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In this paper, we study the small-large black hole phase transition and construct the Ruppeiner geometry
for the five-dimensional charged Gauss-Bonnet-AdS black hole in the grand canonical ensemble. By
making use of the equal area law, we obtain the analytical coexistence curve of the small and large black
holes. Then the phase diagrams are examined. We also calculate the change of the thermodynamic volume
during the small-large phase transition, which indicates that there exists a sudden change among the black
hole microstructures. The corresponding normalized scalar curvature of the Ruppeiner geometry is also
calculated. Combing with the empirical observation of scalar curvature, we find that for low electric
potential, the attractive interaction dominates among the microstructures, while a high electric potential
produces repulsive interactions. In the reduced parameter space, we observe that only attractive interaction
is allowed when the coexistence region is excluded. The normalized scalar curvature also admits a critical
exponent 2 and a universal constant − 1

8
. In particular, the value of the normalized scalar curvature keeps the

same along the coexistence small and large black hole curves. So in the grand canonical ensemble, the
interaction can keep constant at the phase transition where the black hole microstructures change. These
results disclose the intriguing microstructures for the charged AdS black hole in the Gauss-Bonnet gravity.

DOI: 10.1103/PhysRevD.102.124015

I. INTRODUCTION

Since the establishment of the four thermodynamic laws
of black holes, thermodynamics and phase transition con-
tinue to be one of the increasingly active areas in black hole
physics. Hawking and Page observed a phase transition
between the pure thermal radiation and stable large black
hole [1]. Adopting the AdS=CFT correspondence [2–4],
such phase transition was interpreted as the confinement/
deconfinement phase transition of a gauge field [5].
Therefore black hole phase transition attracted much atten-
tion. Interestingly, the Hawking-Page phase transition and
van derWaals (VdW)-like phase transition were observed in
charged and rotating black holes in AdS space [6–9].
Recent study of black hole thermodynamics and phase

transitions was accompanied by the understanding of the
cosmological constant. As early as 1984, Brown and
Teitelboim first proposed that the cosmological constant
can be treated as a dynamic variable [10,11]. This idea
was put forward in Refs. [12,13]. In 2009, Kastor, Ray,
and Traschen made a significant progress that the cosmo-
logical constant was interpreted as the pressure of the black
hole system [14]. Then it was found that the first law of

thermodynamics is consistent with the Smarr relation.
Meanwhile, the black hole mass will be regarded as the
enthalpy rather the internal energy of the black hole system,
and the thermodynamic volume will be found by using the
first law [15,16]. The precise analogy between the small-large
blackhole phase transition and liquid-gas phase transitionwas
completed later by Kubiznak and Mann [17]. Subsequently,
more new black hole phase transitions and phase structures
wereobserved, such as the reentrant phase transitions, isolated
critical points, triple points, and superfluid black hole phases
[18–31] (for a recent review see [32] and references therein).
As we know, macroscopic thermodynamics of a system

originate from its microstructures. Similarly, we believe
that this also holds for the black hole systems. However, it
is well known that the entropy of a black hole is propor-
tional to the area of the event horizon rather than its
volume. The study of this property will help us to deeply
understand the underlying black hole microstructures.
There are several different approaches to derive the
Beckenstein-Hawking entropy area formula. String theory
provides a preliminary calculation by counting the number
of states of a weakly coupled D-brane system [33]. Fuzzball
theory also shows an understanding of the black hole
microstructures [34,35]. Based on the Cardy formula [36],
the entropy area formula can also be obtained [37].*weishw@lzu.edu.cn
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Among the study of the black hole microstructures, the
Ruppeiner geometry [38,39] provides a powerful tool.
By using the empirical observations of the Ruppeiner
geometry, the interactions dominated among the micro-
structures can be indicated from the scalar curvature. The
positive or negative scalar curvature corresponds to repul-
sive or attractive interaction. Combining with the small-
large black hole phase transition, we constructed the
Ruppeiner geometry for the charged AdS black holes
by assuming that black hole is constituted by some
unknown molecules. Then the properties of the black hole
microstructures were uncovered [31,40]. This approach
has also been generalized to different black hole back-
grounds [41–57].
Since the critical phenomenon was not observed in our

previous paper [31], we reconsidered the Ruppeiner geom-
etry for the charged AdS black holes. After constructing
the new geometry, we found that besides the attractive
interaction, the repulsive interaction can also dominate
between the black hole molecules. The critical exponents
and universal constant were also studied in detail [58].
Subsequently, this novel approach was applied to other
black holes in AdS space [59–70].
In particular, this approach was also applied to the five-

dimensional neutral Gauss-Bonnet (GB) AdS black hole
[71]. Employing the analytical coexistence curve, we
observed that only the attractive interaction dominates
among the black hole molecules. Another intriguing result
shows that among the small-large black hole phase tran-
sition, the microstructures gain a huge change, while the
interactions keep unchanged. This gives a first example that
the change of the microstructures has no influence on the
microscopic interactions. It also uncovers the characteristic
properties of the GB gravity.
Since the charge is absent in the study of [71], we here

would like to consider the black hole microstructures when
the charge is included, and to study whether the result of
[71] holds. We deal with the five-dimensional charged
GB-AdS black holes. After constructing the equal area law,
we find that there exists an analytical coexistence curve in
the grand ensemble. It is very helpful for exactly under-
standing the characteristic properties of the GB gravity.
The structure of this paper is as follows. In Sec. II, we

briefly review the thermodynamic properties of the five-
dimensional charged GB-AdS black hole. In Sec. III, we
construct the equal area law in the P − V plane, and obtain
the analytical coexistence curve of the small-large black
hole phase transition. The critical exponents are also
calculated. The Ruppeiner geometry is constructed in
Sec. IV. By calculating the corresponding scalar curvature,
the properties of the black hole microstructures are inves-
tigated, and the critical phenomena of the normalized scalar
curvature are analyzed. Finally, the conclusions and dis-
cussions are given in Sec. V. Throughout this paper, we
adopted the units ℏ ¼ c ¼ kB ¼ G5 ¼ 1.

II. THERMODYNAMICS OF FIVE-DIMENSIONAL
CHARGED GAUSS-BONNET-ADS BLACK HOLES

In this section, we present a brief review of the
thermodynamics of the five-dimensional charged GB-
AdS black hole [72–74]. This black hole solution is
described by the following action:

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

16πG5

ðR − 2Λþ αGBLGBÞ − Lmatter

�
;

ð1Þ

where

LGB ¼ RμνγδRμνγδ − 4RμνRμν þR2; ð2Þ

Lmatter ¼ 4πF μνF μν: ð3Þ

The Maxwell field strength is defined as F μν ¼ ∂μAν −∂νAμ with Aμ the vector potential. The line element is
given by

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2
þ r2ðdθ21 þ sin2θ1ðdθ22 þ sin2θ2dθ23ÞÞ; ð4Þ

with

fðrÞ ¼ 1þ r2

2α

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32αM

3πr4
−
αQ2

3r6
−
16παP

3

s !
; ð5Þ

where the parametersM and Q are the black hole mass and
charge, respectively. Pressure P is related to the cosmo-
logical constant as P ¼ − Λ

8π and α ¼ 2αGB is the GB
coupling. Here we only consider the case of positive αGB.
The radius rh of the black hole event horizon is the

largest root of fðrhÞ ¼ 0. In terms of rh, the black hole
mass reads

M ¼ 4πð3αr2h þ 4πQr6h þ 3r4hÞ þ πQ2

32r2h
: ð6Þ

The corresponding Hawking temperature is

T ¼ 1

4π
f0ðrhÞ ¼ −

−32πPr6h þQ2 − 12r4h
48παr3h þ 24πr5h

: ð7Þ

In the extended phase space, the black hole mass acts as the
enthalpy H ¼ M of the system. The entropy S, thermo-
dynamic volume V and electric potential Φ can be
calculated as

S ¼
Z

T−1
�∂H
∂r
�

Q;P
dr ¼ 3απ2rh þ

1

2
π2r3h; ð8Þ
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V ¼
�∂H
∂P
�

S;Q
¼ π2r4h

2
; ð9Þ

Φ ¼
�∂H
∂Q
�

S;P
¼ πQ

16r2h
: ð10Þ

In terms of Φ, the enthalpy H and temperature T can be
rewritten as

H ¼ 1

8
πð3αþ 3r2h þ 4Pπr4hÞ þ

8r2hΦ2

π
; ð11Þ

T ¼ rhðπ2ð3þ 8Pπr2hÞ − 64Φ2Þ
6π3ð2αþ r2hÞ

: ð12Þ

It is easy to check that those thermodynamic quantities
satisfy the following first law and Smarr relation

dH ¼ TdSþ VdPþAdα; ð13Þ

2H ¼ 3TS − 2PV þ 2Aα; ð14Þ

where A is the conjugate quantity to the GB coupling α,
which is given by

A ¼ πð−32πPr6h þ 6αr2h − 9r4h þQ2Þ
8r2hð2αþ r2hÞ

: ð15Þ

From Eq. (12), we can express P as a function of T, V, α,
and Φ:

P ¼ ð64Φ2 − 3π2Þ ffiffiffi
2

p

16π2V
1
2

þ 3 × 2
3
4π

1
2T

8V
1
4

þ 3 × 2
1
4π

3
2Tα

4V
3
4

: ð16Þ

The critical point is determined by the following condition:

ð∂VPÞT;α;Φ ¼ ð∂V;VPÞT;α;Φ ¼ 0; ð17Þ

which gives

Tc¼
3π2−64Φ2

6
ffiffiffi
6

p ffiffiffi
α

p
π3

; Pc¼
3π2−64Φ2

144απ3
; Vc¼18α2π2: ð18Þ

When jΦj < Φ� ¼
ffiffiffi
3

p
π=8, we have Tc > 0 and Pc > 0.

While when jΦj ≥ Φ�, the Tc and Pc will be negative and
thus the critical point will be unphysical. In Sec. IV, we will
see that the value of Φ� not only affects the phase transition
behavior of the black hole, but also changes the interaction
force between the black hole molecules.

III. EQUAL AREA LAW AND PHASE DIAGRAM

In this section, we would like to construct the equal area
law in the P − V plane and then obtain the analytical
coexistence curve in the grand canonical ensemble, where
the electric potential Φ is fixed.
There are two reasons why we need the equal area law.
(i) There may be a negative pressure part of the

isothermal curve when T < Tc [see Fig. 1(a)]. We
believe that negative pressure is unphysical and
needs to be removed.

(ii) When the temperature is lower than the critical
temperature, there is an unstable region
[ð∂VPÞT;α;Φ > 0] between the inflection points of
the isothermal curve [see Fig. 1(b)].

As done by Maxwell, we can draw an appropriate hori-
zontal line for each isothermal curve. It is required that
these two areas constructed by the curve and horizontal line
are equal. Then the temperature and pressure corresponding
to the horizontal line is that of the phase transition.
This technique is called the Maxwell equal area law.

T < Tc

T < Tc

T = Tc

0.00 0.01 0.02 0.03 0.04

–0.2

0.0

0.2

0.4

0.6

V

P

(a)

I

II

Vs Vl

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.270

0.275

0.280

0.285

0.290

V

P

(b)

FIG. 1. (a) The isotherms in the P-V plane with different values of the temperature T. The red part of the curve corresponds to negative
pressure. (b) The equal area law in the P-V plane at temperature T ¼ 0.293, where areas I and II are equal. Vs and Vl correspond to the
volumes of the coexistence small and large black holes, respectively. The electric potential Φ ¼ 0.5 and GB coupling α ¼ 0.01.
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Adopting this law, the above two problems will be
naturally solved.
Alternatively, the phase transition can be obtained by

examining the behavior of the Gibbs free energy. In
the grand canonical ensemble, the Gibbs free energy is
defined as

G ¼ H − TS −ΦQ: ð19Þ

We depict G in Fig. 2 as a function of the temperature.
When the temperature is lower than the critical temperature,
there presents a swallowtail behavior indicating a first-
order phase transition. While for higher temperature the
swallowtail behavior disappears. Therefore, by determining
the intersection point A of the swallowtail behavior, we can
obtain the temperature and pressure of the phase transition.
As shown in Ref. [75], the phase transition point deter-
mined by the equal area law and the swallowtail behavior of
the Gibbs free energy are consistent with each other. It is
worth noting that here we exclude the pure thermal
radiation phase in our study.

A. Coexistence curve and equal area law

Here we construct the equal area law in the P-V plane
and obtain the analytical coexistence curve in the grand
canonical ensemble.
By using the first law of the black hole, the Gibbs free

energy has the following differential form:

dG ¼ −SdT þ VdPþAdα −QdΦ: ð20Þ

Considering that E and E0 are two thermodynamic coex-
istence states of a first order phase transition, one easily has
ΔG ¼ GE − GE0 ¼ 0. Integrating from state E to state E0,
we have

−
Z

TE0

TE

SdT þ
Z

PE0

PE

VdPþ
Z

αE0

αE

Adα −
Z

ΦE0

ΦE

QdΦ

¼
Z

GE0

GE

dG ¼ 0: ð21Þ

At a fixed T, α, and Φ, one can obtain the following equal
area condition:

Z
PE0

PE

VdP ¼ 0; ð22Þ

or

Z
VE0

VE

PdV ¼ PVE
ðVE0 − VEÞ; ð23Þ

where PVE
is the pressure of the phase transition. Here the

black hole admits a small-large black hole phase transition,
so we mark VE as Vs and VE0 as V l for simplicity. Further
we denote the phase transition pressure PVE

as P�.
Equation (23) actually describes the Maxwell equal area
law. For example these two areas I and II depicted in
Fig. 1(b) are equal. Inserting Eq. (16) into Eq. (23), we have

P�ðV l − VsÞ ¼ 3 × 21=4π3=2TðV1=4
l − V1=4

s Þα

þ ð−3π2 þ 64Φ2Þ
4
ffiffiffi
2

p
π2

ðV1=2
l − V1=2

s Þ

þ
ffiffiffi
π

p
21=4

TðV3=4
l − V3=4

s Þ: ð24Þ

Moreover, the small and large black hole states satisfy the
state equation, which gives

P� ¼ ð64Φ2 − 3π2Þ ffiffiffi
2

p

16π2V
1
2
s

þ 3 × 2
3
4π

1
2T

8V
1
4
s

þ 3 × 2
1
4π

3
2Tα

4V
3
4
s

; ð25Þ

P� ¼ ð64Φ2 − 3π2Þ ffiffiffi
2

p

16π2V
1
2

l

þ 3 × 2
3
4π

1
2T

8V
1
4

l

þ 3 × 2
1
4π

3
2Tα

4V
3
4

l

: ð26Þ

Solving these three equations (24), (25), and (26), we will
obtain the coexistence curve of the small and large black
holes. In order to solve these equations, we denote Vs ¼ a4

and V l ¼ b4. Then the Eqs. (24)–(26) reduce to

P > PC

P = PC

P < PC

A

0.0 0.1 0.2 0.3 0.4 0.5
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

T

G

FIG. 2. The Gibbs free energy for P > Pc (black dot-dashed
line), P ¼ Pc (blue dashed line), and P < Pc (red solid line),
where A is an intersection point.
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P� ¼ 1

−a4 þ b4

�
−
ða3 − b3Þ ffiffiffi

π
p

21=4
Tþ 3 × 21=4ð−aþ bÞπ3=2Tαþ ða2 − b2Þð3π2 − 64Φ2Þ

4
ffiffiffi
2

p
π2

�
; ð27Þ

P� ¼ 6 × 23=4a2π5=2Tþ 12 × 21=4π7=2Tαþ ffiffiffi
2

p
að−3π2 þ 64Φ2Þ

16a3π2
; ð28Þ

P� ¼ 6 × 23=4b2π5=2Tþ 12 × 21=4π7=2Tαþ ffiffiffi
2

p
bð−3π2 þ 64Φ2Þ

16b3π2
: ð29Þ

Combining with them, we arrive at

12ða4 þ 3a3bþ 6a2b2 þ 3ab3 þ b4Þπ7=2Tα
þ 21=4abð−3ðaþ bÞ3π2 þ 2 × 21=4abð3a2 þ 4abþ 3b2Þπ5=2T þ 64ðaþ bÞ3Φ2Þ ¼ 0; ð30Þ

12ða3 − b3Þπ7=2Tαþ 21=4aða − bÞbð−3ðaþ bÞπ2 þ 6 × 21=4abπ5=2T þ 64ðaþ bÞΦ2Þ ¼ 0: ð31Þ

Further, Eqs. (30) and (31) can be expressed as

T ¼ abðaþ bÞ3ð3π2 − 64Φ2Þ
2 × 21=4π5=2ða2b2ð3a2 þ 4abþ 3b2Þ þ 3

ffiffiffi
2

p ða4 þ 3a3bþ 6a2b2 þ 3ab3 þ b4ÞπαÞ ; ð32Þ

T ¼ abðaþ bÞð3π2 − 64Φ2Þ
6 × 21=4π5=2ða2b2 þ ffiffiffi

2
p ða2 þ abþ b2ÞπαÞ : ð33Þ

Combing Eqs. (32) and (33), we have the relation

ab ¼ 3
ffiffiffi
2

p
πα: ð34Þ

By substituting this relation into Eq. (30), we get

Vs ¼
�
3π2 − 64Φ2 þ X − T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−384π6αþ ð3π2−64Φ2þXÞ2

T2

q

8 × 21=4π5=2T

�4

; ð35Þ

V l ¼
�
3π2 − 64Φ2 þ X þ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−384π6αþ ð3π2−64Φ2þXÞ2

T2

q

8 × 21=4π5=2T

�4

; ð36Þ

where

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9π4 − 192π6T2α − 384π2Φ2 þ 4096Φ4

p
: ð37Þ

Plugging Vs and V l into Eq. (24), we obtain the analytical form of the coexistence curve in the P-T plane

P ¼ −
−3π2 þ 64Φ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9π4 − 192π6T2α − 384π2Φ2 þ 4096Φ4

p

96π3α
: ð38Þ

The coexistence curve is described in Fig. 3(a). Above the curve is the small black hole phase and below it is for the large
black hole phase. The curve starts at the origin and ends at the critical point denoted by a black dot. Moreover, in the P-V
and T-V planes, the coexistence curves read

P ¼ ð ffiffiffi
2

p
V3=2 − 24πVαþ 18

ffiffiffi
2

p
π2V1=2α2Þð3π2 − 64Φ2Þ

8π2ðV2 − 252π2Vα2 þ 324π4α4Þ ; ð39Þ
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T ¼ V1=4ð ffiffiffi
2

p
V3=2 − 18πVα − 54

ffiffiffi
2

p
π2

ffiffiffiffi
V

p
α2 þ 108π3α3Þð3π2 − 64Φ2Þ

2 × 23=4π5=2ðV2 − 252π2Vα2 þ 324π4α4Þ : ð40Þ

For an example, we show the phase diagram in theP-V plane
in Fig. 3(b). The shadow region denotes the coexistence
regions of the small and large black holes. The left and right
regions are for the small and large black holes, respectively.
In the T-V plane, the phase diagram has similar shape.

B. Critical exponent

As we know, the critical exponents reveal the universal
properties of the system near the critical point. So in this
section, we would like to examine them.
From Eqs. (35) and (36), it is obvious that Vs and V l have

analytical forms. Expanding them around the critical point,
we have

ðVs−VcÞ¼−
432ð61=4π7=2α9=4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3π2−64Φ2
p ðTc−TÞ1=2

þ5184
ffiffiffi
6

p
π5α5=2

3π2−64Φ2
ðTc−TÞþOðTc−TÞ3=2; ð41Þ

ðV l−VcÞ¼
432ð61=4π7=2α9=4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3π2−64Φ2
p ðTc−TÞ1=2

þ5184
ffiffiffi
6

p
π5α5=2

3π2−64Φ2
ðTc−TÞþOðTc−TÞ3=2: ð42Þ

Obviously, near the critical point, ðVs − VcÞ and ðV l − VcÞ
share the same critical exponent of 1

2
. These coefficients

depend on the electric potential Φ and GB coupling α.
Interestingly, the absolute values of these two coefficients
are equal to each other.
On the other hand, we introduceΔV ¼ V l − Vs to denote

the change of the volume among the phase transition. Its
behavior is shown in Fig. 4. We observe that ΔV decreases
with the temperature or the pressure. While when the
critical point is approached, ΔV ¼ 0, indicating that the
small and large black hole phases cannot be clearly
distinguished. Combining with Eqs. (41) and (42), we
obtain

ΔV¼864×61=4π7=2α9=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π2−64Φ2

p ðTc−TÞ1=2þOðTc−TÞ3=2: ð43Þ

This reveals that when T ¼ Tc, ΔV ¼ 0. Moreover, at the
critical point, ΔV has a critical exponent 1

2
.

Actually, the critical exponent can also be obtained
around the critical pressure. Solving Eq. (39), one easily
gets

Vs ¼
9π4ð1þ 64Pπαð14Pπα − 1ÞÞ þ 384π2ð32Pπα − 1ÞΦ2 þ 4096Φ4 − Y

64P2π4
; ð44Þ

V l ¼
9π4ð1þ 64Pπαð14Pπα − 1ÞÞ þ 384π2ð32Pπα − 1ÞΦ2 þ 4096Φ4 þ Y

64P2π4
; ð45Þ

Critical point
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0.04
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0.03

0.04

V
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FIG. 3. Phase diagram for the charged GB-AdS black hole in the grand canonical ensemble with Φ ¼ 0.5 and α ¼ 0.1. (a) The
coexistence curve in the P-T plane. (b) The coexistence curve in the P-V plane. The shadow region is the coexistence phase of the small
and large black holes. Black dots denote the critical point.
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where

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−3π2 þ 48Pπ3αþ 64Φ2Þð−3π2 þ 96Pπ3αþ 64Φ2Þ2ð3π2ð48Pπα − 1Þ þ 64Φ2Þ

q
: ð46Þ

Expanding them around the critical pressure Pc, we obtain

ðVs − VcÞ ¼ −
432ð ffiffiffi

6
p

π7=2α5=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π2 − 64Φ2

p ðPc − PÞ1=2 þ 31104π5α3

3π2 − 64Φ2
ðPc − PÞ þOðPc − PÞ3=2; ð47Þ

ðV l − VcÞ ¼
432ð ffiffiffi

6
p

π7=2α5=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π2 − 64Φ2

p ðPc − PÞ1=2 þ 31104π5α3

3π2 − 64Φ2
ðPc − PÞ þOðPc − PÞ3=2: ð48Þ

Obviously, the critical exponent is 1
2
, which is the same as

that around the critical temperature. Similarly, near the
critical pressure, ΔV has the following form:

ΔV ¼ 864
ffiffiffi
6

p
π7=2α5=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3π2 − 64Φ2
p ðPc − PÞ1=2 þOðPc − PÞ3=2: ð49Þ

The critical exponent keeps unchanged. The detailed
behavior of ΔV can also be found in Fig. 4(b).
Furthermore, in the reduced parameter space, Eqs. (43)

and (49) can be simplified to

ΔṼ ¼ 8
ffiffiffi
6

p
ð1 − T̃Þ12 þOð1 − T̃Þ32; ð50Þ

ΔṼ ¼ 4
ffiffiffi
6

p
ð1 − P̃Þ12 þOð1 − P̃Þ32; ð51Þ

where ΔṼ ¼ ΔV
Vc
, T̃ ¼ T

Tc
, P̃ ¼ P

Pc
. This result is identical

with the five-dimensional neutral GB-AdS black hole [71],
which means that whether the black hole is charged or not,
they all behave exactly the same near the critical point in
the reduced parameter space.

IV. RUPPEINER GEOMETRY

Although we do not know how quantum gravity theory
describes the microscopic states of black holes, we can
explore the interaction between black hole molecules
by making use of the popular thermodynamic tool—
Ruppeiner geometry.
The Ruppeiner geometry was introduced to describe

interparticle interactions in a thermodynamic system
[38,39]. It was the first to systematically calculate the
thermodynamic scalar curvature R [76]. The sign of R
corresponds to the interactions between two interparticles
of the system. For example, positive or negative R indicates
a repulsive or attractive interaction [77], and R ¼ 0 shows a
system without interaction. Moreover, R is also linked to
the correlation length near the critical point.
Let us start with the probability expression of a system

fluctuating deviation from equilibrium [78]

Pprobability ∝ e−
1
2
Δl2 ; ð52Þ

with

Tc
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FIG. 4. The change of the thermodynamic volumeΔV among the black hole phase transition withΦ ¼ 0.5 and α ¼ 0.01. (a)ΔV vs T.
(b) ΔV vs P.
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Δl2 ¼ −gμνΔxμΔxν; ð53Þ

gμν ¼
∂2S

∂xμ∂xν : ð54Þ

Here Δl2 is the thermodynamic line element, gμν is the
thermodynamic metric tensor, xμ denotes the independent
fluctuating thermodynamic variables. As we can see in
Eq. (52), the smaller the line element Δl2 is, the greater the
probability of a fluctuation away from equilibrium, and
thus it means that the line element Δl2 measures the
distance between two neighboring fluctuation states in
the thermodynamic parameter space.
Since (54) is similar to the metric tensor in the

Riemannian geometry, it allows us to construct the
Christoffel symbol, Riemann curvature tensor, Ricci tensor,
and Riemann scalar curvature, which are given by

Γσ
μν ¼

1

2
gσρð∂νgρμ þ ∂μgνρ − ∂ρgμνÞ; ð55Þ

Rρ
μνσ ¼ ∂μΓ

ρ
νσ − ∂νΓ

ρ
μσ þ Γλ

σνΓ
ρ
μλ − Γλ

σμΓ
ρ
νλ; ð56Þ

Rμν ¼ Rλ
μλν; ð57Þ

R ¼ gμνRμν: ð58Þ

Note that in Eq. (56), we can also define a Riemann
curvature tensor with the opposite sign. In this paper, we
adopt the same definition as that given in [39], where R is
positive (negative) when the interaction between particles is
repulsive (attractive).
Now we choose temperature T and thermodynamic

volume V as the fluctuation coordinates and thus
x1 ¼ T, x2 ¼ V. Then the line element can be expressed
in the following form [59,71]:

Δl2 ¼ −
1

T

�∂2F
∂T2

�
ΔT2 þ 1

T

�∂2F
∂V2

�
ΔV2; ð59Þ

where the Helmholtz free energy is F ¼ U − TS −QΦ
with U the internal energy of the system. We also have
dF ¼ −SdT − PdV þAdα −QdΦ. By using the heat
capacity at constant volume, CV ¼ Tð∂TSÞV , the line
element will be of the following form:

Δl2 ¼ CV

T2
ΔT2 −

ð∂VPÞT
T

ΔV2: ð60Þ

Then following Eqs. (55)–(58), the scalar curvature can be
calculated as

R ¼ 1

2C2
Vð∂VPÞ2

½Tð∂VCVÞ2ð∂VPÞ − TCVð∂VCVÞð∂V;VPÞ2 þ Tð∂VPÞð∂TCVÞð∂VP − T∂T;VPÞ

þ CVðð∂VPÞ2 − T2ð∂T;VPÞ2 − 2Tð∂VPÞð∂V;VCV − T∂T;T;VPÞÞ�: ð61Þ

From Eqs. (8) and (9), we can see that when fixing the volume V and the GB coupling α, dS equals to zero, and thus the heat
capacity CV ¼ T ð∂S∂TÞV vanishes. Under this case, the metric coefficient for the first term of Eq. (60) is zero and its inverse is
diverging. In order to remove the influence of vanishing CV and uncover the black hole microstructure, we follow the
treatment of Ref. [58] and construct the normalized scalar curvature

RN ¼ R � CV ¼ ð∂VPÞ2 − T2ð∂T;VPÞ2 þ 2T2ð∂VPÞð∂T;T;VPÞ
2ð∂VPÞ2

: ð62Þ

Plugging Eq. (16) into it, the normalized scalar curvature becomes

RN ¼ −
V1=4ð3π2 − 64Φ2Þð−3 × 21=4π2V1=4 þ 6

ffiffiffi
2

p
π5=2T

ffiffiffiffi
V

p þ 36π7=2Tαþ 64 × 21=4V1=4Φ2Þ
23=4ð−3 × 21=4π2V1=4 þ 3

ffiffiffi
2

p
π5=2T

ffiffiffiffi
V

p þ 18π7=2Tαþ 64 × 21=4V1=4Φ2Þ2 : ð63Þ

Combining with the physical interpretation of the
scalar curvature, we can test the properties of the black
hole microstructure. Next, we will investigate the relation-
ship between the normalized scalar curvature and the
electric potential to obtain the information of the black
hole microstructure in the grand canonical ensemble.
From (63), one can find that RN depends on Φ2, so
the properties of the black hole microstructure are only

affected by the absolute value of Φ, while ignored with
its sign.
Next, we will examine the behavior of the normalized

scalar curvature RN. Let us first consider the case that RN
changes with the electric potential Φ. For the purpose, we
describe the normalized scalar curvature as a function of Φ
for fixed T ¼ 0.1 and α ¼ 0.1 in Fig. 5. From the figure, we
find three interesting phenomena:
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(i) Each curve of different V merges at the point
ðΦ; RNÞ ¼ ð ffiffiffi

3
p

π=8; 0Þ. Also at this point, RN
vanishes. This result states that the black hole
system at this point is similar to the ideal gas, where
no interaction exists among its microstructures.
Moreover, from Eq. (63), we find that this property
is a universal result and independent of T, V,
and α.

(ii) When 0 < Φ <
ffiffiffi
3

p
π=8, we have RN < 0, which

indicates that in this parameter range, the attractive
interaction dominates among the black hole micro-
structures. It is also can be found that jRNj increases
with the thermodynamic volume.

(iii) When Φ >
ffiffiffi
3

p
π=8, we observe a positive RN.

Therefore, the dominated interaction is repulsive.
RN also increases with V. One thing worth noting is
that in this parameter range the critical temperature
and pressure are negative. So the small-large black
hole phase transition does not exist.

Next, we will study the normalized scalar curvature in
the T-V phase diagram and investigate the black hole
microstructure for the charged GB-AdS black hole in the
grand canonical ensemble. Before examining RN, we list
three characteristic curves

(i) Coexistence curve. We have obtained the coexist-
ence curves in the T-V plane [see Eq. (40)].

(ii) Spinodal curve defined by ∂VP ¼ 0. It can be seen
from Eq. (62) that the normalized scalar curvature
diverges at the spinodal curve. Combining with the

equation of state (16), the spinodal curve in the T-V
plane reads

Tsp ¼ 21=4V1=4ð3π2 − 64Φ2Þ
3π5=2ð ffiffiffi

2
p ffiffiffiffi

V
p þ 6παÞ : ð64Þ

(iii) Sign-changing curve corresponding to RN ¼ 0. This
sign-changing curve divides the T-V plane into two
regions of positive and negative RN, respectively.
Solving RN ¼ 0, we get

T0 ¼
Tsp

2
¼ V1=4ð3π2 − 64Φ2Þ

3 × 23=4π5=2ð ffiffiffi
2

p ffiffiffiffi
V

p þ 6παÞ : ð65Þ

It is clear that the relation Tsp ¼ 2T0 holds for different
black hole backgrounds [58,60,71]. After a simple calcu-
lation, we find that if the pressure has a linear relation with
the temperature, the relation Tsp ¼ 2T0 will hold by using
the expression (62) of the normalized scalar curvature.
Now we list these three characteristic curves in Fig. 6 for

Φ ¼ 0.1, 0.3, 0.5, and 0.6. The coexistence, spinodal, and
sign-changing curves are, respectively, denoted with the red
solid, blue dashed, and black dot-dashed curves. The
shadow region is for positive RN and the other region
has negative RN. Since we do not know whether the
equation of state still holds or not in the coexistence
regions (below the red curves in Fig. 6), we exclude them.
After this consideration, these regions of positive scalar
curvature will be excluded, so for this black hole, only the
attractive interaction dominates among the black hole
microstructures. This result is similar to that of the five-
dimensional neutral GB-AdS black hole [71], and thus the
electric potential or the charge does not affect the type of
interactions. Moreover, from Fig. 6, we can find that the
critical temperature decreases with Φ; thus the coexistence
region shrinks. On the other hand, when Φ >

ffiffiffi
3

p
π=8, the

small-large black hole phase transition disappears, and the
properties of the black hole system get significant change.
In the parameter range, the normalized scalar curvature
becomes positive, so repulsive interaction dominates
among the black hole microstructures.
It is also important to examine the behavior of RN along

the coexistence curve and near the critical point.
Substituting Eqs. (35) and (36) into (63), we find that
the normalized scalar curvatures along the coexistence
small and large black hole curves are the same

RN ¼ −
V1=4ð3π2 − 64Φ2Þð−3 × 21=4π2V1=4 þ 6

ffiffiffi
2

p
π5=2T

ffiffiffiffi
V

p þ 36π7=2Tαþ 64 × 21=4V1=4Φ2Þ
23=4ð−3 × 21=4π2V1=4 þ 3

ffiffiffi
2

p
π5=2T

ffiffiffiffi
V

p þ 18π7=2Tαþ 64 × 21=4V1=4Φ2Þ2 : ð66Þ

V = 0.001

V = 0.01

V = 0.1

V = 1

3 /8, 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
–10
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–6

–4

–2

0
R N

FIG. 5. The normalized scalar curvature RN changes with the
electric potential Φ for different volumes. All curves intersect
at the same point ðΦ; RNÞ ¼ ð ffiffiffi

3
p

π=8; 0Þ. We have set T ¼ 0.1
and α ¼ 0.1.
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The corresponding normalized scalar curvature is plotted in
Fig. 7. When increasing the temperature from zero to its
critical values, RN starts at a negative value and then
decreases with T. At the critical temperature, it goes to
negative infinity. This behavior of RN is consistent with that
of the five-dimensional neutral GB-AdS black hole [71], so
it seems that the interactions keep unchanged even when
the microstructures get a huge change among the black hole
phase transition for the charged GB-AdS black hole. This
result is also expected to be examined for GB gravity in
other dimensions.
Near the critical point, we expand RN as

RN ¼ −
ð3π2 − 64Φ2Þ2

1728π6α
ðTc − TÞ−2 þOðTc − TÞ−1: ð67Þ

In the reduced parameter space, it reads
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FIG. 6. The coexistence curves (red solid curves), spinodal curves (blue dashed curves), and sign-changing curves (black dot-dashed
curves) with α ¼ 0.1. In the shadow regions, RN is positive; otherwise, it is negative. The coexistence region decreases with Φ. When
Φ ¼ ffiffiffi

3
p

π=8, the coexistence region disappears. (a) Φ ¼ 0.1. (b) Φ ¼ 0.3. (c) Φ ¼ 0.5. (d) Φ ¼ 0.6.
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FIG. 7. Behavior of RN along the coexistence small or large
black hole curves for Φ ¼ 0.5 and α ¼ 0.01. Note that these two
curves coincide with each other.
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RN¼−
1

8
ð1− T̃Þ−2−13

8
ð1−T̃Þ−1−27

32
þOð1−T̃Þ; ð68Þ

where T̃ ¼ T
Tc
. That means RN has a universal exponent 2

near the critical point. Ignoring the high orders, we obtain
the following relation:

RNð1 − T̃Þ2 ¼ −
1

8
: ð69Þ

This constant is the same as the VdW fluid, four-
dimensional charged AdS black hole and five-dimensional
neutral GB-AdS black hole [71]. Furthermore, the normal-
ized scalar curvature along the coexistence curve can be
expressed as a function of the volume V. Substituting
Eq. (40) into Eq. (63), we have

RN ¼ −
4ðV2 − 252π2Vα2 þ 324π4α4ÞðV2 − 9

ffiffiffi
2

p
πV3=2α − 36π2Vα2 − 162

ffiffiffi
2

p
π3

ffiffiffiffi
V

p
α3 þ 324π4α4Þ

ðV2 − 18
ffiffiffi
2

p
πV3=2αþ 180π2Vα2 − 324

ffiffiffi
2

p
π3

ffiffiffiffi
V

p
α3 þ 324π4α4Þ2 ; ð70Þ

which is independent of the electric potential Φ. For fixed
V and α, the value of the normalized scalar curvature is
uniquely determined, and thus there exists a degeneracy of
Φ. On the other hand, we show the coexistence curve in
the T −Φ plane as shown in Fig. 8. One can see that T
decreases with Φ. Meanwhile, the normalized scalar
curvature remains unchanged along the coexistence curve.
One possible reason is that with the increase of the
temperature, the interaction and thermal motion have the
same influence on the black hole microstructure.

V. CONCLUSIONS

In the present paper, we have analytically studied the
phase transition for five-dimensional charged GB-AdS
black holes in the grand canonical ensemble.
At first, we constructed the equal area law on each

isothermal curve. The analytical coexistence curve was
obtained in the P-T plane. Based on it, the phase diagrams
in the P-V and T-V planes were investigated. Further, the
change of the thermodynamic volume ΔV among the
small-large black hole phase transition was calculated.
The results show that ΔV has a universal exponent of 1

2

near the critical temperature and pressure. Another inter-
esting result is that in the reduced parameter space, ΔV has
the same expansion behavior as that of the uncharged
GB-AdS black hole.
Then we constructed the Ruppeiner geometry for the

charged GB-AdS black hole in the grand canonical
ensemble. The corresponding normalized scalar curvature

was calculated. For small Φ, RN is negative, which implies
that the attractive interaction dominates among the black
hole microstructures. While when Φ is larger than

ffiffiffi
3

p
π=8,

the interaction will become repulsive. In the T-V phase
diagram, we examined the scalar curvature. Three charac-
teristic curves, the coexistence, spinodal, and sign-
changing curves were obtained. Employing them, we
discussed the type of the interaction in the parameter
space. Since the region of positive RN always falls in
the coexistence region, only attractive interaction domi-
nates among the black hole microstructures. This result is
the same as that of the neutral GB-AdS black holes, while
different from the charged AdS black holes.
The critical behavior of RN was also studied. Near the

critical point, RN goes to negative infinity, and has a critical
exponent 2. Moreover, we observed that RNð1 − T̃Þ2 equals
− 1

8
, which is the same as neutral GB-AdS black holes, so it

seems that the charge has no influence on the critical
behavior of RN for the five-dimensional charged GB-AdS
black hole. These results uncover the properties of the black
hole microstructure in the grand canonical ensemble. The
study is also worth it to generalize to other higher dimen-
sional neutral and charged GB-AdS black holes.
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