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We propose a new test of strong-field general relativity (GR) based on the universal interferometric
signature of the black hole photon ring. The photon ring is a narrow ring-shaped feature, predicted by GR
but not yet observed, that appears on images of sources near a black hole. It is caused by extreme bending of
light within a few Schwarzschild radii of the event horizon and provides a direct probe of the unstable
bound photon orbits of the Kerr geometry. We show that the precise shape of the observable photon ring is
remarkably insensitive to the astronomical source profile and can therefore be used as a stringent test of
GR. We forecast that a tailored space-based interferometry experiment targeting M87* could test the Kerr
nature of the source to the sub-subpercent level.
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I. INTRODUCTION

General relativity (GR) is a pillar of modern physics and a
workhorse of astronomicalmodeling.As the theory lacks any
intrinsic scale, its predictions are organized by a dimension-
less ratio of system parameters. If M is a typical mass scale
and R is a typical distance scale, we may construct the
dimensionless quantity

Φ ¼ GM
Rc2

; ð1Þ

where G is Newton’s constant and c is the speed of light. In
the Newtonian limit, this quantity is just (minus) the
gravitational potential, and more generally we may take it
to represent the strength of the gravitational field.
GR has been tested with exquisite accuracy in the regime

Φ ≪ 1 of weak gravitational fields [1–3]. The strong-field
regime is comparably lacking in precise tests, with two
significant exceptions. First, binary pulsar measurements
[4] have sensitively tested the GR prediction that the
motion of a body depends only on its total mass and not
on its internal composition (the “strong equivalence
principle”). Second, the spectacularly bright first gravita-
tional-wave source GW150917 [5] has been used for a few-
percent-level test of the GR prediction for the gravitational
waves generated by a black hole merger [6].
While very impressive, these tests cover only a small

fraction of the important strong-field phenomenology ofGR.

In particular, there is as yet no precise, direct test of the
prediction that black holes are described by the Kerr metric.
The Kerr assumption underlies an enormity of important
astronomical modeling, and paradoxes raised by black holes
play a driving role in theoretical physics. We therefore
consider it imperative to seek direct tests of the Kerr black
hole prediction. More generally, the foundational status of
GR as our most fundamental description of gravity demands
thorough testing of the theory in all its regimes.
In this paper, wewill discuss a new potential test of strong-

field GR based on the observation of a characteristic “photon
ring” predicted to arise due to black hole lensing. Such a ring
first appeared in a simulated image produced by Luminet in
1979 [7], although some elements of the underlying theory
date back to Bardeen in 1973 [8], to Darwin in 1959 [9], and
even to Hilbert in 1917 [10]. The essential realization is that
since light can orbit (unstably) around black holes, it follows
that for any source emitting in all directions, and for any
detector collecting light, some fraction of emitted photons
loop around the black hole before reaching the detector. An
even smaller fraction will loop an additional time, and so on.
In principle, therefore, a camera aimed at a black hole sees
every object in the universe, each appearing an infinite
number of times. The orbiting photons all arrive near a
closed, “critical curve”on the imageplane, creating a ringlike
feature known as the photon ring [8,11–15].1
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1In this paper, we use “photon ring” to mean any observable
ringlike feature associated with orbiting photons. The models we
consider herein exhibit multiple photon rings, one for each image of
the disk.
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The last fifteen months have witnessed several rapid
developments pushing the photon ring from a theoretical
concept toward an observational reality. First, the Event
Horizon Telescope (EHT) collaboration released interfero-
metric observations of the black hole at the center of the
galaxy M87 (henceforth M87*) [16–21]. These provide
new detail about the emission structure on horizon scales
and, as we shall see, help demonstrate the suitability of the
source for future photon ring observations.
Next came a succession of theoretical developments.

Reference [13] showed that the photon ring from sources
like M87*, previously thought of as a single continuous
entity, should in fact consist of a sequence of individual
rings converging to the critical curve. Reference [14] then
noted that these rings are persistent sharp features, and
hence should dominate time-averaged interferometric
observations on suitably long baselines. In particular, a
ring of diameter d and width w dominates the interfero-
metric signal in the range

1=d ≪ u ≪ 1=w; ð2Þ

and its signature is a visibility (Fourier transform of the
image intensity) that oscillates along a radial baseline u,
with a periodicity related to the ring diameter.
Reference [22] provided complete details of this univer-

sal observational signature, calculating the visibility in the

regime (2) of a narrow feature tracing an arbitrary plane
curve. For a closed, convex curve, the signature is

V ¼ e−2πiCφuffiffiffi
u

p ðαLφe−iπ
4eiπdφu þ αRφe

iπ
4e−iπdφuÞ; ð3Þ

where ðu;φÞ are polar coordinates on the visibility plane.
The functions dφ and Cφ are the angle-dependent projected
diameter and centroid, respectively. We illustrate dφ in
Fig. 1—see Refs. [22,23] for precise definitions of dφ and
Cφ. These functions encode the shape of the curve, while
αLφ and αRφ encode its intensity profile. Reference [23]
presented an explicit formula for reconstructing the full
curve from the interferometric data Cφ and dφ.
While the full complex visibility (3) encodes both dφ and

Cφ, the visibility amplitude depends on dφ only:

jVj ¼ 1ffiffiffi
u

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαLφÞ2 þ ðαRφÞ2 þ 2αLφα

R
φ sinð2πdφuÞ

q
: ð4Þ

This function oscillates with period 1=dφ between maxi-
mum and minimum values set by the sum and difference of
αL and αR. Thus, one can infer the projected diameter from
the visibility amplitude alone by measuring its oscillation
frequency on long baselines. Reference [23] explored the

FIG. 1. A proposed test of the Kerr metric and its strong-field gravitational lensing. General relativity (GR) predicts that light orbiting
near the event horizon of a black hole produces a sequence of narrow “photon rings” on images of the surrounding emission. On the left,
we show a model for the time-averaged observational appearance of M87*, resolving the main image of the accretion disk as well as the
first two of the infinitely many photon rings. We propose a space interferometry experiment to measure the projected diameter dφ of the
second photon ring at different angles φ. On the right, we show the forecasted experimental result, compared with the best-fit GR
prediction for dφ. This proposed experiment will test the GR prediction for the photon ring shape with a precision of 0.04% [Eq. (16)].
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shape information available from just the set of projected
diameters dφ, without the centroids Cφ.
These recent results suggest a conceptually simple yet

powerful new test of strong-field GR: measure the shape of a
photon ring and compare it to theGRprediction.But is such a
measurement feasible, and would it even really test GR?
Using a suite of reasonableM87* sourcemodels informed

by theEHTobservations,we show that the photon ring shape,
as measured via its interferometric signature, is an astonish-
ingly precise prediction of GR, independent of astrophysical
details. This theoretical result establishes exceptional prom-
ise for shape measurements as tests of GR. However, our
modeling also reveals that the photon ring signal is expected
to be ratherweak,with long-baselinevisibility on the order of
a few tenths of a milliJansky (mJy). As such, there will be
significant experimental challenges involved inmaking such
a measurement, which can only be carried out with a space
interferometer. However,we show that if these challenges are
met and the required sensitivity achieved, then shape
measurements with sub-subpercent precision are possible.
Such measurements would provide a new test of strong-field
GR with unprecedented precision, probing for the first time
the detailed geometry of the Kerr black hole. The measure-
ment concept and forecast are illustrated in Figs. 1 and 2.
This paper is organized as follows. In Sec. II, we give an

overview of our reasoning and results, which we then

describe in more detail in Secs. III and IV. We then compare
with other related work in Sec. V, before concluding with
our outlook in Sec. VI.

II. OVERVIEW

As described in the Introduction, recent observational
and theoretical progress has set the stage for the photon ring
shape to be used as a precise test of GR. However, standing
between these recent results and a compelling GR test are
three important questions:
(1) The approximation (3) becomes exact as the ring

width goes to zero and the range of validity (2)
becomes infinite. For the photon rings of small-but-
finite width visible in images of reasonable source
models, does the analytic signature (3) really domi-
nate in some finite range of baselines, with sufficient
fidelity to infer the photon ring shape dφ and Cφ? In
other words: Assuming GR is correct, is it possible
even in principle (with a perfect detector) to measure
the shape of a photon ring?

(2) Does the precise shape of the photon ring depend
sensitively on the astrophysical source profile, or is it
a universal (matter-independent) prediction of GR?2

In other words, to what extent does measuring the
shape of the photon ring really test GR?

(3) Can this test be realized at a precision that provides
an interesting test of GR?

We are pleased to report encouraging results on all three
fronts, as described in the following three sections.

A. The photon ring shape is measurable in principle

Our focus is on the putative black hole M87*, which is
believed to possess a geometrically thick accretion disk.
Although the Kerr spacetime is stationary, axisymmetric,
and reflection-symmetric about the equatorial plane, the
necessarily turbulent flow of matter accreting onto a black
hole [24] will undoubtedly break these symmetries on short
timescales. However, absent some persistent external
boundary conditions,3 one expects the symmetries of
the underlying Kerr spacetime to reemerge after time-
averaging over some suitable timescale. The timescale for

FIG. 2. Illustration of the configuration used for the exper-
imental forecast. A satellite orbits the Earth in the plane
perpendicular to the line of sight to the target M87*, observing
the source at various angles around the orbit. Shape measure-
ments are already possible with just a handful of observations, but
in this paper we consider a scenario in which data points are
collected from every 5° around the orbit. (This would require
multiple orbits if using a ground station.) These observations are
depicted with a colored dot, whose coloration matches that in
Fig. 8(e) below.

2The shape of the critical curve follows entirely from GR, but
is not in itself observable. Successive photon rings converge to
the critical curve, with deviations exponentially suppressed in
orbit number n but still important at small n (see Sec. III F and
Fig. 7).

3One example of a symmetry-breaking boundary condition is
given by an accretion disk that is misaligned with the black hole
spin. In this setting, we would still expect a regular structure to
emerge after time-averaging, which could be modeled by a
stationary (but not axisymmetric) phenomenological model.
The observational appearance of tilted disk configurations has
been studied in Ref. [25], albeit not with the resolution required to
see the emergence of the universal signature on long baselines.
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M87* must lie somewhere between its light-crossing
time (a few days) and the orbital period of nearby matter
(∼1–2 months), and simulations generally show nonax-
isymmetric structures forming and disappearing over a
period of a week or two. The photon ring is present in every
snapshot simulated image, but is most prominent in the
time-averaged image [14], whose Fourier transform is the
time-averaged radio visibility.
To study the time-averaged observational appearance of

M87*, we will consider models that share the symmetries
of the underlying Kerr spacetime. We adopt an “equatorial
approximation” in which the source is assigned a sta-
tionary, axisymmetric intensity profile in the plane
perpendicular to the black hole spin (representing emis-
sion from a disklike source), augmented with a fudge
factor to account for the effects of geometrical thickness.
This approach is capable of reproducing the time-
averaged observational appearance of simulation-based
models [20], while also facilitating access to a much larger
range of reasonable source profiles. We mainly confine
our attention to models that produce visibility amplitudes
roughly consistent with the M87* observations. This
limits the observer inclination θo from the black hole
spin axis to less than ∼30° and constrains the mass-
to-distance ratio M=D within a factor of ∼2–3, while
still allowing the black hole spin a to take any
value 0 < a < M.
We analyze this class of models in detail. We resolve

the first (n ¼ 1) and second (n ¼ 2) of the infinitely
many rings converging to the critical curve.4 The first
ring is usually too wide to admit the separation of scales
required for the existence of a universal regime (2), but
the second ring cleanly presents the signature (3) in all
cases. To quantify this statement, we adopt a canonical
range of baseline lengths u ∼ 285–315 Gλ in which we
fit for the parameters fdφ; Cφ; α

φ
L; α

φ
Rg at every angle φ.

In all models, we find excellent fits as judged by
normalized residuals. We take special care in judging
the accuracy of the fit for dφ (e.g., Fig. 6), since it will be
the focus of our experimental proposal. This analysis
establishes that a shape measurement is possible in
principle for this class of models.
Since these models cover a very large range of potential

time-averaged observational appearances of M87*, and
since for every model there is a clean, measurable photon
ring signature (9) over some range of baselines u, our
answer to question 1 is: Yes, the measurement is possible in
principle.

B. The photon ring shape is predicted by GR

We have argued that the shape of the (n ¼ 2) photon ring
from M87* is in principle observable via its interferometric
signature. To determine the extent to which such a
measurement tests GR, we need a GR prediction for this
shape. However, GR only predicts the shape of the critical
curve, which is not directly observable. On the other hand,
the shape of the photon ring, which is measurable, depends
at least somewhat on the astrophysical source profile, to a
degree which has not yet been quantified. For the expected
emission profiles, photon rings are typically offset out-
wards from the critical curve. At the level of precision that
we envision, we require a GR prediction for photon rings,
not the critical curve.
Our study of the models described above provides just

such a prediction. We offer two levels of precision. At the
percent level, the answer is clear: the photon ring is an
ellipse. That is, we fit the inferred dφ and Cφ to the
functional forms of an ellipse [Eq. (39) of Ref. [23] together
with the freedom to shift and rotate], finding that, for all
source models, the best-fit ellipse has percent-level errors.
This implies a percent-level limit for GR tests via the
photon ring shape. With more careful analysis, this limit
can undoubtedly be improved as well as extended to higher
observer inclinations, where a non-elliptical shape is
expected. In such a line of development, one would
naturally use a larger family of shapes, such as the
limaçon [27] or phoval [23].
If only the visibility amplitude is measured (and not the

phase), then only dφ can be measured (and not Cφ).
However, for dφ alone, we find a remarkable improvement
in the precision of the GR prediction. Whereas the ellipse
model discussed above works to the percent level, the
addition of a single parameter improves this to at least a part
in 105. This parameter corresponds to a certain sum of an
ellipse and a circle, producing a “circlipse” [23]. To wit, the
model is

dφ ¼ R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1cos

2ðφ − φ0Þ þ R2
2sin

2ðφ − φ0Þ
q

: ð5Þ

Of course, one can always make a fit work arbitrarily well
by adding more parameters. We are satisfied with the
circlipse because it contains the same number of physical
parameters as the GR prediction for the critical curve
(namely, three). The critical curve depends on the black
hole mass M, spin a and observer inclination θo, whereas
the circlipse depends on the three lengths R0, R1, and R2.
(The offset angle φ0 is degenerate with the orientation of
the camera.) The functional form (5) holds across the wide
range of disklike, modestly inclined models that we
consider, and hence can be considered a bona fide GR
prediction in that regime, independent of astrophysical
details.

4The index n refers to the approximate number of half-
orbits executed by photons before reaching the detector
[13–15,26]. In the nomenclature of Ref. [13], our n ¼ 1
photon ring is the “lensing ring,” while our n ≥ 2 rings com-
prise the photon ring. In the nomenclature of Refs. [14,26],
the rings labeled by n are “subrings,” with the “photon ring”
denoting the entire set.
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Measuring dφ fixes the “hull” of the photon ring, but not
its complete shape [23]. We therefore predict that the hull of
the photon ring is a circlipse. While testing this prediction
is perhaps viscerally less appealing than a full shape
measurement, at core it is no less compelling: Here we
have a precise functional form (5) predicted by strong-field
GR to appear, in a nearby source, to at least a part in 105.
One can hardly hope for a more stringent test of the theory.
Our answer to question 2 is: The measurement can test GR
with extraordinarily high precision.

C. The photon ring shape is measurable in practice

Can this measurement be made in practice? A mission
targeting M87* must meet the following requirements:
(1) It must operate at frequencies where the source is

optically thin. The EHT results suggest that a good
target observation frequency is ν≳ 230 GHz.

(2) It must reach baselines in the universal regime (2).
Our modeling indicates that a good target baseline
length is u ∼ 300 Gλ.

(3) It must be sensitive enough to detect the universal
signature. Our modeling indicates that a good target
sensitivity (standard deviation of the complex ther-
mal noise) is σ ≲ 0.1–0.2 mJy within the coherent
integration period.

(4) It must sample the Fourier plane finely enough to
tease out the periodicity in the universal signature
and thereby infer the photon ring shape. The
expected ring size suggests that a good target base-
line density is Δu≲ 1 Gλ.

(5) It must be able to observe the same portion of the
Fourier plane repeatedly, so as to average out any
nonuniversal fluctuations. The expected variability
of M87* suggests that observations should be
separated by weeks or months.

(6) It must be able to probe at least a few different angles
φ (ideally very many), such that shape tests are
possible.

To meet these requirements, we envision a two-element
interferometer with a “primary” station in a distant Earth
orbit, and a “secondary” station either on Earth or in low-
Earth orbit. Observations would be conducted at or above
230 GHz to ensure that the source is optically thin (item 1).
The wide primary orbit would place the typical baseline in
the universal regime (item 2). In this paper, we argue that
the desired sensitivity and sampling (items 3 and 4) can be
achieved via large collecting area, sensitive coherent
receivers, and wide instantaneous bandwidths, with orbital
determinations and initial fringe-finding achievable using
careful experimental techniques. The baseline will sample
each dφ twice per orbit (angles φ and φþ π correspond to
the same physical dφ), enabling averaging over source
fluctuations (item 5) at any angle φ (item 6). Since absolute
phase measurements at the precision required for long-time
averaging are technically unrealistic at present, we consider

only incoherent averaging, i.e., we restrict consideration to
the visibility amplitude only.
We analyze in detail a fiducial configuration (Fig. 2)

where the primary orbits with a 720-hour (∼1 month)
period in the plane perpendicular to M87*,5 and the
secondary is a ground station. We imagine conducting
“observing runs” of 2 hours, during which time the primary
sweeps out 1 degree of its orbit. We suppose that a coherent
integration time of 5 minutes can be sustained, yielding 24
integration periods per run. Each observation is assumed to
achieve a sensitivity of 0.14 mJy in each of 32 1-GHz bands
surrounding 230 GHz, subdivided from a full-band fringe
search. This results in 24 × 32 ¼ 768 complex visibilities
per 2-hour run. These fill up the range u ∼ 285–330 Gλ,
covering 8–9 oscillations of the expected universal signa-
ture (3).
The target of ∼0.1–0.2 mJy sensitivity for the single

baseline of this experiment merits some discussion. The
flux density estimates of Sec. III indicate that sensitivity at
this order of magnitude is critical. For a bandwidth of
1 GHz, set by the need to clearly resolve the oscillations in
visibility amplitude, and an integration time of 5 minutes,
the required baseline system-equivalent flux density
(SEFD) is approximately 100 Jy. For reference, the median
ALMA SEFD for the EHT M87* observations was 74 Jy.
A space-ground experiment that combines the existing
ALMA and a large inflatable reflector [28] illuminating a
superconducting parametric amplifier [29] can meet the
sensitivity target, so such an experiment is foreseeable with
technologies that are approaching viability.
A realistic instrument will face many other challenges

associated with the very-long-baseline interferometry
(VLBI) measurement. The proposed integration time is
long compared to atmospheric timescales and pushes the
limits of hydrogen masers, which may necessitate a space-
space scheme in which a common reference signal is shared
between satellites. Fringe-finding in the absence of sig-
nificant compact flux will require unconventional fringe
tracking methods (e.g., between simultaneously observed
frequencies) or hybrid constellations that provide short
reference baselines. Orbital determination, or at least the
precise knowledge of the derivatives of the orbital sepa-
ration, will also be essential to extended coherent integra-
tions and may require optical ranging between satellites.
Other investigations of millimeterwave space VLBI have
considered other technical obstacles as well [30–32], but a
full exploration of the instrument and technological choices
is beyond our goals here.
A major astrophysical uncertainty facing such an experi-

ment is the amount of “astrophysical noise” present on top
of the photon ring signature. We may distinguish between

5In reality, such an orbit will be perturbed by the Moon, but the
precise details of the orbit are not critical for this investigation of
the potential experimental sensitivity.
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two basic types of noise that might contribute to the
observed visibility on the long baselines of the experiment:
small-scale structures that are undoubtedly present in the
turbulent flow, and long, narrow “emission ropes” that
could in principle arise due to nonlinear instabilities and
temporarily mimic the photon ring. Both kinds of noise are
easy to remove if the experiment can measure absolute
interferometric phase, in which case one simply averages
the complex visibilities of successive measurements taken
at the same points in the Fourier plane. This reproduces the
visibility of the time-averaged image, which only contains
the photon ring signature, the noise having washed out.
Since measurements of absolute interferometric phase

would be challenging, for practical purposes we will
suppose that only the visibility amplitude is available.
The noise due to small fluctuations should still be remov-
able by averaging the visibility amplitude (Appendix A).
This averaging procedure does not reproduce the visibility
amplitude of the time-averaged image, but it does preserve
its periodicity, and hence the ability to infer the projected
diameter dφ of the underlying photon ring. Larger fluctua-
tions caused by bright, narrow structures in the accretion
flow (photon ring mimickers) would have to be modeled
and excised from the data based on deviations from typical
behavior in repeated measurements or other procedures.
For the initial forecast of this paper, we do not consider

astrophysical fluctuations explicitly. Rather, we assume a
pristine universal signature and suppose that we have
performed a 2-hour observation at each of a selection of
angles φ, regarding the results as a first estimate of what
might be achieved over a full mission that repeatedly
observes an astrophysically noisier signal. We find that
the projected diameter dφ of the photon ring can be
measured with a precision of �0.017 μas [Eq. (14)], which
provides a test of the GR prediction at the level of 0.04%
[Eq. (16)]. We therefore conclude that, as shown in greater
detail in the simulations of Sec. IV, the answer to question 3
is: a plausible experimental configuration could make a
precision test of GR.

III. PHENOMENOLOGICAL MODELS FOR M87*

A variety of arguments indicate that M87* contains a
geometrically thick, optically thin accretion disk surround-
ing a supermassive black hole (e.g., Ref. [20] and refer-
ences therein). We will assume that the angular momentum
of the disk is aligned with that of the black hole. Although
the flow is expected to be variable, we are interested in the
time-averaged appearance and hence will consider sta-
tionary, axisymmetric emission profiles.
The M87* disk is expected to extend significantly out of

the equatorial plane. Rather than pick a specific geometric
shape (or simulate an accretion flow), we will instead
consider models where all the emission arises from the
equatorial plane. This can be regarded as an “equatorial
approximation”, where the polar-averaged emission from a

thick disk is assigned to the relevant equatorial position.
This kind of model was used for Schwarzschild black holes
with static emitters in Ref. [13], and here we generalize to
Kerr black holes with both orbiting and infalling matter.
Although there is no systematic argument for the validity

of the equatorial approximation, it has proven useful in
practice. For example, the equatorial approach predicted
the presence of discrete subrings [13] later found in more
realistic models [14]. In this work, we similarly hope to use
simple-minded models to reveal general properties, to be
later confirmed in state-of-the-art modeling.
The equatorial approximation can be validated and

calibrated by comparison with more realistic models.
Comparing with the results of Ref. [14], we find excellent
qualitative agreement but notice a stark quantitative dis-
agreement: the geometrically thick models have signifi-
cantly brighter photon rings. This may be explained by the
fact that orbiting light rays spend significant time away
from the equator, while still remaining in a region of high
emissivity where they collect more photons. The equatorial
approximation fails to account for this effect, as it loads
photons onto a light ray only at equatorial crossings. To
capture the extra brightness caused by geometrical thick-
ness, we introduce an extra parameter that artificially
enhances the flux in the photon rings. We emphasize that
this is a fudge, and as such, we call it a fudge factor.
Nevertheless, it is a highly defensible fudge, allowing the
equatorial approximation to closely reproduce the time-
averaged appearance of geometrically thick models: com-
pare our Fig. 1 (left) and Fig. 4 (top right) to the analogous
results presented in Fig. 1 (left) and Fig. 3 (top) of
Ref. [14].
The advantages of the equatorial approximation are its

simplicity and its speed. It obviates the need to simulate the
flow, and ray-tracing an equatorial source is vastly simpler
than the full radiative transport appropriate to geometrically
thick flows. Although great strides have been made in the
modeling of accretion flows and their millimeter-wave
emission, we are still far from a first-principles calculation
of emission, and the computational cost is steep. The
equatorial approximation bundles information from this
hard work into an efficient framework in which a large
variety of potential source profiles can be explored with
scant computational cost.

A. Description of model

The inputs to our model are the black hole mass-to-
distance ratio M=D, the dimensionless black hole spin
a=M, the observer inclination θo, the equatorial emission
intensity profile IemðrÞ, and the geometrical factor f. The
output is a sky image and its associated complex visibility.
We now describe the model along with our computational
methods. We use units with G ¼ c ¼ 1.
The first step is to ray-trace the emission profile to

produce an observed image. We use the analytic method of
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Refs. [15,33], reviewed in Appendix C. The image is
described in Bardeen’s “screen coordinates” α and β, which
have units of black hole mass M. The intensity at each
screen position ðα; βÞ is determined by tracing the asso-
ciated light ray backwards through the emitting region,
adding to its intensity each time it passes through the
equatorial plane, and further enhancing the intensity of rays
that pass more than once via the geometrical factor f.
Letting rmðα; βÞ denote the radius at which a ray intersects
the equatorial plane for the mth time on its backwards
journey from screen position ðα; βÞ, we take the observed
intensity to be

Iobsðα; βÞ ¼
XNðα;βÞ

m¼0

fm½gðrm; αÞ�4IemðrmÞ; ð6Þ

where g is the redshift factor (observed frequency divided
by emission frequency), N þ 1 is the total number of times
the ray intersects the equatorial plane, and

fm ¼
�
1 m ¼ 0;

f m > 0:
ð7Þ

We take the matter to orbit on circular geodesics outside
of the innermost stable circular orbit (ISCO), and otherwise

to infall on marginally stable geodesics. The associated
redshift factor gðr; αÞ was derived by Cunningham many
years ago [34]; the analytic formula is given in Eqs. (B1),
(B7) and (B15) below. Analytic formulas for rmðα; βÞ and
Nðα; βÞwere derived recently in Ref. [15]; they are given in
Eqs. (C7) and (C8) below. This analytic approach is
especially convenient for photons that orbit the black hole
(i.e., the photon ring photons), for which direct numerical
approaches require special care.
The observed intensity Iobsðα; βÞ computed via Eq. (6) is

to be understood as bolometric. An experiment such as the
EHT is instead sensitive to the specific intensity Iν at the
observation wavelength, or more directly to its Fourier
transform, the complex visibility V. Producing a specific
intensity from our bolometric intensity requires further
assumptions about the source. We will skirt the issue and
simply rescale the total intensity,

Iν ∝ Iobs; ð8Þ

which assumes that the conversion between intensity and
specific intensity is independent of image position.6 We
determine the proportionality coefficient by comparing
with EHT observations in the visibility domain.
The complex visibility is the Fourier transform of the

specific intensity. If the specific intensity is expressed in
units of radians, with r⃗ ¼ ðx; yÞ denoting the image
coordinate in radians, then the visibility is given by

Vðu⃗Þ ¼
Z

Iνðr⃗Þe−2πiu⃗·r⃗d2r⃗: ð9Þ

Here, u⃗ is the baseline vector, equal to the separation
between a pair of telescopes in the plane perpendicular to
the line of sight to the source, and expressed as a multiple of
the observation wavelength. We will use polar coordinates
ðu;φÞ for the visibility plane spanned by u⃗.
The conversion from screen coordinates ðα; βÞ to angular

distance ðx; yÞ involves the mass-to-distance ratio of the
black hole, which is another input to the model. We will
scale to fiducial values via a ratio ψ defined as

ðM=DÞM87 ¼ ψ · ð1.76 × 10−11 radÞ ð10Þ

¼ ψ · ð3.62 μasÞ: ð11Þ

The canonical values MM87 ¼ 6.2 × 109 M⊙ and DM87 ¼
16.9 Mpc give ψ ¼ 1. If we imagine that the distance is
fixed to this value, then ψ ¼ 1 is a mass of 6.2 billion solar
masses. This is the value favored by stellar dynamical

FIG. 3. Illustration of the non-uniform resolution used for
image computation and storage. Defining a ray as a complete
null geodesic of the Kerr spacetime, the white, light purple, and
dark purple bands correspond to rays that intersect the equatorial
plane of the black hole once, twice, and three times, respectively.
The n ¼ 1 and n ¼ 2 photon rings always lie exactly within the
light purple and dark purple lensing bands, respectively. We
choose the resolution of the bands such that they each contain
roughly the same number of pixels. In this example, the black
hole spin is a=M ¼ 99% and the observer inclination is θo ¼ 30°.

6An alternative approach would be to use g3 in Eq. (6) in place
of g4, which would give Iν directly under the assumption of a
broadband source. This would produce very small differences
from the method we adopt, which are degenerate with the choice
of emission profile.

THE SHAPE OF THE BLACK HOLE PHOTON RING: A PRECISE … PHYS. REV. D 102, 124004 (2020)

124004-7



measurements [35], while the value favored by gas
dynamical measurements corresponds to ψ ¼ 0.56 [36].
In principle, the above steps are straightforward: Choose

model parameters, evaluate Eq. (6) for the image, compute
the Fourier transform (9) to get the visibility, and examine it
on suitably long baselines. In practice, one faces significant
numerical challenges. The essential difficulty is that the
photon rings are extremely narrow compared to the overall
image structure (Figs. 4 and 5 below). Each ring is
exponentially narrower than the last [13–15], requiring
exponentially fine resolution to resolve the set. To estimate
this effect, we may note that the asymptotic width ratio
between successive rings ranges from about 10–20,
depending on spin and inclination [14,15].7 This suggests
that the first photon ring will be 10–20 times narrower
than the main structure of the image, while the second
photon ring will be narrower by a factor of 100–400.

These numbers are broadly borne out by our numerical
experiments.
This vast separation of scales makes it highly inefficient to

work with images of uniform resolution. Without the photon
rings, a decent resolution for the main structure (primary
image of the disk) might be 100 × 100 ¼ 10; 000 pixels. In
order to resolve the first photon ring comparably well, with a
uniform resolution across the image, onewould instead need
millions of pixels. Doing the same for the second photon ring
(our main target) would require up to a trillion. Instead, we
adopt a nonuniform resolution adapted to the “lensing
bands,” i.e., the regions of the image for which rays orbit
a given number of times before arriving at the detector
(Fig. 3). We choose roughly the same number of pixels per
band, resulting in a more manageable number of pixels per
image, on the order of 10 million.
Computing the Fourier transform of such an image is

nontrivial. The two-dimensional fast Fourier transform
(FFT) requires uniform resolution, which (as we have
explained) involves an intractably large number of pixels.
However, we do not need the entire Fourier transform, as

FIG. 4. A best-guess model for the time-averaged appearance of M87*. The black hole has mass consistent with stellar dynamical
measurements (ψ ¼ 1.08) and near-maximal angular momentum (a=M ¼ 94%) that is aligned with the kiloparsec-scale jet (θo ¼ 17°).
The emission originates mainly from within a few Schwarzschild radii of the event horizon (top left). The observed intensity has a direct
component, a broad n ¼ 1 photon ring, and a narrow n ¼ 2 photon ring. (Higher order rings are not shown.) The visibility amplitude is
broadly consistent with the EHT measurements (bottom left), and shows a clean photon ring signature on long baselines (bottom right).

7The asymptotic demagnification factor between successive
rings is eγ , where γ is the Lyapunov exponent characterizing
orbital stability in units of libration period (Mino time) [14,15].
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we only want to check the analytic prediction (3), and
measure dφ and Cφ. For these purposes, it suffices to
consider only a selection of slices through the Fourier plane
at various angles φ ∈ ½0; πÞ. To compute the Fourier
transform on these slices, we employ the projection-slice
theorem. For each angle φ, we compute the projection of
the image (i.e., the integrals along lines perpendicular to the
slice of constant φ across the image), using linear inter-
polation across the nonuniform intensity grid. We then
Fourier transform using the one-dimensional FFT. We
check convergence by doubling the sampling resolution
and ensuring that the result is unchanged. In practice, we
find that it is sufficient to sample the projection slice at
intervals of 0.01M, computing each integral along the
perpendicular by sampling the intensity profile at intervals
of 0.002M.

B. Functional form of emission profile

In our model, the emission profile is a free function. We
subject ourselves only to certain general guidelines: the
profile should be smooth, it should be mostly concentrated

within a few Schwarzschild radii of the black hole, and it
should increase as one approaches the black hole, though it
may have a maximum value at some special radius (the
inner edge of the disk). We find the following functional
form (derived from Johnson’s SU distribution) useful for
creating models of this kind:

Jðr; γ; μ; σÞ ¼ e−
1
2
½γþarcsinhðr−μσ Þ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − μÞ2 þ σ2

p : ð12Þ

We explore three profiles in particular:

Profile 1∶ γ ¼ −
3

2
; μ ¼ r−; σ ¼ M

2
;

Profile 2∶ γ ¼ 0; μ ¼ r−; σ ¼ M
2
;

Profile 3∶ γ ¼ −2; μ ¼ rms −
M
3
; σ ¼ M

4
: ð13Þ

As usual, rms [Eq. (B6)] and r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
denote

the Boyer-Lindquist radii of the ISCO and outer/inner

FIG. 5. An alternative model designed to contrast with that of Fig. 4. The black hole has somewhat lower mass (ψ ¼ 0.780), near-zero
angular momentum (a=M ¼ 1%), and an accretion disk somewhat misaligned from the jet (θo ¼ 10°). The emission originates mainly
from near the ISCO at rms ∼ 6M (top left). The observed intensity has a direct component, a narrow n ¼ 1 photon ring, and a very
narrow n ¼ 2 photon ring. (Higher order rings are not shown.) The visibility amplitude is broadly consistent with the EHT
measurements (bottom left), and gives a clean photon ring signature on long baselines (bottom right).
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horizons, respectively. Profiles 1 and 2 describe emission
that monotonically increases as one approaches the hori-
zon, with the latter featuring a faster rate of increase. Profile
3 has a broad peak near the ISCO and very little emission
inside.

C. Two canonical models

To illustrate the general properties of these models, we
give a detailed description of two extremes: a “best guess”
for M87* and a contrasting alternative.
Our best-guess model (Fig. 4) is informed by the latest

research on active galactic nuclei generally, and on M87*
more specifically. We suppose that the black hole spin and
accretion disk are aligned with the jet, and hence adopt a
canonical observer inclination of θo ¼ 17°. Since accretion
disks are expected to spin up black holes toward their
maximal values [37,38], we adopt a canonical value
a=M ¼ 94%. (We also assume that the disk is optically
thin.) The latest phenomenological models suggest that
there is significant emission near the horizon irrespective of
spin [20], and we pick our emission profile accordingly
(profile 1). Finally, we choose the geometrical factor
f ¼ 1.5, such that the image broadly resembles the time-
averaged image of Ref. [14].
Our alternative model (Fig. 5) deliberately ignores these

research findings in order to explore the question: “What if
conventional beliefs are wrong?” We base the contrasting
model only on the simple premise that M87* should
contain an accretion disk, and within this framework we
purposefully stray as far as possible from the favored
scenario. We thus consider a slowly spinning black hole
with a purely equatorial emission profile (f ¼ 1) terminat-
ing at the ISCO. At present, there is no coherent theory to
explain how such a disk could give rise to a relativistic jet
while maintaining the relatively low luminosity of M87*,
but greater surprises have occurred in the history of
astrophysics. The important point is that, even though this
model strains credibility in light of current understanding, it
still produces a photon ring that can be used to test general
relativity. In other words, it provides a specific example of
how we could be quite wrong about the astrophysics and
still test general relativity with this experiment. In fact,
the low-spin ISCO model actually gives a much brighter
signal for the proposed experiment than does the best guess
model—so perhaps we should hope to be wrong.
The observational appearance of these models is shown

in Figs. 4 and 5. We have used the rescaling freedom (8)
and the choice of M=D [Eq. (10)] to make the visibility
amplitude pass roughly through the EHT observations. The
data points shown are scan-averaged visibility amplitudes
from the public April 11, 2017 high-band observations,
with the baseline-angle color-coding used in Fig. 1 of
Ref. [21]. Data points colored red and blue come from
baseline angles that are roughly orthogonal, making this
color-coding roughly consistent with our own choice of

precisely orthogonal red and blue axes.8 Despite their rather
different image-domain appearances, both models match
EHT observations quite well and produce a clear universal
photon ring signature on long baselines.

D. Parameter survey

We have explored many models (∼100) besides these
two examples. We now report some general findings.
First, we find that the inclination angle must be low in

order to match the EHT observations. Larger inclinations
produce higher intensity contrasts, decreasing the ability of
the model to reproduce the observed null at u ∼ 3.5 Gλ.
Figs. 5 (θo ¼ 10°) and 4 (θo ¼ 17°) show the progression
as the inclination is increased: the red curve becomes higher
and flatter relative to the blue. Even at θo ¼ 17°, there is
larger red-blue separation than the data would suggest
(Fig. 4, bottom left), and by θo ¼ 30°, there is clear tension
with the data. We therefore deem all models with inclina-
tion larger than 30° to be ruled out by observations.
We have conducted a systematic survey of the parameter

space of viable models. For each profile 1–3, we have
considered all combinations of spins a=M ∈ f1%; 50%;
99%g, inclination angles θo ∈ f10°; 20°; 30°g, and geomet-
rical factors f ∈ f1; 1.5; 2g. We automate the choice of
overall scale and M=D based on EHT observations, and
visually confirm the agreement in each case (although for
θo ¼ 30°, it is poor). We fit the analytic formula (4) to the
numerical data on the baseline range 285–315 Gλ, finding
that the best-fit model deviates from the data by less than a
percent. (Performing the fit over other baseline ranges yields
consistent values for dφ—see discussion in Sec. III E below.)
Repeating this procedure over a range of anglesφ builds up a
set of “data points” for the functiondφ of interest.We fit these
data to the circlipse functional form (5) and find excellent
agreement: in all cases, the root-mean-square (RMS)
deviation of the best-fit model is less than 0.001%. An
example of this procedure is shown in Fig. 6, and additional
results are displayed in Fig. 7 below.
The projected diameters dφ determined by this fitting

process agree remarkably well with the dφ that one would
infer from the image domain. For example, the thick line
illustrating dφ in Fig. 1 is precisely 38.138 μas in length.
This number was determined not from inspection of the
image but rather from fitting the numerically computed
visibility amplitude to the analytic prediction (3). As can be
seen by zooming in on the image, the thin “lines of support”
extending outward pass precisely through the middle of the
tiny n ¼ 2 photon ring at a precisely grazing angle,
showing that the dφ measured from the universal signature

8Furthermore, the fact that our red baselines involve the
highest intensity contrast is consistent with the geometric
modeling and image reconstructions published by the EHT
collaboration, which also have highest contrast roughly along
the red direction.
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(3) is indeed the projected diameter of the second photon
ring. This demonstrates the remarkable quantitative con-
sistency of the various ideas underlying the proposed GR
test: GR produces very thin photon rings, whose projected

diameter can be measured very accurately from the long-
baseline interferometric signature.

E. Estimate of flux and appropriate baselines

This model parameter survey allows us to estimate the
expected flux on the targeted baseline lengths of
u ∼ 300 Gλ. We find that the flux is consistently in the
range ∼0.1–1 mJy. The only models that have flux less
than 0.1 mJy feature a low-spin black hole (a=M ¼ 1%)
with emission very near the horizon (profiles 1 and 2)
and no geometrical enhancement (f ¼ 1), a rather implau-
sible combination. Our best guess model produces flux of
0.1–0.3 mJy, shown in Fig. 6.
The largest-flux models (a few exceed 1 mJy) involve

profile 3, where the emission profile has an inner edge near
the ISCO. We found this surprising at first, since these
profiles generally produce much narrower photon rings as
compared to their main emission (Ref. [13] and Fig. 4). The
explanation is that we estimate the flux at a fixed range of
baselines u ∼ 300 Gλ. For models with emission near the
horizon, the n ¼ 2 photon ring dominates at u ∼ 300 Gλ,
whereas for models with emission further away, it is the
n ¼ 1 photon ring that dominates. The n ¼ 1 photon ring
of a low-spin ISCO model has more flux than the n ¼ 2
photon ring of a near-horizon model. In general, we can
expect one of these two photon rings to dominate the signal
in the given range chosen for some experiment; a beating
combination of the two would seem rather finely tuned.
However, observing such beats would potentially allow
measurements of the relative properties of successive rings,
which encode even more information about the Kerr
metric [14,15].
We have targeted the baseline length u ∼ 300 Gλ as

roughly the minimum telescope separation needed to
ensure the presence of a universal signature. Shorter
baselines are sensitive to broader features that cannot be

FIG. 6. Determining the projected diameter dφ of a photon ring from its numerically computed visibility amplitude. At each angle φ,
we fit the analytic form (4) to the numerical data in the range 285–315 Gλ (left panel). This provides the parameters fαL; αR; dg at every
angle φ. We then fit dφ to the circlipse form (5) (right panel). The circlipse fits the data extremely well, with an RMS deviation that is
4 × 10−6 times the average projected diameter. (This example is the best-guess model of Fig. 4.)

FIG. 7. Comparison of observable photon rings with the critical
curve of a black hole with the same parameters. Fixing the spin
a=M ¼ 94% and inclination θo ¼ 17°, we consider the three
different emission profiles 1 (red), 2 (green), and 3 (blue), all with
f ¼ 1. Since the black hole spins rapidly and the ISCO is near the
horizon, these profiles are all quite similar, with most of the flux
coming from near the horizon. For each model, we infer dφ as
described in Fig. 6, resulting in the parameters displayed above.
The quoted normalized residuals are RMS deviation divided by
the average value of dφ. The curves differ in their height
(astrophysics-dependent), but all share the same universal shape
(GR-predicted). The critical curve is shown in dashed black.
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definitively attributed to orbiting photons. For example, the
n ¼ 1 photon ring in Fig. 4 has a width not too disparate
from that of the main emission of Fig. 5. For some models,
it may be possible to infer a ring diameter from the
periodicity on shorter baselines (e.g., Fig. 4 of
Ref. [14]), but we would be surprised if this ring diameter
could be linked to properties of the underlying spacetime in
a model-independent way. By contrast, the regime u ∼
300 Gλ that we consider is sensitive only to extremely
narrow features that cannot plausibly be attributed to a
persistent astronomical emission structure. We find an
excellent fit to the analytic signature (3) near 300 Gλ for
all models in our parameter survey (see discussion in
Sec. III D above), and therefore suggest this as an appro-
priate target.
We have also explored fitting at 400 Gλ and 500 Gλ,

where we achieve similarly excellent fits with consistent
values for dφ. The values for αL and αR, however, depend
somewhat on the fitting baseline length. This is explained
by the fact that the fall-off rate in this region is not precisely
the analytically-predicted 1=

ffiffiffi
u

p
. If an analytic fit done at

(say) 300 Gλ is plotted out to (say) 500 Gλ, the size of the
signal does not exactly match the numerically computed
results, but nonetheless the oscillation remains perfectly in
phase. This fact underlies the remarkable robustness of this
method for measuring ring diameter from the universal
visibility amplitude (4).
To help quantify these claims, we provide details in one

example. The fit shown in Fig. 6 (left) was performed at
285–315 Gλ. The best-fit parameters fαL; αR; dg in units of
fJy; Jy; μasg are f149.245; 27.7144; 37.9974g for the red
curve (φ ¼ 0°) and f64.2793; 43.8167; 38.3882g for the
blue curve (φ ¼ 90°). Performing the fit instead at
485–515 Gλ, these change to f141.749; 30.7711; 37.996g
and f58.6297; 50.4293; 38.3875g, respectively. That is,
while αL and αR change by 6%, on the other hand d changes
by only 0.004%.

F. Critical curve versus photon ring

One of the main results of this paper is the prediction that
photon rings take a universal shape, whose projected
diameter dφ we parameterize using the circlipse form
(5). We wish to emphasize that this prediction is logically
distinct from shape descriptions of the critical curve, such
as given recently in Refs. [23,27]. While it has long been
understood that photon rings closely follow the critical
curve [12], just how closely has not previously been studied
in quantitative detail. Figure 7 shows the n ¼ 2 photon ring
diameter for three different emission profiles around the
same black hole, along with the critical curve for that black
hole. While the precise curves differ, their shapes are
clearly similar, and this is quantified to a part in 105 by
the fact that all four are described by the circlipse family of
shapes (5).

Although studying the critical curve led us to the
circlipse family [23], the shape result for the photon rings
is logically distinct. One cannot directly observe the critical
curve of a black hole, and the black hole parameters cannot
(in practice) be known well enough to infer the critical
curve. In this sense, comparing photon ring and critical
curve in a single model is of purely theoretical interest. A
logical leap taken in this paper is that, for testing GR, we do
not even care about the critical curve of the black hole we
observe; we only need to check the shape of its pho-
ton rings.

IV. FORECAST

The analysis of the previous section identifies the range
u ∼ 300 Gλ as a promising target for photon ring shape
tests, with the expected flux ranging from 0.1 mJy to 1 mJy.
We now consider a simple mock experiment in order to
forecast what precision might be achieved in practice. In
this paper, we confine ourselves to the analysis of a single
canonical configuration, aiming to establish ballpark exper-
imental targets for sensitivity and bandwidth, and also to
illustrate the type of analysis needed to transform inter-
ferometric measurements into tests of general relativity.
Our canonical configuration was described in Sec. II C.

It involves an orbiting space telescope (with an orbital
period of 720 hours, or ∼1 month) as well as a ground
station, and measures 768 complex visibilites in the range
u ∼ 285–330 Gλ over each 2-hour “observing run.” Each
measured visibility is assumed to have an experimental
error of 0.14 mJy. We suppose that the source has been
observed at φ ¼ f0°; 5°;…; 175°g, corresponding to 36
two-hour observations taken over the course of approx-
imately one month.9 We create mock data assuming that the
true underlying signal is that of our best-guess model
(Fig. 4). The resulting forecast yields the precision that can
be achieved in about a month in the best-case scenario that
the signal is pure, with no need to average away astro-
physical fluctuations. In the more likely scenario that
repeated measurements at the same φ are necessary to
reveal the photon ring signature, our forecast still provides a
basic estimate of what could be achieved over a longer-
duration mission.
Our approach is illustrated in Fig. 8. At each angle

φ ∈ f0°; 5°;…; 175°g, we generate mock data [Fig. 8(a),
(c)] by adding independent complex Gaussian noise

9Throughout this paper, we have worked with angles separated
by 5° in order to obtain round numbers not tied to the details of
any particular experimental forecast. For the forecast of this
section, a more convenient choice would be to collect data every
12° around the orbit, so that observations are separated by
24 hours, and the 15 data points collected over two weeks.
(Since φ and φþ 180° represent the same physical dφ, all
projected diameters are measurable over any half-orbit of the
satellite.) If 36 data points separated by 5° are instead desired, a
realistic observing strategy would take slightly over a month.
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(σ ¼ 0.14 mJy) to the numerically computed complex
visibility at each of the 192 visibility points measured
by the mock experiment. We sample the likelihood function
(using a Rice distribution with σ ¼ 0.14 mJy to describe the
visibility amplitudes) using a Markov Chain Monte Carlo
(MCMC) approach. We impose no Bayesian priors and

therefore regard the likelihood as the probability density
function on the model parameters fαL; αR; dg. We find that
αL and αR are in general poorly constrained. However,
marginalizing over these parameters reveals a sharp,
multipeaked probability distribution for d at every angle φ
[Fig. 8(b),(d)].

(a) (b)

(c) (d)

(e)

FIG. 8. Illustration of the data analysis method used in the experimental forecast. Mock data is generated at each angle φ, producing
spiky probability distributions on dφ [panels (a)–(d)]. We fit each spike to a Gaussian and determine its central value, standard deviation,
and total probability. This information is shown in panel (e). We have included only points that together contain at least 95% of the
probability at each angle φ, and the subset that contain at least 68% of the probability are overplotted with larger dots. We determine the
best-fit circlipse model (5) (black line) by maximizing the likelihood, which is the product of the 36 multipeaked likelihoods at each
angle. A zoom-in of the best-fit circlipse is shown in the right panel of Fig. 1.
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The multipeaked distribution visible in Fig. 8(b),(d)
arises because the signature (4) of the photon ring does
not contain a parameter for the phase of the oscillation—
only its period 1=dφ and maximum and minimum values
(simply related to αL and αR) appear in the formula.
Determining the projected diameter dφ from the analytic
fit effectively counts the number of hops between u ¼ 0
and u ∼ 300 Gλ. The different allowed values of dφ
correspond to different numbers of hops, such that the
phase of the oscillation remains the same at u ∼ 300 Gλ.
Since Eq. (4) depends only on the combination dφu (over a
sufficiently small range of baselines), the spacing between
acceptable values of dφ is approximately 1=u. For our range
u ∼ 300 Gλ, we have 1=u ≈ 0.68 μas, which perfectly
matches the measured spacing between the peaks.
Our MCMC sampling provides a multipeaked distribu-

tion on dφ for each angle φ in the set we consider. For each
φ, we individually fit each peak of the distribution to a
Gaussian, providing the central value, width, and total
probability associated with each peak. We display the
central values and widths (1σ error bars) in Fig. 8(e).
Each point on this plot also comes with a total probability
P, equal to the area under the peak that it represents. At
each angle φ, we have included the bumps that together
contain at least 95% of the probability, and we have
overplotted large circles on the subset that together contain
at least 68% of the probability.10 In Fig. 8(e), each vertical
line of points can be understood as a top-down view of the
spiky probability distribution at the relevant angle φ, shown
from the side for φ ∈ f0°; 90°g in Fig. 8(b),(d).

A. GR test

To compare the results of our mock experiment against
the GR prediction, we use the maximum likelihood method
to determine the circlipse (5) that best fits the data
represented in Fig. 8(e). Each individual likelihood (at a
given angle φ) is expressed as the sum of the Gaussians
determined in the fitting process described above. The total
likelihood of the data is then the product of these 36,
individually multipeaked likelihood functions. The maxi-
mum likelihood circlipse is shown in black.
By eye, it may appear that other acceptable fits could be

found simply by shifting the black curve up or down, so
that it passes through a different “horizontal band” of
points. However, the likelihood scales with the product of
the probabilities of the points that the curve passes through,
which one can easily see will be many orders of magnitude
smaller. Indeed, we find local maxima of the likelihood
associated with curves that are shifted up or down, and
these are all at least fifteen orders of magnitude less likely
than the best fit. In practice, this means that for the purpose

of fitting a model to the data, it suffices to consider only the
middle band of data points, as it is (effectively) certain to be
the correct one. We therefore show only these points in
Fig. 1 as the main result of the mock experiment.
To characterize the precision of the measurement, we

report the average standard deviation of this middle band of
points:

σ ¼ 0.017 μas: ð14Þ

We could just as well compute a probability-weighted
average of the standard deviations of all the data points in
Fig. 8(e), or indeed an unweighted average: this figure is
robust to reasonable changes in its definition.
To assess the goodness of fit, we discard the probability

information and consider all points in the preferred band to
be equally likely. This enables us to use the standard
reduced chi-squared metric,

χ2r ¼
XN
i¼1

1

N −m

�
dobs;i − dGR;i

σi

�
2

; ð15Þ

where N ¼ 36 is the number of data points (angles φ), and
m ¼ 4 is the number of model parameters. For the best-fit
circlipse, we obtain χ2r ¼ 0.95.
We also fit to the simpler ellipse model, which is

equivalent to the circlipse with R0 ¼ 0 and thus has m ¼
3 parameters. The resulting fit yields χ2r ¼ 0.97. That is, for
our best-guess model and this experimental forecast, the
measurement precision is inadequate to distinguish
between the ellipse description of the true curve and the
more accurate circlipse description. The ellipse model
is more convenient for reporting parameters, since its
parameters are not degenerate. We find the parameters
R1 ¼ 38.001� .005 μas, R2 ¼ 38.400� .005 μas and
o ¼ −0.6� 0.5°. The parameters R1 and R2 represent
the two diameters of the ellipse, while the angle o indicates
that it is slightly rotated relative to the Bardeen coordinates
for the image. The shorter axis is the (nearly) horizontal
one, perpendicular to the projected spin axis.
Based on these chi-square values, we determine that

the GR model is an adequate fit to the data, i.e., GR “passes
the test.” We report the precision of the test using the
normalized RMS residuals of the best-fitting circlipse,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdobs − dGRÞ2i

p
hdGRi

¼ 0.04%: ð16Þ

This number is unchanged if we instead use the simpler,
ellipse model for the fit. If an experiment actually measured
these mock data points, we would say that it confirmed the
GR shape prediction at the 0.04% level. If instead the
measurement produced data points for which the fit is
inadequate (measured with a large reduced chi-squared),

10Note that because of the multi-peaked nature of the prob-
ability distribution, the set of large circles at each φ often contains
significantly more than 68% of the total probability.
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we would report a deviation from general relativity at the
associated p-value.
We have assumed in this forecast that 36 angles φ were

measured, but GR tests are still possible with far fewer data
points. In principle, one needs only five measurements,
since the model family (5) has four parameters. With so few
points, and depending on the final level of experimental and
astrophysical noise, it is possible that there will be two
comparably likely circlipse fits, separated by a shift up or
down to another “horizontal band” in Fig. 8(e). However,
one can still test the GR shape prediction without knowing
which curve is the true one, simply by confirming that both
fits are adequate. For the present forecast, we may see from
Fig. 8(e) that measuring 5 points is typically enough to
strongly prefer one band, and that adding even a few more
would make the preference overwhelming.

B. Mass measurements

Although we have focused on testing GR, the data from
the proposed experiment can also be used to measure black
hole parameters (assuming the correctness of GR). In
particular, one would like to be able to measure the black
hole mass M, its spin parameter a, and the observer
inclination θo. Forecasting the accuracy of such a meas-
urement requires further theoretical work exploring the
correlation between the photon ring projected diameter dφ
and the underlying black hole parameters.
However, we can gain a rough estimate of the expected

precision by working under the approximation that the n ¼
2 photon ring agrees with the critical curve, which holds in
our models at around the percent level (Fig. 7). The size of
the critical curve is set primarily by the black hole mass,
with additional 5%–10% variation depending on spin and
inclination (e.g., Fig. 7 of Ref. [14]). One can therefore
measure the mass within a 5%–10% uncertainty, with
improvements in precision if the spin and inclination can
be independently determined. However, spin and inclina-
tion affect the shape of the critical curve by at most ∼1% at
the modest inclinations presumed for M87*, which is the
same order of magnitude at which differences between the
n ¼ 2 photon ring and the critical curve become important.
Further work is required to estimate the precision of
potential measurements of spin and inclination and to
improve the mass forecast beyond the conservative estimate
of 5%–10% accuracy.

V. COMPARISON WITH OTHER WORK

There has been some previous discussion of testing GR
with interferometric observations on Earth-sized baselines
[39]. The proposed precision of such a test is ∼10% for
observations of Sgr A* [40]. This estimate is subject to
significant astrophysical uncertainty, because the method
relies on the identification of a ringlike feature with the
critical curve, without having significant ability to select for

the sharp lensing features that we focus on here. To regard
such a measurement as evidence against GR, one has to
have a prior belief in the correctness of the astrophysical
assumptions that is at least comparable to one’s prior belief
in the correctness of GR, one that will be hard to support
from the data themselves.
A more general way of phrasing the difficulty with

ground-based GR tests is that the majority of the photons
contributing on these baselines have not orbited the black
hole [13,14]. These photon trajectories bend only modestly
in the vicinity of the black hole [15] and are not sensitive to
any of its detailed properties.11

The photon ring test discussed herein does not suffer
from these drawbacks. The visibility signature is unam-
biguous and cannot be mimicked by any astrophysically
plausible source. If the signature is detected, it will provide
an unambiguous and quantitatively precise test of the Kerr
black hole prediction.
In this paper, we have considered a test of GR on its own

terms, without a comparison theory. Of course, data from
the proposed photon ring experiment can also be used for
model comparison. The alternative model could derive
from a modified theory of gravity (e.g., Refs. [41,42]) or
from a parametrized deviation away from the Kerr metric
(e.g., Refs. [43–46] and references therein).
This test of strong-field GR will be complementary to

ongoing black-hole merger tests [6], which will surely
become more precise as detector sensitivity improves and
further loud sources are detected. Merger tests probe the
violent, highly dynamical spacetime of black holes colliding,
whereas the photon ring reflects the stable, pristine gravity of
the Kerr black hole. The merger tests probe the generation of
gravitational disturbances by the motion of heavy masses,
while the photon ring test probes the extreme bending of
massless electromagnetic waves. Together, these tests cover
opposite extremes of strong-field phenomena.

VI. OUTLOOK

We have argued that M87* is a promising target for a
new and exceptionally precise test of strong-field general
relativity. The main limitations of our work arise from the
class of simplified, equatorial models that we consider.
Although we stand by the genericity of our predictions, we
also recognize the importance of reexamining them in the
context of more realistic models involving fluctuating,
geometrically thick structures.
Perhaps the most important limitation of our analysis is

that it gives little indication of the size and scale of
contaminating “astrophysical noise” that must be averaged

11For example, for direct emission reaching a nearly face-on
observer, the arrival radius b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
of a photon emitted

from equatorial radius rs can be calculated to good accuracy,
regardless of the black hole spin, by “just adding one”: b ≈ rs þ
M [15].
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away. Although the analysis undertaken so far indicates
that the mission described here can indeed detect the
universal signature (3) and thereby test GR to high
precision, it is difficult to estimate the exact precision as
a function of experimental parameters/mission design
without better constraints on the astrophysical noise level.
Along those lines, we would like to emphasize that our

fiducial experimental configuration is merely a convenient
choice for a first demonstration that this kind of measure-
ment may indeed be possible in practice. In this configu-
ration, we have demanded a rather low thermal noise level
that remains beyond the reach of currently demonstrated
space antenna and receiver technologies at millimeter
wavelengths. Though the sensitivity requirement is almost
certainly critical to this measurement, many additions to the
experimental design could be envisioned to improve the
measurement, make the fringe-finding more viable,
increase the instantaneous or short-timescale baseline
coverage, or otherwise make the experiment more robust.
A detailed concept is deferred to future work.
At the end of a theoretical paper proposing a novel

experiment, it is appropriate to ask: If the experiment were
built to specification, what could go wrong? One possibility
is that there simply is not enough flux at 300 Gλ. We are
confident in our prediction of at least a few tenths of a mJy
(see also Ref. [14]), but we also expect that the accuracy of
the prediction will improve dramatically with focused
efforts on the modeling side as well as additional hori-
zon-scale observations. Another possibility is that there
may be more astrophysical noise than expected. We hope
this could be mitigated with flexible mission design,
allowing for additional observations beyond those origi-
nally planned, in order to average down the noise. A third
possibility is that the photon ring is suppressed by
synchrotron opacity in the inner accretion flow, in which
case no measurement is possible. While more work is

needed, all published state-of-the-art simulations of M87*
to date reveal a prominent photon ring feature [20].
Notice, however, that none of these various failure modes

involves an astrophysical effect mimicking the photon ring
signature, or otherwise allows one to be fooled into
thinking that GR has been tested when in reality it has
not. This is why we find the experiment so compelling: if it
works, we have a true confrontation between theory and
experiment. In other words, it is possible to be surprised.
Not merely an exercise in confirmation of expectations, the
proposed experiment offers a clear framework for finding a
deviation from GR.
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APPENDIX A: AVERAGING OVER
FLUCTUATIONS

An important limitation of this work is our use of
stationary, axisymmetric source profiles, which are unable
to model the expected variability in the observed visibility.
Although future work is necessary to fully address this
shortcoming, in this appendix we illustrate how variability
might be dealt with in practice. We consider for simplicity
the case of a face-on observer, making the observed image
axisymmetric. We simulate source fluctuations by adding
random (axisymmetric) noise to otherwise smooth intensity
profiles IemðrÞ. We adjust the noise properties so that the
resulting image cross sections are visually similar to
published cross sections arising from general-relativistic

FIG. 9. Averaging over fluctuations in the visibility amplitude. On the left, we show the observed intensity of a stationary,
axisymmetric model that has been augmented with noise. On the right we show the long-baseline visibility amplitude of this model,
together with seventeen other realizations of the noise added to the same underlying model (dashed gray). The averaged visibility
amplitude (black) clearly shows the same periodicity of the underlying noise-free model (green).
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magnetohydrodynamic (GRMHD) simulations (right panel
in Fig. 4 of Ref. [40]). We settle on the formula

IemðrÞ ¼ I0ðrÞ½1þ 0.05N ðrÞ�; ðA1Þ

where I0ðrÞ is some smooth intensity profile and N ðrÞ is
constructed by smoothing (via a moving average over
width 0.1M) a fractional Gaussian noise process in incre-
ments of 0.01M, choosing zero mean, covariance 1.5, and
Hurst index 0.5. An example is shown in Fig. 9 left.
Although this noise level is chosen for the sake of

consistency with cross sections of GRMHD-simulated
images, we emphasize that our noise is fully axisymmetric,
such that each fluctuation corresponds to a whole ring of
noise. This is a highly adversarial kind of noise, since such
“noise rings” most directly threaten to contaminate the
photon ring signal. We therefore view our noise estimate for
the visibility amplitude as conservative, and most likely an
overestimate of the true noise. Nevertheless, Fig. 9 shows
that even in this case, by averaging the visibility amplitude
over many successive observations, one obtains a clear
periodic signal whose nulls agree precisely with the under-
lying noise-free model. We conclude that photon ring
diameter measurements are not significantly impacted by
this level of astrophysical noise.

APPENDIX B: REDSHIFT FACTOR

Our equatorial approximation assigns an emission inten-
sity to every equatorial radius in the Kerr spacetime. To
compute the observed intensity, we must take into account
the relative redshift between source and detector. We will
use the redshift factor of circular orbiters down to the ISCO,
beyond which we will take the matter to infall along
geodesics with conserved quantities equal to those of the
last stable orbit. The redshift factor for such a source was
worked out by Cunningham in 1975 [34]. We review the
derivation and present the results.
The redshift factor g is defined as the observed frequency

over the emitted frequency. For the equatorial orbits of
interest, it depends only on the source radius rs and the
conserved quantity α. We express the results as

gðrs; αÞ ¼
�
gorbit r ≥ rms;

ginfall r < rms;
ðB1Þ

where rms, gorbit and ginfall are respectively given (in terms
of λ ¼ −α sin θo) in Eqs. (B6), (B7) and (B15) below.
A particle orbiting a Kerr black hole on a prograde,

circular, equatorial geodesic at Boyer-Lindquist radius r ¼
rs has four-velocity [47]

us ¼ uts

�
∂t þ

M1=2

r3=2s þ aM1=2
∂ϕ

�
; ðB2Þ

uts ¼
r3=2s þ aM1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r3s − 3Mr2s þ 2aM1=2r3=2s

q : ðB3Þ

Such a geodesic has energy and angular momentum

E
μ
¼ r3=2s − 2M

ffiffiffiffi
rs

p þ a
ffiffiffiffiffi
M

p

r3=4s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2s − 3M

ffiffiffiffi
rs

p þ 2a
ffiffiffiffiffi
M

pq ; ðB4Þ

L
μ
¼

ffiffiffiffiffi
M

p ðr2s − 2a
ffiffiffiffiffiffiffiffiffi
Mrs

p þ a2Þ
r3=4s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2s − 3M

ffiffiffiffi
rs

p þ 2a
ffiffiffiffiffi
M

pq ; ðB5Þ

and remains stable provided that rs ≥ rms, where the ISCO
radius rms is given by

rms ¼ Mð3þ Z2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
Þ; ðB6aÞ

Z1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

3

q
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a⋆3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a⋆3

p
�; ðB6bÞ

Z2 ¼ ð3a2⋆ þ Z2
1Þ1=2; a⋆ ¼ a

M
: ðB6cÞ

The ratio g ¼ νobs=νem may be computed using Kerr
photon conserved quantities (e.g., Refs. [48,49]) to be

gorbit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3s − 3Mr2s þ 2a

ffiffiffiffiffi
M

p
r3=2s

q
r3=2s þ ffiffiffiffiffi

M
p ða − λÞ

: ðB7Þ

Within the ISCO, we assume that gas flows along equa-
torial geodesics with the same conserved quantities as the
ISCO, i.e., Eqs. (B4) and (B5) evaluated at rs ¼ rms.
Together with the vanishing of the Carter constant (required
of all equatorial timelike geodesics), these conditions may
be used to algebraically derive the four-velocity and
compute the redshift [34]. In the notation thereof, the
results are

u ¼ ur∂r þ uϕ∂ϕ þ ut∂t; ðB8Þ

ur ¼ −

ffiffiffiffiffiffiffiffiffiffi
2

3

M
rms

s �
rms

rs
− 1

�
3=2

; ðB9Þ

uϕ ¼ γms

r2s
ðλms þ aHÞ; ðB10Þ

ut ¼ γms

�
1þ 2M

rs
ð1þHÞ

�
; ðB11Þ

H ¼ 2Mrs − aλms

ΔðrsÞ
; ðB12Þ

where
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λms ¼
ffiffiffiffiffi
M

p ðr2ms − 2a
ffiffiffiffiffiffiffiffiffiffiffi
Mrms

p þ a2Þ
r3=2ms − 2M

ffiffiffiffiffiffiffi
rms

p þ a
ffiffiffiffiffi
M

p ; ðB13Þ

γms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3

M
rms

s
: ðB14Þ

The final result for the redshift factor is

ginfall ¼
1

ut − uϕλ − ur½ΔðrsÞ�½�
ffiffiffiffiffiffiffiffiffiffiffiffi
RðrsÞ

p � : ðB15Þ

APPENDIX C: RAY-TRACING METHOD

A light ray shot back from Cartesian position ðα; βÞ on
the observer screen has radial trajectory (Eq. (30) of
Ref. [15])

rsðIrÞ ¼
r4r31 − r3r41sn2ð12

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p
Ir − F ojkÞ

r31 − r41sn2ð12
ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p
Ir − F ojkÞ

; ðC1Þ

with Ir denoting the Mino time elapsed along the radial
trajectory from emission point to observer, and

F o ¼ F

�
arcsin

ffiffiffiffiffiffi
r31
r41

r ����k
�
; k ¼ r32r41

r31r42
: ðC2Þ

Here, we introduced the notation

rij ¼ ri − rj; ðC3Þ
with the roots fr1; r2; r3; r4g functions of ðα; β; θoÞ given in
Ref. [33]. In practice, for each of the radial types of motion
that we encounter [33], we use an alternative (equivalent)
form of Eq. (C1) that is manifestly real and therefore
numerically more stable.
The maximal Mino time elapsed along the light ray

before it returns to infinity (if outside the critical curve) or

crosses the event horizon (if inside the critical curve) is

Itotalr ¼
8<
:

2
R∞
r4

drffiffiffiffiffiffiffi
RðrÞ

p rþ < r4 ∈ R;R∞
rþ

drffiffiffiffiffiffiffi
RðrÞ

p otherwise:
ðC4Þ

Closed-form expressions for this elliptic integral are given
in Appendix A of Ref. [15]. The Mino time elapsed in the
polar trajectory from observer to mth equatorial crossing is
given in Eq. (20) of Ref. [15] as

Gm
θ ¼ 1

a
ffiffiffiffiffiffiffiffiffi−u−

p
�
2mK

�
uþ
u−

�
− signðβÞFo

�
; ðC5Þ

Fo ¼ F

�
arcsin

�
cos θoffiffiffiffiffiffi

uþ
p

����� uþu−
�
; ðC6Þ

where u� denote the roots of the angular potential, given in
Eq. (11) therein. Note that we have specialized to equatorial
sources, which allows us to exclude vortical geodesics
(with negative Carter constant) that can never reach the
equator [33,50].
The Kerr geodesic equation Ir ¼ Gθ (Eq. (7a) of

Ref. [15]) requires the Mino times elapsed along the radial
and polar motions to match. Thus, Gθ is bounded above by
Itotalr along the portion of the light ray in the Kerr exterior,
but for each m such that Gm

θ < Itotalr , the light ray crosses
the equatorial plane at radius

rmðα; βÞ ¼ rsðGm
θ Þ ðC7Þ

outside the horizon. The maximal value of equatorial
crossings m is thus

Nðα; βÞ ¼
	
a

ffiffiffiffiffiffiffiffiffi−u−
p þ signðβÞFo

2Kðuþ=u−Þ


: ðC8Þ
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