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The basic equations of the thermodynamic system give the relationship between the internal energy,
entropy and volume of two neighboring equilibrium states. By using the functional relationship between
the state parameters in the basic equation, we give the differential equation satisfied by the entropy of
spacetime. We can obtain the entropy by solving the differential equation. This entropy is the sum of
entropy corresponding to the two event horizons and the interaction term. The interaction term is the ratio
between the location of the black hole horizon and the cosmological horizon. The entropic force, which is
strikingly similar to the Lennard-Jones force between particles, varies with the ratio of the two event
horizons. The discovery of this phenomenon makes us realize that the entropic force between the two
horizons may be one of the candidates to promote the expansion of the universe.

DOI: 10.1103/PhysRevD.102.124016

I. INTRODUCTION

In the early period of inflation, our universe was in a
quasi–de Sitter space. Moreover, with the inclusion of
mysterious component with negative pressure, a large
number of dark energy models have been proposed to
explain the cosmic acceleration. The simplest candidate for
dark energy is the cosmological constant (or vacuum
energy density), with which our universe will naturally
evolve into a new de Sitter phase. Finally, there has also
been flourishing interest in the duality relation of de Sitter
space, promoted by the recent success of AdS/CFT
correspondence in theoretical physics. Therefore, from
an observational and theoretical point of view, it is
rewarding to have a better understanding of the classical
and quantum properties of de Sitter space [1–23].
One of the most promising modified gravity theories is

the Gauss–Bonnet (GB) gravity (also referred to as
Einstein–GB gravity), which offers the leading order
correction to the Einstein gravity. The GB term α is
exactly the second order term in the Lagrangian of the
most general Lovelock gravity. Therefore, although α
itself is quadratic in curvature tensors, the equations of
gravitational fields are still of second order and naturally
avoid ghosts. The GB gravity possesses many important
physical properties and has been heavily studied in
gravitation and cosmology, also with emphasis in the
extended phase space [24–42].

In this paper, based on the fact that de Sitter spacetime
satisfies the first law of thermodynamics, the effective
temperature and entropy of spacetime are obtained. Using
the relationship between entropy and force [43–50], we
discussed that the entropic force between the black hole
horizon and the cosmological horizon of charged Gauss-
Bonnet black hole in de Sitter spacetime (CGBDS). Since
the entropy caused by the interaction between the two
horizons is composed of two parts, the entropic force
between the two horizons is also composed of two parts.
Some of them are proportional to the GB factor. The results
show that the entropic force between the two horizons in
CGBDS is not only related to the ratio of the location of the
two horizons, but also related to the GB terms.
By studying the entropic forces of the two parts of

CGBDS with respect to the ratio of the locations of the
event horizon, we find that they are strikingly similar to
the Lennard-Jones force between particles with respect to
the ratio of the coordinate locations of the two particles.
When the two event horizons are close to each other, that is,
when the spatial distance between the two event horizons is
small, the cosmological horizon accelerates away from the
black holes horizon under the action of entropic force.
When the locations of the two horizons are relatively small,
that is, the spatial distance between the two horizons is
large, the separation speed of the two horizons slows down
under the action of entropic force. The discovery of this
phenomenon makes us realize that the entropy of inter-
action between the black hole horizon and the cosmological
horizon, and the entropic force generated between the two
event horizons, may be one of the alternatives to accelerate
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the expansion of the universe, that is, it may be a
manifestation of dark energy. In particular, it should be
noted that in our conclusion, the entropic force between
the two horizons is proportional to the GB factor, and the
size of GB factor directly affects the entropic force between
the two horizons. If entropic force is one of the candidates
to promote the expansion of the universe, then the value of
GB factor directly affects the speed of the expansion of the
universe.
This paper is organized as follows. In Sec. II, we briefly

introduce that the thermodynamic quantities corresponding
to the black hole horizon and the cosmological horizon in
CGBDS, and give the conditions that are satisfied when the
black hole horizon and the cosmological horizon have
the same radiation temperature. In Sec. III, based on the
condition that CGBDS state parameter satisfies the first law
of thermodynamics, we give that the expression of the
effective thermodynamic quantity of CGBDS system, and
obtain the equivalent temperature expression of CGBDS.
Moreover, we find the differential equation of the entropy
of CGBDS system, and obtain the interaction term of
entropy of CGBDS system by solving the differential
equation. In Sec. IV, we discussed the entropic force
between the two horizons in CGBDS by using the entropic
force relationship, and obtained the entropy expression
between the two horizons. The curves of the entropic force
with respect to the ratio of the two horizons are compared
with the Lennard-Jones force with respect to the ratio of the
coordinates of the two particles. The Sec. V is a discussion
and summary. For simplicity, we adopt the units ℏ ¼ c ¼
kB ¼ G ¼ 1 in this paper.

II. CHARGED GAUSS-BONNET BLACK HOLE
IN DE SITTER SPACETIME

Higher derivative curvature terms occur in many occa-
sions, such as in the semiclassically quantum gravity and in
the effective low-energy action of superstring theories.
Among many theories of gravity with higher derivative

curvature terms, due to the special features, the GB gravity
has attracted much interest. The thermodynamic properties
and phase structures of GB-AdS black hole have been
briefly discussed in [35]. In Refs. [30,38], the critical
phenomena and phase transition of the charged GB-AdS
black hole have been studied extensively. In this paper, we
study the thermal properties of charged GB-dS black hole
after considering the connections between the black hole
horizon and the cosmological horizon.
The action of d-dimensional Einstein-Gauss-Bonnet-

Maxwell theory with a bare cosmological constant Λ reads

I ¼ 1

16π

Z
ddx

ffiffiffiffiffiffi
−g

p ½R − 2Λ

þ αðRμνγδRμνγδ − 4RμνRμν þ R2Þ − 4πFμνFμν�; ð2:1Þ

where the GB coupling α has dimension ½length�2 and can
be identified with the inverse string tension with positive
value if the theory is incorporated in string theory, thus we
shall consider only the case α > 0. Fμν is the Maxwell field
strength defined as Fμν ¼ ∂μAμ − ∂νAν with vector poten-
tial Aμ. In addition, let us mention here that the GB term is a
topological term in d ¼ 4 dimensions and has no dynamics
in this case. Therefore we will consider d ≥ 5 in what
follows.
The action admits a static black hole solution with metric

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2hijdxidxj; ð2:2Þ

where hijdxidxj represent the line of a d − 2-dimensional
maximal symmetric Einstein space with constant curvature
ðd − 2Þðd − 3Þk and volume Σk. Without loss of the
generality, one may take k ¼ 1, 0, and −1, corresponding
to the spherical, Ricci fiat, and hyperbolic topology of the
black hole horizon, respectively. The metric function fðrÞ
is given by [51–53]

fðrÞ ¼ kþ r2

2α̃

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 64πα̃M

ðd − 2ÞΣkrd−1
−

2α̃Q2

ðd − 2Þðd − 3Þr2d−4 þ
8α̃Λ

ðd − 1Þðd − 2Þ

s #
; ð2:3Þ

where α̃ ¼ ðd − 3Þðd − 4Þα, M and Q are the mass and
charge of black hole respectively, and pressure P

P ¼ −
Λ
8π

¼ −
ðd − 1Þðd − 2Þ

16πl2
: ð2:4Þ

Note that in order to have a well-defined vacuum solution
with M ¼ Q ¼ 0, the effective GB coefficient α̃ and
pressure P have to satisfy the following constraint

64πα̃P
ðd − 1Þðd − 2Þ ≤ 1: ð2:5Þ

When d ¼ 5, the location of the event horizon of the black
hole rþ and the location of the cosmological event horizon
rc satisfy the relation fðrþ;cÞ ¼ 0. The equations fðrþÞ ¼
0 and fðrcÞ ¼ 0 are rearranged to

M ¼ 3Σkr2þ
16π

�
kþ k2α̃

r2þ

�
−
Σkr4þΛ
32π

þ ΣkQ2

64πr2þ
ð2:6Þ
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M ¼ 3Σkr2c
16π

�
kþ k2α̃

r2c

�
−
Σkr4cΛ
32π

þ ΣkQ2

64πr2c
: ð2:7Þ

From Eqs. (2.6) and (2.7), we can obtain

M ¼ 3Σkkr2cx2

16πð1þ x2Þ þ
3Σkk2α̃
16π

þ ΣkQ2

64πr2cð1þ x2Þx2
× ð1þ x2 þ x4Þ; ð2:8Þ

Λ ¼ 6

r2cð1 − x4Þ kð1 − x2Þ − Q2ð1 − x2Þ
2r6cx2ð1 − x4Þ ; ð2:9Þ

where x ¼ rþ=rc. From Eqs. (2.3), (2.8), and (2.9), we can
obtain

f0ðrþÞ ¼
2krþð1 − x2Þ

ðr2þ þ 2α̃kÞð1þ x2Þ −
Q2½ð1þ x2Þ − 2x4�

6r3þðr2þ þ 2α̃kÞð1þ x2Þ

¼ 2krcxð1 − x2Þ
ðr2cx2 þ 2α̃kÞð1þ x2Þ

−
Q2½ð1þ x2Þ − 2x4�

6ðr2cx2 þ 2α̃kÞr3cx3ð1þ x2Þ ; ð2:10Þ

f0ðrcÞ ¼ −
2krcð1 − x2Þ

ðr2c þ 2α̃kÞð1þ x2Þ −
Q2½x2ð1þ x2Þ − 2�

6r3cx2ðr2c þ 2α̃kÞð1þ x2Þ

¼ −
2krþxð1 − x2Þ

ðr2þ þ 2α̃kx2Þð1þ x2Þ

−
x3Q2ðx2ð1þ x2Þ − 2Þ

6r3þðr2þ þ 2α̃kx2Þð1þ x2Þ : ð2:11Þ

Some thermodynamic quantities associated with the cos-
mological horizon are

Tc ¼ −
f0ðrcÞ
4π

Sc ¼
Σkr3c
4

�
1þ 6α̃k

r2c

�
; Φc ¼

Σkr4c
4

ð2:12Þ

Tc, Sc, and Φc denote the Hawking temperature, the
entropy, and the charged potential. For the black hole
horizon, associated thermodynamic quantities are

Tþ ¼ f0ðrþÞ
4π

; Sþ ¼ Σkr3cx3

4

�
1þ 6αck

r2cx2

�
;

Φþ ¼ Σkr4cx4

4
: ð2:13Þ

From Eqs. (2.1) and (2.11), we found that when the electric
charge Q satisfies

Q2 ¼ 12kr4cð1þ xÞðr2cx− 2α̃kÞx3
½r2cð1þ xÞð1þ xþ 3x2 þ x3 þ x4Þ þ 2α̃kð1þ x3Þ�

¼ 12kr4þð1þ xÞðr2þ − 2xα̃kÞ
½r2þð1þ xÞð1þ xþ 3x2 þ x3 þ x4Þ þ 2x2α̃kð1þ x3Þ� ;

ð2:14Þ

the temperatures at the two horizons have the same value,
which is

T ¼ Tþ ¼ Tc ¼
krcð1þ xÞ2ð1 − x2Þ

2π½r2cð1þ xÞð1þ xþ 3x2 þ x3 þ x4Þ þ 2α̃kð1þ x3Þ�

¼ krþxð1þ xÞ2ð1 − x2Þ
2πðr2þð1þ xÞð1þ xþ 3x2 þ x3 þ x4Þ þ 2x2α̃kð1þ x3ÞÞ : ð2:15Þ

III. THE EFFECTIVE THERMODYNAMICS
QUANTITIES OF BLACK HOLE

Considering the relation between the black hole horizon
and the cosmological horizon, we can derive the effective
thermodynamic quantities and the corresponding first law
of black hole thermodynamics

dM ¼ TeffdS − PeffdV þΦeffdQ; ð3:1Þ

here the thermodynamic volume V is that between the
black hole horizon and the cosmological horizon, namely
[22,23,54]

V ¼ Vc − Vþ ¼ Σk

4
r4cð1 − x4Þ: ð3:2Þ

Considering the expressions of entropy corresponding to
the two horizons, as well as the dimensions and α̃k terms,
we assume that the total entropy of spacetime is

S ¼ Σk

4
r3c

�
f1ðxÞ þ

6α̃k
r2c

f2ðxÞ
�
; ð3:3Þ

here the function f1ðxÞ and f2ðxÞ represents the extra
contribution from the correlations of the two horizons.
Taking Q, α̃ as constant, substituting Eqs. (2.8), (3.2), and
(3.3) into Eq. (3.1), we can obtain the effective temperature
Teff of the system
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Teff ¼
3kxrcð1 − x2 þ x4Þ − Q2

4r3cx3
ð1þ x2 − x4 þ x6 þ x8Þ

2πð1þ x2Þfr2c½ð1 − x4Þf10ðxÞ þ 3x3f1ðxÞ� þ 6α̃k½ð1 − x4Þf02ðxÞ þ x3f2ðxÞ�g
: ð3:4Þ

When Q2 satisfies equation (2.14), the temperature corresponding to the two horizons is equal. In this case, we believe that
the effective temperature of spacetime should also be radiation temperature, and

Teff ¼
krcð1þ xÞ2ð1 − x2Þ

2π½r2cð1þ xÞð1þ xþ 3x2 þ x3 þ x4Þ þ 2α̃kð1þ x3Þ� : ð3:5Þ

From Eqs. (3.4), (2.14) and Eq. (3.5), we can obtain

3x2ð1þ x5Þ þ 6α̃ckð1þ x7Þ
ð1 − x4Þ ¼ ½ð1 − x4Þf0ðxÞ þ 3x3f1ðxÞ� þ α̃ck½ð1 − x4Þf02ðxÞ þ 3x3f1ðxÞ� ð3:6Þ

Since α̃k in Eq. (3.6) is an independent variable, the same terms at both sides of Eq. (3.6) should be equal, i.e.,

ð1 − x4Þf10ðxÞ þ 3x3f1ðxÞ ¼
3x2ð1þ x5Þ
ð1 − x4Þ ; ð1 − x4Þf20ðxÞ þ x3f2ðxÞ ¼

ð1þ x7Þ
ð1 − x4Þ : ð3:7Þ

Substituting Eq. (3.7) into Eq. (3.4) to obtain the effective temperature of spacetime

Teff ¼
rckxð1 − 2x2 þ 2x4 − x6Þ − Q2

12r3cx3
ð1 − 2x4 þ 2x6 − x10Þ

2π½r2cx2ð1þ x5Þ þ 2α̃kð1þ x7Þ�

¼ rþkð1 − 2x2 þ 2x4 − x6Þ −Q2ð1 − 2x4 þ 2x6 − x10Þ=ð12r3þÞ
2π½r2þð1þ x5Þ þ 2α̃kð1þ x7Þ� : ð3:8Þ

When k ¼ 1, rþ ¼ 1, α̃k ¼ 0.05, from Eqs. (2.12), (2.13), (2.15), and (3.8), we can plot the curve Tþ;c − x, T − x, and
Teff − x in Fig. 1. From Fig. 1, we can see that the intersection of curves Tþ;c − x, T − x, and Teff − x increases with the
decrease of Q2, and the intersection of the curve approaches x → 1. When the initial conditions satisfy f1ð0Þ ¼ 1,
f2ð0Þ ¼ 1, the solution of Eq. (3.7) is

f1ðxÞ ¼
11

7
ð1 − x4Þ3=4 − 4ð1þ x7Þ − 7x3ð1þ xÞ

7ð1 − x4Þ

¼ 11

7
ð1 − x4Þ3=4 − 4ð1þ x7Þ þ 7ð1 − 2x4 − x7Þ

7ð1 − x4Þ þ 1þ x3 ¼ f̃1ðxÞ þ 1þ x3; ð3:9Þ

f2ðxÞ ¼
9ð1 − x4Þ1=4

5
−
ð4 − 5x − 5x4 þ 4x5Þ

5ð1 − x4Þ

¼ 9ð1 − x4Þ1=4
5

−
ð9 − 10x4 − x5Þ

5ð1 − x4Þ þ 1þ x ¼ f̃2ðxÞ þ 1þ x: ð3:10Þ

From Eqs. (2.12), (2.13), (3.3), (3.9), and (3.10), we can obtain that the entropy of spacetime includes not only the sum of
entropy Sþ þ Sc corresponding to the event horizon of the black hole and the cosmological event horizon, but also the
entropy S̃þ S̃1 caused by the interaction of the two event horizons

S̃ ¼ Σk

4
r3cf̃1ðxÞ; S̃1 ¼

3Σk

2
α̃krcf̃2ðxÞ: ð3:11Þ
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From Eq. (3.11), we can plot S̃ðxÞ−x, S̃1ðxÞ − x, 0 < x ≤ 1
in Fig. 2. As can be seen from Fig. 2, the two curves have
the same change rule, and the amplitude of S̃1 curve is
proportional to α̃.
From Eq. (3.1), we can obtain the effective pressure Peff

and the effective potential Φeff

Peff ¼ −
�∂M
∂V

�
Q;S

¼ −
ð∂M∂x Þrcð∂S∂rcÞx − ð∂M∂rcÞxð∂S∂xÞrc
ð∂V∂xÞrcð ∂S∂rcÞx − ð∂V∂rcÞxð∂S∂xÞrc

¼ ð1 − x2Þ½½f1ðxÞ� þ 6α̃kx2=r2þf2ðxÞ�
8πð1þ x2Þ½r2þð1þ x5Þ þ 2α̃kð1þ x7Þ�

×

�
3kx −

Q2xð1þ 2x2Þ
4r4þ

�

−
ð1 − x2Þ½f10ðxÞ þ 6α̃k=r2cf20ðxÞ�
24π½r2þð1þ x5Þ þ 2α̃kð1þ x7Þ�

×

�
3kx2 −

Q2x2

4r4þ
ð1þ x2 þ x4Þ

�
; ð3:12Þ

Φeff ¼
�∂M
∂Q

�
S;V

¼ ΣkQ
32πr2þð1þ x2Þ ð1þ x2 þ x4Þ: ð3:13Þ

IV. THE ENTROPIC FORCE OF TWO
HORIZONS OF GBDST

The entropic force of the thermodynamic system is
expressed as [43,46–50]

T

Tc

T

Teff

1.0
x

T Tc T Teff

Q2 4.64

T

Tc

T

Teff

x

T Tc T Teff

Q2 3.69

T

Tc

T

Teff

x

T Tc T Teff T Tc T Teff

Q2 2.94

T

Tc

T

Teff

x

Q2 2.11
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FIG. 1. The T − x diagram for charged Gauss-Bonnet black holes in de Sitter spacetime.

S x

S1 x

0.2 0.4 0.6 0.8 1.0
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FIG. 2. The entropy from the interaction between horizons of
black holes and our universe. In the calculate, we set kα̃ ¼ 1,
rc ¼ 1.
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F ¼ −T
∂S
∂r ; ð4:1Þ

where T is the temperature of system, r ¼ rc − rþ ¼
rcð1 − xÞ. We consider the entropic force between the
black hole horizon and the cosmological horizon. From
Eq. (3.11), we know that the entropy caused by the
interaction between cosmological horizon is

S̃ ¼ Σk

4
r3cf̃1ðxÞ; S̃1 ¼

3Σk

2
α̃krcf̃2ðxÞ: ð4:2Þ

According to the entropic force relation Eq. (4.1), we can
obtain the entropic force of interaction between the two
horizons can be expressed as

F ¼ −Teff

�∂ðS̃þ S̃1Þ
∂r

�
Teff

; ð4:3Þ

where Teff is the effective temperature of the system. From
Eq. (4.3), we can obtain

FðxÞ ¼ Teff

ð∂ðS̃þS̃1Þ∂rc Þ
x
ð∂Teff∂x Þrc − ð∂ðS̃þS̃1Þ∂x Þrcð

∂Teff∂rc Þx
ð1 − xÞð∂Teff∂x Þrc þ rcð∂Teff∂rc Þx

¼ F̃ðxÞ þ F̃1ðxÞ; ð4:4Þ

where

F̃ðxÞ ¼ Teff

ð ∂S̃∂rcÞxð
∂Teff∂x Þrc − ð∂S̃∂xÞrcð

∂Teff∂rc Þx
ð1 − xÞð∂Teff∂x Þrc þ rcð∂Teff∂rc Þx

;

F̃1ðxÞ ¼ Teff

ð∂S̃1∂rcÞxð
∂Teff∂x Þrc − ð∂S̃1∂x Þrcð

∂Teff∂rc Þx
ð1 − xÞð∂Teff∂x Þrc þ rcð∂Teff∂rc Þx

: ð4:5Þ

The interaction between the two horizons is divided into
two parts, F̃ðxÞ and F̃1ðxÞ, where F̃ðxÞ is caused by S̃, and
F̃1ðxÞ is caused by S̃1. Since S̃1 is proportional to GB factor
α̃, F̃1ðxÞ is proportional to α̃. F̃1ðxÞ is greatly affected by
GB factor α̃, when α̃ → 0, F̃1ðxÞ → 0.
In order to more clearly reflect the change rule of

entropic force with respect to the ratio x between the
two horizons, and the influence of different parameters on
the entropic force FðxÞ between the two horizons, so we
can plot F̃ðxÞ − x and F̃1ðxÞ − x for different parameters.
From Fig. 3, we find that the variation curves of F̃ðxÞ − x
and F̃1ðxÞ − x with respect to the location ratio of the two
horizons are similar and have the same variation rules, and
the amplitude of the curves is proportional to α̃.
As is shown in Fig. 3, the entropic force tends to infinity

when x → 1. This means that when the two horizons get
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FIG. 3. The entropic force changes with the ratio of the radius of the event horizon of the black hole to the radius of the cosmological
event horizon for charged Gauss-Bonnet black hole in de Sitter spacetime with different Gauss-Bonnet factor α̃ and charged Q.
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close to each other, they are affected by an infinite entropic
force, which accelerates the separation of the two event
horizons. This corresponds to what we now think of as the
beginning of the universe’s explosion, thereafter the
expansion of the universe accelerates. With the separation
of the two horizons, namely reduction of the value of x,
the entropic force between two horizon decreases. When
x ¼ x1, the entropic force between the two horizon is zero.
When the values of x continues to reduce, the entropic force
becomes negative. This case corresponds to the state that
our universe is slowing inflation. With the decrease of x,
the entropic force between the two horizons continues to
decrease, and the entropic force curve gradually approaches
the horizontal axis, and the entropic force between the two
horizons approaches zero.
Comparing Fig. 3 with the curve of Lennard-Jones forces

between two particles as they vary in location [55,56], we
find that the curves obtained by completely different
methods are so strikingly similar that the Lennard-Jones
force of the two particles is intrinsically related to the
entropic force between the two event horizons. Since the
expansion of the universe is affected by various substances
in the universe, the curve FðxÞ − x in Fig. 3 reflects the
influence of different parameters of space-time on the
entropic force between the two horizons. If the entropic
force is one of the internal forces driving the expansion of
the universe, Fig. 3 shows that the accelerated expansion of
our universe is influenced by various parameters. In
particular, under the same parameters, the amplitude of
the curve FðxÞ − x is proportional to α̃, indicating that the
force between the two horizons is proportional to the GB
factor, so the size of the GB factor α̃ is proportional to the
expansion rate of the universe.

V. DISCUSSION AND SUMMARY

According to the discussion in the Sec. IV, comparing the
entropic force curve F̃ðxÞ − x and F̃1ðxÞ − x of the location
ratio between the two horizons in GB space-time given in
Fig. 3 with the Lennard-Jones force changing with the
location curve given in literature [55,56], we find that the

two curves obtained in different ways are very similar. The
entropic force relation between the two horizons is derived
from the theory within the framework of general relativity.
It is derived from the theory of general relativity in
combination with quantum mechanics and thermodynam-
ics. The Lennard-Jones force between the two particles is
based on the experiment. Although the method used is
completely different, the results obtained by the two
particles are surprisingly similar. This conclusion indicates
that the entropic force between the two event horizons is
related to the Lennard-Jones force between the two
particles. In particular, the entropic force between the
two horizons is proportional to GB factor α̃, and the size
of α̃ plays a direct role in the acceleration between the two
horizons. If entropic force is one of the kinetic energy
driving the expansion of the universe, then the size of GB
factor α̃ is directly related to the acceleration of the
expansion of the universe.
In the framework of general relativity, the entropic force

of the interaction between the event horizon of a black hole
and the event horizon of the universe deduced by theory has
a very high similarity to the Lennard-Jones force between
two particles verified by experiment. Therefore, the con-
clusion we give reveals the internal relationship between
general relativity, quantum mechanics and thermodynam-
ics. This analogy provides a new way for us to study the
interaction between particles and the microscopic states of
particles inside black hole, as well as the relationship
between Lennard-Jones potential and the microscopic
states of particles inside a normal thermodynamic system.
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