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Various properties of acoustic black holes constructed in Minkowski spacetime have been widely studied
in the past decades. Recently the acoustic black holes in general spacetime were proposed. In this paper, we
first investigate the basic characteristics of “curved” acoustic black holes in Schwarzschild spacetime,
including the quasinormal modes, grey-body factor, and analogous Hawking radiation. We find that the
signal of the quasinormal mode is weaker than that of the Schwarzschild black hole. Moreover, as the
tuning parameter increases, both the positive real part and negative imaginal part of the quasinormal
frequency approach to the horizonal axis, but they will not change sign. This means that all the
perturbations could die off and the system is stable under those perturbations. Since the larger tuning
parameter suppresses the effective potential barrier, so it enhances the grey-body factor. The energy
emission rate of Hawking radiation does not monotonically increase the tuning parameter because of the
nonmonotonicity of the Hawking temperature. Finally, as a first attempt, we study the acoustic black hole
shadow. The radius of the acoustic shadow becomes larger as the tuning parameter increases because both
the related acoustic horizon and the acoustic sphere become larger. Our studies could help us to further
understand the near horizon geometrical features of the black hole. We also expect that our observations
could be detected experimentally in the near future.
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I. INTRODUCTION

The black hole is one of the most intriguing celestial
objects in our Universe. It plays a significant role in the
study of general relativity (GR), thermodynamics, statis-
tics, and quantum mechanics. Via the astrophysical detec-
tions, it is still difficult to touch the signal of Hawking
radiation or anything else with the interaction of the
quantum field in the gravitational spacetime. The situation
turns around when Unruh proposed the acoustic black hole
[1], which provides potential connections between astro-
physical phenomena and the tabletop experiments.
In the acoustic model of gravity, the equation of motion

describes the propagation of sound modes. The acoustic
black hole is formed by amoving fluid with speed exceeding
the local sound velocity through a spherical surface. The
acoustic horizon is the boundary where the speed of flow
equals the local speed of sound. The features including
horizon, ergosphere, and Hawking radiation of the analogue

black holes were explored in [2], inspired by which more
efforts on the analogue Hawking radiation were made in
[3,4].Moreover, the stability of the static, or rotating acoustic
black holes, has been analyzed via computing the quasi-
normal modes [5–8]. Readers can refer to [9] for a nice
review paper about the analogue black holes.
Experimentally, the first realization of a sonic black hole

as Bose–Einstein condensate has been reported in [10].
More recently, the remarkable experiments [11,12] reported
that the thermal Hawking radiation and the corresponding
temperature in an analogue black hole were observed.
Besides, progress on stimulated Hawking radiation has also
been made in an optical system [13–15] and some other
mechanics [16–18].
Thanks to those significant realizations of astrophysical

phenomena in the laboratory, acoustic black holes nowa-
days attract more and more attention. A more recent
extension on the analogue Hawking radiation can be seen
in [19–22]. The thermodynamiclike description of the two-
dimensional acoustic black hole has been discussed in [23].
The particle dynamics in the acoustic spacetime was also
addressed in [24].
Most of the aforementioned studies were based on the

acoustic models constructed in the real Minkowski
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spacetime. Nevertheless, the authors of [25–30] derived the
acoustic black holes from the relativistic fluids with the
starting of the Abelian Higgs model. Especially, by fixing
curved spacetime geometry, the authors of [30] studied
analogue gravity models by considering the relativistic
Gross–Pitaevskii (GP) theory and Yang–Mills theory. They
constructed the acoustic black hole in general curved
spacetime. This is significant and interesting because the
black holes in our Universe could be in the bath of some
kind of superfluid or just the cosmological microwave.
Moreover, it was addressed in [31] that the acoustic black
hole could also emerge from black-D3 brane based on
holographic approach.
In this paper, we are interested in the acoustic black hole

in four dimensional Schwarzschild background, which
could be one of the simplest analogue black holes in
curved spacetime. We accept that the characteristics
appearing in astrophysical black holes should also appear
in their analogous models. Here we shall concentrate on the
basic characteristics near the acoustic horizon, which are
related to the possible observable quantities of the curved
acoustic black hole.
The first characteristic we shall explore is the frequency

of quasinormal modes (QNM), which governs the relax-
ation of the sound wave perturbation. The real part of the
QNM frequencies describes the oscillations of the pertur-
bation, while the imaginary part indicates the (un)damped
of the mode (see [32] and therein for review). The QNMs of
astrophysical black holes have been widely studied because
it is one of the fingerprints of a gravity theory or other
possible deviations beyond GR. Thus, the study of QNMs
could help to test the (in)stability and further provide the
stable regime of parameters in acoustic black holes.
The second characteristic we shall investigate is the grey-

body factors, which is equal to the transmission probability
of an outgoing wave radiated from the black hole event
horizon to the asymptotic region [33,34]. The frequency
dependent grey-body factors measures the modification
of the pure black body spectrum. It gives us significant
information about the near-horizon structure of black holes
[35]. Moreover, based on the grey-body factors, we shall
further evaluate the energy emission rate of analogous
Hawking radiation.
The last characteristic we consider is the acoustic black

hole shadow. The black hole shadow is another fingerprint
of the geometry around the black hole horizon. It describes
the black hole properties which depend on the gravitational
lensing of the nearby radiation [36]. The black hole shadow
is important to determine the near horizon geometry and its
properties are widely studied, see for example [37–50] and
therein. Moreover, in the experimental side, the Event
Horizon Telescope group detected the black hole images
with the use of the shadow properties [51–53]. Moveover,
the detection of gravitational waves [54] from black holes
(or other compact objects) and other observations strongly

motivate us to disclose more near horizon geometry of
black holes. Thus, as a first attempt we will study the
acoustic shadow of the curved acoustic black hole.
Theoretically, the acoustic shadow is a region of the
listener’s sky that is left dumb, if there are sonic sources
distributed everywhere but not between the listener and the
acoustic black hole. We expect that this observation could
be detected in the analogue black hole experiment.
The structure of this paper is listed as follows. In Sec. II,

we review the acoustic black hole in the Schwarzschild
spacetime and then present the covariant scalar field
equation in this background. In Sec. III, we compute the
frequencies of quasinormal modes and analyze the stability
of the sector under scalar field perturbation. Then in Sec. IV
and Sec. V, we study the grey-body factor, Hawking
radiation, and the shadow properties of the acoustic black
hole, respectively. The last section is our Conclusion and
Discussion.

II. BACKGROUND AND THE COVARIANT
SCALAR EQUATION

A. Acoustic black hole in Schwarzschild spacetime

In this subsection, we shall first briefly review how the
curved acoustic black hole emerges from the GP theory
[55], and then we focus on the Schwarzschild acoustic
black hole. For more details, readers can refer to [30] where
the acoustic black hole in the general curved spacetime has
been constructed. The action in GP theory is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
j∂μφj2 þm2jφj2 − b

2
jφj4

�
; ð1Þ

where φ is a complex scalar field as order parameter; b is a
constant, and m2 is a temperature dependent parameter
assumed asm2 ∼ ðT − TcÞ [55]. The equation of motion for
φ is reduced as

□φþm2φ − bjφj2φ ¼ 0: ð2Þ

One could fix a static background spacetime

ds2bg ¼ gttdt2 þ grrdr2 þ gϑϑdϑ2 þ gϕϕdϕ2 ð3Þ

and set the scalar field as φ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx⃗; tÞp

eiθðx⃗;tÞ. In the fixed
spacetime, one could assume the background solution of
the scalar field as ðρ0; θ0Þ, then consider the fluctuations
around ðρ0; θ0Þ as

ρ ¼ ρ0 þ ρ1 and θ ¼ θ0 þ θ1: ð4Þ

By substituting (3)–(4) into the Klein–Gordon equation (2)
and considering the long-wavelength limit, one can extract
two equations. One is the leading order for the background
scalar field
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bρ0 ¼ m2 − gμν∂μθ0∂νθ0 ¼ m2 − vμvμ; ð5Þ

where in the second equality we have defined v0 ¼ −∂tθ0,
vi ¼ ∂iθ0 (i ¼ r; ϑ;ϕ). The other is a relativistic equation
governing the propagation of the phase fluctuation

1ffiffiffiffiffiffiffi
−G

p ∂μð
ffiffiffiffiffiffiffi
−G

p
Gμν∂νθ1Þ ¼ 0: ð6Þ

From the above fluctuation equation, one can extract and
derive the effective metric Gμν as

Gμν ¼
csffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2s − vμvμ
q

0
BB@

gttðc2s − viviÞ ..
.

−vivt
� � � � � � � � � � � � · � � � � � � � � � � � � � � � � � �

−vivt ..
.

giiðc2s − vμvμÞδij þ vivj

1
CCA ð7Þ

with c2s ≡ bρ0
2
. It is obvious that the metric Gμν encodes both the information of the background spacetime dsbg and the

background four velocity of the fluid vμ.
Following [30], we consider vt ≠ 0; vr ≠ 0; va ¼ 0ða ¼ ϑ;ϕÞ; gttgrr ¼ −1 and the coordinate transformation

dt → dt − vtvr
gttðc2s−vrvrÞ dr. Then the line element of a static acoustic black hole in the background spacetime metric can

be reformed from (7) as

ds2 ¼ cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s − vμvμ

q �
c2s − vrvr

c2s − vμvμ
gttdt2 þ

c2s
c2s − vrvr

grrdr2 þ gϑϑdϑ2 þ gϕϕdϕ2

�
: ð8Þ

We shall focus on the Schwarzschild background spacetime

ds2bg ¼ gttdt2 þ grrdr2 þ gϑϑdϑ2 þ gϕϕdϕ2

¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdϑ2 þ sin2 ϑdϕ2Þ; ð9Þ

where fðrÞ ¼ 1 − 2M
r . Subsequently, one can consider an

orbit of a vortex that falls freely along the radial from
infinity starting from rest outside a Schwarzschild black
hole. Then the radial component vr is treated as the escape
velocity of an observer who maintains a stationary position
at Schwarzschild coordinate radius r. It can be set as vr ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mξ=r

p
in which ξ > 0 is required to guarantee the

velocity is real. Note that recalling c2s ¼ bρ0
2

and rescaling

m2 → m2

2c2s
, as well as vμvμ →

vμvμ
2c2s

, Eq. (5) could give us the

relation vμvμ ¼ m2 − 1. As addressed in [30], one can work
at the critical temperature of GP theory such that m2

vanishes, and then one has vμvμ ¼ −1. Note that to fulfill
the relation vμvμ ¼ −1, the time component of the velocity

in this case can be worked out as vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ þ 2Mξ

r fðrÞ2
q

.

To proceed, we rescale vμvμ →
vμvμ
2c2s

in (8). Then by

substituting the metric functions of (9), vr ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mξ=r

p
and

vμvμ ¼ −1 into it, we can rewrite the line element as

ds2 ¼
ffiffiffi
3

p
c2s
h
−F ðrÞdt2 þ dr2

F ðrÞ þ r2ðdϑ2 þ sin2 ϑdϕ2Þ
i
;

ð10Þ

with F ðrÞ ¼
�
1 −

2M
r

��
1 − ξ

2M
r

�
1 −

2M
r

��
; ð11Þ

which is the acoustic black hole metric in Schwarzschild
background. Here ξ > 0 is defined as the tuning parameter
and its regime for the existence of acoustic black holes will
be discussed later. It is noticed that (10) recovers the
Schwarzschild black hole (9) as ξ → 0, while as ξ → þ∞
the whole spacetime should be an acoustic black hole
because the escape velocity vr goes to infinity. We shall
then set c2s ¼ 1=

ffiffiffi
3

p
for convenience.

Then to fulfill F ðrÞ ¼ 0, we shall obtain three solutions.
One is the optical event horizon rbh ¼ 2M and the others

are rac� ¼ ðξ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 4ξ

p
ÞM for the acoustic black hole.

Recalling ξ > 0, it is easy to obtain the condition ξ ≥ 4 to
make sure the existence of acoustic horizons. When ξ ¼ 4,
the acoustic black hole goes to the extreme case with
rac− ¼ racþ ¼ 4M. We plot the dependence of rac� on ξ in
Fig. 1. The inner acoustic horizon is confined in rac− ∈
ð2M; 4MÞ (the red dashed line), which denotes that the
acoustic horizon locates outside the real black hole as
expected. The outer horizon racþ (the red line) grows
monotonously as ξ increases. When ξ → ∞, we have
racþ → ∞ meaning that the sound could not escape from
the whole spacetime as we aforementioned. In a word, in
the case with ξ ≥ 4, an analogue metric would involve the
Schwarzschild spacetime such that the spacetime can be
divided into four regions: the inside of black hole is in
the regime r < rbh; in the regime rbh < r < rac− and
rac− < r < racþ , the light can escape but the sound cannot;
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while in the regime r > racþ , both the light and the sound
could escape. Note that in the following study, the acoustic
horizon represents the outer horizon, i.e., we could set
rac ¼ rracþ .

B. Covariant scalar equation

We are interested in some basic characteristics of this
acoustic black hole, including quasinormal modes and
grey-body factors of scalar fields as well as the shadow
cast. To this end, we consider the minimally coupled
massless scalar field as a probe. Its covariant equation is

1ffiffiffiffiffiffiffi
−G

p ∂μð
ffiffiffiffiffiffiffi
−G

p
Gμν∂νψÞ ¼ 0; ð12Þ

where Gμν denotes the metric components of the acoustic
black holes (10). Taking the standard ansatz

ψðt; r; θÞ ¼
X
lm

e−iωt
ΨðrÞ
r

YlmðθÞ ð13Þ

and introducing the tortoise coordinate r� ¼
R
1=Fdr, we

shall obtain the Schrodinger-like formula

d2Ψ
dr2�

þ ðω2 − VðrÞÞΨ ¼ 0; ð14Þ

where the effective potential is

VðrÞ ¼ F
�
lðlþ 1Þ

r2
þ F 0

r

�
: ð15Þ

The radial domain of the following study is given
by r ∈ ðrac;∞Þ.
The effective potential as a function of r for different

cases are present in Fig. 2. As the radial coordinate
approaches to the near horizon region, the effective
potential first shows a barrier and then quickly falls into
zero at the acoustic horizon, meanwhile, the tortoise
coordinate r� reaches the infinity r� → −∞. In the left
plot, with fixed ξ and M, the position of zero potential is
not affected by the angular number, which is reasonable
because it has no print on the acoustic horizon. However,
the potential barrier is promoted by larger l, which is similar
to that in Schwarzschild black hole. On the right plot, as we
increase the tuning parameter, the position of zero potential
is located at larger radius because the acoustic horizon
increases (see Fig. 1). In addition, the potential barrier is
suppressed by larger ξ. This behavior could be reflected by
the near horizon characteristics as we will show soon.

III. QUASINORMAL MODES

In this section we shall study the quasinormal modes
from the Eq. (14). Thus, we require the purely outgoing
waves at infinity and purely incoming waves at the acoustic
horizon for the scalar field as

Ψ ∼ e�iωr� ; r� → �∞: ð16Þ

5 10 15 20

2
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rac

M

FIG. 1. The relation of the ratio of rac�=M and the tuning
parameter ξ.
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FIG. 2. The behavior of effective potential with M ¼ 1. On the left panel we fix ξ ¼ 5 and take different angular numbers into
consideration, while on the right panel we show the potential at fixed l ¼ 1 for different ξ.
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To calculate the frequency of the QNMs, we employ the
semianalytical WKB method and the asymptotic iteration
method (AIM), both of which are widely applied in the
study of QNMs. Here we skip the instruction of the two
methods, and the readers can refer to [56,57] (and therein)
for the details, respectively. It is noticed that even though
our results are quite at good convergence in the sixth-order
WKB approximation, our calculation is accomplished by
the WKB method up to the ninth-order correction for
sufficient precision.
The QNM frequencies for small ξ with samples of

angular number l and overtone number n are listed in
Table I (l ¼ n ¼ 0), Table II (l ¼ 1, n ¼ 0), and Table III
(l ¼ n ¼ 1), respectively. The universal properties of the
QNM frequency we can extract from the three tables are:

(i) The real part ReðωÞ is positive and the imaginal part
ImðωÞ is negative, which means the acoustic black
holes are stable under the perturbation for small
tuning parameters. Moreover, their magnitudes for
the acoustic black hole are quite smaller than that for
the Schwarzschild black hole with ξ ¼ 0. This
implies that the signal of the QNM is weaker in
acoustic black holes than in the astrophysical black
hole, so the perturbation dies off slower.

(ii) With the increasing of ξ, the real part of the
frequency decreases. It means that the oscillation
of the scalar field damps. The magnitude of the
imaginal part also decreases, denoting the loss of the

damping rate. These results imply that the strength
of oscillation is damping as the acoustic horizon rac
grows because rac is larger as ξ increases (see
Fig. 1). This behavior is reasonable because the
effective potential barrier is suppressed by larger
acoustic black holes (see Fig. 2).

(iii) In each table, the magnitude of ImðωÞ continues
decreasing as ξ increases. This indicates that the
ImðωÞ may cross zero and changes sign as we
continue increasing ξ. Since the system is stable
only when ImðωÞ is always negative, therefore, to
further check the stability, we must study the QNM
frequency for general ξ.

The QNM frequencies as a function of general tuning
parameter are shown in Fig. 3 and Fig. 4 where we choose
samples of modes with fixed l ¼ 1 and n ¼ 0, respectively.
The features of the QNM frequency we can obtain from the
figures are summarized as follows:

(i) In both figures, as ξ increases, both the positive real
part and negative imaginary part are close to the
horizontal axis, but neither of them changes sign.
This indicates that all the perturbation could die off
and the acoustic black hole is stable under those
perturbations. It is noticed that similar behavior was
observed for the counter-rotating waves (negative l)
as the rotation parameter increases in the rotating
acoustic flat black hole [5].

(ii) In Fig. 3 with fixed l ¼ 1, different overtones have
different QNM frequencies and the difference is
more sharp at small ξ. Moreover, for larger n, both
ReðωÞ and ImðωÞ are suppressed, which implies that
perturbation with larger n die off quicker. This
property is similar as that for acoustic black holes
in flat spacetime as well as that for Schwarzschild
black holes.

(iii) In Fig. 4 with fixed overtone, different modes
correspond to different QNM frequencies. As l
increases, both ReðωÞ and ImðωÞ are enhanced,
indicating that the perturbation with smaller l dies
off quicker. This property also matches that in
acoustic black holes in flat spacetime and Schwarzs-
child black holes.

TABLE II. The QNM frequency of acoustic black holes with
the mode l ¼ 1 and n ¼ 0.

ξ Ninth-order WKB AIM

0 0.29294 − 0.09766i −
4 0.08211 − 0.01744i −
5 0.06391 − 0.01591i 0.06390 − 0.01591i
6 0.05234 − 0.01402i 0.05234 − 0.01402i
7 0.04434 − 0.01240i 0.04434 − 0.01240i
8 0.03848 − 0.01107i 0.03848 − 0.01107i
9 0.03399 − 0.00998i 0.03399 − 0.00998i
10 0.03045 − 0.00908i 0.03045 − 0.00908i

TABLE III. The QNM frequency of acoustic black holes with
the mode l ¼ n ¼ 1.

ξ Ninth-order WKB AIM

0 0.26431 − 0.30620i −
4 0.07649 − 0.05359i −
5 0.06061 − 0.04869i 0.06061 − 0.04868i
6 0.04947 − 0.04314i 0.04947 − 0.04313i
7 0.04171 − 0.03829i 0.04171 − 0.03828i
8 0.03603 − 0.03426i 0.03604 − 0.03426i
9 0.03171 − 0.03095i 0.03171 − 0.03095i
10 0.02832 − 0.02818i 0.02832 − 0.02818i

TABLE I. The QNM frequency of acoustic black holes with the
mode l ¼ n ¼ 0.

ξ Ninth-order WKB AIM

0 0.11031 − 0.10496i −
4 0.02836 − 0.01905i −
5 0.02341 − 0.01656i 0.02351 − 0.01660i
6 0.01954 − 0.01471i 0.01956 − 0.01471i
7 0.01668 − 0.01310i 0.01666 − 0.01307i
8 0.01469 − 0.01168i 0.01449 − 0.01171i
9 0.01283 − 0.01066i 0.01282 − 0.01058i
10 0.01148 − 0.00971i 0.01149 − 0.00964i
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Then we further study the effect of massM on the QNM
frequency. The results with fixed ξ ¼ 5 and l ¼ n ¼ 0 are
shown in Fig. 5. It is obvious that as M increases, the
positive ReðωÞ decreases and approaches to zero, while
the negative ImðωÞ increases and also approaches to the
horizonal axis. We did not find the sign changing as we
further increase M, such that the sector is stable. This
behavior indicates that the existence of heavier black holes
or other compact objects would restrain the oscillation

amplitude of the scalar field, even though it could die off
slower. It is noticed that the rule is similar as to the effect
of ξ because both larger M and ξ corresponds to larger
acoustic black holes.

IV. GREY-BODY FACTOR AND HAWKING
RADIATION

In this section we investigate the grey-body factor and
analogue Hawking radiation of the acoustic black hole. The
existence of an acoustic horizon implies the emission of a
thermal flux of phonons, named analogue Hawking radi-
ation, and the temperature is proportional to the gradient of
the velocity field at the acoustic horizon.
There are plenty of approaches proposed to study the

Hawking radiation for astrophysical black holes. It is
known that the radiation is not exactly of a black-body
type since the particles which are created in the vicinity of
the event horizon without enough energy cannot penetrate
the potential barrier. So only part of the particles can be
observed at infinity, which makes it just a scattering
problem. Thus, to get the transmission probability of
particles, we solve the wave equation outside the black
hole (acoustic black hole in our present consideration) and
calculate the scattering coefficient by which the grey-body

FIG. 4. The QNM frequency as a function of ξ for different angular numbers with fixed n ¼ 0.

FIG. 5. The quasinormal modes as a function of M with fixed
ξ ¼ 5 and l ¼ n ¼ 0.

FIG. 3. The QNM frequency as a function of ξ for different overtone numbers with fixed l ¼ 1.
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factor can be obtained. We use the grey-body factor to
describe the transmission of particles through the potential,
and thus work out the energy radiation rate based on the
obtained grey-body factor. Note that the effective potential
presents a barrier which monotonically decreases as the
radius coordinate r� approaches both infinities. This
behavior allows us to use the WKB approach to compute
the grey-body factor.
We should consider the wave equation, Eq. (14), with the

boundary condition allowing the incoming waves from
infinity. This is different from that for computing QNMs,
where only outgoing waves are allowed in the infinity. The
scattering boundary condition is given by

Ψ ¼ Te−iωr� ; r� → −∞; ð17Þ

Ψ ¼ e−iωr� þ Reiωr� ; r� → þ∞; ð18Þ

where R and T are the reflection and transmission coef-
ficients satisfying jTj2 þ jRj2 ¼ 1. The grey-body factor is
then given by the transmission coefficient for each angular
number as [58]

jAlj2 ¼ 1 − jRlj2 ¼ jTlj2 and jTlj2 ¼ ð1þ e2iπKÞ−1;
ð19Þ

where K is determined by the equation

K ¼ i
ω2 − V0ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

p −
Xi¼6

i¼2

ΛiðKÞ: ð20Þ

Here V0 and V 00
0 denotes the maximal value of the effective

potential and its second derivative with respective to the
tortoise coordinate at the maximum, respectively; and Λi
are the higher WKB corrections which are dependent on K
and up to 2ith-order derivative of the potential at its
maximum [58–60]. We briefly review how to derive
ΛiðKÞ in Appendix.
Once the grey-body factor is at hand, we can then study

the Hawking radiation by evaluating the energy emission
rate which is connected with the grey-body factor via [61]

dE
dt

¼
X
l

NljAlj2
ω

eω=TH − 1

dω
2π

: ð21Þ
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FIG. 7. The left panel shows the grey-body factor and the right panel shows the partial energy radiation rate for different ξ. For both
panels, we fix l ¼ 0, and the red line, green line, and blue line correspond to ξ ¼ 5, ξ ¼ 6, and ξ ¼ 8, respectively.
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FIG. 6. The left panel shows the grey-body factor and the right panel shows the partial energy radiation rate for different angular
numbers. For both panels, we fix ξ ¼ 5, and the red, green, blue, and black lines correspond to angular numbers l ¼ 0, 1, 2, and 3,
respectively. On the right plot, the radiation rate for l > 0 are too weak to be observable.
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In the above definition, TH is the analogue Hawking
temperature defined as TH ¼ −F 0ðracÞ=4π, and Nl are
the multiplicities satisfying Nl ¼ 2lþ 1 for the scalar
field.
Then, we shall employ the sixth-order WKB method to

calculate the grey-body factor and energy emission rate of
Hawking radiation. It is noticed that this method was
employed to study the properties of Hawking radiation in
various models, see for examples [62–65] and therein. Our
results are shown in Figs. 6–8.
In Fig. 6 we fix the tuning parameter ξ ¼ 5 and study the

effect of the angular number l. The left panel shows that the
larger frequency corresponds to the higher grey-body as a
natural consequence of the fact that the particles with larger
energy are more likely to penetrate the potential barrier. On
the other hand, it is obvious that a larger angular number
leads to a lower grey-body factor. This result can be
intuitively explained by the effective potential which has
a higher barrier for larger l (see Fig. 2), such that the
particles are more likely to be reflected by the potential.
The energy emission rate of the Hawking radiation is
shown in the right panel. It is observed that the mode with

l ¼ 0 dominates the Hawking radiation, while the contri-
bution of modes with higher l is very small and negligible.
In Fig. 7 and Fig. 8, we choose different tuning

parameters and fix the angular number l ¼ 0 and l ¼ 1,
respectively. The behaviors in the two figures are qualita-
tively similar with an obvious exception that the energy
radiation rate for l ¼ 0 is much stronger than that for l ¼ 1.
The left panels in the figures show that the grey-body factor
is enhanced by larger ξ because of the lower potential
barrier as we have shown in Fig. 2. In the right panels, the
emission rate at the low frequency region for larger ξ is
larger, but when ω grows larger, this picture will be
changed as a result of its Hawking temperature depend-
ence. It is shown in Fig. 9 that the Hawking temperature
grows from zero, which corresponds the extremal black
holes at ξ ¼ 4 to a maximum at ξ ¼ 16=3, and then it
decreases to suppress the energy emission rate.

V. ACOUSTIC BLACK HOLE SHADOW

The black hole shadow in GR is one of the optical
properties. As a first attempt, we shall study the analogous
behavior in the acoustic black hole. We treat it as “acoustic
shadow” which describes the property of the sound waves.
Analogous with the gravitational lensing and the related
properties of astrophysical black holes, there exists the
inmost unstable sound wave orbit, and we call it “acoustic
sphere” instead of “photon sphere.” Beyond the acoustic
sphere, the sound waves are absorbed by the acoustic black
hole, so the acoustic sphere describes the “audible”
boundary of the sound waves near the acoustic black hole
horizon region. This property is related to the acoustic
shadow.
Moreover, it is known that the shadow for static and

spherical symmetric black holes also has spherical sym-
metry. The shape of shadow would be more complex when
the rotation of the black hole is involved. Thus, here for the
static and spherical symmetric acoustic black hole (10), we
simply study the shadow radius and discuss how the tuning
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FIG. 9. The behavior of Hawking temperature as a function of
ξ. Here we take M ¼ 1.
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FIG. 8. The left panel shows the grey-body factor and the right panel shows the partial energy radiation rate for different ξ. For both
panels, we fix l ¼ 1, and the red line, green line, and blue line correspond to ξ ¼ 5, ξ ¼ 6, and ξ ¼ 8, respectively.
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parameter and the black hole mass shall affect the shadow
radius.
To proceed, we follow the designations of [66] and find

the radius of the acoustic sphere rah by solving the
following equation:

dh2ðrÞ
dr

¼ 0; ð22Þ

where the function hðrÞ is defined as hðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=F ðrÞ

p
.

Then for a distant static listener locating at rL, the detected
radius of the acoustic shadow is

rsh ¼
hðrahÞrL
hðrLÞ

: ð23Þ

To study the properties of the acoustic shadow, we
assume the static listener is far away from the vicinity of
the acoustic horizon so that we have rL

hðrLÞ ≈ 1. The radius of

the acoustic sphere and the acoustic shadow as functions
of the tuning parameter are given in Fig. 10. It is obvious
that with fixed M, both rsh and rah increase almost linearly
as ξ, but the slope for the shadow radius is larger than that
for the acoustic sphere. Moreover, in the figure, we can
also see the influence of the mass parameter M on the
radius, that the larger M corresponds to both larger
shadow radius and acoustic radius. This is reasonable
because the increase of M could enlarge the acoustic
horizon. It is noticed that the radius of the acoustic
sphere is much larger than the photon sphere for the
Schwarzschild black hole, which is 3M.

VI. CONCLUSION AND DISCUSSION

In this paper, we explored the near-horizon characteristic
of the curved acoustic black hole in the Schwarzschild
spacetime. By considering the minimal coupling massless
scalar field, we studied the quasinormal mode, grey-body
factor, and analogous Hawking radiation of the sector.
Moreover, as a first attempt, we also studied the acoustic

shadow which is analogous to the photon shadow caused
by the bent light ray in general relativity.
We computed the frequencies of QNMs with the use

of the WKB method up to ninth-order corrections as
well as the asymptotic iteration method. Our results
showed that the signal of QNMs in this acoustic black
hole is weaker than that in a Schwarzschild black hole.
Moreover, the real part is always positive while the
imaginal part of the QNM frequency is negative, and
both of them get closer to the horizonal axis as the
tuning parameter increases. The sign of the QNM
frequency does not change, which implies that all the
perturbations would die off and the acoustic black hole
is stable under those perturbations. It would be inter-
esting to further test the stability under other types of
perturbations around the acoustic black hole, which will
be present elsewhere.
We then investigated the analogous Hawking radiation

of the acoustic black hole. We employed the WKB
approach to solve the scalar equation as a scattering
problem. Both the grey-body factor and the energy
emission rate of Hawking radiation are affected by the
angular number and the tuning parameter which corre-
spond to different properties of the potential barrier.
Especially, the grey-body factor is enhanced by the larger
tuning parameter because it corresponds to a lower
potential barrier. The energy emission rate of Hawking
radiation is not a monotonic function of the tuning
parameter due to the nonmonotonicity of the Hawking
temperature.
Finally, we studied the acoustic shadow of acoustic black

holes. Since the acoustic black hole we considered is static
and spherically symmetric, so the acoustic shadow also has
spherical symmetry. Thus, we simply analyzed the acoustic
shadow radius, and we found that the radius of the shadow
becomes larger as the tuning parameter increases. This is
acceptable because as the parameter increases, both the
acoustic horizon and the acoustic sphere increases.
It is worthwhile to mention that our work is the first

attempt to study the “black hole shadow” in the acoustic
black hole. Though here we worked with the techniques
developed in the optical case, one could expect experi-
mental interest in the acoustic shadow due to the following
two aspects. On one hand, as we mentioned in the
introduction, the experimental simulation of the analogous
black hole is significant for us to understand astrophysical
phenomena. The acoustic shadow is a direct observable
quantity which would shed light on the experimental simu-
lation of the acoustic black hole. Especially, the acoustic
shadow is a great indicator to describe the near acoustic
horizon region in the laboratory, so the study of
acoustic shadow could help us further “touch” the essences
of the real black hole. On the other hand, the study on this
topic could be a good chance to detect the motion of the
sound waves in a medium. The experimental study of the

FIG. 10. The shadow radius rsh and the acoustic sphere rah
changing with the tuning parameter ξ.
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acoustic shadow could be a possible clue to understand the
similarity and differences between the sonic fluid and the
black hole geometry. Indeed, there have been some
attempts in this direction, for instance, the sound wave
shadow zone in a stratified ocean was studied in [67] many
yeas ago. Inspired by this work, people found the zero-
reflection effects of the sound waves [68–70] in which the
authors associated the properties with the “black holes”
effect.
It is expected that most of the black holes in the

galactic center rotate. Moreover, rotating black holes are
closely related with the two important directions: the
gravitational waves and black hole shadows, which open
new windows for us to understand the Universe. Thus, it
would be significant to extend our studies into the
acoustic black hole with rotation in the curved spacetime,
and then further study the connection between QNM
frequency and shadow, which was proposed in [71]. We
also expect that our theoretical results could be observed
in analogous black hole experiments in the near future.
This could help us to further understand the structure of
near horizon geometry of astrophysical black holes.
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APPENDIX: HIGHER ORDER CORRECTION
TERMS ΛiðKÞ OF WKB APPROACH

In this Appendix, we shall follow [58] and briefly
introduce how to fix the higher order correction terms
ΛiðKÞ as we show in Eq. (20) for the WKB method.
Note that Λ2 and Λ3 are derived in the following and one
can refer to Ref. [60] for the more higher terms Λ4, Λ5,
and Λ6.
We first write the master equation in the form

ϵ2
d2ψ
dx2

þQðxÞψðxÞ ¼ 0; ðA1Þ

where ϵ is the perturbation parameter introduced to keep
track of orders in the WKB approximations. We carry out
Taylor expansion to QðxÞ about the point x0 at which
−QðxÞ reaches maximum. We have the expansion

QðxÞ ¼ Q0 þ
1

2
Q00

0z
2 þ 1

6
Q0

000z3 þ 1

24
Qð4Þ

0 z4

þ 1

120
Qð5Þ

0 z5 þ 1

720
Qð6Þ

0 z6; ðA2Þ

where z ¼ x − x0. Then the master equation (A1) can be
rewritten as

ϵ2d2ψ=dz2 þ kð−z20 þ z2 þ bz3 þ cz4 þ dz5 þ fz6Þψ ¼ 0;

ðA3Þ
where

k ¼ 1

2
Q00

0; z20 ¼ −2
Q0

Q00
0

; b ¼ 1

3

Q0
000

Q00
0

ðA4Þ

c ¼ 1

12

Qð4Þ
0

Q00
0

; d ¼ 1

60

Qð5Þ
0

Q00
0

; f ¼ 1

360

Qð6Þ
0

Q00
0

: ðA5Þ

Introducing a new variable t ∝ z=ϵ1=2, we could define
constants ν;Λ2;Λ3 and then rescale the parameters b, c, d,
f as

t ¼ ð4kÞ1=4e−iπ=4z=ϵ1=2 ðA6Þ

K ≡ νþ 1

2
¼ −ik1=2z20=2ϵ − ϵΛ2 − ϵ2Λ3 ðA7Þ

b̄ ¼ 1

4
bð4kÞ−1=4eiπ=4; c̄ ¼ 1

4
cð4kÞ−1=2eiπ=2 ðA8Þ

d̄ ¼ 1

4
dð4kÞ−3=4e3iπ=4; f̄ ¼ 1

4
fð4kÞ−1eiπ: ðA9Þ

Then, Eq. (A3) takes the form

d2ψ
dt2

þ
�
K −

1

4
t2 − ϵ1=2b̄t3 þ ϵðΛ2 − c̄t4Þ

− ϵ3=2d̄t5 þ ϵ2ðΛ3 − f̄t6Þ
�
ψ ¼ 0: ðA10Þ

One can refer to [58] for the further process following
(A10). Here we shall turn our attention to the expressions of
correction terms Λ2, Λ3

Λ2 ¼
1

2
ð3c̄ − 7b̄2Þ þ K2ð6c̄ − 30b̄2Þ ðA11Þ

Λ3 ¼ −Kð1155b̄4 − 918b̄2c̄þ 67c̄2 þ 190b̄d̄ − 25f̄Þ
− K3ð2820b̄4 − 1800b̄2c̄þ 68c̄2 þ 280b̄d̄ − 20f̄Þ:

ðA12Þ
Note that according to Eq. (A7), we take ϵ ¼ 1, QðxÞ ¼
ω2 − VðxÞ, Qðx0Þ ¼ Q0 ¼ ω2 − V0 then we reduces to the
third-order WKB formula of Eq. (20) as

K ¼ i
ω2 − V0ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

p − Λ2ðKÞ − Λ3ðKÞ: ðA13Þ
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