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We revisit the problem of the rotating generalization of the Fisher-Janis-Newman-Winicour solution of
the minimal Einstein-scalar theory proving that previously known metrics do not satisfy the equations
of motion. The same is shown for a putative rotating solution of the Brans-Dicke theory. We then use
various generating techniques to derive correct spinning solutions with the scalar charge, in particular,
those endowed with oblate deformations.
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I. INTRODUCTION

Einstein’s general theory of relativity with a minimally
coupled massless scalar field (MES) has recently sparked
new interest in view of various dualities that connect this
theory with nonminimal scalar-tensor theories such as
Horndeski and DHOST [1,2]. This interest gives new life
to famous Fisher’s solution of MES [3], repeatedly redis-
covered by many authors [4–11], in particular, by Janis et al.
[6], and now often abbreviated as FJNW. For more recent
discussion of this solution, see [12]. It has a singular horizon,
but the solution may correspond to a regular black hole or a
fully regular metric in the dual frame of some nonminimal
theory [1,13,14]. Therefore, it is interesting to find new
physically relevant solutions to the minimal Einstein-scalar
theory and, above all, to endow Fisher’s solution with
rotation. This turned out to be a nontrivial task.
An earlier attempt to introduce the angular momentum

into FJNW was made in [15] using the Janis-Newman (JN)
algorithm [16] (for a detailed discussion of this method,
see [17]). Due to simplicity of the solution obtained in
the Ref. [15], it was repeatedly applied in the astro-
physical context; see, e.g., [18–21]. But, it is worth noting
that the JN method was originally proposed simply as a
formal trick, which generates the Kerr metric from the
Schwarzschild solution. Although this algorithm was later
tested in various other theories [17], no rigorous math-
ematical proof was given of its validity in the general case,
especially in the scalar-tensor theories. An explicit check
[22] of the fulfillment of some of Einstein’s equations for
the metric of Ref. [15] led to a negative conclusion (see also
[23]). However, since this solution is still used in appli-
cations [20,21], we again return to the problem of its
validity here, confirming the result of the Ref. [22].

Other stationary solutions of the minimal Einstein-scalar
theory were suggested recently in the Ref. [24]; one of which
is asymptotically flat. It has a Kerr-like metric, but tends
toward the nonspherical Penney solution [5] in the static
limit, so it cannot be considered as a true rotating FJNW
solution. Astorino [25] has found the rotating generalization
of the Bocharova-Bronnikov-Melnikov-Bekenstein solution
(BBMB) using the generating technique developed by
Hoenselaers et al. [26]. He also gave a scalarized subfamily
of Cosgrove’s generalization of the Tomimatsu-Sato vacuum
metric [27]. Other known rotating solutions contain scalarly
charged strings at the polar axes [28,29].
Let us briefly mention some other earlier results. In

the framework of the Brans-Dicke theory (BD), several
attempts were undertaken to construct a rotating solution
[and more general ones, endowed with the Newman-Unti-
Tamburino (NUT) parameter] [30–32] using the Kinnersley
form of the BD field equations. These solutions do not
reproduce the FJNW solution in the Einstein frame.
A rotating version of the BD analogue of the FJNW
solution was also suggested in [33] again using the JN
trick. We test this solution here.
Several mathematically rigorous methods for solving

Einstein’s equations are based on the hidden symmetries of
their dimensional reduction. Hidden symmetries of static
MES equations were discovered long ago [12,34,35]. Here,
we give them a modern interpretation in terms of a three-
dimensional σ model derived previously in the context
of a more general Einstein-Maxwell-dilaton theory (EMD)
[36]. Various related generation methods for the minimal
Einstein-scalar and Einstein-Maxwell-scalar systems have
been proposed in the past based on further dimensional
reduction to two dimensions. We recall some of them here
and then expand their set to include a technique suggested
by Clément [37] (CT), which generates the vacuum Kerr
solution from Schwarzschild exploiting the symmetries of
the Einstein-Maxwell theory. In this approach, the Maxwell
field is introduced as an auxiliary one at an intermediate
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stage of the calculations. Generalizing this approach to
incorporate a minimal scalar field, we obtain some new
rotating generalizations of the FJNW solution. It turns out
that for the successful application of CT in the presence
of the scalar field, it is necessary to combine the FJNW
with the Zipoy-Voorhees (ZV) [38,39] solution, which has
a similar structure in spheroidal coordinates. We also use
technique proposed by Eriş and Gürses [40] (EG trans-
formation) who noticed that stationary axisymmetric EMS
solutions can be divided into purely electrovacuum part
plus some additional terms. Applying this technique to a
rotating vacuum axisymmetric solution, we obtain its
generalization with some nontrivial scalar field. A similar
method was used in [25] to find the scalarized version of
Cosgrove metrics.
The static FJNW solution was the starting point for

other generalizations: to arbitrary dimensions [41], to the
Einstein-Maxwell theory [7], to the EMD theory [42],
always leading to singular metrics. Note that the objects
with singular horizons cannot appear in vacuum [43] but
typically occur in the theories with a scalar field.
In this paper, we define the MES action as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ð∂μϕÞð∂μϕÞÞ; ð1:1Þ

which corresponds to the equations of motion,

Rμν ¼ 2ð∂μϕÞð∂νϕÞ; ð1:2aÞ

∇μ∇μϕ ¼ 0: ð1:2bÞ

The outline for the rest of the article is as follows. In the
Sec. II, we combine the ZV and FJNW solutions using
the σ-model technique. In Sec. III, we review and apply
Clément’s transformations to the solution obtained. As a
result, we get the rotating generalization of the combined
ZV-FJNW metric with an oblateness parameter as a
function of mass and scalar charge. In Sec. IV, we discuss
the relation between the FJNW rotating solution and the
Tomimatsu-Sato (TS) metric [44], and give an example of a
rotating FJNW without oblateness supported by a phantom
scalar field.

II. STATIC REINCARNATIONS

Stationary sector of the model (1.1) admits a three-
dimensional σ-model representation, related to an ansatz
for stationary metrics,

ds2 ¼ −fðdt − ωidxiÞ2 þ f−1hijdxidxj; ð2:1Þ

where the function f, the one-form ωi and the three-metric
hij are functions of space coordinates xi, i ¼ 1; 2; 3. Indices
of the three-metric are supposed to be lowered and raised

with hij and an inverse metric hij. The one-form ωidxi can
be expressed in terms of the twist potential χ,

∂iχ ¼ −
f2ffiffiffi
h

p hijϵjkl∂kωl; ð2:2Þ

where ϵjkl ¼ �1, which then enter into the set of
three-dimensional scalar potentials ΦA ¼ fψ ; χ;ϕg, with
ψ ¼ 1

2
ln f, in the action,

S ¼
Z

d3x
ffiffiffi
h

p
hijðRð3Þ

ij − GAB∂iΦA∂jΦBÞ: ð2:3Þ

The target space metric GAB is given by

GABdΦAdΦB ¼ 2ðdϕ2 þ dψ2Þ þ 1

2
e−4ψdχ2; ð2:4Þ

where Rð3Þ
ij is the Ricci tensor constructed with the

metric hij. Note that the MES theory can be considered
as a truncation of EMD with trivial electromagnetic
field [36].
The target-space metric GAB admits three gauge

isometries,

I∶ ϕ → ϕþ λϕ ð2:5aÞ

II∶ χ → χ þ λχ ð2:5bÞ

III∶ ψ → ψ þ λψ ; χ → e2λψ χ; ð2:5cÞ

with the constant parameters λϕ, λχ , λψ , and a nontrivial
Ehlers transformation [45],

1

z
→

1

z0
¼ 1

z
þ iλE; z ¼ f þ iχ; ð2:6Þ

with the parameter λE.
For static truncation χ ¼ 0, there is also SOð2Þ-rotational

symmetry in the plane ðψ ;ϕÞ,
�
ψ

ϕ

�
→

�
ψ 0

ϕ0

�
¼

�
cos β − sin β

sin β cos β

��
ψ

ϕ

�
; ð2:7Þ

parametrized by the angle β. The transformation (2.7) is the
σ model equivalent of the transformation found by
Buchdahl [35], which was also rediscovered in [12].

A. Generation of FJNW

Any vacuum solution of general relativity satisfies the
equations of motion (1.2) with a constant scalar field.
Considering the Schwarzschild solution as a seed and
applying the transformation (2.7) with cos β ¼ S, we can
restore the FJNW solution in the form (2.1) with
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hijdxidxj ¼ dr2 þ r2Fðdθ2 þ sin2θdφ2Þ; ð2:8aÞ

ψ ¼ S
2
lnF; ϕ ¼ ϕ∞ −

ΣS
2M

lnF;

ωi ¼ 0; S ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2

p ; ð2:8bÞ

where M, Σ are the ADM mass and the scalar charge,
respectively, and the function F has the form,

FðrÞ ¼ 1 −
2M
rS

: ð2:9Þ

Setting Σ → 0 brings us back to the Schwarzschild
solution.
For further purposes of this article, it is convenient to use

the prolate spheroidal coordinates x and y, defined as

x ¼ r
k
− k̃; y ¼ cos θ; ð2:10Þ

where k and k̃ are constants, chosen so that gφφ ¼
k2ðx2 − 1Þð1 − y2Þ. The function F and the three-metric
of the solution (2.8) in the prolate spheroidal coordinates
with k ¼ M=S, k̃ ¼ 1 read

hijdxidxj ¼ k2
�
dx2 þ x2 − 1

1− y2
dy2 þ ðx2 − 1Þð1− y2Þdφ2

�
;

ð2:11Þ

FðxÞ ¼ x − 1

xþ 1
: ð2:12Þ

This definition of F will be used in further calculations.

B. Generation of ZV with scalar charge

ZV solution in the form (2.1) reads

ψ ¼ δ

2
lnF; ϕ ¼ 0; ωi ¼ 0; ð2:13aÞ

hijdxidxj ¼ k2
�
HZVðx; yÞ

�
dx2 þ x2 − 1

1 − y2
dy2

�

þ ðx2 − 1Þð1 − y2Þdφ2

�
; ð2:13bÞ

HZVðx; yÞ ¼
�
x2 − 1

x2 − y2

�
δ2−1

; ð2:13cÞ

where k ¼ M=δ.
It is possible to represent the gravitational potential ψ of

the solution FJNW (2.8b) in the same form as ZV (2.13a),
up to the permutation of the constants S and δ. This
suggests that FJNWand ZV can naturally be combined into

one solution using transformations (2.7). Application of the
SOð2Þ transformation to the solution (2.13a) leads to the
ZV metric with scalar charge, which we denote by FZV.
The corresponding potentials read

ψ ¼ Sδ
2
lnF; ð2:14aÞ

ϕ ¼ ϕ∞ −
ΣSδ
2M

lnF; ð2:14bÞ

the three-metric is the same (2.13b), and the constant
k ¼ M=Sδ, whereM is the Arnowitt-Deser-Misner (ADM)
mass. The only difference between the ZV and FZV
solutions is the replacement of the parameters δ → Sδ in
the gravitational potential ψ and the constant k. This
modification of the solution will be used to generate
angular momentum in the next section.

C. Generation of NUT

For completeness, add the NUT parameter to the
solution (2.14). To do that, we successively apply the
Ehlers transformation (2.6) and the gauge transformation
(2.5c) to ensure gtt → −1 for r → ∞,

ψ ¼ 1

2
ln
ð1þ λ2ÞFSδ

1þ λ2F2Sδ ; ð2:15aÞ

ωidxi ¼ 2Nydφ; ð2:15bÞ

ϕ ¼ ϕ∞ −
Σ
2k

lnF; ð2:15cÞ

where λ is the parameter of the Ehlers transformation (2.6).
The three-metric of the solution with the NUT parameter
has the form (2.13b). The ADM mass M, the scalar charge
Σ, and the NUT parameter N are

M ¼ kSδ
1 − λ2

1þ λ2
; Σ2 ¼ k2δ2ð1 − S2Þ; N ¼ 2δkλS

λ2 þ 1
;

ð2:16Þ

which can be resolved in the following form:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ λ2Þ2 þ Σ2ð1 − λ2Þ2

p
δð1 − λ2Þ ;

S ¼ Mð1þ λ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ λ2Þ2 þ Σ2ð1 − λ2Þ2

p : ð2:17Þ

The solution (2.15) with Σ ¼ 0 represents the vacuum
ZV solution with the NUT parameter, which was given in
[46]. For δ ¼ 1, we obtain the FJNW solution with the
NUT found in [47].

GENERATION OF ROTATING SOLUTIONS IN EINSTEIN- … PHYS. REV. D 102, 124006 (2020)

124006-3



D. Singularities

The solution (2.15) is the most general of all obtained
earlier. The scalar curvature R of this solution can be found
from the equation of motion (1.2a) as simple as

R ¼ 2gxxð∂xϕÞ2

¼ 2Σ2

k4
ð1þ λ2Þ

1þ λ2F2Sδ ðx − 1ÞSδ−1−δ2

× ðxþ 1Þ−Sδ−1−δ2ðx2 − y2Þδ2−1: ð2:18Þ

One can see that the parameter λ does not influence the
divergence in the exponent of (x − 1) and ðx2 − y2Þ, which
depends only on S and δ. For y ≠ �1, the metric is singular
for Sδ − 1 − δ2 < 0, while at the polar axis y ¼ �1, the
condition is Sδ < 2. The “horizon” is regular only when
both Sδ ≥ 2 and Sδ ≥ 1þ δ2 are satisfied. For jSj < 1, the
regularity condition cannot be achieved for any δ.

E. Chazy-Curzon limit

The ZV solution admits the limit δ → ∞ leading to the
Chazy-Curzon solution [48,49]. The solutions (2.14) and
(2.15) have the same limiting form. The three-metric, the
scalar field, and the function FSδ will be

hijdxidxj ¼ exp

�
−
M2sin2θ
S2r2

�
ðdr2þ r2dθ2Þþ r2sin2θdφ2;

ð2:19aÞ

FSδ → e−2M=r; ϕ → ϕ∞ þ Σ=r: ð2:19bÞ

III. CLÉMENT TRANSFORMATION

Here, we apply another generating technique suggested
by Clément and designed for the framework of the
Einstein-Maxwell theory [37] (Clément’s transformation,
CT). In the original paper, it is a two-step procedure
with the initial and final solutions being vacuum, but the
Maxwell field is auxiliary. Since the Maxwell field plays an
important role in CT, we have to extend our model to

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2ð∂ϕÞ2 þ F2�; ð3:1Þ

where F ¼ dA is the Maxwell two-form. It was shown in
[37] that the application of CT to the ZV solution with an
oblateness parameter δ does not lead to any vacuum metric
at the end because of insufficient number of free param-
eters. But, one can hope to obtain the desired result
applying CT to the combined FZV metric with the
replacement δ → Sδ, which gives a new parameter. We
expect to get a rotating generalization of the FZV metric
imposing the constraint Sδ ¼ 1.

First, we generalize the sigma-model to include the
Maxwell field, introducing the electric and magnetic
potentials v, u via

Fi0 ¼
1ffiffiffi
2

p ∂iv; Fij ¼ fffiffiffiffiffiffi
2h

p ϵijk∂ku: ð3:2Þ

The other components of the electromagnetic tensor in
terms of (3.2) read

Fi0 ¼ Fijωj − hijFj0;

Fij ¼ f−2hikhjlFkl þ F0iωj − F0jωi; ð3:3Þ

where hij is a three-inverse metric tensor of hij. We also
modify the equations for the twist potential χ as

∂iχ ¼ −f2h−1=2hijϵjkl∂kωl þ u∂iv − v∂iu: ð3:4Þ

This representation in terms of the scalar potentials f, χ, u,
v, ϕ was derived for the EMD system in [36], generalizing
the result of [50]. In our case, we have to put α ¼ 0,

dl2EMS ¼
1

2f2
ðdf2 þ ðdχ þ vdu − udvÞ2Þ

−
1

f
ðdu2 þ dv2Þ þ 2dϕ2: ð3:5Þ

Here, the scalar field is decoupled from the other potentials;
therefore, all symmetries of the Einstein-Maxwell model
are preserved, allowing us to apply generating techniques
described in [51,52]. Following [37], we pass to the
complex Ernst ðE; QÞ and Kinnersley ðU;V;WÞ potentials,

E ¼ f þ iχ − Q̄Q ¼ U −W
U þW

; Q ¼ vþ iuffiffiffi
2

p ¼ V
U þW

;

ð3:6Þ

with one of the Kinnersley potentials being redundant.
The scalar-free sector of the σ model (3.5) possesses
the SUð2; 1Þ isometry group, which acts on the complex
vector space ðU;V;WÞ leaving the norm ŪU þ V̄V − W̄W
invariant.
For the reader’s convenience, we briefly recall the CT

transformation, which is a triple R ¼ Π−1RΠ with the
target space discrete map,

Π∶ U ↔ V; ð3:7Þ

followed by the coordinate transformation,

R∶ φ → φþ Ωt; ð3:8Þ

and another target space map. Both the target-space and the
coordinate transformations do not change the scalar field ϕ.
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Starting with the static vacuum seed solution E1 ∈ R,
Q1 ¼ 0, we can take

V1 ¼ 0; U1 ¼ −1 − E1; W1 ¼ −1þ E1; ð3:9Þ

where the indices number the steps of the procedure. After
the first Π transformation U ↔ V, the Ernst potentials
become

E2 ¼ −1; Q2 ¼
1þ E1

1 − E1

; ð3:10Þ

and the new functions f, χ, u, v read from (3.6) as

f2 ¼
4E1

ðE1 − 1Þ2 ; χ2 ¼ 0; ω2 ¼ 0;

v2 ¼
ffiffiffi
2

p 1þ E1

1 − E1

; u2 ¼ 0: ð3:11Þ

The corresponding spacetime is not asymptotically flat.
Next, perform the global coordinate transformation (3.8) to
a uniformly rotating frame φ ¼ φ̃þΩt. Acting with (3.8)
on the metric in the Weyl-Papapetrou parametrization,

ds2 ¼ −fðdt − ωdφÞ2 − f−1ðγmndxmdxn þ ρ2dφ2Þ;
ð3:12Þ

one obtains

f0 ¼ f½1 − 2Ωωþ Ω2ðω2 − f−2ρ2Þ�;

ω0 ¼ ω −Ωðω2 − f−2ρ2Þ
1 − 2Ωωþ Ω2ðω2 − f−2ρ2Þ ; ð3:13aÞ

γ0mn ¼
f0

f
γmn; ρ0 ¼ ρ; ð3:13bÞ

∂mv0 ¼ ð1 −ΩωÞ∂mv −Ωf−1ρ∂̃mu;

∂mu0 ¼ ð1 −ΩωÞ∂muþΩf−1ρ∂̃mv; ð3:13cÞ

where ∂̃m ¼ γ−1=2γmnϵ
np∂p. Applying these transforma-

tions to (3.11), the transformed functions are simplified to

f3 ¼ f2ð1 − w2Þ; ω3 ¼
Ω−1w2

1 − w2
; γ3mn ¼ ð1 − w2Þγ2mn;

ρ3 ¼ ρ2; v3 ¼ v2; ∂mu3 ¼ w∂̃mv2; w ¼ Ωρ=f2:

ð3:14Þ

The Ernst potentials are then rescaled by a constant
E → p2E, Q → pQ, which corresponds to the solution
invariance with respect to the following transformations:

t → pt, f → p−2f, ω → pω, hij → p−2hij, u → p−1u,
v → p−1v. The need for this transformation will be dis-
closed below. Applying all the above transformations to the
solution (2.14) and putting E1 ¼ FSδ, one obtains

E3 ¼ p2

�
−1 − ðkyΩSδÞ2

−
k2Ω2ðx2 − 1Þð1 − y2ÞðFSδ − 1Þ2

4FSδ

þ 2ikyΩ
�
Sδ

FSδ þ 1

FSδ − 1
þ x

��
;

Q3 ¼ p

�
1þ FSδ

1 − FSδ þ ikySδΩ
�
: ð3:15Þ

The last transformation Π−1 leads to the final solution
with the Ernst potentials E4, Q4 in the form,

E4 ¼
2Q3 þ E3 − 1

2Q3 − E3 þ 1
; Q4 ¼

1þ E3

2Q3 − E3 þ 1
: ð3:16Þ

To get the final solution with a zero electromagnetic field, it
is necessary to find such parameters, that set Q4 equal to
zero, which can be achieved with E3 ¼ −1. This is possible
only for Sδ ¼ 1 and p ¼ ð1þ k2Ω2Þ−1=2, which leads us to
the final expression for Ernst potentials,

E4 ¼
pxþ iqy − 1

pxþ iqyþ 1
; Q4 ¼ 0; ð3:17Þ

where q ¼ kΩp is a constant (p2 þ q2 ¼ 1). Using the
transformation from prolate to spherical coordinates in the
form x → ðr −MÞ=Mp and y → cos θ, with the redefined
constants,

Ω ¼ aM=ðM2 − a2Þ3=2; k ¼ ðM2 − a2Þ=M; ð3:18Þ

and properly rescaling the scalar charge Σ, the solution will
be written in the Kerr-like form,

fðr; θÞ ¼ Δ − a2sin2θ
r2 þ a2cos2θ

; ωðr; θÞ ¼ −
2aMrsin2θ
Δ − a2sin2θ

;

hijdxidxj ¼ Hðr; θÞðdr2 þ Δdθ2Þ þ Δsin2θdφ2;

ΔðrÞ ¼ ðr −MÞ2 − b2; ð3:19Þ
with the following scalar field ϕ and the function H:

ϕðrÞ ¼ ϕ∞ þ Σ
2b

log
r −M þ b
r −M − b

; ð3:20aÞ

Hðr; θÞ ¼ Δ − a2sin2θ
Δ

�
1þ b2

Δ
sin2θ

�−Σ2=b2

; ð3:20bÞ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. Naturally, for Σ ¼ 0, the solution

coincides with the vacuum Kerr solution. One can also
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guess the generalization with the NUT parameter by taking
Kerr-NUT solution and putting ϕ and H from (3.20) with
the constant b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ N2 − a2

p
. The correctness of this

guess was checked with the equations of motion. Later
in this section, we will consider the solution without the
NUT charge.
The Ricci scalar, following from the equations of motion

(1.2a), reads

R ¼ 2ð∂rϕÞ2grr ¼
2Σ2

Δðr2 þ a2cos2θÞ
�
1þ b2

Δ
sin2θ

�Σ2=b2

:

ð3:21Þ

The curvature scalar R diverges at Δ ¼ 0, b2 ≥ 0. The
solution also possesses the ring singularities in the equa-
torial plane at r ¼ 0 for any b and r ¼ M for b2 < 0.
Recently, some new rotating solutions were given by

Chauvineau [24]. One of them is asymptotically flat,
generalizing Penney’s solution [5]. It also has the form
(3.19) with the following ϕ and H:

ϕN ¼ Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δþ ðM2 − a2Þcos2θ

p ; ð3:22aÞ

HN ¼ Δ − a2sin2θ
Δ

exp

�
−

Λ2Δsin2θ
ðΔþ ðM2 − a2Þcos2θÞ2

�
;

ð3:22bÞ

where Δ ¼ r2 − 2Mrþ a2 is the same as in (3.19). Here,
the subscript N stands for “Newtonian” as in [24], and we
changed the definition of the constant Λ, which was
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
in [24]. The scalar curvature for this solution

diverges on equator of the Killing horizon.
To make contact with the results of Chauvineau, consider

the limitM2 − a2 → 0 in our solution (3.19). One finds the
following expressions for the metric function H and the
scalar field:

H ¼ Δ − a2sin2θ
Δ

exp

�
−
Σ2sin2θ

Δ

�
; ð3:23aÞ

ϕ ¼ ϕ∞ þ Σffiffiffiffi
Δ

p ; ð3:23bÞ

which coincide with the same limit M2 − a2 → 0 of the
functions (3.22). Outside of this limit, our solutions are
different.

IV. ERIŞ-GÜRSES TRANSFORMATION

Further simplification of the equations of motion can be
achieved assuming the axial symmetry. Then one uses the
Weyl-Papapetrou ansatz for the metric,

ds2 ¼ − exp ð2ψÞðdt − ωdφÞ2
þ exp ð−2ψÞ½exp ð2γÞðdρ2 þ dz2Þ þ ρ2dφ2�; ð4:1Þ

where ψ , ω and γ are functions of the coordinates ρ ¼
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − 1Þð1 − y2Þ

p
and z ¼ kxy. The equations of motion

will read

Δψ ¼ −
1

2
e4ψρ−2ð∇ωÞ2; ð4:2aÞ

∇ðe4ψρ−2∇ωÞ ¼ 0; ð4:2bÞ

γ;ρ ¼ ρ

�
ψ2
;ρ − ψ2

;z þ ϕ2
;ρ − ϕ2

;z −
1

4
e4ψρ−2ðω2

;ρ − ω2
;zÞ
�
;

ð4:2cÞ

γ;z ¼ 2ρ

�
ψ ;ρψ ;z þ ϕ;ρϕ;z −

1

4
e4ψρ−2ðω;ρω;zÞ

�
; ð4:2dÞ

Δϕ ¼ 0; ð4:2eÞ

where the vector operators act in the same way as in the
cylindrical coordinates of the flat space ðρ; z;φÞ. Eriş and
Gürses [40] suggested to split the equations into vacuum
and scalar parts. For that, one has to present the function γ
as a sum of two terms γ ¼ γψ þ γϕ. Then the following
theorem holds.
Theorem. If the functions ψ , ω, and γ ¼ γψ fulfill the

vacuum field equations, then the functions ψ , ω, and
γ ¼ γψ þ γϕ satisfy the Eqs. (4.2), provided the scalar field
satisfies the Eq. (4.2e) and

γϕ;ρ ¼ ρðϕ2
;ρ − ϕ2

;zÞ; γϕ;z ¼ 2ρϕ;ρϕ;z: ð4:3Þ

The integrability condition of the Eqs. (4.3) is given
by (4.2e).
This theorem allows us to generate a solution with a

nontrivial scalar field from a vacuum solution. We will
abbreviate this procedure as EG transformation. Also, EG
duality can be applied in the opposite direction to get rid of
the scalar field. For the static case, the composition of the
SOð2Þ transformation (2.7) and the EG transformations,
with an appropriate choice of the parameters, transforms
one vacuum solution to another. This combined trans-
formation coincides with the Zipoy-Voorhees transforma-
tion ψ → sψ , γψ → s2γψ .
Application of the EG duality to the Kerr metric gives the

solutions (3.19) and (3.22) if we choose ϕ in the form
(3.20a), (3.22a), correspondingly. Note that we are not
limited to using ϕ depending on the radial coordinate r
only, but this seems to be the most relevant case.
As the result of the SOð2Þ symmetry (2.7), in the static

case ω ¼ 0, the equations of motion for γψ and ψ have the
form (4.3), (4.14) similar to γϕ and ϕ,
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γψ;ρ ¼ ρðψ2
;ρ − ψ2

;zÞ; γψ;z ¼ 2ρψ ;ρψ ;z; ð4:4aÞ

∂ρðρ∂ρψÞ þ ρ∂2
zψ ¼ 0: ð4:4bÞ

A. FJNW rotating generalization

Consider a stationary generalization of the ZV solution
with arbitrary δ, angular momentum J and some potentials
ψ , γψ , ω. We will split γψ and ψ into two parts: the static
part γs, ψ s and the rotational part γω, ψω,

γs ¼ lim
J→0

γψ ¼ δ2γSch; ψ s ¼ lim
J→0

ψ ¼ δψSch;

γω ¼ γψ − γs; ψω ¼ ψ − ψ s; ð4:5Þ

where γSch ¼ 1
2
ln L2−k2

lþl−
, ψSch ¼ 1

2
ln L−k

Lþk are the potentials

of the Schwarzschild solution (note that γSch corresponds
to FJNW solution as well), L ¼ 1

2
ðlþ þ l−Þ, l� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz� kÞ2
p

, with k being a constant entering the
spheroidal coordinates. Since ψ s, γs and ϕ, γϕ satisfy
the same equations, we can introduce a scalar field into our
solution in the form,

γϕ ¼ c2γSch; ϕ ¼ cψSch: ð4:6Þ

The final metric is described by the functions ψ ¼
δψSch þ ψω, ϕ ¼ cψSch, ω, γ ¼ ðδ2 þ c2ÞψSch þ γω.
Setting δ2 þ c2 ¼ 1, we get rid of the three-metric defor-
mation of ZV kind. Thus, on one hand, in the static limit,
ω;ψω; γω → 0, such a solution exactly corresponds to
FJNW (this was noticed by Eriş and Gürses [40]). For
the zero scalar c ¼ 0, the constraint gives δ ¼ 1, and the
solution represents the rotating Schwarzschild solution,
i.e., the Kerr metric. Such a solution can be considered

as a full-fledged rotating generalization of FJNW. On the
other hand, one can take the scalar field in the form
ϕ ¼ cψSch þQðJÞϕ̃, where Qð0Þ ¼ 0 is some function
of the angular momentum J, and ϕ̃ is an arbitrary solution
of (4.14). This solution will have the same properties for
static and scalarless limits. Here, we will not consider
this case.
The general rotating axisymmetric vacuum solution was

considered in [53]. The asymptotically flat rotating gener-
alization of the ZV metric was found by Tomimatsu and
Sato (TS) for the integer deformation parameter δ ¼
1; 2; 3; 4 in [44]. The further generalization to an arbitrary
integer δ ∈ Zþ was given by Hori [54]. Then, Cosgrove
extended TS solutions to an arbitrary real δ in the six-
parametric family [55]. Another attempt to interpolate TS
for real δ was given by Hori without evidence of its
correctness with respect to the equations of motion [56].
Eriş and Gürses mentioned without details the possibility to
apply their transformations to the TS metric. A similar idea
of EG-transformations was applied by Astorino for some
metrics in [25]. Among them, there is a subfamily of
Cosgrove’s metrics from [27].
From the constraint on δ and c, it follows that c2 < 0 for

δ > 1, so we can construct the rotating FJNW from the
Tomimatsu-Sato solutions with the integer δ for a phantom
scalar field only. We will consider the case δ ¼ 2 with

e2ψ ¼ A
B
; e2γ

ψ ¼ A
p4ðx2 − y2Þ4 ; e2γ

ϕ ¼
�
x2 − y2

x2 − 1

�
3

;

ω ¼ 2qMð1 − y2ÞC
A

; ð4:7Þ

where the constants satisfy the constraint p2 þ q2 ¼ 1 and
the functions A, B, C are

A ¼ p4ðx2 − 1Þ4 þ q4ð1 − y2Þ4 − 2p2q2ðx2 − 1Þð1 − y2Þ½2ðx2 − 1Þ2 þ 2ð1 − y2Þ2 þ 3ðx2 − 1Þð1 − y2Þ�; ð4:8Þ

B ¼ ½p2ðx2 þ 1Þðx2 − 1Þ − q2ðy2 þ 1Þð1 − y2Þ þ 2pxðx2 − 1Þ�2 þ 4q2y2½pxðx2 − 1Þ þ ðpxþ 1Þð1 − y2Þ�2; ð4:9Þ

C ¼ −p3xðx2 − 1Þ½2ðx2 þ 1Þðx2 − 1Þ þ ðx2 þ 3Þð1 − y2Þ�
− p2ðx2 − 1Þ½4x2ðx2 − 1Þ þ ð3x2 þ 1Þð1 − y2Þ� þ q2ðpxþ 1Þð1 − y2Þ3: ð4:10Þ

The final solution reads

ds2 ¼ −
A
B
ðdt − ωdφÞ2 þ B

A
k2ðHðdx2 þ h−1dy2Þ þ ðx2 − 1Þð1 − y2Þdφ2Þ;

H ¼ A
p4ðx2 − 1Þ4 ¼

�
1þ q2

p2
h2
�

2

− 4
q2

p2
hðhþ 1Þ2;

ϕ ¼ � i
2

ffiffiffi
3

p
ln
x − 1

xþ 1
; h ¼ 1 − y2

x2 − 1
; k ¼ Mp=2; q ¼ J=M2; ð4:11Þ
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where J is the angular momentum andM is the mass. Note
that H ¼ e2γðx2 − y2Þ=ðx2 − 1Þ under the coordinate trans-
formation from ρ, z to x, y. The EG transformation allows
adding the nontrivial scalar field to a vacuum solution by
the correction to the function γ, leaving the corresponding
Ernst potential unchanged. From the definition of the scalar
charge ϕ ≈ ϕ∞ þ Σ=r at infinity, one finds the imaginary
value Σ ¼ ∓i

ffiffiffi
3

p
Mp, corresponding to a phantom scalar.

The metric is asymptotically flat since the Ernst potential of
the solution (4.11) is the same as for the TS solution with
δ ¼ 2. Note, that our scalar field coincides with that given
by Astorino [25],1 but the metric of the solution presented
in [25] is not asymptotically flat, as we explain in detail in
Appendix C.
The solution (4.11) has a horizon at x ¼ �1. Its

ergoregion is defined by the equation H ¼ 0, which can
be resolved as h ¼ h̃ðq=pÞ, where h̃ is some function of
p=q. The location of singularities corresponds to diver-
gence of the scalar curvature,

R ¼ 2gxxð∂xϕÞ2 ¼
−6A

BHk2ðx2 − 1Þ2 ¼
−24p2

M2

ðx2 − 1Þ2
B

:

ð4:12Þ

From this expression, it follows that singularities corre-
spond to B ¼ 0, with B being a sum of two squares.
Therefore, both squared expressions must be zero for the
singular point,

yðpxðx2 − 1Þ þ ðpxþ 1Þð1 − y2ÞÞ ¼ 0; ð4:13aÞ

p2ðx2þ1Þðx2−1Þ−q2ðy2þ1Þð1−y2Þþ2pxðx2−1Þ¼0:

ð4:13bÞ

The Eq. (4.13a) holds if one of the following conditions
are met:

(i) y2 ¼ ð1þ px3Þ=ð1þ pxÞ
(ii) y ¼ 0.

Substituting the solution (i) into the Eq. (4.13b), we get a
condition,

pðx2 − 1Þð4p2x3 þ pðx4 þ 6x2 þ 1Þ þ 4xÞ
ðpxþ 1Þ2 ¼ 0:

The first root x2 ¼ 1 does not lead to divergence due to the
presence of ðx2 − 1Þ2 in the numerator of Ricci scalar
(4.12). The second bracket is positive for p > 0, x > 0.
Therefore, in this case, the singularity can be located only
under the horizon x ¼ 1.
The solution (ii) substituted into the Eq. (4.13b) gives a

condition,

p2x4 þ 2pxðx2 − 1Þ − 1 ¼ 0:

For x ¼ 1, the lhs is negative p2 − 1 < 0, while in the limit
of large x → ∞, the lhs tends to p2x4 > 0, so it has at least
one root in the outer region x > 1. Numerically, one can
show that there is always exactly one root in the region
x > 1. Thus, the solution represents a black hole with a
regular event horizon and a singular ring in the equatorial
plane. The scalar field diverges on the horizon, so the
horizon has a scalar charge, which is typical for the static
FJNW solution with S > 1. Moreover, the scalar field is
regular in the ring singularity, so the ring does not carry the
scalar charge.

B. Oblate rotating solutions

Metric functions depend on p2, q2, x2, y2, px and allow
an analytic continuation x → ix, p → ip, (i.e., a > M), in
which the metric remains physical with the same signature,
but the scalar field becomes real ϕ ¼ � ffiffiffi

3
p

arctan x (up to
an additive constant). In this case, x ≥ 0 and −1 ≤ y ≤ þ1
will represent the oblate spheroidal coordinate system,
and the scalar field will have a cusp at the disk x ¼ 0.
Therefore, this solution cannot be considered as a desired
rotating generalization of FJNW. But it is interesting since
analytically continuing the coordinate x to the whole real
line x ∈ R, one gets a wormhole without the scalar cusp.
Such objects with wormhole interpretation were described
by Gibbons and Volkov in [57,58].

C. Generation of higher scalar multipoles

The equation of motion of the scalar field (4.2e) does not
contain explicitly the coordinate z,

∂ρðρ∂ρϕÞ þ ρ∂2
zϕ ¼ 0: ð4:14Þ

Therefore, if ϕ0ðρ; zÞ is a solution of the Eq. (4.14), then
ϕn ¼ ∂n

zϕ0 is a solution too, and the function γϕ has a new
form defined from the Eq. (4.3). As for the problem of Kerr
solutions with scalar fields, such transformations were
discussed in [24]. For example, acting with ∂z ¼ r;z∂r þ
θ;z∂θ on (3.20a) and using the coordinate transformations
ρ ¼ ffiffiffiffi

Δ
p

sin θ, z ¼ ðr −MÞ cos θ, after lengthy calcula-
tions, one can obtain

ϕð1Þ ¼
Λð1Þ cos θ

Δþ b2sin2θ
; ð4:15aÞ

γϕð1Þ ¼
−Λ2

ð1Þ
8b4ðΔþ b2sin2θÞ2

�
Δ2 þ 2b2Δsin2θ − b4sin4θ

þ 4b4sin2ð2θÞðr −MÞ2Δ
ðΔþ b2sin2θÞ2

�
; ð4:15bÞ

1We thank the anonymous referee for indicating this.
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where Λð1Þ is a constant. The asymptotic behavior of the
scalar field ϕ ≈ Λð1Þ cos θ=r2 suggests that the solution
describes the rotating source with a scalar dipole moment.
The general multipolar expansion of the scalar field in
MES and conformally coupled theory is considered in
Appendix D of Ref. [25].

V. CONCLUSIONS

Let us briefly summarize the results. First, using the
sigma-model formulation of the field equations, we obtained
a new static generalization of FJNW, endowed with oblate-
ness and NUT parameters. The combined ZV-FJNW sol-
ution opened up a way to apply Clement’s technique to
generate rotation, obtaining a nontrivial rotating solution of
MES. The solution is simple and can be used as a legal
rotating metric to study physics outside of the Kerr para-
digm. In the extreme limit, it coincides with one of the
solutions recently found by Chauvineau. But in this solution,
the oblateness can not be eliminated due to the internal
constraint that exists in this technique.
In search of rotating scalar-tensor configurations with

no additional parameters, we have resorted to the Eriş and
Gürses method. By applying the EG duality, we could
reproduce the result obtained with CT. Using the EG
transformation, we put forward the argument that rotating
vacuum solutions of ZV family are dual to scalar rotating
solutions. As an example, we have obtained a new rotating
solution, which is dual to the Tomimatsu-Sato vacuum
solution with δ ¼ 2, which has a regular horizon sur-
rounded by a naked ring singularity. It is supported by a
phantom scalar field. Using some complex transforma-
tions, the scalar field can be made real, but it will be no
longer a generalization of the FJNW solution and can be
interpreted as a disk with scalar charge or a wormhole with
ring singularity.
We also obtained a new solution using the generating

technique suggested by Chauvineau for Kerr-like metrics.
Using EG transformations, this technique was extended to
an arbitrary axisymmetric solution in the Weyl-Papapetrou
form. Following Chauvineau, the action of the differential
operator ∂z on a scalar field leaves the equations of motion
satisfied. Due to the theorem of EG, the presence of a scalar
field leads to an additional term γϕ in the metric, which can
be found from the first-order partial differential equations.
Therefore, a new generated scalar field redefines the term
γϕ, which is more or less easy to find. We applied this
technique to the solution obtained through the Clément
transformations.
Both generalizations found with Clément and EG-trans-

formations are described by the Ernst potentials correspond-
ing to the Kerr and Tomimatsu-Sato solutions. All solutions
we obtained in this paper can be considered as the valid
alternatives to false solutions which arise from application of
the JN algorithm within MES and BD theories.
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APPENDIX A: FALSE ROTATING FJWN

Consider the metric, obtained in [15] by application of
the JN trick to FJNW. In terms of the sigma-model
variables (2.1), it reads

f ¼ R2

σ2
ðΔ − ω̃2sin2θÞ; ωidxi ¼ −f−1ω̃sin2θdφ;

ðA1aÞ

hijdxidxj ¼
fR2

Δ
ðdr2 þ Δdθ2Þ þ Δsin2θdφ2; ðA1bÞ

with the scalar field,

ϕðrÞ ¼ Σ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − a2

p ln

�
1 −

ηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − a2

p
r

�
;

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2

p
; ðA2Þ

where

ω̃ ¼ aðR2 þ a2sin2θ − ΔÞ
R2

;

R2 ¼ ðr2 þ a2cos2θÞ
�
1 −

2ηr
r2 þ a2cos2θ

�
1−M=η

;

Δ ¼ r2 − 2ηrþ a2;

σ2 ¼ ðR2 þ a2sin2θÞ2 − Δa2sin2θ:

For Σ ¼ 0, η ¼ M, and we recover the Kerr solution. This
metric looks simple, and it became a popular model for
describing possible deviations from general relativity in
astrophysical observations [18–21]. Pirogov [22] checked
part of Einstein’s equations and found that they do not hold.
This statement was supported in [23]. Here, we check the
validity of the sigma-model equations. Considering the
equation □ϕ ¼ 0 for ϕ depending on r only, taking into
account

ffiffiffiffiffiffi−gp ¼ R2 sin θ, one can derive the equation,

∂rðΔ∂rϕÞ ¼ 0; ðA3Þ

which can be solved with ϕ¼ const lnðr−ηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η2−a2

p
Þ=

ðr−η−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η2−a2

p
Þ, but not (A2). Still this does not mean

that the metric (A1) is incorrect.
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The σ model (2.4) implies the following equation for ψ :

Δψ þ 1

2
e−4ψð∂χÞ2 ¼ 0; ðA4Þ

whereΔ and the contraction over indices relate to the three-
metric,

ð∂χÞ2 ¼ e8ψ ðð∂iωjÞð∂iωjÞ − ð∂iωjÞð∂jωiÞÞ; ðA5Þ

for ωidxi ¼ ωðr; θÞdφ, and diagonal three-metric the
second term ð∂iωjÞð∂jωiÞ is zero. The first term we will
write as ð∂ωÞ2. Then, the equation is

Δψ þ 1

2
e4ψð∂ωÞ2 ¼ 0: ðA6Þ

It can be expanded as

∂rðΔ∂rψÞ þ
1

sin θ
∂θðsin θ∂θψÞ

þ e4ψ

2sin2θ
ðð∂rωÞ2 þ ð∂rωÞ2=ΔÞ ¼ 0: ðA7Þ

Substituting the functions f and ω and expanding as
r → ∞, we find the nonzero term,

a2Mð3 cosð2θÞ þ 5ÞðM − ηÞ
r4

þOðr−5Þ ¼ 0: ðA8Þ

This can be fulfilled for a ¼ 0 (static FJNW solution) or
η ¼ M (Kerr). So we confirm the results of [22,23].

APPENDIX B: BRANS-DICKE FALSE
ROTATING SOLUTION

Another rotating solution with the scalar field generated
with JN algorithm was derived within the Brans-Dicke
theory [33]. The Brans-Dicke equations of motion read

□Φ ¼ 0; ðB1aÞ

Rμν −
1

2
gμνR ¼ ω

Φ2

�
Φ;μΦ;ν −

1

2
gμνΦ;λΦ;λ

�

þ 1

Φ
ðΦ;μν − gμν□ΦÞ: ðB1bÞ

Taking into account (B1a), one can find Ricci tensor,

Rμν ¼
ω

Φ2
∂μΦ∂νΦþ 1

Φ
Φ;μν: ðB2Þ

The theory can be formulated in the Jordan and Einstein
frames, the latter corresponding to MES. The explicit
conversion to Einstein’s frame reads

gEμν ¼ ΦgJμν; ϕ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p
lnΦ: ðB3Þ

The FJNW solution in the Jordan frame is

ds2 ¼ −F−σþSdt2 þ F−σ−Sðdr2 þ r2Fðdθ2 þ sin2θdφ2ÞÞ;
Φ ¼ Φ0Fσ ðB4Þ

F ¼ 1 −
2M
Sr

; S ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2

p ; σ ¼ −
ΣS

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p :

ðB5Þ

Application of the JN trick [33] leads to

ds2 ¼ fηKðdt − ωKdφÞ2 − fξKρðdr2=Δþ dθ2 þ sin2θdφ2Þ
þ 2fσKωKðdt − ωKdφÞdφ; ðB6aÞ

Φ ¼ Φ0fσK; ðB6bÞ

where

fK ¼ 1 − 2r0r=ρ; ρ ¼ r2 þ a2cos2θ;

ωK ¼ asin2θ; Δ ¼ rðr − 2r0Þ þ a2 ðB7Þ

and

σ ¼ ðηþ ξ − 1Þ=2 ¼ −c=2λ; η ¼ 1=λ;

ξ ¼ ðλ − c − 1Þ=λ ðB8Þ

with the free parameters λ and c. The static limit of the
solution (B6b) should coincide with (B4) up to the
definition of constants. The solution (B4) possesses a
property that ln jgttgrrj ¼ −2 lnΦþ const. For the solution
(B6), we find

ln jgttgrrj ¼ ðηþ ξ − 1Þ ln fK ¼ 2 lnΦþ const;

thus, the scalar field is incorrect, and the correct one
is Φ ¼ Φ0f−σK .
For the tt component, the Einstein equation is

Rtt ¼
1

Φ
Φ;tt ¼ −Γr

tt∂r lnΦ: ðB9Þ

Let us calculate an asymptotic behavior of the quantity
X ¼ Rtt −Φ;tt=Φ up to the seventh order for the solution
(B6). The first nonzero term of the Taylor series starts from
the fourth order. The fourth and the fifth terms are zero if
we use a corrected definition of the scalar field. Then, the
term of the sixth order reads

X ≈
a2r20ððcþ 2Þ2 − 4λÞð5þ 3 cos 2θÞ

4λ2r6
þOðr−7Þ; ðB10Þ
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which is zero for a ¼ 0 or λ ¼ ðcþ 2Þ2=4. The first case
brings us back to the static solution and satisfies the
Eq. (B9) exactly. Substituting the second case into the
seventh order gives

X ≈
64a2cr30cos

2θ

ðcþ 2Þ3r7 þOðr−8Þ ðB11Þ

and requires either c or r0 to be zero, which guarantees the
trivial form of the scalar field. Therefore, the solution found
with JN algorithm in [33] is incorrect as well.

APPENDIX C: TOMIMATSU-SATO SOLUTIONS
AND COSGROVE’S SUBFAMILY

In this Appendix, we will show that Cosgrove’s sub-
family considered in [25] are not asymptotically flat, and it
does not include TS.

The first physically interesting rotating generalizations
of ZV were found by Tomimatsu and Sato in Ref. [44] for
the integer deformation parameter δ ¼ 2; 3; 4. To construct
these solutions, the authors represented the potential ξ ¼
ð1þ EÞ=ð1 − EÞ as a rational fraction ξ ¼ α=β and made
use of seven formal rules found empirically. One of these
rules is that the functions α and β are polynomials in x, y
with powers δ2 and δ2 − 1, respectively. This rule can be
easily verified for δ ¼ 2,

α ¼ p2x4 þ q2y4 − 1 − 2ipqxyðx2 − y2Þ;
β ¼ 2pxðx2 − 1Þ − 2iqyð1 − y2Þ: ðC1Þ

Tomimatsu-Sato solutions are asymptotically flat, which
follows from E → 1 for x → ∞.
The potential for the subfamily of the Cosgrove solutions

considered in [25] can be represented in a similar form
ξ ¼ α=β with

α ¼ p
2
ðx2 − 1Þm½ðxþ 1Þmþ1ð1 − yÞm þ ðx − 1Þmþ1ð1þ yÞm�

þ iq
2
ð1 − y2Þm½ð1 − yÞmþ1ðxþ 1Þm − ð1þ yÞmþ1ðx − 1Þm�; ðC2aÞ

β ¼ p
2
ðx2 − 1Þm½ðxþ 1Þmþ1ð1 − yÞm − ðx − 1Þmþ1ð1þ yÞm�

þ iq
2
ð1 − y2Þm½ð1 − yÞmþ1ðxþ 1Þm þ ð1þ yÞmþ1ðx − 1Þm�; ðC2bÞ

wherem ¼ δ − 1. Solutions (C2) do not include TS metrics found in [44,54] (except the Kerr case δ ¼ 1). This can be seen
from the fact that the solution (C2) does not satisfy the aforementioned formal rule: if m is a positive integer, the power
index of polynomials α, β is 4mþ 1 (or 4δ − 3). Furthermore, solutions (C2) are not asymptotically flat,

E ≈
Yþ
meiτ − Y−

m

Yþ
meiτ þ Y−

m
þOðx−1Þ; ðC3Þ

where Y�
m are functions of y

Y�
m ¼

8>><
>>:

ð1 − yÞm � ð1þ yÞm; m > −1=2
ðp ∓ iqÞð1 − yÞm � ðp� iqÞð1þ yÞm; m ¼ −1=2
ð1 − yÞmþ1 ∓ ð1þ yÞmþ1; m < −1=2

; ðC4Þ

and τ is an additional Ehlers transformation parameter introduced for completeness (see [25], Appendix B for details). The
expression (C3) is not a constant for any set of parameters m and τ (except the Kerr case m ¼ 0), and thus (C2) is not
asymptotically flat.
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