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Working within the post-Minkowskian approach to general relativity, we prove that the radiation-
reaction to the emission of gravitational waves during the large-impact-parameter scattering of two
(classical) point masses modifies the conservative scattering angle by an additional contribution of orderG3

which involves a high-energy (or massless) logarithmic divergence of opposite sign to the one contained in
the third-post-Minkowskian result of Bern et al. [Phys. Rev. Lett. 122, 201603 (2019)]. The high-energy
limit of the resulting radiation-reaction-corrected (classical) scattering angle is finite, and is found to agree
with the one following from the (quantum) eikonal-phase result of Amati et al. [Nucl. Phys. B347, 550
(1990)].
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I. INTRODUCTION

Post-Minkowskian (PM) perturbative gravity, i.e., the
Poincaré-covariant perturbative approach to the classical
gravitational dynamics of binary systems, was initiated
long ago [1–6], and has been recently revived through the
use of new frameworks, notably the effective one-body
method [7–10], and the use of dictionaries relating quantum
scattering amplitudes to classical PM dynamics [8,11–25].
Here, we shall focus on the interaction between structure-
less bodies; see, e.g., Refs. [26–34] for PM-type works on
spinning bodies.
A recent milestone has been the derivation by Bern et al.

[16,17] of the 3PM-accurate, OðG3Þ, conservative gravita-
tional dynamics of binary systems froma two-loop scattering
amplitude. The 3PM dynamics of Refs. [16,17] have been
checked at the sixth post-Newtonian (6PN) level [35–37] and
rederived in different ways [22,25]. However, the OðG3Þ
dynamics of Refs. [16,17] has several puzzling features (see,
e.g., the discussion in Ref. [10]).
One of the puzzling features of the 3PM-accurate

scattering angle derived in Refs. [16,17] is that it involves
a logarithmically divergent contribution ∝ lnðs=ðm1m2Þ
that becomes large both in the massless limit (m1 → 0,
m2 → 0) and in the high-energy limit (s → ∞). By con-
trast, previous work by Amati et al. (ACV) has extracted a
finite scattering angle from the high-energy (trans-
Planckian), two-loop scattering of two massless particles
in the (quasiclassical) eikonal-phase approximation [38]. It
was argued in Refs. [16,17] that this discontinuity in the
scattering angle was linked to the need of imposing the
inequality q ∼ ℏ

b ≪ m1; m2 in order to extract the classical

limit from the quantum scattering amplitude of two
massive particles. The validity of the high-energy eikonal
ACV scattering angle (as well as its universality in two-
derivative gravity theories) has been recently established in
Refs. [39–41]. In addition, Ref. [41] brought a new light on
the puzzling issue of the relation between the ultrarelativ-
istically singular classical 3PM dynamics of Refs. [16,17]
and the ultrarelativistic limit of the quantum scattering of
massive particles (in any two-derivative gravity theory).
They presented two different approaches and showed that
in both cases it is crucial to include radiative effects for
recovering ultrarelativistic finiteness and continuity with
the ACV eikonal scattering phase [38]. In particular, in
their second approach (involving the evaluation of a four-
point two-loop amplitude in N ¼ 8 supergravity) they
emphasized the need to integrate the graviton contribution
over the full soft region, rather than only over the potential
region.
The results of Ref. [41] do not, by themselves, clarify the

precise way in which the inclusion of classical gravita-
tional-radiation effects can reconcile the (ultrarelativisti-
cally singular) conservative 3PM dynamics of two classical
particles in general relativity (GR) with the finite eikonal
ACV scattering angle. The present work will clarify this
issue by proving (by a PM-gravity computation in GR) that
the classical radiation-reaction to the emission of gravita-
tional radiation during the large-impact-parameter scatter-
ing of two classical point masses modifies the conservative
scattering angle, χcons, by an additional contribution, say
χrad, which: (i) is of order G3; (ii) cancels the logarithmi-
cally divergent high-energy contribution ∝ lnðs=ðm1m2Þ
present in χcons; and (iii) yields a finite high-energy 3PM-
accurate scattering angle that precisely agree with the one
following [40,42] from the ACV eikonal phase [38].*damour@ihes.fr
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Amusingly, the resolution offered here of the 3PM high-
energy puzzle uses in a crucial way two ideas that were first
discussed many years ago in a completely different context.
Indeed, soon after the discovery of the Hulse-Taylor binary
pulsar [43] (which brought, after a few years, direct
evidence for the reality of gravitational radiation reaction
[44]) several authors emphasized the lack of a consistent
derivation of radiation-reaction effects in GR [45]. One of
the reasons for doubt was that the then extant (heuristic)
derivations of radiation-reaction effects were based on
formal post-Newtonian (PN) expansions involving infrared
ambiguities because of a lack of clear matching between
the nearzone gravitational field (“potential modes”) and the
wavezone gravitational field (“soft modes”). The answer to
this doubt was brought by the use of a PM framework in
which the gravitational binary dynamics was described by
(nonlinearly iterated) retarded-propagator interactions,
thereby evacuating the issue of the nearzone/wavezone
matching [4,5,46]. This led to the derivation of equations of
motion including (on the same footing) both conservative
and radiation-reaction effects and leading to observable
predictions for the binary dynamics that agreed with
binary-pulsar observations [47]. Within this PM frame-
work, it was emphasized in Ref. [48], that the retarded PM
equations of motion (which included radiation-reaction
effects) implied a loss of the mechanical angular momen-
tum of the system of order G2=c5, i.e., at the 2PM level,
while they implied a loss of the mechanical energy of the
system at the 3PM level [namely OðG3=c5Þ]. Our deriva-
tion below of the radiation-reaction correction χrad to the
scattering angle will be crucially based on a PM compu-
tation of the radiative loss of angular momentum at the
OðG2Þ level. Another crucial ingredient of our computation
will be to use a general result [49] linking χrad to the
radiative losses of angular momentum and energy.
We leave to our concluding section below a discussion of

the possible consequences of our results for the general
program of developing PM gravity to higher orders in G.

II. GRAVITATIONAL WAVEFORM AT OðG2Þ
The radiative part of the GR gravitational field is

asymptotically measured by the waveform, fijðu; θ;ϕÞ
(where u≡ t − r), defined as the transverse-traceless
(TT) projection of the Oð1=rÞ part of the metric1 gμν ¼
ημν þ hμν in a suitable Bondi-Sachs-type coordinate
system,

hTTij ¼ fijðt − r; θ;ϕÞ
r

þO

�
1

r2

�
: ð2:1Þ

Here, and below, latin indices, a; b;…; i; j; k, refer to
Cartesian-like spatial directions. The waveform fij satisfies

the algebraic constraints fijnj ¼ 0 and δijfij ¼ 0 [where
niðθ;ϕÞ≡ xi=r is the radial unit vector].
The outgoing wave field hTTij carries away both energy-

momentum, Prad
μ , and angular momentum Jradμν . There are

subtleties in the definition of Jradμν linked to nonlinear
memory effects, but they do not affect our OðG2Þ compu-
tation below. Indeed, one of the crucial elements underlying
our computation is that, while Prad

μ ¼ OðG3Þ, the radiated
angular momentum is of lower PM order, namely:
Jradμν ¼ OðG2Þ. Expressions for the radiated angular-
momentum2 in terms of the asymptotic waveform
fijðu; θ;ϕÞ have been given in Refs. [50–53] (see also
[54] for Jrad0i ),

Jradk ¼ ϵkij
16πG

Z
dudΩ

�
fia∂ufja −

1

2
xi∂jfab∂ufab

�
: ð2:2Þ

Note that the integrand of Eq. (2.2) is bilinear in fij (or its

angular derivatives) and in _fij ≡ ∂ufij. By contrast, the

radiated energy-momentum, Prad
μ , is quadratic in _fij,

namely,

Pμ
rad ¼

1

32πG

Z
dudΩ½∂ufab∂ufab�nμ; ð2:3Þ

where nμ ¼ ð1; xi=rÞ. The PM perturbation theory of
gravitationally interacting point masses [5,6,55,56] has
shown that the waveform has an expansion in powers of
G of the form,

fijðu;θ;ϕÞ¼Gfð1Þij ðθ;ϕÞþG2fð2Þij ðu;θ;ϕÞþOðG3Þ; ð2:4Þ

where the 1PM (OðGÞ) contribution is independent3 of the
retarded time u, so that

_fij ¼ G2 _fð2Þij þOðG3Þ; ð2:5Þ

is of order OðG2Þ. This simple fact immediately shows,
in view of Eqs. (2.2), (2.3), that Jradμν ¼ OðG2Þ, while
Prad
μ ¼ OðG3Þ.
The static nature of fð1Þij allows one to perform the time

integration in Eq. (2.2) and to express the radiated angular
momentum as

1We use a mostly plus signature and generally use c ¼ 1.

2We work with the total radiated angular momentum, inte-
grated both over angles and (retarded) time, and evaluated in
the center of mass (c.m.) frame.

3This is theway fð1Þij is defined in Refs. [55,56]. Alternatively, in
the definition of hð1Þμν in Ref. [5], the corresponding waveform fð1Þij
would be a function of u that varies on a slow, G-dependent time
scale determined by the gravitational interaction.
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Jradk ¼ ϵkij
16π

Z
dΩ

�
fð1Þia Δfja −

1

2
xi∂jf

ð1Þ
abΔfab

�
; ð2:6Þ

where

Δfijðθ;ϕÞ≡
Z þ∞

−∞
du∂ufij ¼ ½fij�u¼þ∞

u¼−∞ ; ð2:7Þ

is the gravitational wave memory, i.e., the global change in
the waveform. To compute the waveform memory,
Δfijðθ;ϕÞ, it is better to use the form of the PM expansion
employed, e.g., in Ref. [5], where the gothic-metric per-
turbation, h̄μν ≡ −ðgμν − ημνÞ, i.e., h̄μν ¼ ημμ

0
ηνν

0
hμ0ν0−

1
2
hημν þOðh2Þ, is decomposed as h̄μν ¼ h̄μνlin þ h̄μνnonlin.

Here the linear piece, h̄μνlin, is the one generated by Tμν,
i.e., h̄μνlin ¼ −16πG□−1

ret ðTμνÞ, while h̄μνnonlin is sourced by
the nonlinear contributions Tμν

nonlin ¼ ∂2hhþ ∂2hhhþ � � �
appearing on the right-hand side of the PM-expanded
Einstein’s equations (in harmonic coordinates). The linear
contribution generated by a system of pointlike bodies reads

h̄μνlinðxÞ ¼
X
A

4GmA

�
uμAu

ν
A

rA

�
ret
: ð2:8Þ

Here: the indexA labels the gravitationally interacting bodies
(A ¼ 1, 2 for our present case); uμA ¼ dzμA=dτA denotes the
(Minkowski-normalized) four velocities; rA ≡ −ημνðxμ−
zμAÞuνA; and the subscript “ret” indicates that zA is the retarded
foot of the field point x on the Ath worldline [such that
ημνðxμ − zμAÞðxν − zνAÞ ¼ 0 and x0 − z0A > 0]. In addition,
the worldlines used in the definition Eq. (2.8) are taken to be
the exact worldlines, or, at least, 1PM-accurate worldlines,
curved by the linearized gravitational interaction.
When using such a decomposition, it is physically clear

that the nonlinear memory Δfnonlinij induced by the non-
linear effective source, i.e., by the splash of gravitational-
wave energy emitted by the collision, will be of order
G × Prad

μ , and therefore OðG4Þ (as was explicitly shown in
Ref. [57]). We therefore conclude that the waveform
memory Δfij to be used in Eq. (2.6) is given with sufficient
accuracy by the simple linear formula,

ΔfijðnÞ ¼
X
A

4G

� ðpi
Ap

j
AÞTT

EA − n · pA

�þ∞

−∞
þOðG4Þ: ð2:9Þ

Here: n ¼ niðθ;ϕÞ is the unit vector parametrizing the
direction of gravitational-wave emission; pμ

A ¼ ðEA;pAÞ,
with EA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A þ p2
A

p
, is the four-momentum of the Ath

particle in the incoming (−∞) or outgoing (þ∞) state [with
½f�þ∞

−∞ ≡ fðþ∞Þ − fð−∞Þ]; and ðSijÞTT denotes (as usual)
the TT projection of a (symmetric) three-dimensional
tensor Sij in the two-plane orthogonal to n ¼ niðθ;ϕÞ,
i.e., the two-plane tangent to the sphere at infinity.

Note that it is crucial to insert in the expression Eq. (2.9)
values for pμ

Að�∞Þ that take into account the effect of the
gravitational scattering. For computing the OðG2Þ angular-
momentum loss, it is enough to use the OðGÞ (1PM-
accurate) gravitational deflection, i.e., (for A ¼ 1, 2),

Δpμ
1 ¼ −Δpμ

2 ¼ −β
bμ

b
þOðG2Þ; ð2:10Þ

where we defined

β≡ 2ð2γ2 − 1Þffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p Gm1m2

b
: ð2:11Þ

Here,

γ ≡ −ðu1 · u2Þ−∞ ¼ −
�
p1 · p2

m1m2

�
−∞

ð2:12Þ

denotes the Lorentz factor between the two incoming
worldlines, while bμ (of magnitude b) denotes the vectorial
impact parameter, i.e., the value of the four-vector
zμ
1ð0Þðτ1Þ − zμ

2ð0Þðτ2Þ orthogonally connecting the incoming

(unperturbed) worldlines. [bμ is orthogonal both to
pμ
1ð−∞Þ and to pμ

2ð−∞Þ; see [28] for details.]

III. WAVEFORM AND WAVEFORM-MEMORY
IN THE CENTER-OF-MASS FRAME

We are interested in computing the change of angular
momentum of the binary system in the (incoming) center-
of-mass (c.m.) frame, i.e., with p1ð−∞Þ ¼ −p2ð−∞Þ≡ P,
and EAð−∞Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A þ P2
p

. We recall that Pμ
rad ¼ OðG3Þ,

so that we have also EAðþ∞Þ ¼ EAð−∞Þ þOðG3Þ, while
p1ðþ∞Þ ¼ −p2ðþ∞Þ þOðG3Þ is the deflected value of P,
obtained by rotating it by the c.m. deflection angle χ. The
magnitude of the incoming c.m. angular momentum is
Jð−∞Þ ¼ bP, where P≡ jPj.
Using Eq. (2.8) the waveform is given, to OðGÞ

accuracy, by the time-independent TT tensor,

fijðnÞ ¼ 4G

�
1

E2 þ n · P
þ 1

E1 − n · P

�
ðPiPjÞTT þOðG2Þ:

ð3:1Þ

On the other hand, the waveform memory is obtained by
inserting the changes (2.10) in the expression (2.9), with
the result,

ΔfijðnÞ¼−β
4G
b

�
1

E2þn ·P
þ 1

E1−n ·P

�
ðPibjþPjbiÞTT

þβ
4G
b

�
n ·b

ðE2þn ·PÞ2−
n ·b

ðE1−n ·PÞ2
�
ðPiPjÞTT:

ð3:2Þ
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IV. RADIATED ANGULAR MOMENTUM

In order to explicitly compute the angular integral (2.2)
giving the radiated angular momentum, it is convenient to
choose a system of polar coordinates adapted to the angular
dependence of fijðnÞ and ΔfijðnÞ. We choose ez in the
direction of P (i.e., P ¼ þPez) and ey in the direction of b
(i.e., b ¼ þbey). We then define polar coordinates θ;ϕ in
the usual way i.e., n ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ, as
well as a standard orthonormal two-frame tangent to the
sphere, namely eθ ¼ ðcos θ cosϕ; cos θ sinϕ;− sin θÞ and
eϕ ¼ ð− sinϕ; cosϕ; 0Þ. The two independent components
of the TT projection of a tensor Sij with respect to the frame
eθ, eϕ are then Sþ ≡ 1

2
ðSθθ − SϕϕÞ and S× ≡ 1

2
ðSθϕ þ SϕθÞ.

Inserting n · P ¼ P cos θ, and introducing the short-hand
notations,

A≡ P
E2 þ P cos θ

þ P
E1 − P cos θ

;

B≡ P2

ðE2 þ P cos θÞ2 −
P2

ðE1 − P cos θÞ2 ; ð4:1Þ

the þ and × components of fij, Eq. (3.1), and of Δfij,
Eq. (3.2), read

fþ ¼ 2GPAsin2θ þOðG2Þ; f× ¼ OðG2Þ; ð4:2Þ

and

Δfþ ¼ 4Gβ

�
A sin θ cos θ sinϕþ B

2
sin3θ sinϕ

�
;

Δf× ¼ 4GβA sin θ cosϕ: ð4:3Þ

Reexpressing Eq. (2.6) in terms of fþ;× yields, for the
relevant component Jradx ¼ Jradyz in the direction of the initial

angular momentum Jð0Þyz ¼ bP, the expression [53],

Jradyz ¼
Z

dΩ
16πG sin θ

½ðDfþ − 2 cosϕf×ÞΔfþ
þðDf× þ 2 cosϕfþÞΔf×�; ð4:4Þ

where D≡ sin θ sinϕ∂θ þ cos θ cosϕ∂ϕ.
Inserting Eqs. (4.2), (4.3) in Eq. (4.4) yields an explicit

integral which can be performed without difficulty. (The
integral over ϕ is elementary, while the integral over θ
becomes elementary when rewritten as an integral over
c≡ cos θ.) Though intermediate results depend on the c.m.
velocities of the two bodies, i.e., v1 ¼ P=E1 and
v2 ¼ P=E2, the final result only depends on the (relativ-
istic) relative velocity v between the two bodies, namely,

v≡ v1 þ v2
1þ v1v2

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

γ2

s
; ð4:5Þ

and takes the relatively simple form,

Jradyz ¼ 2ð2γ2 − 1Þffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p G2m1m2P
b

IðvÞ þOðG3Þ: ð4:6Þ

Here IðvÞ denotes the following (even) function:

IðvÞ ¼ −
16

3
þ 2

v2
þ 2ð3v2 − 1Þ

v3
AðvÞ; ð4:7Þ

where A is a short-hand notation for the arctanh function,
i.e.,

AðvÞ≡ arctanhðvÞ¼ 1

2
ln
1þv
1−v

¼ 2arcsinh

ffiffiffiffiffiffiffiffiffiffi
γ−1

2

r
: ð4:8Þ

The last form relates AðvÞ to the (crucial) arcsinh function
entering the 3PM results of Refs. [16,17]. [The latter works
use the notation σ for the Lorentz factor here denoted
γ ¼ −ðu1 · u2Þ−∞.] Due to cancellations between the vari-
ous terms in Eq. (4.7), the small-v expansion of IðvÞ starts
as IðvÞ ¼ 8

5
v2 þOðv4Þ.

The ratio between the radiated angular momentum, and
the incoming mechanical angular momentum of the binary
system, takes the following simple form:

Jrad

J
¼ Jradyz

bP
¼ 2ð2γ2 − 1Þffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p G2m1m2

b2
IðvÞ þOðG3Þ: ð4:9Þ

The PN (slow velocity) expansion of Eq. (4.9) begins as

Jrad

J
¼G2m1m2

c5b2

�
16

5
vþ232

35

v3

c2
þ2146

315

v5

c4
þ�� �

�
; ð4:10Þ

where we added the (dimensionally determined) powers of
1
c to emphasize that this is a 2.5PN [OðG2=c5Þ] effect. The
leading-order term in Jrad

J agrees with the result of Ref. [48]
(where it was directly derived from the G2-accurate
retarded equations of motion of the binary system). We
have also checked that the next-to-leading-order term is
compatible with the fractionally 1PN-accurate computation
[58] of the angular momentum radiated to gravitational
waves during an hyperbolic encounter. The ratio Jrad=J is a
positive, and monotonically growing, function of v in the
interval 0 < v < 1.
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V. RADIATION-REACTION CONTRIBUTION
TO THE SCATTERING ANGLE

Having in hand the leading-order radiative loss of
angular momentum, we can deduce from it the correspond-
ing radiative contribution to the scattering angle. Indeed,
Ref. [49] has derived a general formula, namely Eq. (5.74)
there,4 yielding the radiation-reaction contribution to the
scattering angle (considered as a first-order correction to
the conservative-dynamics value of the scattering angle).
Namely,

χradðE; JÞ ¼ −
1

2

∂χcons
∂E Erad −

1

2

∂χcons
∂J Jrad: ð5:1Þ

Note here the factor 1
2
and the negative sign, because Erad

and Jrad denote the (positive) energy and angular momen-
tum radiated away. (E and J are both measured in the
c.m. frame.)
As Erad ¼ OðG3Þ, while Jrad ¼ OðG2Þ, the leading-PM-

order contribution to χradðE; JÞ will be the one induced by
the angular-momentum loss. In addition, the leading-PM-
order contribution to χconsðE; JÞ is ∝ GJ−1, so that the
leading-PM-order contribution to χradðE; JÞ is positive, of
order OðG3Þ, and given by

χradðE; JÞ ¼ þ 1

2
χconsLO

Jrad

J
: ð5:2Þ

Inserting our result (4.9), and working (as is often con-
venient) with the half-scattering angle,

1

2
χconsðE; JÞ ¼ χ1ðγÞ

j
þ χ2ðγÞ

j2
þ χ3ðγÞ

j3
þ � � � ; ð5:3Þ

where j≡ J=ðGm1m2Þ and

χ1ðγÞ ¼
2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ; ð5:4Þ

we get the explicit result,

1

2
χrad ¼ þð2γ2 − 1Þ2

γ2 − 1
IðvÞG

2m1m2

b2j
þOðG4Þ: ð5:5Þ

Using the relation [8],

GE
b

≡ GMhðγ; νÞ
b

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
j

; ð5:6Þ

where hðγ; νÞ≡ E
M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðγ − 1Þp
, we can rewrite (5.5)

either in terms of b or of j. Its expression in terms of j reads

1

2
χradðγ; j; νÞ ¼ þ ν

h2ðγ; νÞj3 ð2γ
2 − 1Þ2IðvÞ þOðG4Þ;

ð5:7Þ

where ν≡ m1m2

ðm1þm2Þ2 denotes the symmetric mass ratio.

VI. RADIATION-REACTION CORRECTED
SCATTERING ANGLE

TheOðG3Þ contribution, χ3=j3, to the (half) conservative
scattering angle [see Eq. (5.3)] has been computed by Bern
et al. [16,17] (see also [25]) with the result,

χcons3 ðγ; νÞ ¼ χSchw3 ðγÞ − 2νp∞

h2ðγ; νÞ C̄
consðγÞ; ð6:1Þ

where (denoting p∞ ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
¼ vffiffiffiffiffiffiffiffi

1−v2
p )

χSchw3 ðγÞ ¼ 64p6
∞ þ 72p4

∞ þ 12p2
∞ − 1

3p3
∞

; ð6:2Þ

and

C̄consðγÞ ¼ 2

3
γð14γ2 þ 25Þ

þ 2ð4γ4 − 12γ2 − 3Þ AðvÞffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p : ð6:3Þ

In the latter expression we have replaced the function

arcsinh
ffiffiffiffiffiffi
γ−1
2

q
used in Refs. [16,17] by the (half) arctanh

function 1
2
AðvÞ [see Eq. (4.8)].

The physical,OðG3Þ-accurate, total scattering angle, i.e.,
the sum of the conservative contribution and of the leading-
PM-order radiation-reaction correction (5.7), then reads

1

2
χtotðE; JÞ ¼ χ1ðγÞ

j
þ χ2ðγÞ

j2
þ χtot3 ðγÞ

j3
þOðG4Þ; ð6:4Þ

where

χtot3 ðγ; νÞ ¼ χcons3 ðγ; νÞ þ χrad3 ðγ; νÞ; ð6:5Þ

with

χrad3 ðγ; νÞ ¼ þ ν

h2ðγ; νÞ ð2γ
2 − 1Þ2IðvÞ; ð6:6Þ

or more explicitly,

χrad3 ðγ; νÞ ¼ þ 2ν

h2ðγ; νÞ
ð2γ2 − 1Þ2
3ðγ2 − 1Þ

×

�
8 − 5γ2 þ ð6γ2 − 9ÞAðvÞ

v

�
: ð6:7Þ4As indicated around Eq. (5.98) of Ref. [49] this formula has a

general validity.
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Let us note that the mass-ratio dependence of χrad3 ðγ; νÞ
satisfies the general rule pointed out in Ref. [10], namely
h2ðγ; νÞχ3ðγ; νÞ is a linear function of ν. In other words, we
canwrite χrad3 ðγ; νÞ in the same formas χcons3 ðγ; νÞ − χSchw3 ðγÞ,
namely,

χrad3 ðγ; νÞ ¼ −
2νp∞

h2ðγ; νÞ C̄
radðγÞ; ð6:8Þ

where

C̄radðγÞ¼−
ð2γ2−1Þ2
2

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p IðvÞ

¼−
ð2γ2−1Þ2ffiffiffiffiffiffiffiffiffiffiffi

γ2−1
p �

−
8

3
þ 1

v2
þ3v2−1

v3
AðvÞ

�
: ð6:9Þ

VII. LOW-ENERGY AND HIGH-ENERGY LIMITS
OF THE RADIATION-REACTION CORRECTED

SCATTERING ANGLE

A. Low-velocity limit

In the low-kinetic-energy (or low-velocity) limit v → 0

(or γ → 1), the v-expansion of C̄consðγÞ reads

C̄consðγÞ¼ 4þ18v2þ271

10
v4þ4999

140
v6þ440273

10080
v8þ���

ð7:1Þ

The first term of this expansion corresponds to the 2PN
level. The last term we explicitly wrote belongs to the 6PN
level. All those terms have been explicitly checked by
PN-based computations [35–37].
The corresponding PN expansion of the complementary

radiation-reaction contribution C̄radðγÞ reads

C̄radðγÞ¼−
4

5
v−

114

35
v3−

4169

630
v5−

138451

13860
v7− � � � ð7:2Þ

Here, the first term of this expansion corresponds to the
2.5PN level (which is indeed the leading level for radiation-
reaction in GR). The corresponding leading-order (both in
the PN and the PM senses), OðG3=c5Þ, contribution to the
scattering angle, namely,

1

2
χrad ¼ þ 8G3

5c5
m3

1m
3
2

J3
νv2 þ � � � ð7:3Þ

agrees with the large-eccentricity limit of Eq. (5.116)
in Ref. [49].
The radiation-reaction character of C̄radðγÞ shows up in

the fact that it involves only odd powers of the relative
velocity v. In other words, C̄radðγÞ is an odd function of v,
while C̄consðγÞ is an even function of v (as is easily checked
on their exact expressions).

B. High-energy (or massless) limit

Let us now consider the high-energy (HE) limit
(γ → þ∞ or v → 1) of the scattering angle. This limit is
taken together with the massless limit, m1 → 0, m2 → 0,
keeping fixed the c.m. linear momentum P, so thatffiffiffi
s

p ¼ E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þm2

1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þm2

2

p
→ 2P. A natural PM

expansion parameter in this limit is then

α≡ γ

j
¼ G

2

s −m2
1 −m2

2

J
: ð7:4Þ

In the HE limit we can write

α ¼HE GE
b

: ð7:5Þ

The HE limit of the 3PM-accurate conservative scattering
angle Eq. (5.3) [with (6.1)] reads

1

2
χcons ¼HE 2αþ

�
64

3
−
28

3
− 8 lnð2γÞ

�
α3 þOðG4Þ;

¼ 2αþ ð12 − 8 lnð2γÞÞα3 þOðG4Þ; ð7:6Þ

where the lnð2γÞ term introduces a logarithmic divergence
of 1

2
χconsðαÞ in the HE limit. On the first line of Eq. (7.6),

we have indicated the (positive) contribution from the
3PM-level Schwarzschild term χSchw3 ðγÞ, and the (negative)
contribution from the ν-dependent, last term in Eq. (6.1).
On the other hand, the HE limit of the radiative

correction to 1
2
χ reads

1

2
χrad ¼HE þ

�
−
20

3
þ 8 lnð2γÞ

�
α3 þOðG4Þ: ð7:7Þ

As we see, the HE limit of 1
2
χrad contains exactly the

opposite of the logarithmic divergence contained in 1
2
χcons.

The radiation-reaction corrected scattering angle is there-
fore finite in the HE limit and equal to

1

2
χtot ¼HE 2αþ 16

3
α3 þOðG4Þ: ð7:8Þ

Remarkably, this HE limit of the radiation-reaction cor-
rected scattering angle agrees with the ACV eikonal-
approximation two-loop result [38], namely (see [40,42]),

1

2
χeikonal ¼HE 2αþ 16

3
α3 þOðα5Þ: ð7:9Þ

The eikonal result (7.9) was initially derived in GR. Its
validity in GR was recently confirmed [40,41]. In addition,
it was proven to hold in all supergravity theories [39–41].
The (finiteness and) equality, at theG3 level, between the

HE limit of the classical radiation-reaction corrected
scattering angle (7.8), and the quantum-derived, two-loop
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eikonal massless scattering angle (7.9) is the main result of
the present work. Various aspects of this result are
discussed next.

VIII. DISCUSSION

Let us summarize the context, and meaning, of our
derivation. We worked within a purely classical GR
framework, and our derivation of the radiative correction
to the scattering angle used a post-Minkowskian (PM)
perturbative approach. By contrast, we are not aware of a
fully classical, and fully PM, derivation of the so-called
conservative 3PM-accurate scattering angle (6.1). The
1PM, OðGÞ, and 2PM, OðG2Þ, scattering angles have been
computed within classical PM frameworks in Refs. [3,7]
(1PM) and Refs. [6,28] (2PM). The first derivation [16,17]
of the conservative 3PM scattering angle was performed by
using a mix of various tools: a selection of quantum
scattering amplitude integrands, and an evaluation of the
corresponding integrals by expanding the integrand in
the so-called potential region. The rederivation of
Ref. [24] cannot either be considered as a purely classical
PM derivation because the propagator of the graviton used
in the latter computation is the Feynman one, namely
∝ðk2 − i0Þ−1. Let us recall in this respect that the correct,
classical conservative action for PM gravity [59] must be
classically defined, à la Fokker-Wheeler-Feynman [60,61],
by using the time-symmetric graviton propagator, whose
Fourier-space kernel is

Gαβ;α0β0 ðkÞ ¼
�
ηαα0ηββ0 −

1

2
ηαβηα0β0

�
P
1

k2
; ð8:1Þ

where P denotes the principal value. By contrast, the
Feynman propagator involves

1

k2 − i0
¼ P

1

k2
þ iπδðk2Þ; ð8:2Þ

while the retarded propagator would involve

1

k2 − signðk0Þi0 ¼ P
1

k2
þ iπsignðk0Þδðk2Þ: ð8:3Þ

The differences between the coefficients of the δðk2Þ term
are crucial here and start making a difference already at the
2PM, OðG2Þ, level. Indeed, the 2PM-accurate retarded
equations of motion derived in Refs. [4,5] lead (as was
explicitly shown in Ref. [48]) to an OðG2Þ loss of the
mechanical angular momentum of the binary system,
which was checked to balance the radiated angular
momentum at lowest PN order. [We have used here the
fact that this balance must formally hold at the full
(PN-exact) 2PM level, leaving a direct technical check
to future work.]

At the 3PM level, the effects linked to using either a
time-symmetric propagator, a Feynman one, or a retarded
one should be even more drastic. The first derivation
[16,17] of the conservative 3PM dynamics (as well as
the rederivation of Ref. [24]) selected a graviton propagator
by expanding the graviton propagator in the so-called
potential region, defined by the inequality k0 ≪ jkj. At
face value, it seems that the use of such an expansion,
namely (with ω≡ k0),

1

k2 þ iϵ
¼ 1

k2 − ω2 þ iϵ
¼ 1

k2
þ ω2

k4
þ ω4

k6
þ � � � ð8:4Þ

is not only independent of the choice of contour around the
poles in ω (i.e. of the choice of iϵ), but is equivalent to the
PN-expansion of the x-space time-symmetric massless
propagator,

□
−1
sym ¼ðΔ−∂2

0Þ−1sym ¼Δ−1þ∂2
0Δ−2þ∂4

0Δ−3þ��� ð8:5Þ

This suggests that computing the dynamics by expanding in
the potential region is equivalent to using the PN-expanded
time-symmetric graviton propagator. As genuine nonlocal-
in-time effects enter only at the 4PN and 4PM [OðG4=c8Þ]
level [62], this indicates that the potential-region expansion
should yield the PN-expanded version of the conservative
dynamics up to the accuracy OðG3Þ but will encounter
subtle nonlocal-in-time effects starting at the OðG4Þ level.
For our present purposes, it confirms that the current
potential-region derivations of the 3PM scattering angle
(6.1) do capture the classical (Fokker-Wheeler-Feynman-
type) time-symmetric conservative dynamics. It would,
however, be instructive to give both an ab initio classical
derivation of the 3PM conservative dynamics, as well as
an ab initio classical derivation of the retarded 3PM
dynamics, so as to directly check that the radiation-reaction
corrected scattering angle (6.4) does directly follow from
the retarded 3PM dynamics, without appealing (as we did)
to the balance between mechanical and radiated angular
momentum.
As already mentioned in the Introduction, the motivation

for the present work was Ref. [41] which pointed out two
different, but interrelated, facts: (i) analyticity, crossing
properties, and impact-parameter-space exponentiation of
the HE quantum scattering amplitude allows one to relate
the real part of the two-loop eikonal phase to its imaginary
part; the latter being then derived from the phase-space
integral of a three-particle cut; and (ii) the explicit evalu-
ation of the four-point two-loop amplitude in N ¼ 8
supergravity using integration over the full soft-graviton
region k0 ∼ jkj ≪ ffiffiffi

s
p

. Their first approach led to a reder-
ivation of the ACV HE eikonal phase that emphasized its
link with the inelastic tree-level amplitude describing the
emission of a graviton in a certain HE double-Regge limit.
Their second approach confirmed (in a particular setting)

RADIATIVE CONTRIBUTION TO CLASSICAL GRAVITATIONAL … PHYS. REV. D 102, 124008 (2020)

124008-7



that radiative corrections (soft region, rather than potential
region) were crucial for getting a finite HE eikonal phase.
Our present work has completed, on the classical side,
the quantum-based results of Ref. [41] by showing in
detail how classical radiative corrections to the classical
conservative dynamics5 resolve the puzzle of the logarith-
mic divergence in the HE (or massless limit) of the
conservative 3PM scattering angle, by establishing, by a
purely classical computation, that the ACVeikonal scatter-
ing does agree with the massless limit of the 3PM scattering
of two classical masses.
Let us note that, independently of the issue of the high-

energy behavior, our results show that even the 2PM[OðG2Þ]
dynamics cannot be considered as being naturally con-
servative [as had been assumed so far because of the
OðG3Þ order of the radiative energy-momentum loss Prad

μ ].
Indeed, the 2PM-accurate effective one-body Hamiltonian
description [8] (or the equivalent [10] 2PM effective-field-
theory formulation [13]) involves the total c.m. angular
momentum J of the binary system and crucially assumes
that J is conserved. Our explicit PM result (4.9) above shows
that this is not true for the physical (retarded) PM interaction
but only applies to the time-symmetric 2PM dynamics.
Another consequence of our result is that, contrary to what
had been hitherto assumed, the classical ACV scattering
angle should not be thought as being a conservative quantity,
but rather as a strongly radiation-reacted quantity. The ACV
scattering angle shouldnot therefore be transcribed into some
high-energy Hamiltonian (as was done, e.g., in [8]). At the
formal level, one could use the dictionary given in
Refs. [8,10,37] to transcribe, for any finite values of the
masses and of γ, the 3PM-level radiation-corrected total
scattering angle χtot3 into a corresponding value for the 3PM-
level effective one-body potential (either in theQFinsler-like
form or theW potential one). The resulting potential would
be of the form Q̂E¼q2ðγ;νÞðGM=RÞ2þqtot3 ðγ;νÞðGM=RÞ3þ
OðG4Þ, with q2ðγ; νÞ given in Eq. (5.12) of [8], and
qtot3 ðγ; νÞ ¼ qcons3 ðγ; νÞ þ qrad3 ðγ; νÞ, where qcons3 ðγ; νÞ is the
3PM-level conservative effective one-body potential (see
[9,10]), and where the radiative correction would explicitly
read

qrad3 ðγ; νÞ ¼ 2ν

h2ðγ; νÞ C̄
radðγÞ

¼ −
2ν

1þ 2νðγ − 1Þ
ð2γ2 − 1Þ2ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p

×

�
−
8

3
þ 1

v2
þ 3v2 − 1

v3
AðvÞ

�
: ð8:6Þ

The latter radiative contribution to the Q potential would
start at the 2.5PN order [namely qrad3 ¼ − 8

5
νðGM=RÞ3×

ðvþOðv3ÞÞ] and would be odd in the relative velocity v.
It would be (somewhat analogously to the use of an optical
potential) a way of encoding the effect of radiation-reaction
on χ in an effective potential. But it would miss the fact that
the angular momentum of the system is not conserved at the
G2 level. For concreteness, let us recall that the leading-order
radiation-reaction force (to be added to the conservative
acceleration of the first body) is of order G2=c5, and reads
[see Eq. (5a) in [48] ]

arad1 ¼ −
4

5

G2

c5
m1m2

v212
r312

½v12 − 3ðv12 · n12Þn12�; ð8:7Þ

where v12 ¼ v1 − v2, and n12 ¼ ðx1 − x2Þ=r12.
The time-symmetric dynamics of gravitationally

interacting systems does admit a perturbatively defined
Poincaré-invariant action [59], with Noether-associated
conservation laws for energy-momentum and (relativistic)
angular momentum (see, e.g., [61] for the electromagnetic
case). We recalled in the Introduction that in the 1980’s it
had been important to use a (physical, retarded) PM
framework in order to establish, without using any ill-
defined PN-type nearzone expansion, that GR did predict
nearzone radiation-reaction effects in accord with the
heuristic expectation of a global balance between the
mechanical energy and angular momentum of the binary
system, and the energy and angular momentum radiated in
gravitational waves. However, the classical GR community
stopped pursuing to higher orders the physical (retarded)
PM approach because of the following combination of
facts: (i) technical difficulties in explicitly evaluating
retarded PM equations of motion at the 3PM, OðG3Þ, level
(which could only be done by neglecting some terms
explicitly involving the relative velocities between the two
bodies [63]); (ii) confidence built by the PM result in the
validity of the nearzone-based PN expansion (whose
breakdown was, moreover, shown to occur only at the
G4=c8 level [62]); and (iii) superior technical efficiency of
the PN approximation for computing higher-order effects
[64–66]. Instead of using a physical, retarded PM approach,
it was found efficient to rely on a dual approximation where
the equations of motion of binary systems are decomposed
in a conservative part and a radiation-reaction one, both
parts being computed by using PN methods (amplified by a
PN-matched multipolar-post-Minkowskian approach, see,
e.g., [67] for a review). (Such a dual approximation is
notably used in the effective one-body approach6[68,69],
and has been recently pushed to very high orders [70].)5In this sense, we do not agree with the statement of Ref. [41]

that “the real part of [the two-loop eikonal phase δ2] captures the
conservative dynamics.” Our calculation clearly shows that the
J-derivative of the HE eikonal phase is the full, radiation-
reaction-corrected scattering angle.

6Let us, however, note that Ref. [68] initially advocated to
describe radiation-reaction effects through an additional contri-
bution to the effective one-body metric.
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It is only recently that the PM approach (especially in
its quantum-amplitude version) was rekindled with the
assumption [13,16,17] that the combined use of quasi-
classical-type approximations, and potential-region trun-
cation, would give an efficient (and scalable) way to
compute higher-orders in PM gravity. This enthusing
program is, however, now facing several types of diffi-
culties highlighted by various recent results (notably
Refs. [35,41] and the results presented here). We have
in mind here both the subtleties linked to the differences
between the various graviton propagators, as displayed in
Eqs. (8.1), (8.2), (8.3), and the breakdown of the
potential-region propagator Eq. (8.4) [or its x-space,
PN-expanded, analog Eq. (8.4)] starting at the G4=c8

level, where time-nonlocality becomes essential [62].
Now that these subtleties have been more clearly iden-
tified, we hope that improved ways of tapping the deep
knowledge of quantum perturbative gravity brought by
many years of work (notably related to string theory) for
deriving classical observable quantities of direct impor-
tance for gravitational-wave physics will be explored.

The dual, conservative-plus-radiation-reaction, PM-
based approach (instead of the usual PN-based one),
exemplified by our computation above, is a priori scal-
able, i.e., can be extended to higher PM orders. We leave
to future work an application of our method to the
OðG4Þ level.
Let us finally note that it is tempting (as suggested in

Ref. [41]) to assume that Weinberg’s quantum result [71]
about the absence of lnmA divergences in the massless limit
(mA → 0) of perturbative quantum-gravity amplitudes
implies, at the classical level, that the physical, retarded
(radiation-reaction corrected) scattering angle admits, at
each order of the (classical) PM perturbative gravity
expansion, a finite massless limit, and therefore a well-
defined HE limit. We wish, however, to recall that Sec. VI D
of Ref. [10] has presented an argument (based on the results
of Refs. [72,73]) showing how radiative (tail) effects give a
conservative contribution to the scattering angle of orderG4

at finite γ, which becomes of order G3 lnG in the HE
limit γ → ∞.
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