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We continue the study of spherically symmetric black hole solutions in torsion bigravity, a class of
Einstein-Cartan-type gravity theories involving, besides a metric, a massive propagating torsion field. In the
infinite-range limit, these theories admit asymptotically flat black hole solutions related to the presence of
attractive fixed points in the asymptotic radial evolution of the metric and the torsion. We discuss these
fixed points and the way they are approached at large radii. Several phenomenological aspects of
asymptotically flat torsion-hairy black holes are discussed: (i) location of the light ring and of the shadow;
(ii) correction to the redshift of orbiting stars; and (iii) modification of the periastron precession of orbiting
stars. By comparing the observable properties of torsion-hairy black holes to existing observational data on
supermassive black holes obtained by the Event Horizon Telescope Collaboration and by the GRAVITY
Collaboration, we derive constraints on the theory parameters of torsion bigravity. The strongest constraint
is found to come from the recent measurement of the periastron precession of the star S2 orbiting the
Galactic-center massive black hole [R. Abuter et al., Astron. Astrophys. 636, L5 (2020) and to be a
thousand times more stringent than Solar-System gravitational tests.
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I. INTRODUCTION

Black holes (BHs) are one of the most remarkable
predictions of Einstein’s theory of general relativity
(GR). They epitomize GR predictions about strong-field
gravity. It is only recently that observational data allowed
one to explore in some detail the strong-field structure of
BHs. In particular, (i) gravitational-wave data have probed
the physics of coalescing, and ringing, BH horizons [1];
(ii) very-long-baseline interferometry has imaged the
immediate neighborhood of the supermassive BH at the
center of the Messier 87 galaxy [2]; and (iii) the study of
stars in highly elliptical orbits around the supermassive BH
at the center of our Galaxy has quantitatively checked the
strong-field structure of BHs [3,4].
GR has, so far, been found to be compatible with all

observational data related to BHs. However, in order to
gauge the probing power of various observational windows
on BH physics, it is important to be able to compare GR
predictions to the predictions of alternative theories of
gravity [5]. Actually, there are not many theories of gravity
predicting the existence of BHs having regular horizons
and a gravitational-field structure different from GR BHs.
(Let us, however, recall, following Ref. [6], that even in
cases where BH solutions in an alternative theory coincide
with GR BHs, their perturbations will generally be different
from the GR ones and, thereby, lead to different observable
predictions.) For examples of BHs in alternative theories of
gravity, see Refs. [7–12].
In a recent work [13], we have explored the existence

and structure of (spherically symmetric) BHs in torsion

bigravity. This theory generalizes (à la Cartan) GR by
adding to the Einstein metric field gμν an independent affine
connection Aλ

μν, having a nonzero torsion tensor Tλ½μν�.
General classes of ghost-free and tachyon-free theories
involving a propagating torsion were introduced long ago
[14–19]. Torsion bigravity is a specific, minimal class of
dynamical-torsion theory containing only two excitations: a
massless, GR-type spin-2 excitation and a massive spin-2
one. In other words, torsion bigravity has the same
excitation content as (ghost-free) bimetric gravity [20].
Previous work (notably, Refs. [21–23]) has indicated that
torsion bigravity seems to define a viable alternative theory
of gravity, endowed with purely geometric structures and
having interesting physical properties.
In the present work, we complete the study of Ref. [13]

by exploring in detail the structure of the asymptotically flat
torsion-hairy black holes, which were found to exist in the
infinite-range limit of torsion bigravity. General torsion-
bigravity theories contain four parameters, denoted cR, cF,
cF2 , and c34 in Ref. [22]. The latter parameter does not
influence the spherically symmetric sector. We are then left
with three parameters that are conveniently parametrized in
terms of (i) a dimensionful parameter λ≡ cF þ cR ¼ 1

16πG0
,

measuring the gravitational coupling of the massless spin-2
excitation; (ii) the dimensionless parameter η≡ cF=cR
measuring the ratio between the coupling of the massive
spin-2 field and the coupling of the massless spin-2 one;
and (iii) the inverse range (or Compton wavelength) κ ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηλ=cF2

p
of the massive spin-2 excitation. With this

notation, the Lagrangian density of torsion bigravity reads
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L ¼ λ

1þ η
Rþ ηλ

1þ η
F þ ηλ

κ2

�
FðμνÞFðμνÞ −

1

3
F2

�
: ð1:1Þ

Here, R denotes the usual scalar curvature of gμν, while
F≡ gμνFμν, where Fμν denotes the Ricci tensor of the
metric-preserving, but torsionful, affine connection Aλ

μν.
For the convenience of the reader, the full definitions of
these objects are summarized in the Appendix A.
The long-range limit κ → 0 looks a priori singular for

the Lagrangian (1.1). (As discussed in Ref. [22], this formal
limit might physically correspond to the case where κ is
of the order of the Hubble scale H0.) However, it was
proven in Ref. [23] that the spherically symmetric field
equations, and solutions, of torsion bigravity admit a
smooth limit as κ → 0. This smoothness emerges when
using suitable variables and, notably, the variable denoted
π̄. See Appendix B for the explicit form of the (spherically
symmetric) field equations of torsion bigravity, on which
one can explicitly see the smoothness of the long-range
limit κ → 0.
Reference [13] has found that, in the infinite-range limit,

κ → 0, there existed asymptotically flat BHs, having
regular horizons and endowed with an asymptotically
decaying, horizon-regular torsion field Tλ½μν�. These sol-
utions are parametrized, besides the dimensionless theory
parameter1η, by the (areal) radius rh of the BH and by the
dimensionless parameter π̄0, measuring the horizon value
of the following (κ2-rescaled) combination of frame com-
ponents of the curvature tensor Fλ

μνρ of the torsionful
connection Aλ

μν (see Appendix A for the detailed definition
of Fλ

μνρ):

π̄ ¼ κ−2ðF0̂ 1̂ 0̂ 1̂ þ F1̂ 2̂ 1̂ 2̂ − F0̂ 2̂ 0̂ 2̂ − F2̂ 3̂ 2̂ 3̂Þ: ð1:2Þ

Those asymptotically flat, torsion-hairy BHs were obtained
by proving the existence of fixed points, when r → ∞, of
the system of three first-order ordinary differential equa-
tions (ODEs) describing the radial evolution (from the
horizon up to spatial infinity) of the geometric structure gμν,
Tλ½μν�. In the following, we shall successively (i) discuss
(in Sec. II) all the fixed points of the latter system of ODEs
and their main properties; (ii) focus (in Sec. III) on the
properties of the particular fixed point that yields asymp-
totically flat BHs; and, finally, (iii) study (in Sec. IV)
the phenomenology of the latter asymptotically flat torsion-
hairy BHs and compare some of the physical effects
they predict to the observational results on the star S2,
which orbits the supermassive BH at the center of our
Galaxy [3,4].

II. ASYMPTOTIC FIXED POINTS OF THE
RADIAL EVOLUTION SYSTEM

Spherically symmetric solutions of torsion bigravity are
described by four variables: ΦðrÞ, LðrÞ, VðrÞ, and WðrÞ.
The first two variables, ΦðrÞ and LðrÞ, describe the metric:

ds2 ¼ −e2Φdt2 þ L2dr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð2:1Þ
The last two, VðrÞ and WðrÞ, describe the independent
components of the torsionful connection A in the polar-
type vierbein eî

μ defined by the metric (2.1). Namely (see
Appendix A for details),

V ¼ A1̂
0̂ 0̂ ð2:2Þ

and

W ¼ A1̂
2̂ 2̂ ¼ A1̂

3̂ 3̂: ð2:3Þ
It is then convenient to further introduce the auxiliary
variables FðrÞ≡Φ0ðrÞ (where the prime denotes a radial
derivative) and π̄ðrÞ, defined by Eq. (1.2), which means that
π̄ is linear in the radial derivatives of VðrÞ and WðrÞ [see
Eq. (4.3) of Ref. [13] ]. It was shown in Refs. [13,22,23]
that the five variables FðrÞ, LðrÞ, VðrÞ,WðrÞ, and π̄ðrÞ then
satisfy a system of ODEs which can be reduced to (i) two
algebraic equations that can be solved to express F and V in
terms of LðrÞ, WðrÞ, and π̄ðrÞ and (ii) a system of three
first-order ODEs describing the radial evolution of the three
variables [LðrÞ, WðrÞ, and π̄ðrÞ]. When discussing BH
solutions, it is convenient to replace the three variables
[LðrÞ, WðrÞ, and π̄ðrÞ] by the equivalent set

ðX1; X2; X3Þ≡ ðl̃; w̃; π̄Þ: ð2:4Þ
Here l̃ and w̃ are defined as

l̃ðrÞ≡ LðrÞ
LSðrÞ

and w̃ðrÞ≡ WðrÞ
WSðrÞ

; ð2:5Þ

respectively, where LS and WS are the values of L and W
for a Schwarzschild BH. We recall (see [13]) that the
geometric structure (gμν, Aλ

μν) of a Schwarzschild BH is
described by the variables

ΦSðrÞ ¼ þ 1

2
ln
�
1 −

rh
r

�
;

FSðrÞ ¼ þ 1

2

rh
rðr − rhÞ

;

LSðrÞ ¼
�
1 −

rh
r

�
−1=2

;

VSðrÞ ¼
FSðrÞ
LSðrÞ

¼ 1

2

rh
r2

�
1 −

rh
r

�
−1=2

;

WSðrÞ ¼ −
1

rLSðrÞ
¼ −

1

r

�
1 −

rh
r

�
1=2

;

π̄SðrÞ ¼ −3
rh
κ2r3

: ð2:6Þ1The dimensionful gravitational-coupling parameter λ does not
enter these vacuum solutions.
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The three variables Xi, i ¼ 1; 2; 3 [Eq. (2.4)], satisfy a first-
order radial evolution system, say,

dXi

dr
¼ Fiðr; XjÞ: ð2:7Þ

The explicit form of this system can be read off by taking
the limit κ → 0 in Eqs. (B2) of Appendix B.
The large-r asymptotics of the latter system yields a

Fuchsian-type system, of the form

d
dr

Xi ¼ 1

r
ViðXjÞ þO

�
1

r2

�
: ð2:8Þ

Neglecting the Oð 1r2Þ subleading correction and introdu-
cing ρ≡ ln r leads to a vectorial flow equation for the
ρ-evolution of the point X in a three-dimensional space:

d
dρ

Xi ¼ ViðXjÞ: ð2:9Þ

Let us consider the solutions X∞ of the three (algebraic)
equations

ViðXj
∞Þ ¼ 0: ð2:10Þ

These solutions define the fixed points of the vectorial flow
(2.9): If the system (2.9) crosses a state corresponding to
any of its fixed points, it will stay there forever:

d
dρ

Xi
∞ ¼ ViðXj

∞Þ ¼ 0: ð2:11Þ

Yet this does not tell anything about the accessibility of the
fixed points. The first issue to understand, for knowing
whether the system can reach a certain fixed point, is to
assess whether this fixed point is an attractor or not. Let us
recall the relevant mathematics. We consider a small
perturbation ξiðρÞ around a fixed point:

XiðρÞ ¼ Xi
∞ þ ϵξiðρÞ: ð2:12Þ

Substituting the latter expression in Eq. (2.9) and making a
series expansion of the right-hand side up to the linear
order, one obtains the following equation, describing linear
perturbations around any fixed point:

d
dρ

ξilinðρÞ ¼
�∂Vi

∂Xj

�
ðX∞ÞξjlinðρÞ ¼ JijðX∞ÞξjlinðρÞ: ð2:13Þ

Here

JijðX∞Þ≡
�∂Vi

∂Xj

�
ðX∞Þ ð2:14Þ

denotes the Jacobian matrix of the system (2.9); it is made
of the partial derivatives of the functions Vi with respect

to Xj ¼ fl̃; w̃; π̄g taken at the fixed point X∞ ¼
fl̃∞; w̃∞; π̄∞g.
To obtain the law of evolution of the linear perturbations,

one introduces the eigenvectors Ei
ðnÞ, n ¼ 1; 2; 3, of the

matrix Jij, say,

JijE
j
ðnÞ ¼ λðnÞEi

ðnÞ; ð2:15Þ

and decomposes ξilin along the vector basis of eigenvectors,
say,

ξilinðρÞ ¼
X
n

δðnÞðρÞEi
ðnÞ; ð2:16Þ

where it should be noted that the eigenvectors Ei
ðnÞ do not

depend on ρ. Inserting Eq. (2.16) into Eq. (2.13), one
obtains the ρ-evolution law for the coefficients δðnÞðρÞ:

d
dρ

δðnÞðρÞ ¼ λnδðnÞðρÞ: ð2:17Þ

This gives the following equation describing the evolution
of general linear perturbations ξilin around a fixed point:

ξilinðρÞ ¼
X
n

cðnÞeλðnÞρEi
ðnÞ ¼

X
n

Ci
ðnÞe

λðnÞρ; ð2:18Þ

where cðnÞ and Ci
ðnÞ are some constants, depending on the

initial values for ξilinðρÞ.
The first conclusion is that the attractive or repulsive

character of a fixed point is determined by the eigenvalues
of Jacobian matrix: A fixed point is an attractor (and all the
trajectories from a small neighborhood of the fixed point
will end up at the fixed point) if the real parts of all the
eigenvalues λðnÞ are negative.
In addition, we must remember that our exact radial

evolution system [Eq. (2.7)] is to be integrated with
restricted initial conditions on the horizon, r ¼ rh.
Indeed, Ref. [13] has shown that a single shooting
parameter (namely, π̄0) can be specified on the horizon.
Then the following radial evolution (from r ¼ rh up to
r ¼ þ∞) of the three variables Xi ¼ fl̃; w̃; π̄g will depend
on π̄0, on rh, and on the theory parameter η. (As in
Ref. [13], we often use, for convenience, units where
rh ¼ 1.) Therefore, besides analytically studying the attrac-
tor nature of the fixed points, we shall need numerical
simulations to check whether the one-parameter family of
horizon initial values can belong to the basin of attraction of
any given attractive fixed point.

A. List of asymptotic fixed points of the radial evolution

Let us now go to practice and analyze all the fixed points
of the system (2.10). This algebraic system gives ten fixed
points. Five of them are characterized by l̃∞ < 0 and, thus,
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are nonphysical, so we will not consider them. We must
indeed remember at this stage that the physical meaning of
the variable X1 ¼ l̃, defined in Eq. (2.5), is such that we
need to impose l̃ðrÞ > 0. We will discuss below the further
conditions characterizing asymptotically flat BH solutions.
Among the remaining five points, one is only partially

attractive: The fixed point ðl̃∞ ¼ 1; w̃∞ ¼ 1; π̄∞ ¼ 0Þ has
eigenvalues λðnÞ ¼ ð−1;−3; 2Þ, so that it is repulsive in one
eigendirection.
Let us consider more in detail the four remaining fixed

points.
(i) The most interesting is the fixed point

�
l̃∞ ¼ 1; w̃∞ ¼ −1; π̄∞ ¼ 6

1þ η

�
; ð2:19Þ

describing the asymptotically flat torsion-hairy2

black hole solution which was discussed in the
previous paper [13] (see Sec. X there). The corre-
sponding eigenvalues are

λðnÞ ¼
	
−1;−

1

2
þ i

ffiffiffi
7

p

2
;−

1

2
− i

ffiffiffi
7

p

2



: ð2:20Þ

The real parts of the eigenvalues displayed in
Eq. (2.20) are all strictly negative. This shows that
the fixed point (2.19) is a (local) attractor.

The analytical expressions of l̃∞, w̃∞, and π̄∞ for the
three remaining fixed points are rather complicated, so
we will use a numerical description. They all correspond to
non asymptotically flat torsion-hairy black hole solutions.

(i) The second fixed point exists only for η > 1=3,
because the values of η < 1=3 give imaginary values
for l̃∞, w̃∞, and π̄∞. For all η > 1=3, it is an
attractive fixed point. The latter fact was checked
numerically by computing the eigenvalues. When η
varies from 1=3 to infinity, the value of l̃∞ respec-
tively varies in the interval

ffiffiffi
2

p
< l̃∞ <

ffiffiffi
3

p
: ð2:21Þ

The fact that l̃∞ > 1 means that the corresponding
BH is non asymptotically flat. Figure 1 shows the
spectrum of values of l̃∞, w̃∞, and π̄∞ as a function
of the theory parameter η.

(ii) The third fixed point also makes sense only for
η > 1=3, and it is an attractive fixed point for all
η > 1=3. When η varies from 1=3 to infinity, the
value of l̃∞ decreases from l̃∞ðη ¼ 1=3Þ ¼ ffiffiffi

2
p

to
l̃∞ðη → þ∞Þ ¼ 1.3. Figure 2 shows the spectrum of
values of l̃∞, w̃∞, and π̄∞ as a function of η.

(iii) The last, fourth fixed point makes sense for all η’s,
and it is attractive. The value of l̃∞ varies from
l̃∞ðη → 0Þ → þ∞ to l̃∞ðη → þ∞Þ ¼ 2.3. See
Fig. 3 for more details.

III. ASYMPTOTICALLY FLAT TORSION-HAIRY
BHS IN THE LARGE-RANGE LIMIT

Let us now analyze in some detail the asymptotically flat
torsion-hairy BHs obtained with the first fixed point, i.e.,

FIG. 1. Fixed point values l̃∞, w̃∞, and π̄∞ for the second fixed
point. The value of w̃∞ varies between w̃∞ðη ¼ 1

3
Þ ¼ −1=

ffiffiffi
2

p
and

w̃∞ðη → ∞Þ ¼ 0. The value of π̄∞ varies between π̄∞ðη ¼ 1
3
Þ ¼ 9

2

and π̄∞ðη → þ∞Þ ¼ 0.

FIG. 2. Fixed point values l̃∞, w̃∞, and π̄∞ for the third fixed
point. The value of w̃∞ varies between w̃∞ðη ¼ 1

3
Þ ¼ −1=

ffiffiffi
2

p
and

w̃∞ðη → þ∞Þ ¼ −1. The value of π̄∞ varies between π̄∞ðη ¼
1
3
Þ ¼ 9

2
and π̄∞ðη → þ∞Þ ¼ 0.

FIG. 3. Fixed point values l̃∞, w̃∞, and π̄∞ for the fourth fixed
point. The value of w̃∞ varies between w̃∞ðη → 0Þ → þ∞ and
w̃∞ðη → ∞Þ ¼ 1. The value of π̄∞ varies between π̄∞ðη → 0Þ →
þ∞ and π̄∞ðη → þ∞Þ ¼ 0.

2Note that the condition l̃∞ ¼ 1 is necessary for the asymptotic
flatness of the metric.
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X∞ ¼ ðl̃∞; w̃∞; π̄∞Þ ¼
�
1;−1;

6

ηþ 1

�
: ð3:1Þ

As already mentioned, the approach toward this fixed point
is characterized by the three η-independent eigenvalues

λðnÞ ¼
	
−1;−

1

2
þ i

ffiffiffi
7

p

2
;−

1

2
− i

ffiffiffi
7

p

2



: ð3:2Þ

Inserting (2.20) into (2.18) and taking into account that we
are considering real solutions of the real perturbation
equation (2.13), we get, for a general real asymptotic
solution, the form

ξilinðρÞ ¼ Ci
ð1Þe

−ρ þ Ci
ð2Þe

−ρ=2eið
ffiffi
7

p
=2Þρ

þ ½Ci
ð2Þe

−ρ=2e−ið
ffiffi
7

p
=2Þρ��; ð3:3Þ

where Ci
ð1Þ is real and where �means complex conjugation.

This gives, in more explicit form,

ξilinðρÞ ¼ 2jCi
ð2Þje−ρ=2 cos

� ffiffiffi
7

p

2
ρþΦi

�
þ Ci

ð1Þe
−ρ; ð3:4Þ

where Φi are some phases. In terms of r (remembering that
ρ≡ ln r), this looks as follows:

ξilinðrÞ ¼
2jCi

ð2Þj
r1=2

cos

� ffiffiffi
7

p

2
ln rþΦi

�
þ
Ci
ð1Þ
r

: ð3:5Þ

At this point, we should note that the perturbations ξilin were
obtained in the linearized approximation. In other words,
Eq. (3.5) neglected the contributions coming from terms
quadratic (and higher) in ξ in the perturbation equation.
Instead of solving Eq. (2.13), we should have solved a
nonlinear equation of the form

d
dρ

ξinonlin ¼ Jijξ
j
nonlin þ Jijkξ

j
nonlinξ

k
nonlin þ � � � : ð3:6Þ

Let us sketch the structure of the corrections to the
linearized solution (3.5) when considering only the quad-
ratically nonlinear terms and treating them perturbatively,
i.e., solving the equation

d
dρ

ξinonlin ¼ Jijξ
j
nonlin þ Jijkξ

j
linξ

k
lin; ð3:7Þ

where ξilin is given by (3.4). The structure of the last,
quadratic term in Eq. (3.7) is

Jijkξ
j
linξ

k
lin ¼ Jijk

�X
n

Cj
ðnÞe

λðnÞρ
��X

m

Ck
ðmÞe

λðmÞρ
�

¼ C̃i
1e

−ρ þ C̃i
2þe

ð−1þi
ffiffi
7

p Þρ þ C̃i
2−e

ð−1−i ffiffi
7

p Þρ

þ C̃i
3þe

½−ð3=2Þþið ffiffi
7

p
=2Þ�ρ

þ C̃i
3−e

½−ð3=2Þ−ið ffiffi
7

p
=2Þ�ρ þ C̃i

4e
−2ρ: ð3:8Þ

Among the contributions contained in this quadratically
nonlinear “source term,” the term

C̃i
1e

−ρ

coincides with a fundamental solution of the homogeneous
equation (2.13) with λðnÞ ¼ λð1Þ ¼ −1. As a consequence,
such a resonant source term will generate a solution of (3.7)
of the type e−ρρ. The other, nonresonant, terms in (3.8) will
generate exponential solutions of the same form as they are:
The terms eð−1�i

ffiffi
7

p Þρ after taking the real part will generate
in the solution a term of the type e−ρ cos ð ffiffiffi

7
p

ρþ phaseÞ,
while the terms e½−ð3=2Þ�ið ffiffi

7
p

=2Þ�ρ will generate a term of the

type e−3ρ=2 cos ð
ffiffi
7

p
2
ρþ phaseÞ. Finally, the quadratically

nonlinear solution for ξi will have the following structure:

ξiðρÞ ¼ Ci
½ð1=2Þ cos�e

−ρ=2 cos

� ffiffiffi
7

p

2
ρþΦi

ð1=2Þ

�

þ Ci
ð1Þe

−ρ þ Ci
ðlnÞe

−ρρ

þ Ci
ðcosÞe

−ρ cos ð
ffiffiffi
7

p
ρþΦi

ð1ÞÞ þOðe−3ρ=2Þ; ð3:9Þ

or, in terms of r,

ξiðrÞ ¼
Ci
½ð1=2Þ cos�
r1=2

cos
� ffiffiffi

7
p

2
ln rþΦi

ð1=2Þ

�
þ
Ci
ð1Þ
r

þ
Ci
ðlnÞ ln r

r
þ
Ci
ðcosÞ
r

cos ð
ffiffiffi
7

p
ln rþΦi

ð1ÞÞ
þOðr−3=2Þ: ð3:10Þ

This gives the following expression for the large-r behavior
of X ¼ ðl̃; w̃; π̄Þ:

XiðrÞ ¼ Xi
∞ þ

Ci
½ð1=2Þ cos�
r1=2

cos

� ffiffiffi
7

p

2
ln rþΦi

ð1=2Þ

�

þ
Ci
ð1Þ
r

þ
Ci
ðlnÞ ln r

r
þ
Ci
ðcosÞ
r

cos ð
ffiffiffi
7

p
ln rþΦi

ð1ÞÞ
þOðr−3=2Þ: ð3:11Þ

The last expression gives, for example, the following
behavior of

ffiffiffiffiffiffi
grr

p ¼ L ¼ l̃=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rh=r

p
near infinity:
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ffiffiffiffiffiffi
grr

p ¼ 1þ
Cl
½ð1=2Þ cos�
r1=2

cos

� ffiffiffi
7

p

2
ln rþΦl

ð1=2Þ

�
þ
Cl
ð1Þ
r

þ
Cl
ðlnÞ ln r

r
þ
Cl
ðcosÞ
r

cos ð
ffiffiffi
7

p
ln rþΦl

ð1ÞÞ
þOðr−3=2Þ: ð3:12Þ

When comparing this asymptotic behavior to the usual
Schwarzschild one, namely,

ffiffiffiffiffiffi
gSrr

q
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − rh=r
p ¼ 1þ rh

2r
þOðr−2Þ; ð3:13Þ

the most striking difference is the fact that the leading term
in the large-r expansion of

ffiffiffiffiffiffi
grr

p
is not decaying as Oðr−1Þ

but decays in the slower Oðr−1=2Þ manner and, moreover,
presents oscillations on the logarithmic scale ln r, with a

universal frequency
ffiffi
7

p
2
. By computing the corresponding

solution for the potential ΦðrÞ ¼ 1
2
ln jg00j describing the

time-time component of the metric in torsion bigravity, one
similarly finds that the leading term in the large-r expan-
sion of ΦðrÞ also contains an oscillating, slowly decaying

piece ∝ r−1=2 cos ð
ffiffi
7

p
2
ln rþ phaseÞ. The physical conse-

quences of such slowly decaying (and oscillating) contri-
butions are discussed in the following subsections.

A. Expansion of the BH solution in powers of η

Let us show that, in the formal limit η → 0, the metric
structure [described by the functions LðrÞ and FðrÞ ¼
Φ0ðrÞ] of asymptotically flat BHs tend to the Schwarzschild
one L ¼ LS and F ¼ FS [defined in Eqs. (2.6)].
To this end, we first remark that Eq. (B3) becomes very

simple in the limit η ¼ 0 (with κ ¼ 0). One finds that it
takes the following form:

l̃0 ¼ l̃ð1 − l̃2Þ
2ðr − 1Þ : ð3:14Þ

We should solve this equation taking into account the
boundary conditions at the horizon which were discussed in
Ref. [13]. Looking at Eqs. (7.8)–(7.10) of Ref. [13], one
can see that, in the limit η → 0, the horizon value
l̃ðr ¼ rhÞ → 1, independently of the value chosen for the
free shooting parameter π̄0. Since the right-hand side of
Eq. (3.14) equals zero when l̃ ¼ 1, the unique solution
which satisfies the boundary conditions is found to be

l̃ðrÞ≡ 1 ðwhen η → 0Þ: ð3:15Þ

Inserting this result (together with κ ¼ 0 and η ¼ 0) in
Eqs. (B4) and (B2), one then finds that the radial behavior
of w̃ and π̄ is described by the following system of two
first-order equations:

rw̃0 ¼ −
π̄2 þ 3π̄ð2 − rþ rw̃Þ − 9ð2 − 2rþ ð2r − 3Þw̃Þ

3ðr − 1Þð3þ π̄Þ ;

rπ̄0 ¼ 3 − 2π̄ − 3w̃ − π̄ w̃ : ð3:16Þ

The large-r limit of this system is a two-dimensional
Fuchsian system which admits, as a fixed point, the values
ðw̃∞; π̄∞Þ ¼ ð−1; 6Þ. These values are the two-dimensional
projection of the η ¼ 0 limit of the fixed point (3.1). The
corresponding two-dimensional Jacobian matrix is found to
have the eigenvalues

λð1;2Þ ¼ −
1

2
� i

ffiffiffi
7

p

2
: ð3:17Þ

Similarly to the previous section, we can conclude from this
the following law of asymptotic approach to the fixed point:

w̃η0ðrÞ ¼ −1þ Aw

r1=2
cos

� ffiffiffi
7

p

2
ln rþΦw

�
; ð3:18Þ

π̄η0ðrÞ ¼ 6þ Aπ

r1=2
cos

� ffiffiffi
7

p

2
ln rþΦπ

�
; ð3:19Þ

plus some terms of higher orders in 1=r. Here, the constants
Aw and Aπ depend on the integration constants of the
system (3.16).
Finally, putting η ¼ 0 and κ ¼ 0 and inserting Eqs. (3.15),

(3.18), and (3.19) into the algebraic equation (B1) giving F
in terms of l̃, w̃, and π̄, one finds that

Fjη¼0;κ¼0 ¼ FS; ð3:20Þ

where FS ¼ 1
2ðr−1Þr is the Schwarzschild value.

Having determined the structure of the solution in the
limit η → 0, we can now discuss the structure of the
solutions when η is nonzero, but small. Let us indeed
recall that Ref. [22] has studied the phenomenological
constraints on the torsion-bigravity theory parameter η in
the limit κ → 0 and has concluded that Solar-System
gravity tests constrain η to be small; more precisely [see
Eq. (10.18) in Ref. [22] ],

η≲ 10−5 ðfrom Solar-System gravitational testsÞ: ð3:21Þ

It is then appropriate to work only linearly in η. We then
conclude from the result (3.15) that

l̃ðrÞ≡ 1þ ηl̃1ðrÞ þOðη2Þ: ð3:22Þ

One then gets a differential equation for l̃1ðrÞ by inserting
the expansion (3.22) in Eq. (B3), working at linear order in
η. Together with Eq. (B3), this gives
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l̃01 ¼ −
l̃1

r − 1
þ flðw̃η0; π̄η0Þ þOðηÞ; ð3:23Þ

where fl is a polynomial function of its arguments (and a
rational function of r). Replacing w̃η0 and π̄η0 by solutions
of the system (3.16) then yields an inhomogeneous first-
order ODE determining the radial evolution of l̃1. In
particular, we can obtain the asymptotic radial behavior
of l̃1 by substituting in Eq. (3.23) the asymptotic expan-
sions Eqs. (3.18) and (3.19). We thereby obtain an
inhomogeneous differential equation of the form

l̃01 ¼ −
l̃1

r − 1
−

3

rðr − 1Þ þ fl cosðrÞ þOðηÞ; ð3:24Þ

where fl cosðrÞ is a sum of terms involving oscillatory
factors and powers of r. Solving the resulting equation
yields the following expression for l̃1:

l̃1ðrÞ ¼
A½l;ð1=2Þ cos�

r1=2
cos

� ffiffiffi
7

p

2
ln rþΦl2

�

þ 1

r
½Aðl;1Þ þ Aðl;lnÞ ln r

þ Aðl;cosÞ cosð
ffiffiffi
7

p
ln rþΦl1Þ� þOðηÞ: ð3:25Þ

This form of l̃1ðrÞ is in agreement with the arguments of the
beginning of this section [see Eq. (3.10)] concerning the
form of perturbations around the fixed point (2.20). Indeed,
one can see the oscillatory behavior which becomes
dominant for large r.
However, the new information we got from the reasoning

of the present section is that the unusual slowly decaying,
oscillatory contributions enter the metric function l̃ (and,
therefore, L ¼ LSl̃) only at the OðηÞ level, because
l̃ ¼ 1þ ηl̃1 þOðη2Þ. It is phenomenologically important
to discuss also how these unusual slowly decaying oscil-
latory contributions enter the other metric function, namely,
g00 ¼ −e2Φ, or the related function F ¼ Φ0. As we showed
above that limη→0F ¼ FS, we immediately see that the
unusual slowly decaying oscillatory contributions will also
enter F, and thereby Φ, only at the OðηÞ level.
More precisely, considering the series expansion in η of

Eq. (B1) for F one obtains an expression of the type

F ¼ FS þ ηfFðl̃1; w̃η0; π̄η0Þ þOðη2Þ; ð3:26Þ

where fF is a polynomial function of its arguments.
Substituting in this expression the asymptotic behavior
of the various arguments, namely, Eqs. (3.18) and (3.19) for
w̃η0 and π̄η0 and Eq. (3.25) for l̃1, one finds that the
asymptotic radial behavior of FðrÞ is of the form

FðrÞ ¼ FS þ η

	
A½F;ð1=2Þ cos�

r3=2
cos

� ffiffiffi
7

p

2
ln rþ Φ̂F2

�

þ 1

r2
½AðF;1Þ þ AðF;lnÞ ln r

þ ÂðF;cosÞ cosð
ffiffiffi
7

p
ln rþ Φ̂F1Þ�



þOðη2Þ: ð3:27Þ

Having in hand such an explicit form of the asymptotic
behavior of FðrÞ, one can now discuss the physical
consequences of having such slowly decaying (and oscil-
lating) contributions. More precisely, we can estimate the
order of magnitude of the “crossing distance,” say, r×,
where the oscillatory contributions in F [i.e., the terms

∝ ηr−3=2 cos ð
ffiffi
7

p
2
ln rþ Φ̂F2Þ in Eq. (3.27)] start to dominate

over the usual, Schwarzschild-like power-law decay con-
tained in FS ∼ rh=ð2r2Þ. Using units where rh ¼ 1, the
coefficient of the oscillatory terms is Oð1Þ [because
π̄0 ¼ Oð1Þ]. The crossing then happens when FS ∼
1=r2× ∼ η=r3=2× , which gives r× ∼ η−2, i.e., coming back
to general units

r× ∼ η−2rh: ð3:28Þ

Remembering the phenomenological constraint Eq. (3.21)
from Solar-System tests, we see that the crossing scale r×
must be at least 1010 larger than the BH-horizon size. As, at
such large distances, an astrophysical BH cannot be treated
as being isolated but rather embedded within a matter
distribution created by many other astrophysical objects,
this suggests that the oscillatory contributions will not, in
most cases, lead to identifiable observable signals. This is
phenomenologically fortunate for the compatibility of
the torsion-bigravity BH structure with observational data
on astrophysical BHs (such as the existence and structure

of accretion disks), because the dominance of the ∝
ηr−3=2 cos ð

ffiffi
7

p
2
ln rþ Φ̂F2Þ in Eq. (3.27) when r≳ r×

actually means that the gravitational force FðrÞ ¼ Φ0ðrÞ
generated by the BH is no longer of the standard, attractive
F ≃ rh=ð2r2Þ type but starts oscillating around zero as

F ≃ rhr
−1=2
× r−3=2 cos ð

ffiffi
7

p
2
ln rþ Φ̂F2Þ. If r× was a distance

scale where an accretion disk would be known to exist
around the BH, this would phenomenologically rule out
torsion-hairy BHs, because the ln r-periodic changes of
sign of FðrÞ when r≳ r× means that the gravitational force
created by the BH periodically becomes repulsive, before
becoming again attractive, etc.
Let us complete our discussion of the asymptotic gra-

vitational field of torsion-hairy BHs by commenting on the
presence of the logarithmic term FlnðrÞ ¼ 1

r2 AðF;lnÞ ln r in
F. If we use again units where rh ¼ 1, we will have
AðF;lnÞ ¼ Oð1Þ. Therefore, the ratio between FlnðrÞ and the
Schwarzschild term in (3.27) is of the order of
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FlnðrÞ
FSðrÞ

∼ η ln
r
rh

: ð3:29Þ

In view of the phenomenological limit (3.21), this ratio is
very small, even if one considers distances comparable to
the crossing scale r× ∼ η−2rh.
At face value, this preliminary discussion of the physical

effects of the asymptotic behavior of FðrÞ [Eq. (3.27)]
seems to suggest that the Solar-System upper limit (3.21)
constrains so much the magnitude of the unusual torsion-
hairy gravitational field FðrÞ that it will not lead to any
observable effect. However, the more detailed discussion of
the next section will show that such a conclusion would be
premature.

IV. PHENOMENOLOGICAL CONSEQUENCES
OF TORSION BIGRAVITY FOR

SUPERMASSIVE BHS

We recalled in the introduction some of the current
observational data [1–4] that probe (in a quantitative way)
the structure of the gravitational field of BHs. As our
current investigation of torsion bigravity is limited to the
static sector, we cannot meaningfully discuss the predic-
tions of torsion bigravity for coalescing BHs. (Such an
investigation would anyway require 3D numerical simu-
lations to be conclusive.) Here, we focus on the phenom-
enological consequences of the hypothetical existence3 in
our Universe of torsion-hairy asymptotically flat black
holes. We successively consider the observable conse-
quences of torsion-hairy BHs for (i) the size of the shadow
of BHs; (ii) the redshift of the S2 star around supermassive
black hole candidate SgrA*; and (iii) the periastron
precession of S2.

A. BH shadows

The 2017 Event Horizon Telescope image of Messier 87
[2] has inferred a size for the shadow of the supermassive
BH at the center of Messier 87 that agrees with GR pre-
dictions within ∼17% at the 68-percentile level. It has been
emphasized in recent work [24] that this measurement
offers a new test of GR that goes beyond Solar-System
weak-field tests in probing the strong-field structure of
gravity. As discussed in Ref. [24], the size of the BH
shadow can be discussed with sufficient accuracy within
the context of nonrotating, spherically symmetric BHs. It
then depends only on the time-time metric component
−g00ðrÞ ¼ e2ΦðrÞ, considered as a function of the areal
radius r. The shadow radius rsh is given by

rsh ¼ rlre−ΦðrlrÞ; ð4:1Þ

where rlr denotes the light ring radius (or photon-sphere
radius), which is the solution of the equation

rlrFðrlrÞ ¼ 1: ð4:2Þ

Here, as above, FðrÞ ¼ Φ0ðrÞ is the (relativistic) “gravita-
tional force” derived from the potential ΦðrÞ.
In view of our general result Eq. (3.26) above, we can

a priori see that the light ring radius of torsion-hairy BHs
will admit an expansion of the form

rTBGlr ¼ rGRlr ðrhÞð1þ a1ηþOðη2ÞÞ; ð4:3Þ

where rGRlr ðrhÞ ¼ 3
2
rh and where the coefficient a1 is some

Oð1Þ dimensionless function of the Oð1Þ shooting param-
eter π̄0 describing the one-parameter family of torsion-
bigravity BHs having some given horizon radius rh. By the
same reasoning, one also concludes [from Eq. (4.1)] that

rTBGsh ¼ rGRsh ðrhÞð1þ b1ηþOðη2ÞÞ; ð4:4Þ

with another coefficient b1 ¼ Oð1Þ.
Remembering now the strong Solar-System limit

[Eq. (3.21)] on the magnitude of η and comparing it to
the ∼17% precision on the Event Horizon Telescope
estimate of rsh, we conclude that current (and foreseeable)
shadow measurements will not bring new constraints on the
torsion-bigravity theory parameter η.
As we are going to see next, the GRAVITY

Collaboration weak-field probing of the gravitational
field of the Galactic central BH candidate do provide
(somewhat surprisingly) much stronger tests of torsion
bigravity than the strong-field test provides by the Event
Horizon Telescope Messier 87 observations.

B. Redshift of S2

An important observable object related to the super-
massive black hole candidate SgrA* is the star S2.
Its highly elliptical (eccentricity e ¼ 0.885) orbit is
characterized by a pericenter distance of about 1420
Schwarzschild radii and an orbital speed at the pericenter
point about 2.55% of c. This makes the star S2 a sensitive
probe of gravity near a black hole. Two important quanti-
tative results based on observations of S2 were recently
obtained. The first one is a measurement of the gravitational
redshift of S2 along its orbit [3]. The second one is a
measurement of the periastron precession of the orbit of S2
[4]. In the present subsection, we shall study how the
measurements of the gravitational redshift of S2 probe the
gravitational-field structure around torsion-hairy BHs.
In the following, we identify rh (in our torsion-hairy

solutions) with the measured Schwarzschild radius robsh ¼
2mBH ≡ 2GMBH of the Galactic (candidate) BH. HereMBH

3We will, however, recall in the conclusions that it is not clear
at this stage whether gravitational collapse in torsion bigravity
will generate the type of torsion-hairy BHs studied here or, rather,
ordinary GR BHs, which are also exact solutions of the torsion-
bigravity field equations.
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denotes the mass of the black hole expressed in kilograms
or M⊙.
The reference paper we use is Ref. [3]. In that paper, at

any moment of time t, the redshift z is decomposed in the
following components:

zðtÞ≡ Δλ
λ

¼ B0 −
vradðtÞ

c
þ f

�
1

2

v2orbitðtÞ
c2

þ mBH

c2rðtÞ
�

−ΦTBGðtÞ þOðc−3Þ: ð4:5Þ

Here the radial velocity vrad is the projection of the orbital
velocity along the line of sight. The constant B0 defines a
constant offset. The second term (within square brackets)
represents the classical GR redshift effect. It comprises two

contributions: the second-order Doppler effect 1
2

v2orbitðtÞ
c2 and

the Einstein gravitational redshift þ mBH
c2rðtÞ. The parameter f

was introduced in Ref. [3] as a phenomenological way to
characterize the deviations between Newtonian and rela-
tivistic physics: The value f ¼ 0 would correspond to
purely Newtonian physics, while the value f ¼ 1 corre-
sponds to GR. By generalizing the standard derivation of
the GR redshift [25], we have completed the GR result by
adding, to lowest order, the additional redshift −ΦTBG
coming from torsion bigravity. It is defined, with our
notation, as

ΦTBGðrÞ≡ΦðrÞ −ΦSðrÞ: ð4:6Þ

The observational results presented in Ref. [3] are sum-
marized in the following experimental constraint on the
phenomenological parameter f:

f ¼ 0.90� 0.09jstat � 0.15jsys: ð4:7Þ

As the second-order Doppler effect and the Einstein red-
shift are fully degenerate and have the same amplitude of
variation [because of energy conservation, 1

2
v2orbitðtÞ−

mBH
rðtÞ ¼ const], the constraint (4.7) means any additional

redshift correction from torsion bigravity would have been
visible only if it were larger that 2 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.092 þ 0.152

p
¼

0.34 times the variation, along the orbit, of the Einstein-
Schwarzschild redshift ΦS ≈ − mBH

rðtÞ ¼ − rh
2rðtÞ, namely,

ΔΦS ≡ jΦSðrapÞ −ΦSðrperÞj ¼
1

2840
−

1

46550

¼ 3.306 × 10−4; ð4:8Þ

where rap ¼ að1þ eÞ ¼ rper
1þe
1−e ≈ 23275rh denotes the

apocenter distance and rper ¼ að1 − eÞ ≈ 1420rh the peri-
center distance.
As we have shown above that the deviations from

Schwarzschild’s metric in torsion-hairy BHs are propor-
tional to η (when η is small), we can consider, for
concreteness, the case where η ¼ 10−5. Choosing such a
specific value compatible with Solar-System tests [see
Eq. (3.21)], we numerically computed the ratio

ΔΦmax
TBG

ΔΦS
≡ jΦTBGðrÞ −ΦTBGðrapÞjmax

jΦSðrapÞ −ΦSðrperÞj
; ð4:9Þ

where the indicated maximization is done over r, as it
ranges over the full orbit of S2.
After having fixed η to the value η ¼ 10−5, we still have a

one-parameter family of asymptotically flat torsion-hairy
BHs, described by the horizon shooting parameter π̄0.
Not all values of π̄0 lead to an asymptotically flat BH. But,
there is a rather large range of π̄0, namely, the interval
−289 < π̄0 < þ5.5, which are in the basin of attraction of
the relevant attractor Eq. (2.19). We give in Table I a sample

of values of the ratio
ΔΦmax

TBG
ΔΦS

defined in Eq. (4.9) as π̄0 varies

in this allowed interval. (When η ¼ 10−8, the lower limit of
the allowed interval is about −267.) We can summarize the
results of Table I in the inequality

0.004

�
η

10−5

�
≤
ΔΦmax

TBG

ΔΦS
≤ 0.047

�
η

10−5

�
: ð4:10Þ

As said above, the current fractional sensitivity of redshift
observations on S2 are of the order of 0.34ΔΦS. Thus, one
can conclude that, near the supermassive black hole in
SgrA*, the deviation of torsion bigravity from GR has,
within the current observational precision, a negligible
effect on redshift measurements.

C. Periastron precession of S2

Let us now discuss the modification of the periastron
precession of S2 due to the difference between torsion
bigravity and GR. To compute the precession of the orbit of

TABLE I. Sample of redshift ratios and periastron ratios. The periastron ratios are computed for two different values of η, namely,
η ¼ 10−5 and η ¼ 10−8.

π̄0 −250 −220 −180 −160 −100 −20 1 5.5

ΔΦmax
TBG=ΔΦSjη¼10−5 0.047 0.045 0.039 0.034 0.024 0.008 0.004 0.035

δωTBG=δωGRjη¼10−5 154.9 85.5 19.8 1.5 −21.2 −15.0 −6.5 1.8
δωTBG=δωGRjη¼10−8 0.168 0.106 0.025 0.004 −0.021 −0.015 −0.006 0.003
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a star, we start from the geodesic equation (we recall that, in
torsion bigravity, massive particles follow the geodesics of
gμν rather than autoparallels of the torsionful connection
Aλ

μν [17].) The geodesic equations of motion written in
terms of coordinate time t ¼ x0=c read

d2xi

dt2
¼ −

�
Γi

μν − Γ0
μν
dxi

cdt

�
dxμ

dt
dxν

dt
: ð4:11Þ

Expanding the right-hand side in the usual post-Newtonian
way for the GR contributions and working linearly in the
additional contributions due to torsion bigravity, we can
rewrite the above equations of motion as

d2xi

dt2
¼ −

mBHxi

r3
þ aiGR þ aiTBG þOðc−4Þ: ð4:12Þ

Here the first term is the Newtonian gravitational force and
would define (if it were alone) an elliptical Keplerian
trajectory without any precession. The second term repre-
sents the first post-Newtonian correction (of the order of
c−2) to the Newtonian force coming from the GR piece in
the metric. (Here, we decompose the full metric as gμν ¼
gSμν þ hTBGμν and work linearly in the torsion-bigravity
metric correction hTBGμν .) The last term represents the
corrections coming from the torsion bigravity. As usual
in the post-Newtonian approach, the leading-order addi-
tional contribution to the equations of motion comes only
from the time-time component c2hTBG00 ≈ −2c2ΦTBG, where
ΦTBG was defined in Eq. (4.6). This leads (at leading post-
Newtonian order) to

aiTBG ¼ −c2∂iΦTBG: ð4:13Þ

To calculate the periastron precession in the problem of
motion defined by Eq. (4.12), it is convenient to use the
standard Gauss form for the perturbation of Keplerian
elements (see, e.g., Ref. [26]). We are interested only in the
secular advance of the argument ω of the periastron. The
Gauss form [see, e.g., Eq. (33), page 301 of Ref. [26] ]
yields dω=dt as a linear expression in the components of
the perturbing accelerating force aiGR þ aiTBG. To leading
order, we have therefore

dω
dt

¼
�
dω
dt

�
GR

þ
�
dω
dt

�
TBG

; ð4:14Þ

where ðdωdt ÞGR is the usual GR periastron precession, whose
integral over one orbit is the well-known value

δωGR

2π
¼ 3mBH

c2að1 − e2Þ : ð4:15Þ

The expression of the additional contribution coming from
torsion bigravity simplifies in the present case where the

perturbing force aiTBG is purely radial, i.e., directed along
the radial direction ni ¼ ∂ir. It reads [26]

�
dω
dt

�
TBG

¼ −
ð1 − e2Þ1=2

nae
cosϕ∂iraiTBG: ð4:16Þ

Taking into account the conservation of angular momentum
(per unit mass)

r2
dϕ
dt

¼ L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − e2ÞmBH

q
;

where we used the expression for the angular momentum of
the Newtonian elliptical motion and the expression of aiTBG
in terms of the gradient of ΦTBG [Eq. (4.13)], we get the
following simple formula for the torsion-bigravity contri-
bution to the total (reduced) periastron precession, inte-
grated over one full period:

δωTBG

2π
¼ 1

2πemBH

Z
2π

0

cosϕr2
∂ΦTBG

∂r dϕ

¼ 1

2πemBH

Z
2π

0

cosϕr2FTBGðrÞdϕ; ð4:17Þ

where we replaced (as is allowed to leading order)Φ0
TBG by

FTBGðrÞ≡ FðrÞ − FSðrÞ: ð4:18Þ

We must now compare the value of δωTBG
2π to the usual GR

periastron advance, Eq. (4.15). More precisely, we should
compare the torsion-bigravity contribution δωTBG

2π to the
observational accuracy with which the periastron advance
has been measured.
The GRAVITY Collaboration has recently succeeded to

measure the integrated periastron precession of the S2 orbit
[4]. The result was presented in the form

δωobs ¼ fSP
6πmBH

c2að1 − e2Þ ¼ 12.10fSP; ð4:19Þ

where the coefficient fSP was best fitted to the observa-
tions. The final result given in Ref. [4] for the coefficient
fSP reads

fSP ¼ 1.10� 0.19: ð4:20Þ

In other words, the precision of the measurement is 19% of
the GR value.
Now let us consider the contribution to periastron

precession coming from the torsion-bigravity corrections.
In the case (discussed above) of redshift observations,
we found that torsion-hairy BHs induce (when η≲ 10−5)
only a negligible modification of the GR redshift. We
might similarly expect, as all post-GR metric deviations
around torsion-hairy BHs contain a factor η, so that
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FTBGðrÞ≡ FðrÞ − FSðrÞ ¼ OðηÞ [see Eq. (3.26)], that
δωTBG will be automatically small compared to the error
bar on δωobs [Eq. (4.19)]. Surprisingly, we found that this is
not the case.
Calculating the torsion-bigravity contribution by com-

bining the explicit formula Eq. (4.17) with numerical
simulations of torsion-hairy BHs (depending on the choice
of shooting parameter π̄0), we found that, when η ¼ 10−5,
the ratio δωTBG=δωGR ranged (as π̄0 varied) between −21
and þ160, passing through 0 for a certain value of π̄0.
A sample of our numerical results is listed in Table I.
Let us remark that, as one can see from the second line

of this table, for η ¼ 10−5 and certain values of π̄0,
the periastron precession per orbit is enormous: 160×
ωGR ≈ 32°. Such a large deviation from GR is totally
incompatible with the recent result of the GRAVITY
Collaboration.
As already said, the contribution from torsion bigravity

is (approximately) proportional to the value of η. Therefore,
illustrated on the last row of Table I, to pass the current tests
of periastron precession one needs to take η < 10−8. This
shows that the periastron precession of S2 is a much more
stringent test of the existence of torsion-hairy BHs than
both (i) the other observations concerning supermassive
BHs (redshift of S2 and shadow of Messier 87) and (ii) all
Solar-System tests.
The a priori surprising fact that the contribution to

periastron precession can exceed 100 times the GR one,
while the contribution to redshift is below the experimental
precision, has a simple technical explanation. Let us first
recall that the gravitational redshift effect in GR is propor-
tional to the Newtonian potential [see Eq. (4.5)], while the
value of the periastron precession in GR is proportional to
the first post-Newtonian, Oð 1c2Þ, correction to the potential
[see Eq. (4.15)]. By contrast, the torsion-bigravity contri-
bution to the potential gives additional contributions both to
the redshift [see Eq. (4.5)] and to periastron precession [see
Eq. (4.17)]. [A crucial fact is that FTBGðrÞ ≈Φ0

TBGðrÞ is not
∝ 1=r2 and, moreover, decays more slowly than 1=r2, so
that there is a large contribution to δωTBG coming from the
apocenter of S2.] Then, it happens that the numerical
magnitude of ΦTBG satisfies the following inequality:

�
mBH

c2r

�
2

≪
�
10−5

η

�
ΦTBG ≪

mBH

c2r
: ð4:21Þ

V. CONCLUSIONS

We continued the study, initiated in Ref. [13], of
spherically symmetric black hole solutions in torsion
bigravity. Reference [13] had shown that, in the infinite-
range limit, these theories admit asymptotically flat black
hole solutions because of the presence of attractive fixed
points in the asymptotic (large-r) limit of the system of

differential equations describing the radial evolution of the
metric and the torsion. We studied in detail the existence
and the structure of these fixed points. By considering the
Jacobian matrix of the Fuchsian-type radial evolution
system near the fixed points, we discussed their attractive
and repulsive character, as well as the way the metric and
torsion variables approach them at large radii.
Several phenomenological aspects of asymptotically flat

torsion-hairy black holes were then considered: (i) location
of the light ring and of the shadow; (ii) correction to the
redshift of orbiting stars; and (iii) modification of the
periastron precession of orbiting stars. Previous work [22]
had shown that, in the large-range limit, Solar-System tests
of relativistic gravity put the severe constraint η≲ 10−5 on
the (single) theory parameter of torsion bigravity. We
showed that, when η ¼ 10−5, the observable properties
of asymptotically flat torsion-hairy black holes are auto-
matically compatible with existing observational data on
(a) the shadow of Messier 87 [2] and (b) the redshift of the
star S2 orbiting the Galactic-center massive black hole [3].
See Eq. (4.4) and the first row of Table I.
However, we found that, when η ¼ 10−5, the one-

parameter family of asymptotically flat torsion-hairy black
holes (parametrized by the horizon parameter π̄0) generi-
cally induce an additional (post-GR) contribution to the
periastron precession of S2 which is typically much larger
than the Schwarzschild precession. See the second row of
Table I. Barring a fine-tuning of the value of the horizon
shooting parameter π̄0, we concluded that the current
measurements of the periastron precession of S2 [4] are
about 1000 times more stringent than Solar-System gravi-
tational tests and constrain the torsion-bigravity theory
parameter η to be (see the third row of Table I)

η≲ 10−8: ð5:1Þ

The physical reasons behind this surprisingly stringent
probing power of periastron precession are briefly discussed
at the end of Sec. IV [see, notably, Eq. (4.21)]. It is generally
expected (given current Solar-System tests of weak-field
gravity) that non-GR black holes will differ from GR ones
mostly in the near-horizon, strong-field regime [24]. We
note that torsion-hairy black holes offer a counterexample
to this expectation. Though their observable predictions
tend to the GR ones as η → 0, the fact that the torsion-
bigravity gravitational field FTBGðrÞ≡ FðrÞ − FGRðrÞ
decays, at large radii, in a slower than 1=r2 manner [namely,

∝ ηr−3=2 cos ð
ffiffi
7

p
2
ln rþ Φ̂F2Þ; see Eq. (3.27)] makes the

periastron precession of S2 (whose orbit ranges between
1420 Schwarzschild radii and 23275 Schwarzschild radii) a
very sensitive probe of torsion-hairy black holes.
Let us also emphasize again that, contrary to what has

been assumed in previous phenomenological discussions of
possible observable effects of spacetime torsion [27,28],
the post-GR observable effects of torsion-hairy black holes
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are not directly related to the torsion field around these
black holes. Our results in Sec. II allow one to derive the
large-r behavior of the two independent components of the
contorsion tensor, K100 and K122. For instance, we have
[using Eqs. (5.9) in Ref. [13] ]

K122ðrÞ ¼
�
w̃ðrÞ − 1

l̃ðrÞ

�
WSðrÞ; ð5:2Þ

so that Eqs. (3.18) and (3.25) above yield an asymptotic
radial decay of K122ðrÞ of the form

K122ðrÞ ¼ þ 2

r
þO

�
cos ð

ffiffi
7

p
2
ln rþΦKÞ
r3=2

�
: ð5:3Þ

However, this contorsion field, as well as the companion

K100ðrÞ ¼ O

�
r−3=2 cos

� ffiffiffi
7

p

2
ln rþ Φ̄K

��
; ð5:4Þ

does not play a direct role in modifying the motion of
orbiting stars. Indeed, test bodies in torsion bigravity follow
geodesics of the spacetime metric gμν and not autoparallels
of the torsionful connection Aλ

μν [17]. (One would need to
have spin-polarized elementary fermions to directly probe
the torsion hair.) However, the presence of a propagating
torsion field modifies the field equations and, thereby,
indirectly modifies the structure of the metric gμν. It is then
the latter torsion-induced metric modifications that have
induced the slowly decaying (and oscillating) contributions
to the gravitational force FðrÞ ¼ FSðrÞ þ FTBGðrÞ respon-
sible for the unexpectedly large contributions to the
periastron precession of S2.
As a final comment, let us emphasize that the very strong

experimental constraint Eq. (5.1) on the torsion-bigravity
theory parameter η has been derived in the present work
under the following two basic assumptions: (i) a vanish-
ingly small inverse range κ and (ii) real astrophysical black
holes are described by the asymptotically flat torsion-hairy
black hole solutions of torsion bigravity. The second
assumption would be justified only if one proves that
the collapse of a torsion-hairy star [22] in torsion bigravity
does dynamically generate a torsion-hairy black hole rather
than an ordinary GR black hole (which is also an exact
solution of torsion bigravity). It is quite possible (especially
in view of the fact that Schwarzschild black holes cannot
support an infinitesimal torsion hair [13]) that the torsion
hair of a torsion-hairy star will be radiated away during the
collapse. Another angle for clarifying this issue is to study
the dynamical stability of Schwarzschild black holes within
the context of torsion bigravity. If, similarly to what was
found in bimetric gravity [29,30], Schwarzschild black
holes turn out to be unstable for small enough values of κrh,
this will suggest that the torsion-hairy black holes consid-
ered here will be the ultimate outcome of gravitational
collapse. We leave this important issue to future work.
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APPENDIX A: DEFINITIONS OF SOME BASIC
QUANTITIES IN USE

The static, spherically symmetric metric (2.1) naturally
defines a corresponding orthonormal polar-type coframe
θî ¼ eîμdxμ, as well as a corresponding frame eî

μ∂=∂xμ,
where we use hatted Latin letters to denote the frame
indices. The coframe reads as follows:

θ0̂ ¼ eΦdt; θ1̂ ¼ Ldr; θ2̂ ¼ rdθ; θ3̂ ¼ r sin θdϕ:

ðA1Þ
It is technically convenient to work not with coordinate

components but with components with respect to the
vierbein (A1). In particular, we work with the vierbein
components Aî

ĵ k̂ ¼ Aî
ĵμek̂

μ of the torsionful affine con-

nection one-form Aî
ĵ ¼ Aî

ĵμdx
μ instead of working with

its coordinate components Aλ
νμ (which are related to the

vierbein components Aî
ĵ k̂ by well-known relations involv-

ing the derivative of the vierbein). The affine connection
one-form Aî

ĵ defines the curvature two-form F î
ĵ ¼

1
2
Fî

ĵμνdx
μ ∧ dxν as follows:

F î
ĵ ¼ dAî

ĵ þAî
ŝ ∧ Aŝ

ĵ; ðA2Þ
which reads more explicitly

Fî
ĵμν ¼ ∂μAî

ĵν − ∂νAî
ĵμ þ Aî

m̂μAm̂
ĵν − Aî

m̂νAm̂
ĵμ: ðA3Þ

The (curvature) frame components Fî
ĵ k̂ l̂ of F

î
ĵ are then

defined as

Fî
ĵ k̂ l̂ ¼ ek̂

μel̂
νFî

ĵμν: ðA4Þ
The frame components of the corresponding Ricci tensor,
Fî ĵ ¼ eî

μeĵ
νFμν, are then defined as usual, namely,

Fî ĵ ¼ Fŝ
î ŝ ĵ.

The affine connection we work with in this model is
metric preserving which is characterized by the condition
Aî ĵ μ ¼ −Aĵ î μ, where Aî ĵ μ ≡ ηî ŝA

ŝ
ĵμ. In the static, spheri-

cally symmetric, and parity-preserving case which we
consider, the torsionful connection can be parametrized
by two radial functions, VðrÞ andWðrÞ, which are defined,
respectively, as

V ≡ A1̂
0̂ 0̂ ðA5Þ

and

W ≡ A1̂
2̂ 2̂ ¼ A1̂

3̂ 3̂: ðA6Þ
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APPENDIX B: EXPLICIT FORM OF THE
FIELD EQUATIONS OF STATIC,
SPHERICALLY SYMMETRIC

TORSION BIGRAVITY

F ¼ f3 − 3rþ 2ðr − 1Þηl̃½−6þ ð1þ ηÞπ̄�w̃
− l̃2½2rηð1þ ηÞπ̄ þ k2r3ηð1þ ηÞπ̄2
− 3ðrð1þ ηÞ þ 3ðr − 1Þηw̃2Þ�g=
× f2ðr − 1Þr½3þ ηl̃ð3þ ð1þ ηÞπ̄Þw̃�g; ðB1Þ

d
dr

π̄ðl̃; w̃; π̄Þ ¼ 3 − 3l̃ w̃−ð1þ ηÞπ̄ð2þ l̃ w̃Þ
rð1þ ηÞ ; ðB2Þ

d
dr

l̃ðl̃; w̃; π̄Þ ¼ Nl̃

Dl̃
; ðB3Þ

d
dr

w̃ðl̃; w̃; π̄Þ ¼ Nw̃

Dw̃
; ðB4Þ

where

Nl̃ ¼ l̃f9½9ðrþ 4η − 3rηÞ þ 12ðr − 1Þηð1þ ηÞπ̄ þ ðr − 2Þηð1þ ηÞ2π̄2� − 3ηl̃½27ð5þ 6rðη − 1Þ − 7ηÞ
− 9ð1þ ηÞð1þ ð−3þ 4rÞηÞπ̄ − 3ð−9þ 8rÞηð1þ ηÞ2π̄2 þ ð−1þ 2rÞηð1þ ηÞ3π̄3�w̃
þ 2ηl̃3ð3þ ð1þ ηÞπ̄Þw̃½κ2r3ηð1þ ηÞ2ð−1þ 2ηÞπ̄3 þ 3ηð1þ ηÞ2π̄2ðκ2r3 þ 2rη − 2ðr − 1Þηw̃2Þ
þ 27ð−rð1þ ηÞ2 þ ðr − 1Þðη − 1Þηw̃2Þ − 9ηð1þ ηÞπ̄ðrð−1þ κ2r2 − ηÞ þ ðr − 1Þð1þ ηÞw̃2Þ�
þ 3l̃2½2rηð1þ ηÞ2ðηð1þ ηÞ þ κ2r2ð−1þ 2ηÞÞπ̄3 þ κ2r3η2ð1þ ηÞ3π̄4
þ 18ηð1þ ηÞπ̄ð−κ2r3 þ ðr − 1Þðη − 1Þw̃2Þ − 3ηð1þ ηÞ2π̄2ðrþ κ2r3 − 3rηþ 11ðr − 1Þηw̃2Þ
þ 27ð−rð1þ ηÞ2 þ ðr − 1Þηð1þ 13ηÞw̃2Þ�g;

Dl̃ ¼ 6ð1 − rÞrð1þ ηÞð−9þ ηð1þ ηÞπ̄2Þ½3þ ηl̃ð3þ ð1þ ηÞπ̄Þw̃�;
Nw̃ ¼ κ2r3η2ð1þ ηÞ4 l̃3π̄5w̃ − 9ð1þ ηÞ2π̄2½2 − 2rþ ð8 − 9rÞηl̃ w̃þηl̃3w̃ðrþ 3κ2r3 − 3rηþ 3ð−1þ rÞηw̃2Þ

þ l̃2ð2rð1þ 2κ2r2 − ηÞ þ ð−9þ 10rÞηw̃2Þ� þ 81½4 − 4rþ ð−6þ 5rþ 6η − 7rηÞl̃ w̃−ηð13 − 12rþ ηÞl̃2w̃2

þ l̃3w̃ð−rð1þ ηÞ2 þ ð−1þ rÞð−3þ ηÞηw̃2Þ� þ ηð1þ ηÞ3 l̃2π̄4f6κ2r3 þ ηð1þ ηÞw̃2 þ l̃ w̃½rð2ηð1þ ηÞ
þ κ2r2ð−2þ 7ηÞÞ − 2ð−1þ rÞηð1þ ηÞw̃2�g þ 3ð1þ ηÞ2l̃π̄3f−ð−2þ rÞηð1þ ηÞw̃
þ ηl̃2w̃ðrð−1þ 3κ2r2ð−1þ ηÞ þ 4ηþ 5η2Þ − 5ð−1þ rÞηð1þ ηÞw̃2Þ þ 2l̃½rð2ηð1þ ηÞ þ κ2r2ð−1þ 2ηÞÞ
− ð−1þ r − ηÞηð1þ ηÞw̃2�g − 27ð1þ ηÞπ̄½4 − 4rþ ðrþ 4η − 3rηÞl̃ w̃þl̃3w̃ðrð1þ 2ηþ 2κ2r2ηþ η2Þ
− ð−1þ rÞð−3þ ηÞηw̃2Þ þ 2l̃2ðrð1þ κ2r2 þ ηÞ þ ηð3 − 2rþ ηÞw̃2Þ�;

Dw̃ ¼ 2ð1 − rÞrð1þ ηÞl̃ð3þ ð1þ ηÞπ̄Þð−9þ ηð1þ ηÞπ̄2Þ½3þ ηl̃ð3þ ð1þ ηÞπ̄Þw̃�: ðB5Þ
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