase including spin-orbit effects beyond the dominant order. To obtain the results
presented in this paper, we make use of known ingredients in the EFT literature, such as the potential and the
multipole moments with spin effects at next-to-leading order, and which are given in the linearized harmonic
gauge and with the spins in the locally flat frame. We also obtain the correction to the center-of-mass frame
caused by spin-orbit effects at next-to-leading order. We demonstrate the equivalence between our EFT results
and those which were obtained elsewhere using different formalisms. The results presented in this paper
provide us with the final ingredients for the construction of theoretical templates for gravitational waves
including next-to-leading order spin-orbit effects, which will be presented in a future publication.
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I. INTRODUCTION

Gravitational wave astronomy is based on high precision
experimental and theoretical physics. The main sources of
gravitational wave signals which can be detected by the
ground-based observatories LIGO and Virgo [1–11] are
binary systems of compact objects.During the inspiral stage,
those systems can be studied analytically through perturba-
tive approaches such as the post-Newtonian (PN) approxi-
mation, which uses the ratio between the relative velocity
and the speed of light ðv2=c2Þ as the expansion parameter.
For accuracy, the calculations have to be carried out to
high orders in the expansion parameter in order to be valid
up to the late inspiral stage, which is when the theoretical
templates are matched onto the numerical ones. In fact,
interesting physics can be studied only when we go beyond
the leading order, for instance finite size effects such as spin,
which plays an important role in understanding the for-
mation and the evolution of binary systems [12–14].
The effective field theory (EFT) framework we use in

this paper, called nonrelativistic general relativity (NRGR),
originally proposed in [15] and extended to accommodate
rotating objects in [16], is an independent approach to
the investigation of the dynamics of binaries of compact
objects. The current state of the art for the EFT formalism
is 4PN order [17–20] in the conservative sector for

nonspinning bodies. The spin sector of this formalism—
the focus of this paper—has also seen extensive development
in the past 15 years. The leading order (LO) spin effects in
the conservative dynamics were derived through the NRGR
formalism in [16], while the next-to-leading order (NLO)
and next-to-next-to-leading order (N2LO) spin effects were
studied in [21–26] and [27,28], respectively. Recently, the
next-to-next-to-next-to-leading order (N3LO) gravitational
spin-orbit [29] and quadratic-in-spin [30] interactions were
also investigated. Beyond the linear and the quadratic spin
effects, the LO cubic and quartic spin interactions [31] and
the NLO cubic spin interactions [32] were also explored
via the NRGR framework. In the radiative sector of this
formalism, spin effects in the multipole moments were
obtained in [33,34], and the LO spin effects in the radiation
reaction were computed in [35,36].
Although crucial ingredients for the description of the

dynamics of binaries of compact bodies including NLO
spin effects were previously computed using the NRGR
formalism, in particular the spin-orbit potential and the spin
evolution in [21], and the multipole moments in [33],
other important quantities associated with NLO spin-orbit
effects—such as the equations of motion of the compact
bodies, the system’s binding energy, its energy loss, and the
phase evolution—have yet to be derived in the NRGR
framework. One of the purposes of this paper is to obtain
those quantities, since they play an important role in the
investigation of the physics of binary systems. For instance,
the acceleration we derive in this paper, which composes a
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2.5PN correction to the system’s equations of motion, is
used to compute the energy loss associated with the
emission of gravitational waves but also to obtain the
phase evolution of the binary system. In addition, this
acceleration is a necessary ingredient for the construction
of theoretical templates of gravitational waves accounting
for NLO spin-orbit effects, which shall be presented in a
future publication. Another spin-orbit effect that enters at
2.5PN order is the correction to the center-of-mass frame.
Although it does not affect the NLO spin-orbit acceleration
obtained here, we derive this 2.5PN spin-orbit correction to
the center of mass for completeness, with the intent to
provide the final pieces related to NLO spin-orbit effects in
order to allow the EFT calculations to continue without
impediment at higher orders. Furthermore, we provide a
discussion between the results obtained in this paper and
the ones in the literature [37,38], where different gauge
and spin definitions are used while a more traditional PN
approach to general relativity is followed, and we show
that, through a redefinition of the spin variables, equiv-
alence can be proven even before gauge invariant quantities
are computed. This present paper, therefore, also serves as a
demonstration of the equivalence between the NRGR
methodology and more traditional approaches to general
relativity up to NLO regarding spin-orbit effects, in both the
conservative and the dissipative sectors.
We organize this paper as follows. In Sec. II, we provide a

brief summary of the NRGR formalism (we recommend
[39–43] for a comprehensive review). We derive the NLO
spin-orbit acceleration in Sec. III by computing the Euler-
Lagrange equations of the potential obtained in [21] but also
by extracting contributions coming from order reducing
terms in lower-order accelerations and from spin precession
and constraints. In Sec. IV, we take the Legendre transform
of the potential derived in [21] to obtain the NLO spin-orbit
effects in the binding energy of the binary system, and we
make use of the acceleration computed in Sec. III as well as
the multipole moments obtained in [33] to calculate the
energy loss due to the emission of gravitational radiation.
Then, in Sec.Vweuse the results obtained in Secs. III and IV
to calculate the evolution of the orbital frequency of the
binary system and its phase evolution accounting for NLO
spin-orbit effects for quasicircular orbits within the adiabatic
approximation. In Sec. VI we compute the NLO spin-orbit
effects in the 00 component of the binary’s pseudotensor,
which we use to extract the NLO spin-orbit correction to the
center-of-mass frame by Taylor expanding its expression
up to the first order in the radiation field momentum. In
Sec. VII, we discuss the specific spin transformations which
map the main results of this paper to those in the literature
obtained from traditional PN approaches. In Sec. VIII,
we provide the reader with our final remarks on the
contributions of this paper. We compile the known ingre-
dients used to derive the results of this paper in theAppendix
for convenience.

A number of conventions and definitions are utilized
throughout this paper. The masses m1 and m2 of the binary
components are used to define the following quantities:
m≡m1 þm2, ν≡m1m2=m2, and μ≡mν. The relative
position is defined as r≡ x1 − x2 and its unit vector given
by n≡ r=r; thus v≡ v1 − v2 and a≡ a1 − a2 are the
relative velocity and acceleration, respectively. If those
relative quantities appear inside a sum over the compact
objects indices A;B ¼ 1, 2, they should be considered
as depending on those indices instead, e.g., r ¼ xA − xB.
We use the Newtonian orbital angular momentum vector
defined by L≡mνr × v. We use the spins S1 and S2 of the
bodies to define

S≡ S1 þ S2; ð1:1Þ

Σ≡m
�
S2

m2

−
S1

m1

�
; ð1:2Þ

which are two useful quantities to write results in a more
elegant way. We adopt the mostly minus signature
ð1;−1;−1;−1Þ for the Minkowskian metric ηαβ. We use
c ¼ 1 units, and the Planck mass is defined as mPl ≡
1=

ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
.

II. NRGR SETUP

A. Conservative sector

The EFT approach is well suited to investigate the
inspiral stage of the binary system, when there is a clear
hierarchy between the length scales of the system: the size
of the compact objects rs, the orbital separation r, and the
radiation wavelength. The modes of the perturbation hμν of
the gravitational field, gμν ¼ ημν þ hμν, can be split into two
different components: hμν ¼ Hμν þ h̄μν, where Hμν are off-
shell potential modes of the field which mediate gravita-
tional attraction and h̄μν represent the on-shell propagating
radiation modes generated by the motion of the compact
bodies in the binary [15]. Then, we start with the full theory
action

S ¼ SEH þ Sgf þ Spp þ Ssg þ � � � ; ð2:1Þ
where

SEH ¼ −2mPl

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνRμν; ð2:2Þ

Sgf ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
Γ̄μΓ̄μ; ð2:3Þ

Spp ¼ −
X
A

mA

Z
dτA; ð2:4Þ

Ssg ¼ −
1

2

X
A

Z
dtvμAωμabSabA : ð2:5Þ
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The Einstein-Hilbert action (2.2) represents the purely
gravitational interaction terms. We utilize the linearized
harmonic gauge fixing action (2.3), which is given in terms
of the background field metric ḡμν ≡ ημν þ h̄μν, in order to
maintain the diffeomorphism invariance even after the
potential modes of the gravitational fields are integrated
out. Thus, we have Γ̄μ ≡ ∇̄αHα

μ − 1
2
∇̄μHα

α, with ∇̄μ repre-
senting the covariant derivative associated with the back-
groundmetric ḡμν. The point particle approximation is used to
describe the two constituents of the binary system, hence
(2.4); the indexA ¼ 1, 2 is a label for the two compact bodies.
The final term (2.5) represents the spin-gravity coupling.

Choosing the coordinate time t as the worldline parameter,
the spin action is composed of the four-velocity of the
compact bodies vμA, the spin connection ωμab ≡ eνb∇μeνa,

1

and the antisymmetric spin tensor SabA ≡ SμνA eaμebν given in
the locally flat frame. The vierbien eaμ is defined such that
eaμebνηab ¼ gμν and ∇μ is the covariant derivative associated
with the metric gμν. The locally flat frame retains a residual
Lorentz invariance and is equivalent to adding an additional
element of the SO(3,1) group to the worldline to implement
rotations [16]. Finally, the ellipsis in (2.1) represents other
interactions that we are not accounting for in this present
paper, including finite size terms which are quadratic or
higher in the spins.
The Feynman rules for this EFT theory are obtained after

imposing the low velocity limit and the weak field approxi-
mation in the full action (2.1). The derivatives of the off-shell
potential modes scale as ∂0Hμν ∼ ðvrÞHμν and ∂iHμν ∼
ð1rÞHμν while derivatives of the on-shell radiation modes
scale as ∂αh̄μν ∼ ðvrÞh̄μν. For maximally rotating objects, we
power count the spin as S ∼ Lv, where L is the angular
momentum. Therefore, we can determine how each term in
the full action scales with respect to the expansion parameter
v2. This power counting allows us to systematically compute
spin or other effects at any desired order in the PN expansion.
After imposing the weak-field approximation using

eaμ ¼ δaμ þ
1

2
δaν

�
hνμ −

1

4
hνρhρμ

�
þ � � � ; ð2:6Þ

the spin-gravity Lagrangian becomes an infinite series
of terms with a single spin tensor contracted with the
gravitational field at different orders in its perturbation:

Lsg ¼
X
A¼1;2

�
1

2mPl
δαaδ

β
bhαγ;βv

γ
AS

ab
A

þ 1

4m2
Pl

δβaδ
γ
bh

λ
γ

�
1

2
hβλ;μ þ hμλ;β − hμβ;λ

�
vμAS

ab
A þ � � �

�
:

ð2:7Þ

From this Lagrangian, we can extract all the relevant
couplings that are needed at the PN order that we consider
in this paper. Moreover, when we split the weak field into
the two different modes, we can obtain the potential—from
which the spin-orbit equations of motion can be derived—
by integrating out the potential modes of the gravitational
field. Both the potential from [21] and the couplings
needed to compute NLO spin-orbit effects, which are
2.5PN corrections in the equations of motion, the binding
energy, and the center-of-mass position, are presented in
the Appendix.
Using a rank-2 antisymmetric tensor to describe spin in a

four-dimensional spacetime comes with a cost: there are a
total of 6 independent degrees of freedom to play the role
of the three necessary angles to describe the rotation of a
body. For the purpose of eliminating the three unphysical
components of the spin tensor, we impose constraints
known as spin supplementary conditions (SSC). In this
paper, we use the covariant SSC, which is given by the
contraction of the spin tensor with the linear momentum

paSab ¼ 0: ð2:8Þ

Even though the bodies label has been suppressed in the
equation above, notice that this constraint must be imposed
for each of the compact bodies.

B. Radiative sector

The long-wavelength effective theory can be constructed
by integrating out the potential modes of the gravitational
field. The binary system is then described as a single
pointlike object endowed with a series of multipole
moments [42,44]:

Sradeff ½h̄;xa� ¼
Z

dt
ffiffiffiffiffiffi
ḡ00

p �
−MðtÞ þ

X∞
l¼2

�
1

l!
IL∇L−2Eil−1il

−
2l

ð2lþ 1Þ! J
L∇L−2Bil−1il

��
: ð2:9Þ

The center of mass of the binary system is placed at the
origin and at rest with respect to distant observers, such that
dt

ffiffiffiffiffiffi
ḡ00

p ¼ dτ, while MðtÞ is the Bondi mass of the binary
system. In the action above, the electric and the magnetic
components of the Weyl tensor are coupled to the mass
and current multipole moments, respectively. Notice that a
multi-index representation L ¼ i1 � � � il is used. The general
expressions of the multipole moments IL and JL in terms of
the components of the pseudotensor of the binary system,
which can be found in [45], are determined by matching the
effective action (2.9) in the long wavelength limit onto the
full action valid below the orbital scale (2.1). On the other
hand, the pseudotensor Tμν, which satisfies the conserva-
tion law ∂μTμν ¼ 0, can be read off from

1This definition differs by a minus sign from the standard
convention.
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Γ½h̄� ¼ −
1

2mPl

Z
d4xTμνh̄μν; ð2:10Þ

when we integrate out the potential modes in the full action
(2.1) for all terms containing a single radiation field.
The knowledge of the components of the pseudotensor

and, consequently, of the multipole moments of the binary
system, is required in order to determine the energy which
is lost in the emission of gravitational waves [45]:

dE
dt

¼ −
G
5

�
Ið3Þij I

ð3Þ
ij þ 16

9
Jð3Þij J

ð3Þ
ij þ 5

189
Ið4ÞijkI

ð4Þ
ijk

þ 5

84
Jð4ÞijkJ

ð4Þ
ijk þ � � �

�
: ð2:11Þ

All the necessary multipole moments for the computation of
the NLO spin-orbit effects in the energy loss, which we
compute inSec. IV Bof this paper,were computed in [33] and
are presented in the center-of-mass frame in the Appendix.

III. EQUATIONS OF MOTION

In the PN approximation, the acceleration of the con-
stituents of the binary systems is given as a series of
relativistic corrections to the dominant Newtonian gravi-
tational acceleration. If we disregard, for the purposes of
this paper, the radiation reaction and effects of quadratic
(or higher) order in the spins, the acceleration can be
presented as2

a ¼ að0PNÞ þ að1PNÞ þ að1.5PNÞSO þ að2PNÞ þ að2.5PNÞSO þ � � � :
ð3:1Þ

The expressions for the nonspin accelerations in the right-
hand side of the equation above are given in the Appendix.
The LO spin-orbit acceleration—a 1.5PN correction to the
equation of motion—can be derived from the potential
VSO
1.5PN given in (A4). Computing the Euler-Lagrange

equations using that potential gives

ðai1ÞV
ð1.5PNÞ
SO ¼ G

r3

�
m2

m1

½ð3n_r − 2v1 þ 3v2Þ × S1�i þ ½ð6n_r − 4v1 þ 3v2Þ × S2�i

−
�
r ×

�
m2

m1

_S1 þ 2 _S2

��
i
þ
�
Si02 −

m2

m1

Si01 þ 3ninj

�
m2

m1

Sj01 − Sj02

��
cov

þ 3nin ·

�
m2

m1

v1 × S1 − 2
m2

m1

v2 × S1 þ 2v1 × S2 − v2 × S2

��
: ð3:2Þ

Notice that the expression above is given in a general
form: it includes time derivatives of the spin vectors, which
actually contribute only at orders higher than 1.5PN since
_S ∼ v3

r S; it also shows the explicit dependence on the Sj01;2
variables, which will be removed by enforcing the covar-
iant SSC (2.8). Although we kept Sj01;2 variables to indicate
that those terms will also contribute to orders higher than
1.5PN due to PN corrections in the covariant SSC, the
result in (3.2) is only valid in the covariant SSC and is not
general to other choices of constraints.3 Up to 1PN order,
the spin tensors can be written in terms of the spin vectors
in the covariant SSC as

S0iA ¼ SA × vA þ 2GmB

r
SA × v þOðS2Þ ð3:3Þ

and

SijA ¼ ϵijkSk
A: ð3:4Þ

Therefore, after imposing the covariant SSC in (3.2) and
keeping only terms which enter at the lowest PN order, we
can write the well-defined expression for the LO spin-orbit
acceleration [16]:

ðai1Þð1.5PNÞSO ¼G
r3

�
3
m2

m1

½ðS1×vÞi− _rðS1×nÞi−2S1 ·ðv×nÞni�

þ4ðS2×vÞi−6_rðS2×nÞi−6S2 ·ðv×nÞni

�
:

ð3:5Þ

The purpose of this section is to advance to the next step,
namely, to obtain the equations of motion linear in the spins
for the binary system at 1PN beyond Eq. (3.5), which is a
2.5PN correction to the Newtonian acceleration. The result
for the NLO spin-orbit acceleration can be presented as the
sum of two distinct contributions:

ðai1Þð2.5PNÞSO ¼ ðai1ÞV
ð2.5PNÞ
SO þ ðai1ÞðRedÞ: ð3:6Þ

The first term in the right-hand side of the equation above
comes from computing the Euler-Lagrange equations of the

3If we were working with the Newton-Wigner SSC, for
instance, we would have to impose the constraint at the level
of the potential before computing the Euler-Lagrange equations.
See the discussion presented in Appendix E of [16] for more
details.

2The first quadratic spin effects enter at 2PN order, while the
radiation reaction enters at 2.5PN order.
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NLO spin-orbit potential (A5), which was obtained in [21]. The result for this contribution can be conveniently arranged as

ðai1ÞV
ð2.5PNÞ
SO ¼ 1

m1

X3
n¼0

�
ð−1Þnþ1

�
d
dt

�
n ∂
∂xiðnÞ

1

Vð2.5PNÞ
SO

�
¼ ðAi

1ÞcovSi0
þ ðAi

1ÞSij ; ð3:7Þ

where

ðAi
1ÞcovSi0

≡ G
r3

�
m2

m1

Sj01

�
δij

�
Gm1

r
þ 2

Gm2

r
þ 2v · v2 þ

1

2
a2 · rþ

3

2
ðv2 · nÞ2

�
þ vi2ð3v2 · nnj − vjÞ þ 1

2
ai2r

j

þ ni

�
−
3

2
raj2 þ 3v2 · nvj − nj

�
4
Gm1

r
þ 8

Gm2

r
þ 6v · v2 þ

3

2
a2 · rþ

15

2
ðv2 · nÞ2

���

þ Sj02

�
δij

�
−2

Gm1

r
−
Gm2

r
þ 2v · v1 þ

1

2
a1 · r −

3

2
ðv1 · nÞ2

�
− vi1ð3v1 · nnj þ vjÞ þ 1

2
ai1r

j

þ ni

�
−
3

2
raj1 þ 3v1 · nvj þ nj

�
8
Gm1

r
þ 4

Gm2

r
− 6v · v1 −

3

2
a1 · rþ

15

2
ðv1 · nÞ2

����

−
d
dt

�
G
r2

�
m2

m1

Sj01 ð2vi2nj − δijv2 · nÞ þ Sj02 ½2njð2vi1 − vi2Þ − δijv1 · n − niðvj þ 3v1 · nnjÞ�
��

þ d2

dt2

�
1

2

G
r
Sj02 ð3δij þ ninjÞ

�
ð3:8Þ

and

ðAi
1ÞSij ≡ G

r3

�
m2

m1

Sij1

�
−2v2 · ra

j
2 − r2 _aj2 þ vj1

�
−
Gm1

r
þ 1

2

Gm2

r
þ 1

2
a2 · rþ

3

2
ðv2 · nÞ2

�

þ vj2

�
−
5

2

Gm2

r
− 2v · v2 − a2 · r − 3ðv2 · nÞ2

��
þ Sij2

�
−2v1 · ra

j
1 þ r2 _aj1

þ vj1

�
5

2

Gm1

r
− 2v · v1 − a1 · rþ 3ðv1 · nÞ2

�
þ vj2

�
−
1

2

Gm1

r
þGm2

r
þ 1

2
a1 · r −

3

2
ðv1 · nÞ2

��

þ ni

�
m2

m1

Skj1

��
−4

Gm1

r
þ 2

Gm2

r
þ 3

2
a2 · rþ

15

2
ðv2 · nÞ2

�
vk1n

j − 3v2 · nðvk1vj2 þ 2ak2r
jÞ

−
�
10

Gm2

r
þ 6v · v2 þ 3a2 · rþ 15ðv2 · nÞ2

�
vk2n

j þ 1

2
rak2v

j
1 þ rak2v

j
2 þ rrk _aj2

�

þ Skj2

��
10

Gm1

r
− 6v · v1 − 3a1 · rþ 15ðv1 · nÞ2

�
vk1n

j − 3v1 · nðvk1vj2 þ 2ak1r
jÞ

þ
�
−2

Gm1

r
þ 4

Gm2

r
þ 3

2
a1 · r −

15

2
ðv1 · nÞ2

�
vk2n

j þ rak1v
j
1 þ

1

2
rak1v

j
2 − rrk _aj1

��

þ vi1S
kj
2 ½vk1vj2 þ 2ak1r

j þ 3v1 · nðvk2 − 2vk1Þnj� þ ai1S
kj
2

�
vk1r

j −
1

2
vk2r

j

�

þ vi2
m2

m1

Skj1 ½vk1vj2 þ 2ak2r
j þ 3v2 · nð2vk2 − vk1Þnj� þ ai2

m2

m1

Skj1

�
−
1

2
vk1r

j þ vk2r
j

��

−
d
dt

�
G
r2

�
m2

m1

Sij1

�
1

2
raj2 þ v2 · nv

j
2 þ nj

�
Gm1

r
−
1

2

Gm2

r
−
1

2
a2 · r −

3

2
ðv2 · nÞ2

��

þ Sij2

�
raj1 þ v1 · nv

j
2 þ nj

�
−
5

2

Gm1

r
þ 2v · v1 þ a1 · r − 3ðv1 · nÞ2

��
þ 4vi1S

kj
2 v

k
1n

j

þ 2vi2

�
m2

m1

Skj1 v
k
2n

j − Skj2 v
k
1n

j

�
þ niSkj2 ½vk1vj2 þ 2ak1r

j þ 3v1 · nnjðvk2 − 2vk1Þ�
��

þ d2

dt2

�
G
r

�
Sij2

�
2v1 · nnj − vj1 −

1

2
vj2

�
þ ninjSkj2

�
vk1 −

1

2
vk2

���
þ d3

dt3
fGSij2 njg: ð3:9Þ
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The second term in the right-hand side of (3.6) accounts for 2.5PN order terms coming from order reduction of lower PN
order accelerations, which can be concisely presented as

ðai1ÞðRedÞ ¼
�
1

2

Gm2

r
a2 · nni − a1 · v1vi1 − ai1

�
3
Gm2

r
þ 1

2
v21

�
þ 7

2

Gm2

r
ai2

�
að1.5PNÞSO

þ
�
G
r3

�
−
m2

m1

Si01 þ 3
m2

m1

Sj01 n
jni þ Si02 − 3Sj02 n

jni

��
covð1PNÞ

þ
�
−
G
r3

�
m2

m1

_Sij1 r
j þ 2_Sij2 r

j

��
_SLO

: ð3:10Þ

The expression above includes three contributions from lower-order accelerations: reduced contributions from substituting
the LO spin-orbit acceleration (3.5) in the acceleration terms present in the 1PN correction to the equations of motion (A2);
frame corrections from imposing the covariant SSC (3.3) in (3.2), and also, in that same equation, terms from reducing spin
derivatives. At 2.5PN order, we only need the LO spin derivative term given by [16]

dS1

dt
¼ Gm2

r3
½2ðr × vÞ × S1 þ ðS1 × rÞ × v1�: ð3:11Þ

After imposing the covariant SSC and order reducing the accelerations in order to obtain a fixed order result at 2.5PN,
Eq. (3.6) becomes

ðai1Þð2.5PNÞSO ¼ G
r3

�
−

ni

mνr

�
m2

m1

S1 ·L

�
G
r
ð26m1 þ 22m2Þ þ 12v · v2 þ 3v22 þ 3v2 þ 15ðv2 · nÞ2

�

þ S2 ·L

�
G
r

�
61

2
m1 þ 20m2

�
þ 6v · v2 þ 3v22 þ 15ðv2 · nÞ2

��

þ vi1

�
−
3m2

m1

�
1

mνr
S1 ·Lð2v2 · nþ _rÞ þ _rS1 · ðv2 × nÞ þ S1 · ðv × v2Þ

�

− 2

�
3

mνr
S2 ·Lðv2 · nþ _rÞ þ 3_rS2 · ðv2 × nÞ þ 2S2 · ðv × v2Þ

��

þ vi2

�
6

mνr

�
m2

m1

S1 þ S2

�
·Lðv2 · nþ _rÞ

�
−

2

mνr
Li

�
G
r

�
m2

2

m1

S1 · nþ 2m1S2 · n

��

þm2

m1

ðS1 × nÞi
�
_r
G
r
ð14m1 þ 10m2Þ þ

3

2
_rðv21 þ 5ðv2 · nÞ2Þ − 3v · v2v2 · n

�

þ ðS2 × nÞi
�
_r
G
r

�
47

2
m1 þ 16m2

�
− 2v2 · n

�
Gm1

r
þ 3v · v2

�
þ 3_rð2v · v2 þ v22 þ 5ðv2 · nÞ2Þ

�

−
m2

m1

ðS1 × vÞi
�
G
r
ð14m1 þ 10m2Þ þ 6v · v2 þ

3

2
v22 þ

3

2
v2 þ 9

2
ðv2 · nÞ2 − 3_rv2 · n

�

− ðS2 × vÞi
�
G
r

�
31

2
m1 þ 12m2

�
þ 4v · v2 þ 2v22 þ 6ðv2 · nÞ2

��
: ð3:12Þ

Note that the spin vector used in this expression is defined in the locally flat frame; see Sec. VII for a discussion of
alternative spin definitions.
We also present the NLO spin-orbit acceleration in the center-of-mass frame. In the latter, the expressions for x1 and x2 in

terms of the relative coordinate r are given by

x1 ¼
m2

m
rþ δr; ð3:13Þ

x2 ¼ −
m1

m
rþ δr; ð3:14Þ
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where, considering only corrections up to 1.5PN order,

δr ¼ ν
δm
2m

�
v2 −

Gm
r

�
rþ ν

m
v × Σ: ð3:15Þ

When these PN corrections to the center-of-mass frame are
considered in the 1PN acceleration (A2), they yield con-
tributions to the equations of motion at the 2.5PN order.

In principle, one must consider 1PN center-of-mass cor-
rections in the LO spin-orbit acceleration (3.5) as well, but
these vanish because this acceleration only depends on
relative coordinates and velocities; this is also the reason
why we do not need to consider the 2.5PN spin-orbit
correction to the center of mass in the Newtonian accel-
eration (A1). Therefore, the final expression for the NLO
spin-orbit acceleration in the center-of-mass frame comes
solely from considering (3.13) and (3.14) in (3.12) and
(A2); the result is

ðaiÞð2.5PNÞSO ¼ G
mνr4

�
ni

�
S ·L

�
−
Gm
r

ð42þ 29νÞ þ 3ð−1þ 10νÞv2 − 30ν_r2
�

−
δm
m

Σ ·L

�
Gm
r

�
22þ 33

2
ν

�
þ 3ð1 − 5νÞv2 þ 15ν_r2

��

þ 3_rvi
�
3S ·Lð−1þ νÞ þ δm

m
Σ ·Lð−1þ 2νÞ

�

− 2
Gm
r

Li

�
S · nð1þ 2νÞ þ δm

m
Σ · nð1þ νÞ

��

þ G
r3

�
ðS × nÞi _r

�
Gm
r

ð26þ 25νÞ þ 3

2
ð1 − 15νÞv2 þ 45

2
ν_r2

�

þ δm
m

ðΣ × nÞi _r
�
Gm
r

�
10þ 27

2
ν

�
þ
�
3

2
− 12ν

�
v2 þ 15ν_r2

�

þ ðS × vÞi
�
−
Gm
r

ð22þ 15νÞ þ 3

2
ð−1þ 11νÞv2 − 33

2
ν_r2

�

−
δm
m

ðΣ × vÞi
�
Gm
r

�
10þ 15

2
ν

�
þ
�
3

2
− 8ν

�
v2 þ 9ν_r2

��
: ð3:16Þ

This expression is valid for general orbits and for
arbitrary spin orientations within the region of validity
of the NRGR formalism. In the next section, we compute
the binding energy and the energy loss. For the latter,
we need the result (3.16) as well as (A1), (A2), and (3.5)
to order reduce the time derivatives of the multipole
moments.

IV. BINDING ENERGY AND ENERGY LOSS

A. Binding energy

The LO spin-orbit energy—a 1.5PN correction to the
Newtonian binding energy—can be obtained from the
potential (A4); it is given by

Eð1.5PNÞ
SO ¼ G

r3
riðm2Si01 −m1Si02 Þcov

¼ Gm2

r2
S1 · ðn × v1Þ þ 1 ↔ 2; ð4:1Þ

where we have imposed the covariant SSC in the second
expression. In this section, we obtain the 1PN correction to
the LO spin-orbit binding energy:

Eð2.5PNÞ
SO ¼

X2
A¼1

X2
n¼0

p
xðnÞA

· xðnþ1Þ
A þ Vð2.5PNÞ

SO þ EðRedÞ; ð4:2Þ

pqðnÞ ¼ −
X2
A¼1

X3
k¼nþ1

�
−

d
dt

�
k−n−1 ∂Vð2.5PNÞ

SO

∂xðkÞ
A

; ð4:3Þ

where the notation xðkÞ
A is a compact way to express dkxA

dtk
.

For the spin-orbit energy at the 2.5PN order, we have two
contributions: one from the NLO spin-orbit potential (A5),
and another from frame corrections when applying the
covariant SSC to the LO spin-orbit energy (4.1), which we
represent by EðRedÞ in (4.2). The sum of the two contribu-
tions gives
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Eð2.5PNÞ
SO ¼ Gm2

r2

�
ðv1 · nþ 2v2 · nÞS1 · ðv1 × v2Þ

þ
�
v22 − v1 · v2 −

3

2
ðv2 · nÞ2 − 3v1 · nv2 · nþ 2

Gm1

r

�
S1 · ðv1 × nÞ

þ
�
−2v22 þ 3v1 · v2 − v21 þ 3ðv1 · nÞ2 þ 3v1 · nv2 · nþ 3

Gm2

r

�
S1 · ðv2 × nÞ

�
þ 1 ↔ 2: ð4:4Þ

Transforming to the center-of-mass frame as in Sec. III, we have

Eð2.5PNÞ
SO ¼ Gm

r

��
2ν

Gm
r

− 2v2 −
3

2
ν_r2

�
L · S
mr2

þ δm
m

�
3

2
ν
Gm
r

−
3

2
νv2

�
L · Σ
mr2

�
: ð4:5Þ

Next we calculate the time-averaged energy loss, which
completes the pieces necessary to compute the orbital phase
evolution in Sec. V.

B. Energy loss

The binary system’s energy loss due to the emission of
gravitational waves can be computed directly from the one-
graviton emission amplitude in the effective theory (for a

detailed discussion, see [44,45]), and its general form is
given at (2.11). All the necessary multipole moments to
compute the NLO spin-orbit effects in the energy loss are
presented in (A6)–(A18). Using the equations of motion
(3.1) to order reduce the acceleration terms generated by
the time derivatives applied to the multipole moments,
we obtain a final expression for the NLO spin-orbit
energy loss:

dE
dt

				
ð2.5PNÞ

SO
¼ −

2G3m3ν

105r4

�
L · S
mr2

�
ð3776þ 1560νÞG

2m2

r2
þ ð−12892þ 2024νÞGm

r
_r2 þ ð15164 − 560νÞGm

r
v2

þ ð−8976þ 12576νÞ_r4 þ ð13362 − 18252νÞ_r2v2 þ ð−4226þ 5952νÞv4
�

þ δm
m

L · Σ
mr2

�
ð−548þ 952νÞG

2m2

r2
þ ð−14654þ 4796νÞGm

r
_r2 þ ð10718 − 1708νÞGm

r
v2

þ ð−7941þ 10704νÞ_r4 þ ð8742 − 13434νÞ_r2v2 þ ð−2001þ 3474νÞv4
��

: ð4:6Þ

Along with the expressions for the acceleration (3.16) and
conserved energy (4.5), the above result is the final piece
needed to compute the orbital phase evolution of the binary
system, in the quasicircular orbit approximation, account-
ing for NLO spin-orbit effects in the NRGR framework.

V. PHASE EVOLUTION

Until this point, our results are valid for general orbits
and arbitrary spin configurations. However, as is well
known, the emission of gravitational waves tends to
efficiently circularize orbits well before entering the
observable frequency band of gravitational wave detectors
[46]. Although alternative methods such as the dynamical
renormalization group approach [47,48] may be used for
more general systems, we will restrict our analysis to

circular orbits here. We can then apply an adiabatic
approximation in which orbits are approximately circular
on an orbital timescale and orbit decay occurs on a
radiation-reaction timescale. In this approximation, the
expressions above can be expressed as coordinate-inde-
pendent quantities as functions of a single orbital frequency
ω, the orbital angular momentum L, and the spin vectors,
and are gauge invariant under coordinate transformations.
In our subsequent analysis, we neglect spin-spin [16], tail
[17,44], and radiation-reaction [49,50] terms in the orbital
frequency, since in this paper we are only investigating
spin-orbit effects; those other effects do not mix with our
results and thus can be included independently later on.
For nonspinning objects, the procedure of computing the

phase evolution of the binary system is unambiguous
because the orientation of the orbital plane is constant in
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time; for spinning objects, the choice of spin vector is
crucial because the spin vector may evolve by radiation
reaction for an inappropriate choice. For spinning systems,
we choose a spin vector with a conserved norm; this allows
us to work with orbit averaged spin vectors and to use
energy balance arguments to compute the orbital phase
[51,52]. We transform from the locally flat spin vectors to
conserved norm spin vectors using the relation

SA →

�
1þ 1

2
v2A

�
Sc
A −

1

2
vAðSc

A · vAÞ þ � � � : ð5:1Þ

See [21] and Sec. VII for details regarding the significance
of this redefinition.
For (quasi)circular orbits, we use the relations

rω2 ¼ −hn · ai; ð5:2Þ

jvj ¼ rω; ð5:3Þ

_r ¼ 0; ð5:4Þ

and perform the spin transformation to conserved norm
spin vectors, which gives us, for instance,

Ec
SO ¼ G

r3

��
1þ 2ν

Gm
r

−
3

2
ð1þ νÞv2

�
L · Sc þ δm

m

�
1þ 3

2
ν
Gm
r

þ 1

2
ð1 − 5νÞv2

�
L · Σc

�
ð5:5Þ

and

dEc

dt

				
SO

¼ν
G3m2

105r6

�
L ·Sc

�
448

Gm
r

þ4480v2−ð7552þ3120νÞG
2m2

r2
−ð30440þ1792νÞGm

r
v2þð9656−14480νÞv4

�

þδm
m

L ·Σc

�
−224

Gm
r

þ2408v2þð1906−1904νÞG
2m2

r2
−ð21548−3976νÞGm

r
v2þð5206−8320νÞv4

��
: ð5:6Þ

To write these in terms of the orbital frequency ω, we use Eq. (5.2) and solve order by order in the PN expansion for ω; note
that the expression for the acceleration (3.16) must also be rewritten with the conserved norm spin vectors. Then, we find
that the orbital frequency is given by

ω2 ¼ Gm
r3

�
1þ Gm

r
ð−3þ νÞ −

�
Gm
r

�
9=2

�
5

Scl
Gm2

þ 3
δm
m

Σc
l

Gm2

�

þ
�
Gm
r

�
2
�
41

4
νþ ν2

�
þ
�
Gm
r

�
11=2

��
27

2
−
13

2
ν

�
δm
m

Σc
l

Gm2
þ
�
45

2
−
27

2
ν

�
Scl
Gm2

��
þ � � � ; ð5:7Þ

where Scl ≡ l̂ · Sc, Σc
l ≡ l̂ · Σc, and l̂ ¼ L=jLj. We can write Eqs. (5.5) and (5.6) in terms of the orbital separation r

to give

EcðrÞ ¼ −
1

2

Gm2ν

r

�
1þ Gm

r

�
−
7

4
þ 1

4
ν

�
þ
�
Gm
r

�
3=2

�
δm
m

Σc
l

Gm2
þ 3

Scl
Gm2

�

þ
�
Gm
r

�
2
�
−
23

8
þ 49

8
νþ 1

8
ν2
�
þ
�
Gm
r

�
5=2

�
ð2 − 3νÞ δm

m
Σc
l

Gm2
þ ð6 − 6νÞ Scl

Gm2

��
ð5:8Þ

and

dEcðrÞ
dt

¼ −
32G4m5ν2

5r5

�
1þ Gm

r

�
−
2927

336
−
5

4
ν

�
þ
�
Gm
r

�
3=2

�
−
25

4

δm
m

Σc
l

Gm2
−
37

3

Scl
Gm2

�

þ
�
Gm
r

�
2
�
202663

9072
þ 380

9
ν

�
þ
�
Gm
r

�
5=2

��
6953

112
þ 91

8
ν

�
δm
m

Σc
l

Gm2
þ
�
18947

168
þ 68

3
ν

�
Scl
Gm2

��
: ð5:9Þ

These two expressions depend on the coordinate separation r and are therefore gauge dependent. Inverting our expression
for ω2, we find

NEXT-TO-LEADING ORDER SPIN-ORBIT EFFECTS IN THE … PHYS. REV. D 102, 124020 (2020)

124020-9



Gm
r

¼ xþ x2
�
1 −

1

3
ν

�
þ x5=2

Gm2

�
δm
m

Σc
l þ

5

3
Scl

�
þ x3

�
3 −

65

12
ν

�
þ x7=2

Gm2

�
2
δm
m

Σc
l þ

�
10

3
þ 8

9
ν

�
Scl

�
; ð5:10Þ

where the PN parameter x≡ ðGmωÞ2=3 is formally of order v2. We can now write the energy and energy loss as gauge
independent expressions. They are

EcðxÞ ¼ −
1

2
mνx

�
1þ x

�
−
3

4
−

1

12
ν

�
þ x3=2

Gm2

�
2
δm
m

Σc
l þ

14

3
Scl

�

þ x2
�
−
27

8
þ 19

8
ν −

1

24
ν2
�
þ x5=2

Gm2

��
3 −

10

3
ν

�
δm
m

Σc
l þ

�
11 −

61

9
ν

�
Scl

��
ð5:11Þ

and

dEcðxÞ
dt

¼ −
32x5ν2

5G

�
1þ x

�
−
1247

336
−
35

12
ν

�
þ x3=2

Gm2

�
−
5

4

δm
m

Σc
l − 4Scl

�

þ x2
�
−
44711

9072
þ 9271

504
νþ 65

18
ν2
�
þ x5=2

Gm2

��
−
13

16
þ 43

4
ν

�
δm
m

Σc
l þ

�
−
9

2
þ 272

9
ν

�
Scl

��
: ð5:12Þ

The coefficients in these expressions are still dependent on the particular definition of the spins; with our choice of
conserved norm spin vectors, Eqs. (5.11) and (5.12) yield perfect agreement with the corresponding expressions in [38].
We now proceed to find an expression for the phase evolution of the binary system using energy balance arguments. We first
obtain a dimensionless adiabatic parameter (also called the orbital frequency evolution [53]) representing the orbital decay,
given by

_ω

ω2
¼ 96

5
νx5=2

�
1þ x

�
−
743

336
−
11

4
ν

�
þ x3=2

Gm2

�
−
25

4

δm
m

Σc
l −

47

3
Scl

�

þ x2
�
34103

18144
þ 13661

2016
νþ 59

18
ν2
�
þ x5=2

Gm2

��
−
809

84
þ 281

8
ν

�
δm
m

Σc
l þ

�
−
5861

144
þ 1001

12
ν

�
Scl

��
: ð5:13Þ

The orbital phase can then be computed in this adiabatic approximation, where the gravitational wave phase contains two
contributions. The first comes from the evolution of the carrier phase, while the second arises due to the precession of
the orbital plane due to spin effects. This can schematically be written as ΦGW ¼ ϕGW þ δϕ using the notation of [38].
The carrier phase given by ϕGW ¼ 2ϕ can be computed using

ϕ ¼
Z

dtω ¼
Z

dω
ω

_ω
: ð5:14Þ

In general, the carrier phase may be computed numerically for arbitrary spin alignments. However, for spins aligned or
antialigned with the binary orbital angular momentum, this can be computed analytically using Eq. (5.13) to yield

ϕ ¼ ϕ0 −
32

ν

�
x−5=2 þ x−3=2

�
3715

1008
þ 55

12
ν

�
þ x−1

Gm2

�
125

8

δm
m

Σc
l þ

235

6
Scl

�

þ x−1=2
�
15293365

1016064
þ 27145

1008
νþ 3085

144
ν2
�
−
log x
Gm2

��
41745

448
−
15

8
ν

�
δm
m

Σc
l þ

�
554345

2016
þ 55

8
ν

�
Scl

��
; ð5:15Þ

for which we find perfect agreement with [38].

VI. CENTER-OF-MASS CORRECTION

We now proceed to compute the center-of-mass correction at 2.5PN order due to NLO spin-orbit effects. But before
proceeding to the details of its computation, notice that this correction should have, in principle, entered in the calculation
of the quantities derived in the previous sections, namely the NLO spin-orbit acceleration (3.16), the binding energy (4.5),
and the energy loss (4.6). The reason why this correction does not affect the result for the NLO spin-orbit acceleration,
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as previously explained in Sec. III, is that the Newtonian
acceleration (A1) is naturally given in terms of relative
coordinates. This argument does not hold for the
Newtonian energy, but it turns out that the 2.5PN con-
tribution that would arise from it cancels out due to its
symmetry:

Eð0PNÞ ¼m1v21
2

þm2v22
2

−
Gm1m2

r

⟶
2.5PNm1

2

m2

m
v ·δ_rð2.5PNÞSO −

m2

2

m1

m
v ·δ_rð2.5PNÞSO ¼0: ð6:1Þ

The same happens to the LO mass quadrupole moment
Iij0PN ¼ P

a ma½xi
ax

j
a�TF when we try to extract its 2.5PN

contribution going to the center-of-mass frame, and con-
sequently the energy loss due to NLO spin-orbit effects is
not affected by the correction to the center of mass at this
order. Despite these facts, the NLO spin-orbit correction to
the center of mass, which is an effect that enters at 2.5PN
order, itself is a nonzero quantity and must be obtained,
since it will lead to nonzero contributions in future
computations at N2LO order. Below, we present how we
proceed to obtain this quantity via the NRGR framework.
The center-of-mass position is defined as

ricm ¼ 1

m

Z
d3xxiT00ðx; tÞ: ð6:2Þ

As previously mentioned in Sec. II B, we can extract the
stress-energy pseudotensor Tμνðx; tÞ from matching onto
the effective action (2.10) by integrating out potential
modes from the full theory action in Eq. (2.1).
Introducing the partial Fourier transform of the stress-
energy pseudotensor and taking the long-wavelength limit,
we find

Tμνðq; tÞ ¼
Z

d3xTμνðx; tÞe−iq·x ð6:3Þ

¼
X∞
n¼0

ð−iÞn
n!

�Z
d3xTμνðx;tÞxi1 �� �xin

�
qi1 � � �qin :

ð6:4Þ

Comparing Eqs. (6.2) and (6.4), we can read off the center-
of-mass correction from the OðqÞ term in Tμνðq; tÞ in the
effective theory.

The diagrams that contribute to the NLO spin-orbit
center-of-mass correction are given in Fig. 1. Figure 1(a)
comes from a single insertion of the vertex (A25). Imposing
the covariant SSC gives a LO spin-orbit term and a 1PN
correction given by

T00
1aðt;qÞ ¼

X
A≠B

S0iA ðiqiÞe−iq·xA

⟶
ðcovÞX

A≠B
SijA ðiqjÞ

�
viA þ 2GmB

r
vi
�
e−iq·xA : ð6:5Þ

At the order we are working, Fig. 1(b) is composed of
two different contributions, as we show next. Contracting
(A26) with (A20), we find

T00
1b;1ðt;qÞ ¼

X
A≠B

�
−
2GNmB

r
SijAv

i
BðiqjÞ

�
e−iq·xA ; ð6:6Þ

and contracting (A27) with (A19) gives

T00
1b;2ðt;qÞ ¼

X
A≠B

GmBS
0j
A r

j

r3
e−iq·xA : ð6:7Þ

Figure 1(c) also accounts for two distinct contributions.
Contracting (A23) with (A22), we have

T00
1c;1ðt;qÞ ¼

X
A≠B

2GmAS
ij
Bv

i
Ar

j

r3
e−iq·xA ; ð6:8Þ

and contracting (A24) with (A21) gives

T00
1c;2ðt;qÞ ¼

X
A≠B

�
GmA

r3
ð−S0iB ri − SijBv

i
Br

jÞ
�
eiq·xA : ð6:9Þ

Finally, Fig. 1(d) comes from three different contrac-
tions. The first contribution, constructed from (A19) and
(A24) together with the LO 3-point vertex gives

(a) (b) (c) (d)

FIG. 1. Diagrams contributing to the 2.5PN spin-orbit center-of-mass correction.
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T00
1d;1ðt;qÞ ¼

X
A≠B

�
3

2

GmA

r3
S0jB r

j −
3

2

GmB

r3
S0jA r

j

−
3

2

GmB

r
S0jA ðiqjÞ þ 3

2

GmA

r3
SijBv

i
Br

j

þ 1

2

GmB

r3
SijAv

i
Ar

j þ 1

2

GmB

r
SijAv

i
AðiqjÞ

�
e−iq·xA :

ð6:10Þ

The second, constructed from (A20) and (A23) with the LO
3-point vertex, is

T00
1d;2ðt;qÞ ¼

X
A≠B

�
−
GmA

r3
SijBv

i
Ar

j þ GmB

r3
SijAv

i
Br

j

þ GmB

r
SijAv

i
BðiqjÞ

�
e−iq·xA : ð6:11Þ

The third, constructed from (A19) and (A23) with the
3-point vertex at Oðv1Þ, reads

T00
1d;3ðt;qÞ¼

X
A≠B

�
GmA

r
SijBðviAþviBÞðiqjÞ

−
GmA

r3
SijBr

iðiqjÞr · ðvAþvBÞ
�
e−iq·xA : ð6:12Þ

Now, putting all the contributions above together, we
write the final expression for the 00 component of the
stress-pseudotensor accounting for NLO spin-orbit terms:

T00
SOðt;qÞ¼

X
A≠B

�
S0iA ðiqiÞþG

r3

�
1

2
mAS

0j
B r

j−
1

2
mBS

0j
A r

j

þmB

�
viBþ

1

2
viA

�
rjSijA þmA

�
1

2
viBþviA

�
rjSijB

þ
�
−
3

2
mBS

0j
A þmB

�
1

2
viA−viB

�
SijA

þmAðvkAþvkBÞðδik−ninkÞSijB
�
r2ðiqjÞ

��
e−iq·xA :

ð6:13Þ

We can extract some information regarding the binary
system from the expression above when we take the long-
wavelength limit by Taylor expanding it around q ¼ 0. For
instance, the zeroth order terms in the Taylor expansion
give us the LO spin-orbit energy

Eð1.5PNÞ
SO ¼

Z
d3xT00ðx; tÞ ¼ −

X
A≠B

GmB

r3
S0jA r

j; ð6:14Þ

and this serves as a self-consistency check, since (6.14)
agrees with Eq. (4.1), which we calculated from the LO
spin-orbit potential. Next, the terms linear in q yield the

center-of-mass position (6.2), which is also conveniently
expressed through4 G≡mrcm:

Gk
ð1.5PNÞ ¼ −

X2
A¼1

S0kA ¼ −
X2
A¼1

SikA v
i
A; ð6:15Þ

Gk
ð2.5PNÞ ¼

X
A≠B

GmB

r3
½SijArjðviBrk − viAx

k
BÞ

− SikA ð2r2vi − rir · ðvA þ vBÞÞ�: ð6:16Þ

Now, in order to extract its corrections, we put the center-
of-mass at the origin, meaning G ¼ 0, and iteratively solve
for x1, x2. Writing

x1 ¼
m2

m
rþ δrð1PNÞ þ δrð1.5PNÞSO þ δrð2PNÞ þ δrð2.5PNÞSO þ � � � ;

ð6:17Þ

x2 ¼ −
m1

m
rþ δrð1PNÞ þ δrð1.5PNÞSO þ δrð2PNÞ

þ δrð2.5PNÞSO þ � � � ; ð6:18Þ

we can determine PN corrections to the center-of-mass

order by order. The corrections δrð1PNÞ and δrð1.5PNÞSO can be
found in [44,53] and are presented in Eq. (3.13), while the
nonspin5 δrð2PNÞ can be found in [54]. The NLO correction,
with covariant SSC enforced, is

δrð2.5PNÞSO ¼ ν

2m

��
νv2 −

Gm
r

ð4þ 2νÞ
�
Σ × v

þ δm
m

�
v2 −

Gm
r

�
S × v

þ 2Gm
r

�
δm
m

S · ðv × nÞnþ 3

2

δm
m

_rðS × nÞ

þ ð1 − 4νÞ_rðΣ × nÞ
��

: ð6:19Þ

VII. CORRESPONDENCE WITH
OTHER FORMALISMS

At this point, we note that the expressions for the
acceleration (3.16), the binding energy (4.5), the NLO
spin-orbit multipole moments (A9), (A16), and the center-
of-mass correction (6.19) take a different form than the
corresponding results given in the literature [37,38,52,55].

4The expression for G can be expanded order by order as
G ¼ Gð0PNÞ þGð1PNÞ þGð1.5PNÞ

SO þGð2PNÞ þGð2:5PNÞ
SO þ � � �; the

LO and 1PN corrections can be found in [44], while the 2PN
correction was computed in [54].

5There is no spin correction to the center-of-mass position at
2PN order.
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As emphasized throughout this paper, we work with spins
defined in the locally flat frame. We would expect, then,
that an appropriate spin transformation coupled with a
coordinate transformation should give agreement with
existing results; the difficulty reduces to finding the
appropriate set of transformations. As was discussed in
[21], it is possible to construct an equivalent Hamiltonian to
those in [37,56], and thus the equations of motion were
expected to agree. In particular, there are two sets of results
we would like to show agreement with: those for spin
written in the PN frame as in [37,38], and those with spins
of constant magnitude as in [52,55].
The relationship between the locally flat spin vectors and

the PN spin vectors was shown in [22]. In the locally flat
frame, we chose the relation between the spin tensor and
spin vector in (3.4). A natural definition of the spin tensor in
terms of the spin vector in the PN frame is

Sμν ¼ −
1

m
ffiffiffiffiffiffi−gp ϵμνρσpρSσ; ð7:1Þ

which clearly preserves the covariant SSC, and which in the
locally flat frame reduces to (3.4). We fix the spin vector by
imposing the additional condition used in [57] given by

Sμpμ ¼ 0: ð7:2Þ

From these definitions, it was shown in [22] that the
transformation from the locally flat spin vectors to the
PN spin vectors S̄A to 1PN order is given by

SA →

�
1þ v2A

2
þ GmB

r

�
S̄A − vAðS̄A · vAÞ: ð7:3Þ

This transformation induces a 1PN correction to the spins,
and was used in that paper to show equivalence between the
spin evolution equations in [22] and [37,57]. Note that to
leading order in the spins, the locally flat and PN frames are
equivalent; corrections only enter at 1PN order. For NLO
spin-orbit effects, there is a contribution that leads to
different expressions for the accelerations, energy, mass
quadrupole, current quadrupole, energy loss, and center-
of-mass correction. With this spin transformation, the
acceleration (3.16), the binding energy (4.5), the multipole
moments (A9), (A16), the energy loss (4.6), and the center-
of-mass correction (6.19) agree completely with the cor-
responding results in [37,38]. Importantly, the general
expressions for these quantities agree exactly even before
writing gauge invariant quantities. Of particular interest, the
multipole moments agree completely with those in [38],
showing that the EFT formalism used in this paper agrees
with the literature, when spin-orbit effects are considered
beyond the dominant order, not only in the conservative but
also in the dissipative sector.

We also present the transformation to constant magnitude
spin vectors as used in computing the orbital phase (5.15).
This spin choice was used in [38,52,55] and as discussed in
Sec. V is the proper choice when computing quantities in the
adiabatic approximation. As shown in [21], the transforma-
tion to 1PN order is given by (5.1). This puts the spin
evolution equations into a spin precession form [21,37], i.e.,

dSc
A

dt
¼ ΩA × Sc

A; ð7:4Þ

where ΩA is the precessional frequency. This spin trans-
formation takes us from the covariant SSC to the Newton-
Wigner SSC, with one important caveat. Completing the
transformation to the Newton-Wigner SSC requires a change
of coordinates that accounts for the shift in the center ofmass
of each binary constituent (see [21,53,58] for a detailed
discussion). In fact, this spin redefinition coupled with the
coordinate transformation to the Newton-Wigner SSC is the
only possible choice if one wants to work with canonical
variables [59]. However, to show the equivalence between
our results and those in the literature, we forego the
coordinate transformation and find that our results for the
acceleration (3.16), the binding energy (4.5), the multipole
moments (A9), (A16), and the center-of-mass correction
(6.19) agree completely with the corresponding results in
[38,52,55] with conserved norm spins.

VIII. FINAL REMARKS

We used the potential obtained in [21] via the NRGR
formalism [15,16] to compute the NLO spin-orbit correc-
tion to the equations of motion and to the binding energy
of a binary system of compact bodies in its inspiral stage.
This correction to the equation of motion, which is a
2.5PN acceleration, was used together with the multipole
moments computed in [33] to calculate the NLO spin-orbit
terms in the energy lost by the system due to the emission
of gravitational waves. Then, we utilized these results to
compute the evolution of the orbital frequency and, con-
sequently, of the orbital phase of the binary system
accounting for spin-orbit effects beyond the dominant
order, considering quasicircular orbits within the adiabatic
approximation. In performing these computations, we have
made extensive use of the Mathematica package xAct [60].
In addition, we calculated the 2.5PN spin-orbit terms of
the 00 component of the pseudotensor of the system in
order to extract the correction to the center of mass
associated with NLO spin-orbit effects.
Although the results of this paper—the NLO spin-orbit

effects in the equations of motion, center-of-mass frame,
binding energy, energy loss, orbital evolution, and phase
evolution—only now were obtained in the NRGR frame-
work, they had been previously computed through other
formalisms that follow more conventional approaches to
general relativity. Therefore, we provided a discussion in
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which we explained that our EFT results and those found in
the literature [37,38,52,55] are in perfect agreement once
appropriate spin transformations are considered. While the
equivalence between the EFT formalism and other methods
was demonstrated in [21] in the conservative sector
regarding NLO spin-orbit effects, we have shown now full
agreement also in the radiation sector.
Moreover, while inviting for the completion of higher-

order spin computations, the results obtained in this paper
provide the final missing pieces needed to compute wave-
forms that include subleading spin-orbit effects entirely
within the NRGR formalism, which will be presented in a
future publication.
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APPENDIX: TOOLKIT

1. Nonspin accelerations

The PN corrections to the Newtonian acceleration of one
of the bodies—let us choose body 1—in the binary system
are given below. In the EFT formalism, the 1PN correction
to the LO gravitational acceleration

ðai1Þð0PNÞ ¼ −
Gm2

r2
ni ðA1Þ

can be derived from the Lagrangian obtained in [15], and it
reads as

ðai1Þð1PNÞ ¼
Gm2

2r2

�
ni

�
2Gm
r

− 3ðv21 þ v22Þ þ 7v1 · v2 þ 3v1 · nv2 · n

�
− v2 · nvi1 − v1 · nvi2 þ _rð6vi1 − 7vi2 − niv2 · nÞ

− 6rai1 þ 7rai2 þ ðvi − ni _rÞv2 · nþ ra2 · nni þ niðv2 · ðv − n_rÞÞ
�
−
1

2
ai1v

2
1 − vi1v1 · a1: ðA2Þ

The second PN correction to the gravitational acceleration was derived in [54] considering the EFT theory in the
linearized harmonic gauge, and it is given as follows:

ðai1Þð2PNÞ ¼
1

8

Gm2

r3
ri
�
G2

r2
ð−2m2

1 − 20m1m2 þ 16m2
2Þ þ

G
r

�
ð18m1 þ 56m2Þv21

− ð84m1 þ 128m2Þv1 · v2 þ ð58m1 þ 64m2Þv22 þ 30m1a1 · r − 12ma2 · r

þ 28

r2
ðm1 − 4m2Þv1 · rðv1 · r − 2v2 · rÞ −

1

r2
ð56m1 þ 176m2Þðv2 · rÞ2

�

þ 2v41 − 16ðv1 · v2Þ2 − 16v42 þ 32v1 · v2v22 − 2v21a2 · r − 2v22a2 · r

− 4a2 · v2v2 · rþ
ðv2 · rÞ2

r2
ð12v21 − 48v1 · v2 þ 36v22Þ − 15

ðv2 · rÞ4
r4

�

þ 1

4

Gm2

r3
vi1

�
G
r

�
ð48m2 − 15m1Þv1 · rþ ð23m1 − 40m2Þv2 · r

�

þ v2 · rð4v21 þ 16v1 · v2 − 20v22Þ − 24
v1 · rðv2 · rÞ2

r2
þ 18

ðv2 · rÞ3
r2

þ v1 · rð8v21 − 16v1 · v2 þ 16v22 − 2a2 · rÞ þ 2r2ð12a1 − 7a2Þ · v1
�

þ 2a1 · v1v21v
i
1 þ

1

4
ai1

�
49

G2m1m2

r2
þ 36

G2m2
2

r2
þ 12

Gm2

r
v21 þ v41

�

þ 1

4

Gm2

r3
vi2

�
G
r

�
ð31m1 − 24m2Þv1 · rþ ð40m2 − 9m1Þv2 · r

�

þ v2 · rð−4v21 − 16v1 · v2 þ 20v22Þ þ 24
v1 · rðv2 · rÞ2

r2
− 18

ðv2 · rÞ3
r2

þ v1 · rð16v1 · v2 − 16v22Þ − 14r2a2 · v2

�
−
7

4

Gm2

r
ai2

�
6
Gm
r

þ v21 þ v22

�
: ðA3Þ
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2. Spin-orbit potentials

The LO and NLO spin-orbit potentials [16,21]—from which the LO and NLO spin-orbit accelerations and binding
energies are computed—read, respectively, as

Vð1.5PNÞ
SO ¼ Grj

r3
fm2ðSj01 þ Sjk1 v

k
1 − 2Sjk1 v

k
2Þ −m1ðSj02 þ Sjk2 v

k
2 − 2Sjk2 v

k
1Þg; ðA4Þ

V2.5PN
SO ¼ Gm2

r3

��
Si01

�
2v22 − 2v1 · v2 −

3

2r2
ðv2 · rÞ2 −

1

2
a2 · r

�
þ
�
2v1 · v2 þ

3ðv2 · rÞ2
r2

− 2v22 þ a2 · r

�
Sij1 v

j
2

−
�

3

2r2
ðv2 · rÞ2 þ

1

2
a2 · r

�
Sij1 v

j
1 þ 2Sij1 a

j
2v2 · rþ r2Sij1 _a

j
2

�
ri

þ Si01

�
ðv1 − v2Þiv2 · r −

3

2
ai2r

2

�
þ Sij1

�
vi2v

j
1v2 · r − r2aj2v

i
2 −

1

2
r2aj2v

i
1

��

þG2m2

r4
ri
�
−ðm1 þ 2m2ÞSi01 þ

�
m1 −

m2

2

�
Sij1 v

j
1 þ

5m2

2
Sij1 v

j
2

�
þ 1 ↔ 2: ðA5Þ

3. Multipole moments

The multipole moments needed to compute the energy loss at 2.5PN were obtained in [33,44]. We present them here,
written in the center-of-mass frame and with the covariant SSC imposed. The spin vector is defined in the locally flat frame.
The mass quadrupole moments are

Iijð0PNÞ ¼ mνfrirjgTF; ðA6Þ

Iijð1PNÞ ¼ mν

���
−
5

7
þ 8

7
ν

�
Gm
r

þ
�
29

42
−
29

14
ν

�
v2
�
rirj þ

�
11

21
−
11

7
ν

�
r2vivj þ

�
−
4

7
þ 12

7
ν

�
r_rvjri

�
STF

; ðA7Þ

Iijð1.5PNÞ ¼ ν

�
8

3
ðv × SÞirj − 4

3
ðr × SÞivj þ 8

3

δm
m

ðv × ΣÞirj − 4

3

δm
m

ðr × ΣÞivj
�

STF
; ðA8Þ

Iijð2.5PNÞ ¼ ν

���
5

21
−
5

7
ν

�
v · ðr × SÞ þ

�
5

21
þ 4

7
ν

�
δm
m

v · ðr × ΣÞ
�
vivj

þ
��

−
52

21
þ 10

7
ν

�
v · ðn × SÞ þ

�
−
62

21
þ 18

7
ν

�
δm
m

v · ðn × ΣÞ
�
Gm
r

nirj

þ
��

19

21
þ 167

21
ν

�
Gm
r

þ
�
−

2

21
þ 2

7
ν

�
v2
�
ðv × SÞirj

þ
��

−
1

3
þ 20

3
ν

�
Gm
r

þ
�
−

2

21
−
20

7
ν

�
v2
�
δm
m

ðv × ΣÞirj

þ
��

−
22

3
−
10

3
ν

�
Gm
r

þ
�
−

4

21
þ 4

7
ν

�
v2
�
ðr × SÞivj

þ
��

−
8

3
−
34

21
ν

�
Gm
r

þ
�
−

4

21
þ 12

7
ν

�
v2
�
δm
m

ðr × ΣÞivj

þ
��

8

3
−
16

3
ν

�
S · nþ

�
8

3
−
8

3
ν

�
δm
m

Σ · n
�
Gm
r

ðv × nÞirj

þ
�
10

21
−
10

7
ν

�
r_rðv × SÞjvi þ

�
10

21
−

8

21
ν

�
δm
m

r_rðv × ΣÞivj

þ
�
31

21
þ 19

21
ν

�
Gm
r

_rðn × SÞjri þ
�
5

3
þ 2

7
ν

�
Gm
r

δm
m

_rðn × ΣÞirj
�

STF
: ðA9Þ
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The mass octupole moments are

Iijkð0PNÞ ¼ −δmνfrirjrkgTF; ðA10Þ

Iijkð1PNÞ ¼ −δmν

���
−
5

6
þ 13ν

6

�
Gm
r

þ
�
5

6
−
19

6
ν

�
v2
�
rirjrk þ ð−1þ 2νÞr_rrirjvk þ ð1 − 2νÞr2rivjvk

�
STF

; ðA11Þ

Iijkð1.5PNÞ ¼ ν

�
−
9

2

δm
m

ðv × SÞirjrk þ
�
−
9

2
þ 33

2
ν

�
ðv × ΣÞirjrk þ 3

δm
m

ðr × SÞirjvk þ ð3 − 9νÞðr × ΣÞirjvk
�

STF
: ðA12Þ

The current quadrupole moments are

Jijð0PNÞ ¼ νδmfðv × rÞirjgSTF; ðA13Þ

Jijð0.5PNÞ ¼ −
3

2
νfΣirjgSTF; ðA14Þ

Jijð1PNÞ ¼ νδm

���
27

14
þ 15

7
ν

�
Gm
r

þ
�
13

28
−
17

7
ν

�
v2
�
ðv × rÞirj þ

�
5

28
−

5

14
ν

�
r_rðv × rÞivj

�
STF

; ðA15Þ

Jijð1.5PNÞ ¼ ν

���
61

28
−
71

28
ν

�
Gm
r

þ
�
−
2

7
þ 20

7
ν

�
v2
�
Σirj þ

�
10

7

Gm
r

þ 13

28
v2
�
δm
m

Sirj

þ
�
−
11

14

δm
m

S · rþ
�
−
11

14
þ 47

14
ν

�
Σ · r

�
vivj þ

�
3

7

δm
m

S · v þ
�
3

7
−
23

7
ν

�
Σ · v

�
vixj

þ
�
−
29

14

δm
m

S · nþ
�
−
4

7
þ 31

14
ν

�
Σ · n

�
Gm
r

nirj þ 3

7

δm
m

r_rSjvi þ
�
3

7
−
16

7
ν

�
r_rΣivj

�
STF

: ðA16Þ

The current octupole moments are

Jijkð0PNÞ ¼ −mνð1 − 3νÞfðv × rÞirjrkgSTF; ðA17Þ

Jijkð0.5PNÞ ¼ 2ν

�
Sirjrk þ δm

m
Σirjrk

�
STF

: ðA18Þ

4. NRGR vertices

The vertices needed to compute the 2.5PN center-of-mass correction [16,42] are

Sv
0

H ¼ −
X
A

mA

2mPl

Z
dtAH00ðxAÞ; ðA19Þ

Sv
1

H ¼ −
X
A

mA

mPl

Z
dtAviAH0iðxAÞ; ðA20Þ

Sv
0

Hh̄00
¼

X
A

mA

4m2
Pl

Z
dtAH00ðxAÞh̄00ðxAÞ; ðA21Þ

Sv
1

Hh̄00
¼

X
A

mA

2m2
Pl

Z
dtAviAH0iðxAÞh̄00ðxAÞ; ðA22Þ

SSv
0

H ¼
X
A

1

2mPl

Z
dtAHi0;kðxAÞSikA ; ðA23Þ
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SSv
1

H ¼
X
A

1

2mPl

Z
dtA½Hij;kðxAÞSikA vjA þH00;kðxAÞS0kA �; ðA24Þ

SSv
1

h̄00
¼

X
A

1

2mPl

Z
dtAh̄00;kðxAÞS0kA ; ðA25Þ

SSv
0

Hh̄00
¼

X
A

1

4m2
Pl

Z
dtAS

ij
AHj

0ðxAÞh̄00;iðxAÞ; ðA26Þ

SSv
1

Hh̄00
¼

X
A

1

4m2
Pl

Z
dtASi0A ½H00ðxAÞh̄00;iðxAÞ þ h̄00ðxAÞH00;iðxAÞ þHl

iðxAÞh̄00;lðxAÞ�: ðA27Þ

Vertices are expressed using the Minkowski metric.
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