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We investigate the escape probabilities of the photons near the horizon of the Kerr-Sen black hole.
We find that the escape probabilities of the photons are nonzero in the event horizon limit of the
extreme Kerr-Sen black hole if the light sources are near the equator. We show that the escape
probability of a photon increases with the increasing radial position of the light source. It is also
uncovered that the escape probability decreases if the light source with constant radius moves from the
equatorial plane to the pole. Besides, we discover that the escape probability of a photon in the Carter
frame is always greater than the one in the locally nonrotating frame, except on the pole, where they are
equal.
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I. INTRODUCTION

In a recent work [1], Kota Ogasawara et al. studied the
escape probability of a photon emitted from a light source
that is at rest in a locally nonrotating frame (LNRF) near the
event horizon of the Kerr-Newman black hole. Based on the
assumption that all photons are emitted isotropically, they
found that the escape probability of a photon emitted from
an extreme Kerr-Newman black hole is nonzero in the
condition that a > 1=2 with a the spin per unit mass of the
black hole. Specifically, it was obtained that the escape
probability becomes a maximum value approximated to
30% if a ¼ 1. In other conditions, i.e., 0 ≤ a ≤ 1=2 and the
Kerr-Newman black hole is nonextreme, the escape prob-
ability of the photon in the horizon limit is zero. According
to the work, if the Carter constant is zero, the result on the
escape probability of a photon emitted isotropically but
confined in the equatorial plane of a Kerr black hole in
Ref. [2] can be reproduced.
Recently, the Event Horizon Telescope collaboration

released their observation of the shadow of the super-
massive black hole candidate in the center of the giant
elliptical galaxy M87 [3–8]. The emission ring of the black
hole was restored via different calibration and imaging
schemes and the observed event-horizon-scale image was
shown to be consistent with prospects for a Kerr black hole
shadow [3]. The brightness of the transparent emission
region which reveals a dark shadow is an important issue in
the observation of the black hole shadow. To reconstruct the
brightness distribution of the source, signals recorded
individually at each station of the very long baseline

interferometry require a common time reference attained
by local atomic clocks which are paired with the Global
Positioning System to assure synchronization [5]. The
reconstructed image is characterized by a bright ring whose
diameter is 40 μas and an azimuthally asymmetry bright-
ness with interior brightness depressions [6]. The peaked
distribution radial brightness profile declines gradually
toward the center and the contrast of the brightness at
the center compared to the rim was used to confirm the size
and width of the crescent shadow [8]. The brightness of the
black hole shadow is closely related to the escape prob-
ability of the photons [9].
In the region near the black hole, especially the ergo-

sphere between the stationary limit and the event horizon of
a rotating black hole, there are typical high-energy events
by which some of the energy of the black hole can be
extracted and taken away. Penrose suggested a process that
a particle dropping into the ergosphere splits into two
particles, with one swallowed by the black hole and the
other goes back to infinity [10]. Besides the particle
disintegration, there are two-particle collision editions,
whose energy extraction efficiencies are substantially
increased, see Refs. [11–16] for recent instances. To a
certain extent, the observability of these high-energy events
depends on the escape probability of the massive or
massless particles from the region near the black hole [1].
Besides, the first gravitational waves signal from a

binary neutron star (designated GW170817) merger was
observed to be accompanied by a short gamma-ray burst
(designated GRB 170817A) [17], after the first direct
detection of gravitational waves and the first observation
of a binary stellar-mass black hole merger by the Laser
Interferometer Gravitational-Wave Observatory (LIGO)
and Virgo [18]. A bright optical transient (identified as
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AT 2017gfo), x-ray and radio emission were also discov-
ered across the electromagnetic spectrum [17]. This renders
that the study of the emission rate, or escape probability, of
the electromagnetic waves from a massive compact object
like a neutron star or a black hole benefits the multi-
messenger observations of the massive merger.
These observation significances motivate us to further

study the emission of the photons in the modified gravities,
among which the Kerr-Sen solution is of special interest.
Comparing to the Kerr-Newman black hole, the Kerr-Sen
black hole owns many distinct properties. The Kerr-Sen
black hole is algebraically type-A, yet the Kerr-Newman
black hole is algebraically type-D [19,20]; besides, the
Kerr-Sen spacetime owns the additional dual axion pseu-
doscalar field and dilaton scalar field [21]. Different
characteristics of the capturing and scattering of photons
between the Kerr-Sen spacetime background and the Kerr-
Newman background were presented in [22]. Other
differences on the evaporation [23] and the gyromagnetic
ratios [24] between these two spacetimes were also
reported [25]. Recently, in [26], we explored the escape
probabilities for both massless photons and massive par-
ticles being at rest in a locally non-rotating frame (LNRF)
from the Kerr-Sen black hole [27]. The particle source was
put on the equatorial plane and we assumed that the emitted
particles are confined in the equatorial plane. One of our
findings is that the escape probabilities of massless photons
and massive particles share qualitatively similar properties.
In this paper, as a generalization of the work, we will
consider that the photons escape isotropically from an
equatorial source and are not confined in the equatorial
plane in the well-known Kerr-Sen black hole background.
Different to the results on the escaping properties of
photons in the Kerr-Newman background in Ref. [1], as
to be seen in what follows, ours here shows several new
ones, including that all the extreme Kerr-Sen black holes
own nonzero equatorial photon escape probabilities in the
horizon limit. In Sec. II, we will define the emission angles
of the photons on the equatorial plane of the Kerr-Sen
spacetime. In Sec. III, we will get the escape cones and
evaluate the escape probabilities for the photons on the
equatorial plane of the extreme/nonextreme Kerr-Sen black
hole background. In Sec. IV we will study the escape cones
and escape probabilities of the photons emitted from a
source on the off-equatorial plane. We will also compare
the emission of the photons in the LNRF with that in the
Carter frame. The last section will be devoted to our
remarks.

II. EMISSION ANGLES OF PHOTONS
IN THE KERR-SEN SPACETIME

The Kerr-Sen line element in the low-energy effective
field theory for heterotic string theory can be written in the
Boyer-Lindquist coordinates as [27]

ds2 ¼ −
Δρ2c
Ξ

dt2 þ ρ2c
Δ
dr2 þ ρ2cdθ2 þ

Ξ sin θ
ρ2c

ðdϕ − ωdtÞ2

¼ −
Δ − a2 sin2 θ

Σ
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ Ξ sin2ðθÞ
Σ

dϕ2 −
4Mra sin2 θ

Σ
dtdϕ; ð1Þ

where

ρ2 ¼ r2 þ a2cos2θ; ρ2c ¼ ρ2 þ 2cr ¼ Σ;

δ ¼ r2 þ a2 þ 2cr; Δ ¼ δ − 2Mr;

Ξ ¼ δ2 − Δa2sin2θ; ω ¼ 2Mar=Ξ;

c ¼ Q2=ð2MÞ; a ¼ J=M;

withM,Q, J, c are mass,Uð1Þ charge, angular momentum,
and twist parameter of the black hole, respectively. The
Kerr geometry can be recovered once we set c ¼ 0. Δ ¼ 0
yields the Cauchy horizon and the event horizon of the
black hole as

rI ¼ M − c −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM − cÞ2 − a2

q
; ð2Þ

rH ¼ M − cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM − cÞ2 − a2

q
: ð3Þ

To ensure the regularity of the horizons and avoid the
occurrence of naked singularity, we must keep

0 ≤ a ≤ aþ c ≤ M: ð4Þ
The black hole becomes extreme if aþ c ¼ M.
Using the Hamilton-Jacobi method or solving the geo-

desic equation, one can obtain the four-momentum of a
photon on geodesic orbit expressed in terms of the first-
order differential system as

Σpt ¼ δ

Δ
ðeδ − alÞ − aðae sin2 θ − lÞ; ð5aÞ

Σpr ¼ σr

ffiffiffiffiffiffiffiffiffiffi
R̄ðrÞ

q
; ð5bÞ

Σpθ ¼ σθ

ffiffiffiffiffiffiffiffiffiffi
Θ̄ðθÞ

q
; ð5cÞ

Σpϕ ¼ a
Δ
ðeδ − alÞ − csc2 θðae sin2 θ − lÞ; ð5dÞ

where

R̄ðrÞ ¼ ðeδ − alÞ2 − Δ½Qþ ðl − aeÞ2�;
Θ̄ðθÞ ¼ Q − ðl2 csc2 θ − a2e2Þ cos2 θ

are the radial effective potential and the latitude angular
effective potential, which, after introducing dimensionless
parameters
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b ¼ l
e
; q ¼ Q

e2
; ð6Þ

can be rewritten as

RðrÞ≡ R̄ðrÞ
e2

¼ ðab − δÞ2 − Δ½qþ ðb − aÞ2�; ð7Þ

ΘðθÞ≡ Θ̄ðθÞ
e2

¼ q − ðb2 csc2 θ − a2Þ cos2 θ: ð8Þ

e, l,Q are conserved energy, conserved angular momentum
parallel to the black hole symmetry axis and Carter constant
[28] corresponding to the Killing vectors ∂t, ∂ϕ and the
Killing-Yano tensor field, respectively. σr; σθ ¼ �1 deter-
mine the direction of the photon trajectory and they are
independent of each other. The four-momentum of the
photon is defined by pa ¼ ð∂=∂λÞa with λ the affine
parameter related with the proper time τ of the photon
with rest mass μ by λ ¼ τ=μ.
Rather than describing physics in the inconvenient

Boyer-Lindquist coordinates for the Kerr-Sen metric (1),
we would like to introduce the orthonormal tetrad

eμðtÞ ¼
� ffiffiffiffiffiffiffi

ΔΣ
Ξ

r
; 0; 0; 0

�
; ð9aÞ

eμðrÞ ¼
�
0;

ffiffiffiffi
Σ
Δ

r
; 0; 0

�
; ð9bÞ

eμðθÞ ¼ð0; 0;
ffiffiffi
Σ

p
; 0Þ; ð9cÞ

eμðφÞ ¼
�
−
2aMr sin θffiffiffiffiffiffiffi

ΞΣ
p ; 0; 0; sin θ

ffiffiffiffi
Ξ
Σ

r �
; ð9dÞ

carried by an observer rotating with the black hole, i.e., an
LNRF [29], so that we can use relations

eðaÞ ¼ eμðaÞdxμ; ð10Þ

eðaÞ ¼ eμðaÞ
∂
∂xμ ð11Þ

to transform the basis vectors back and forth between
Boyer-Lindquist coordinate frame and the LNRF frame.
The physically measured LNRF components of the

photon’s four-momentum can be got by

pðaÞ ¼ pμeμðaÞ; ð12Þ

which gives

pðtÞ ¼
ffiffiffiffiffiffiffi
Δ
ΞΣ

r �
δðδe − alÞ

Δ
þ aðl − ae sin2θÞ

�
; ð13aÞ

pðrÞ ¼ σr

ffiffiffiffiffiffiffi
R
ΔΣ

r
; ð13bÞ

pðθÞ ¼ σs

ffiffiffiffi
Θ
Σ

r
; ð13cÞ

pðϕÞ ¼ sinθ

�
2aMrða2Δesin2θþalðδ−ΔÞ−δ2eÞ

ΔΣ
ffiffiffiffiffiffiffi
ΞΣ

p ð13dÞ

þ ðΔlcsc2θ − aðalþ eðΔ − δÞÞÞ
ΔΣ

ffiffiffiffiffiffiffiffiffi
Σ=Ξ

p
�
: ð13eÞ

Considering a light source staying at rest with a radial
position r ¼ r� on the equatorial plane of the Kerr-Sen
black hole, the emission angles ðα; βÞ of a photon con-
cerning the LNRF can be defined by

pðrÞ ¼ pðtÞ cos α sin β; ð14aÞ

pðθÞ ¼ −pðtÞ cos β; ð14bÞ

pðϕÞ ¼ pðtÞ sin α sin β; ð14cÞ

where we have used the relation pðaÞpðaÞ ¼ 0 for the
massless photon and we have pðtÞ > 0 due to the for-
ward-in-time condition. As shown in Fig. 1, the angular
coordinate α is the angle between eðrÞ and the projection of
pðtÞ on the eðrÞ − eðϕÞ plane, the angular coordinate β is the
angle between −eðθÞ and pðtÞ. The domains of α, β are
½−π; π� and ½0; π�, respectively. Starting from this definition,
the emission angles can be solved as

sin α ¼ pðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpðrÞÞ2 þ ðpðϕÞÞ2

q ; ð15aÞ

FIG. 1. Projection of the momentum pðtÞ in the observer’s
LNRF for a photon. We choose eðθÞ as the southward direction. α
is positive in the direction eðϕÞ.
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tan α ¼ pðϕÞ

pðrÞ ; ð15bÞ

and

sin β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpðrÞÞ2 þ ðpðϕÞÞ2

q
pðtÞ ; ð16aÞ

cos β ¼ −
pðθÞ

pðtÞ ; ð16bÞ

which show that the emission angles are associated with
some key parameters as

α ¼ αðσr; b; q; r�Þ; ð17Þ

β ¼ βðσθ; b; q; r�Þ: ð18Þ

The range of the emission angles can be appointed as

−π ≤ αðσr ¼ −1; b ≤ 0; q; r�Þ ≤ −
π

2
; ð19aÞ

π

2
≤ αðσr ¼ −1; b ≥ 0; q; r�Þ ≤ π; ð19bÞ

−
π

2
≤ αðσr ¼ 1; b ≤ 0; q; r�Þ ≤ 0; ð19cÞ

0 ≤ αðσr ¼ 1; b ≥ 0; q; r�Þ ≤
π

2
; ð19dÞ

and

0 ≤ βðσθ ¼ −1; b; q; r�Þ ≤
π

2
; ð20aÞ

π

2
≤ βðσθ ¼ 1; b; q; r�Þ ≤ π: ð20bÞ

Note that α ¼ π is equivalent to α ¼ −π and both of
them correspond to b ¼ 0. The photon moves on the
equatorial plane for q ¼ 0.

III. ESCAPE CONES AND ESCAPE
PROBABILITIES OF PHOTONS ESCAPING

TO INFINITY

To facilitate our readers, we here will use most of our
denotations as those in Ref. [1]. We setM ¼ 1. As the light
source we choose is located on the equatorial plane of the
Kerr-Sen black hole, we have q ≥ 0 according to Eq. (8).
By solving R ¼ 0, the radial turning points of the photon
can be obtained as

b ¼ b1ðrÞ ð21Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4Δ − 2a2δΔþ a2Δqþ δ2Δ − Δ2q

p
− 2ar

Δ − a2
; ð22Þ

and

b ¼ b2ðrÞ ð23Þ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4Δ − 2a2δΔþ a2Δqþ δ2Δ − Δ2q

p
− 2ar

Δ − a2
: ð24Þ

b2 diverges at rb2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 2c − a2 þ 1

p
− cþ 1. To make

R ≥ 0, we should have

b ≤ b1 for rH ≤ r < rb2 ; ð25Þ

b2 ≤ b ≤ b1 for r > rb2 : ð26Þ

The extreme values of bi (i ¼ 1, 2) are

bsi ≡ biðriÞ

¼ −
a2ðcþ ri þ 1Þ þ rið2c2 þ cð3ri − 2Þ þ ðri − 3ÞriÞ

aðcþ ri − 1Þ ;

ð27Þ

where ri is the solution of b0iðriÞ ¼ 0 and r1 < r2.
We have the conditions that q ≥ 0 as well as r� > rH, but

there still exist two possibilities, i.e., r� ≤ r1 and r� > r1.
To further confirm the relation between r1 and rH, we need
to analyze the equation

q ¼ fðrÞ

¼ −
r2ðð2c2 þ cð3r − 2Þ þ ðr − 3ÞrÞ2 − 4a2ðcþ rÞÞ

a2ðcþ r − 1Þ2 ;

ð28Þ

which is solved from b0iðrÞ ¼ 0. By calculation, we know
that fðrÞ becomes maximum at r ¼ r0 with

0 ≤ r0 ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 10cþ 9

p
− 3cþ 3Þ ≤ 3; ð29Þ

4 ≤ fðr0Þ

¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 10cþ 9

p
− 3cþ 3Þ2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 10cþ 9

p
− bþ 3Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 10cþ 9

p
− cþ 1Þ2

≤ 27; ð30Þ

as well as

fðrHÞ ¼ 4a − a2 > 0 for aþ c ¼ 1; ð31Þ
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fðrHÞ ¼
ð−cþ χ þ 1Þ2ða2 − 2ðc2 þ cχ þ χ þ 1ÞÞ

a2

<
ð−cþ χ þ 1Þ2ða2 − 2ðc2 þ 1ÞÞ

a2

< 0

for aþ c < 1; ð32Þ

where χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb − 1Þ2 − a2

p
. We show schematic diagrams

for the two kinds of fðrÞ in Fig. 2. Different to the Kerr-
Newman case in Ref. [1], we have q > 0 at the event
horizon for extreme Kerr-Sen black hole and q < 0 at the
event horizon for nonextreme Kerr-Sen black hole. As a
result, we can know that there exist three cases about the
relations of r1; rH and r�, which are

Case ð1Þ∶ r1 < rH < r�; ð33aÞ

Case ð2Þ∶ rH ≤ r1 < r�; ð33bÞ

Case ð3Þ∶ rH < r� ≤ r1: ð33cÞ

We now determine the boundary of escape cone for a
photon from the extreme or nonextreme Kerr-Sen black
hole case by case. We will restrict the light source in the
range rH < r� ≤ r0 as the calculation is similar for r > r0.
Case (1) This case appears only for extreme Kerr-Sen

black hole as r1 < rH, which can be observed in the top
diagram of Fig. 2. Combing the left diagram in Fig. 3 with
the radial effective potential (7), we can know that there are
two critical conditions that the photons just cannot escape
to infinity. One is a radially inward photon with the impact
parameter b ¼ b1ðrHÞ and the other is a radially outward
photon with the impact parameter b ¼ bs2. The radial
momentum of the photon with the impact parameter bs2
vanishes. So the critical angles that a photon can escape
from the extreme Kerr-Sen black hole to infinity are

ðαð1Þ; βð1ÞÞext ¼ ðα; βÞj½σr¼−1;b¼b1ðrHÞ;0≤q<fðrHÞ�
∪ ðα; βÞj½σr¼1;b¼bs

2
;0≤q<fðrHÞ�; ð34Þ

where b1ðrHÞ ¼ 2.
Case (2) As r1 > rH, we have fðrHÞ ≤ q < fðr�Þ for

extreme Kerr-Sen black hole and 0 ≤ q < fðr�Þ for non-
extreme Kerr-Sen black hole. As shown in the middle
diagram of Fig. 3, photons with impact parameters bs1 and
bs2 can just move inward to a bounded circular orbit with
radius r ¼ r1 and move outward to the other bounded
circular orbit with radius r ¼ r2, respectively. As a result, in
this case, the critical angles that photons can escape from
the extreme Kerr-Sen black hole to infinity are

ðαð2Þ; βð2ÞÞext ¼ ðα; βÞj½σr¼−1;b¼bs
1
;fðrHÞ≤q<fðr�Þ�

∪ ðα; βÞj½σr¼1;b¼bs
2
;fðrHÞ≤q<fðr�Þ�; ð35Þ

rH r*r1 r2
r

b1(r*)

b1(rH)

b2
s

b

rH r*r1 r2
r

b1(r*)

b1
s

b2
s

b

rH r* r1 r2
r

b1
s

b2
s

b

FIG. 3. The impact parameters bi are shown for cases (1)–(3) in sequence. The photon with outward radial momentum can escape
from the Kerr-Sen black hole in the range marked by the vertical red arrow. The photon with inward radial momentum can escape from
the Kerr-Sen black hole in the range marked by the vertical blue arrow.

rH r1 r0 r2
r

f(rH)

q

f(r0)

f(r)

rH r1 r2r0
r

q

f(r0)

f(r)

FIG. 2. Schematic diagrams of fðrÞ. r1 and r2 are shown to be
roots of Eq. (28). Top: fðrÞ for extreme Kerr-Sen black hole.
Bottom: fðrÞ for nonextreme Kerr-Sen black hole.
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and the critical angles that photons can escape from the
nonextreme Kerr-Sen black hole to infinity are

ðαð2Þ; βð2ÞÞn-ext ¼ ðα; βÞj½σr¼−1;b¼bs
1
;0≤q<fðr�Þ�

∪ ðα; βÞj½σr¼1;b¼bs
2
;0≤q<fðr�Þ�: ð36Þ

Case (3) There is not any radially inward photon that can
escape from the Kerr-Sen black hole to infinity in this case.
According to the right diagram in Fig. 3, the condition that
the radially outward photons can go to infinity is
bs1 < b < bs2. Consequently, we get the critical angles of
photons escaping from extreme or nonextreme Kerr-Sen
black hole to infinity as

ðαð3Þ; βð3ÞÞ ¼ ðα; βÞj½σr¼1;b¼bs
1
;fðr�Þ≤q<fðr0Þ�

∪ ðα; βÞj½σr¼1;b¼bs
2
;fðr�Þ≤q<fðr0Þ�: ð37Þ

According to cases (1)–(3), we obtain the boundary of
the escape cone for the photon escaping from the extreme
or nonextreme Kerr-Sen black hole to infinity as

∂S ¼ ⋃
i¼1;2;3

fðαðiÞ; βðiÞÞjσθ¼1
; ðαðiÞ; βðiÞÞjσθ¼−1g: ð38Þ

The escape cone S is the solid angle surrounded by the
critical angles. Note that the escape cone is symmetric to
the equatorial plane of the Kerr-Sen black hole, which
means βðiÞjσθ¼−1 ¼ π − βðiÞjσθ¼1.
Supposing that photons are emitted isotropically from

the light source near the Ker-Sen black hole, the escape
probability of the photons can be defined by

Pðr�Þ≡ 1

4π

Z
S
dα dβ sin β: ð39Þ

In Ref. [1], the escape probability of photons emitted from a
light source near the Kerr-Newman black hole was calcu-
lated using the coordinates ri, as

Pðr�Þ≡
X2
i¼1

ð−1Þi
2π

Z
r0

rc;i

dri
dα
dri

cos βi; ð40Þ

where rc;i are solutions of fðrÞ ¼ 0. We realize that the
escape probability can be written in form of
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FIG. 4. Critical angles for the extreme Kerr-Sen black hole. The vertical axes and horizontal axes stand for βðiÞ and αðiÞ, respectively.
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a ¼ 0.2; r ¼ 0.21, 0.3, 0.4. The cyan, red and yellow curves individually stand for the former parts of ðαðiÞ; βðiÞÞ in Eqs. (34), (35) and
(37), whose latter parts are represented by the green curves.
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FIG. 5. Variations of the escape probabilities with respect to the
radial position for the photons emitted from the extreme Kerr-Sen
black hole.
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FIG. 6. Variations of the escape probabilities with respect to the
angular momentum of the extreme Kerr-Sen black hole for the
emitted photon in the horizon limit.
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Pðr�Þ≡ −
1

4π

Z
S
dα d cos β; ð41Þ

which means the probability is related to the warped escape
cone α − cos β whose area can be calculated by numerical
method.
Since the escape cones and escape probabilities of

photons around extreme Kerr-Sen black hole are different

from the nonextreme Kerr-Sen black hole case, we will now
evaluate them separately.

A. Extreme Kerr-Sen black hole

The horizon of the extreme Kerr-Sen black hole is
rh ¼ a. The impact impacter reads

bsi ¼ −
r2i
a
− aþ 2ri þ 2; ð42Þ

where ri can be obtained from

q ¼ fðriÞ ¼ −
r2i ð4a2 − 4aðri þ 1Þ þ r2i Þ

a2
: ð43Þ

We show critical angles for photons emitted from a light
source near the extreme Kerr-Sen black hole in Fig. 4. We
can see that even if the position of the light source
approaches the horizon, the escape cone of the photon
does not vanish. We further evaluate the escape probabil-
ities of the photons at different positions around extreme
Kerr-Sen black hole with different angular momentum in
Fig. 5. We know that the escape probability of the photon
increases with radial distance relative to the horizon. As
seen in Fig. 6, the escape probability of the photon in the
horizon limit increases with the angular momentum a of the
extreme Kerr-Sen black hole. Note that P → 0 for a → 0,
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FIG. 7. Critical angles for the non-extreme Kerr-Sen black hole with K ¼ 0.999. The vertical axes and horizontal axes stand for βðiÞ
and αðiÞ, respectively. Left: a ¼ 0.98; r� ¼ 1.0253, 1.033, 1.06 from inside to outside. Middle: a ¼ 0.7; r ¼ 0.7386, 0.76, 0.8 from
inside to outside. Right: a ¼ 0.3; r ¼ 0.3257, 0.36, 0.4. The red and yellow curves individually stand for the former parts of ðαðiÞ; βðiÞÞ in
Eqs. (36) and (37), whose latter parts are represented by the green curves.
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FIG. 8. Variations of the escape probabilities with respect to the
radial position for the photons emitted from the nonextreme Kerr-
Sen black hole with K ¼ 0.999.
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FIG. 9. Critical angles for the nonextreme Kerr-Sen black hole with c ¼ 0.5 and a ¼ 0.4ðleftÞ; a ¼ 0.1ðrightÞ. The vertical axes and
horizontal axes stand for βðiÞ and αðiÞ, respectively. r� ¼ 1.001rH; 1.3rH; 1.7rH from inside to outside. The red and yellow curves
individually stand for the former parts of ðαðiÞ; βðiÞÞ in Eqs. (36) and (37), whose latter parts are represented by the green curves.
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and P ∼ 0.292 for a ¼ 1 (which is the extreme Kerr black
hole case that has been discussed in Ref. [1]).

B. Nonextreme Kerr-Sen black hole

We set c ¼ K − a with 0 < K < 1 for the nonextreme
Kerr-Sen black hole. In Figs. 7 and 8, we show the escape
cones and the escape probabilities of the photons near the
horizon of the nonextreme Kerr-Sen black hole with
K ¼ 0.999. We can see that the escape cones shrink and
the escape probabilities decrease with the decreasing of the
radial distance relative to the horizon of the nonextreme
Kerr-Sen black hole. Especially, when the light source
approaches to the horizon, the escape cones become
vanishing and the escape probabilities become zero.
When we set c ¼ 0.5 for the nonextreme Kerr-Sen black
hole, we can see similar results as shown in Figs. 9 and 10.

IV. EMISSION OF THE PHOTON
ON THE OFF-EQUATORIAL PLANE

In the former section, we closely followed the Ref. [1] to
calculate the escape cones and escape probabilities of the
photons around the extreme Kerr-Sen black hole in the
LNRF on the equatorial plane. In what follows, we will
further investigate the emission of the photons on the off-
equatorial plane. And we will compare the escape of the
photons both in the LNRF and in the Carter frame [30,31].
The Carter frame reads

eμðtÞ ¼
� ffiffiffiffi

Δ
Σ

r
; 0; 0;−a sin2 θ

ffiffiffiffi
Δ
Σ

r �
; ð44aÞ

eμðrÞ ¼
�
0;

ffiffiffiffi
Σ
Δ

r
; 0; 0

�
; ð44bÞ

eμðθÞ ¼ð0; 0;
ffiffiffi
Σ

p
; 0Þ; ð44cÞ

eμðφÞ ¼
�
−
a sin θffiffiffi

Σ
p ; 0; 0;

sin θffiffiffi
Σ

p ðΣþ a2 sin2 θÞ
�
: ð44dÞ

The components of the photon’s four-momentum in the
Carter frame can be got as

pðtÞ ¼ ða2 cos 2θ − a2 þ 2δÞðδe − alÞ
2

ffiffiffiffi
Δ

p
Σ3=2

; ð45aÞ

pðrÞ ¼ σr

ffiffiffiffiffiffiffi
R
ΔΣ

r
; ð45bÞ

pðθÞ ¼ σs

ffiffiffiffi
Θ
Σ

r
; ð45cÞ

pðϕÞ ¼ 1

ΔΣ3=2 ½ΔlΣ csc θ − a2lðΣ − δÞ sin θ
þa3 sin3 θðal − δeÞ þ ae sin θðδ2 − δΣþ ΔΣÞ�:

ð45dÞ

The escape cones of the photons in the Carter frame may
be similar to those in the LNRF, as the radial effective
potentials are the same. However, the escape probabilities
of the photons should be different, as the components pðtÞ

and pðϕÞ in the Carter frame are different from those in the
LNRF, which leads to different emission angles α and β for
the photons. Setting that the photon source locates at the
position ðr�; θ�Þ, we must ensure that

Rðr�Þ ≥ 0; ð46Þ

Θðr�; θ�Þ ≥ 0: ð47Þ

These formulas restrict the parameter space to make the
emission process physical. Due to the symmetric character-
istics of the rotating Kerr-Sen black hole, we have

Pðr�; θ�Þ ¼ Pðr�; π − θ�Þ: ð48Þ
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FIG. 10. Escape probability of the photon emitted from the
nonextreme Kerr-Sen black hole with c ¼ 0.5.
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FIG. 11. Critical angles for the extreme Kerr-Sen black hole
with a ¼ 0.5; θ� ¼ π=3 in the Carter frame. The vertical axes and
horizontal axes stand for βðiÞ and αðiÞ, respectively. r� ¼
1.01rH; 1.4rH; 1.8rH from inside to outside. The cyan, red and
yellow curves individually stand for the former parts of ðαðiÞ; βðiÞÞ
in Eqs. (34), (35) and (37), whose latter parts are represented by
the green curves.
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Following similar procedures to the equatorial case, we
can calculate the escape cones and the escape probabilities
of the photons on the off-equatorial plane and both in the
LNRF and Carter frame. Fortunately, we can use the
analysis about the radial effective potential R in Sec. III,
since it is independent of θ�. Note that, according to the
definitions of the emission angles (15a), (15b), (16a) and
(16b), θ� enters the calculation as pðtÞ; pðθÞ; pðϕÞ are
dependent of it in both the LNRF and the Carter frames.
We show representative escape cones in Figs. 11 and 12,
from which we can see that the contours of the cones are
indeed similar to those for the photons emitted from the
source on the equatorial plane in the LNRF.
To quantitatively study the emission of the photons

around the Kerr-Sen black hole, we calculate the escape

probabilities of the photons and show them in the
Figs. 13–15. From Fig. 13, we can see that the escape
probability of the photon increases with the radial position
of the light source, irrespective of the frame we choose.
However, the escape probabilities in the Carter frame are
always greater than those in the LNRF. We also note that
the escape probability of the photon at the horizon limit of
the extreme Kerr-Sen black hole vanishes if the latitude
position approaches the pole of the black hole. There is a
subtle property we should explain here. For the extreme
Kerr-Sen black hole, though the escape probabilities
become very small near the horizons for the bottom two
cases in Fig. 13, the escape probability of the photon at the
horizon limit cannot be zero (besides at the pole, see
below). This is evident by analyzing the Fig. 3a, as the
photons can be scattered by the black hole despite being
with initially inward velocity.
From Fig. 14, we can see that the variation trend of the

escape probability for the photon with respect to the radial
position of the photon source in the non-extreme Kerr-Sen
black hole background is similar to the extreme Kerr-Sen
black hole case, and the escape probabilities of the photons
in the Carter frame are also greater than those in the LNRF.
In the horizon limit, the escape probabilities become
vanishing both for the latitude position approaching the
equator and for the latitude position approaching the pole.
From Fig. 15, we can know that the escape probability of

the photon with a constant radial position is maximal on the
equatorial plane and it decreases monotonically if the
latitude position decreases to θ� ¼ 0 or increases to
θ� ¼ π. Likewise, the escape probabilities of the photons
in the Carter frame are greater than those in the LNRF. It is

–1.0 –0.5 0.0 0.5 1.0 1.5

0.5

1.0

1.5

2.0

2.5

FIG. 12. Critical angles for the non-extreme Kerr-Sen black
hole with a ¼ 0.4; c ¼ 0.5; r� ¼ 1.5rH in the Carter frame. The
vertical axes and horizontal axes stand for βðiÞ and αðiÞ, respec-
tively. θ ¼ 5π=12; 3π=12, π=12 for the solid, dotted and dot
dashed lines, respectively. The red and yellow curves individually
stand for the former parts of ðαðiÞ; βðiÞÞ in Eqs. (36) and (37),
whose latter parts are represented by the green curves.

FIG. 13. Comparison of the escape probabilities of photons in LNRF (red) and in Carter frame (green) in the background of extreme
Kerr-Sen black hole with a ¼ 0.5. The top two diagrams are for θ� ¼ π=2, π=3 and the bottom two diagrams are for θ� ¼ π=6, π=9,
respectively.
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noticeable that the difference of the probabilities in the two
different frames is maximum on the equatorial plane and
when the light source moves to the two poles of the rotating
Kerr-Sen black hole, the difference of the probabilities in
the two frames becomes smaller and smaller.
We should take care of the cases θ� ¼ 0 and θ� ¼ π, as

pðϕÞ vanishes at these two points. Then we only have β,
which can be obtained from

sin β ¼ pðrÞ

pðtÞ ; ð49aÞ

cos β ¼ −
pðθÞ

pðtÞ : ð49bÞ

π=2 − β at this circumstance means the angle of inclination
relative to the radially outward normal vector on the pole of
the Kerr-Sen black hole. The escape cone and the escape

probability of photon at the pole can be obtained by using
the former calculations and taking the pole-limit. By these
procedures, we can not only avoid overestimating the
escaping angle [32] but also distinguish the extreme and
non-extreme Kerr-Sen black holes cases (Note that in the
extreme case r1 > rH so that r1 cannot correspond to the
critical escape angle). As pðrÞ and pðθÞ are the same in
LNRF and Carter frame, we can infer that the escape cone
and the escape probability of the photon will also be the
same at the pole, which has been shown in Fig. 15, where
the green and the red lines almost coincide with each other
near the pole.
With the help of Eqs. (49a) and (49b), we can calculate

the escape angles for the photons at the pole and at the
horizon limit. Straightforwardly, we can have

sin βðr� → rH; θ� → 0Þ ¼ 1
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FIG. 14. Comparison of the escape probabilities of photons in LNRF (red) and in Carter frame (green) in the background of
nonextreme Kerr-Sen black hole with c ¼ 0.5, a ¼ 0.4. The top two diagrams are for θ� ¼ π=2, π=3 and the bottom two diagrams are
for θ� ¼ π=6, π=9, respectively.

100 12 6 4 3
5
12 2

0.2

0.3

0.4

P

100 12 6 4 3
5
12 2

0.32

0.34

0.36

P

FIG. 15. Comparison of the escape probabilities of photons in LNRF (red) and in Carter frame (green) in the background of extreme
Kerr-Sen black hole (left diagram) with a ¼ 2=3; r� ¼ 1.5rH and in the background of nonextreme Kerr-Sen black hole (right diagram)
with c ¼ 0.5; a ¼ 0.4; r� ¼ 1.5rH .
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and

cos βðr� → rH; θ� → 0Þ ¼ 0

after substituting Eqs. (13a), (13b) and (13c) for the LNRF
or Eqs. (45a), (45b) and (45c) for the Carter frame into
Eqs. (49a) and (49b). Then we can know that the inclination
angle relative to the radially outward normal vector on
the pole for the escaping photon should be 0. It results in
the vanishing escape cones and escape probabilities for the
photons in both the LNRF and the Carter frames. Together
with Figs. 13 and 15, we can confirm that the escape
probabilities of the photons at the event horizon limit
decrease monotonically from its maximum value at θ� ¼
π=2 to zero at the poles (θ� ¼ 0; π).

V. CLOSING REMARKS

The observations of the black hole shadow, high-
energy physics and electromagnetic spectrum accompanied
by gravitational waves from the black hole merger to
some extent rely on the escape probabilities of the particles
from the black hole. We investigated the escape proba-
bilities of the photons from the Kerr-Sen black hole,
inspired by the work in Ref. [1] where the escape
probabilities of the photons in the Kerr-Newman spacetime
were explored.
First, the light source was set to be at rest in a LNRF on

the equatorial plane of the Kerr-Sen black hole. After
defining the emission angles, we calculated the escape
cones and escape probabilities of the isotropically emitted
photons both from extreme and nonextreme Kerr-Sen black
holes. As a result, we found that, under the extreme Kerr-
Sen black hole background, the escape cones are non-
vanishing and the escape probabilities are nonzero in the
event horizon limit; in the nonextreme Kerr-Sen black hole
background, the escape cones shrink to be null and the
escape probabilities become zero in the event horizon limit.
Our result makes it clear that the near horizon physics of the
extreme Kerr-Sen black hole is more visible than that of the
non-extreme Kerr-Sen black hole on the equatorial plane.
Second, we further developed the investigation in two

aspects: comparing the emission of the photons in the
LNRF with the one in the Carter frame and calculating the
escape probability of the photon emitted from a source on
the off-equatorial plane. We found that the escape proba-
bilities of the photons in the Carter frame are always greater
than the ones in the LNRF, except that the light source is at
the pole (the probabilities will be equal if the light source
locates at the pole). Note that the observer in the LNRF is
also dubbed as a zero angular momentum observer
(ZAMO). The ZAMOs’ world lines are orthogonal to
the hypersurfaces of the time coordinates. The ZAMO in
rest with respect to the LNRF is dragged by the rotation of
the black hole in azimuthal direction with an angular
velocity ΩLNRF ¼ −gtϕ=gϕϕ relative to a distant static

observer. The Carter frame makes it possible to separate
the geodesic equations of the particle moving in the
rotating Kerr-Sen spacetime. The Carter observers travels
around the Kerr-Sen black hole with an angular velocity
a=ðr2 þ 2crþ a2Þ [33] and constant r and θ. Besides, the
Carter frame is useful to confirm the algebraic properties of
the Kerr-Sen spacetime’s curvature tensor [34]. The ZAMO
relates with the observer in the Carter frame by boosts in the
azimuthal angular direction which is accompanied by the
rotational Killing vector field, so it means that the light
sources in these two frames are different on relative
azimuthal motion [34]. We observed that the escape
probabilities of the photons increase with the radial
position, irrespective of the orthonormal tetrad we choose
and even on the off-equatorial plane. We also showed that
the particle on the equatorial plane gains the maximal
escape probability and the probability decreases monoton-
ically toward the pole of the Kerr-Sen black hole. The result
shows that different relative azimuthal motions of the
observers correspond to different escape probabilities.
The result also indicates that the physical prospects (such
as the high-energy events [35], as mentioned in the Sec. I)
are more visible to the Carter observer than to the ZAMO.
We evaluated the escape probabilities of photons directly

by calculating the area of the warped escape cones, which is
different from the way used in Ref. [1] in which inter-
mediate variables r1 and r2 where the impact parameters
get extreme values were used.
Here let us see how the Kerr-Sen black hole case deviates

from the classical general relativity. We can compare the
escape probability of the photon on the equatorial plane of
the extreme Kerr-Sen black hole shown in Fig. 6 with the
one in the extreme Kerr-Newman black hole background
shown in Table II of Ref. [1]. For instance, when a ¼ 0.7,
we have P ¼ 0.221 for the former and P ¼ 0.194 for the
latter. The difference is minor. For the nonextreme black
hole case, there is not a qualitative difference of escape
probabilities between these two kinds of spacetime back-
ground cases either. Due to the similarity of the Kerr-
Newman line element and the Kerr-Sen line element, we
suspect that our results of the escape cones and escape
probabilities for the photons on the off-equatorial plane of
the Kerr-Sen black hole can be applied to the Kerr-Newman
case. However, there is still a significant difference. When
0 ≤ a ≤ 1=2, the horizon limit of the photon escape
probability is nonzero in the extreme Kerr-Sen black hole
background but the probability becomes zero in the back-
ground of the extreme Kerr-Newman black hole back-
ground. The similarities and differences of the escape cones
and escape probabilities origin mainly from, we think, the
radial effective potential of the particle in the spacetime.
The latitude angular effective potential provides subordi-
nate restrict condition.
One perplexing and intriguing thing is that in the

horizon limit of the extreme Kerr-Sen black hole,
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the escape probabilities of the photons approach zero, just
like the nonextreme Kerr-Sen black hole case, if the latitude
position of the light source is at the pole. It may be
instructive to study the emission of photons from black
objects in other modified gravities and the rules of the
photon emission may become clearer by comparison.
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