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Motivated by the prospect of measuring a black hole photon ring, in previous work we explored the
interferometric signature produced by a bright, narrow curve in the sky. Interferometric observations of
such a curve measure its “projected position function” r · n̂, where r parametrizes the curve and n̂ denotes
its unit normal vector. In this paper, we show by explicit construction that a curve can be fully reconstructed
from its projected position, completing the argument that space interferometry can in principle determine
the detailed photon ring shape. In practice, near-term observations may be limited to the visibility
amplitude alone, which contains incomplete shape information: for convex curves, the amplitude only
encodes the set of projected diameters (or “widths”) of the shape. We explore the freedom in reconstructing
a convex curve from its widths, giving insight into the shape information probed by technically plausible
future astronomical measurements. Finally, we consider the Kerr “critical curve” in this framework and
present some new results on its shape. We analytically show that the critical curve is an ellipse at small spin
or inclination, while at extremal spin it becomes the convex hull of a Cartesian oval. We find a simple oval
shape, the “phoval,” which reproduces the critical curve with high fidelity over the whole parameter range.
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I. INTRODUCTION

General relativity predicts that gravitational lensing will
generically produce narrow “photon rings” on images of
sources near a black hole [1–6]. Recently, horizon-scale
emission from the black hole in the galaxy M87 was
resolved using ground-based interferometry [7–12], and
future space missions may be able to measure the much
narrower photon ring via its universal signature on long
baselines [5,13,14]. A precise measurement of the photon
ring shape could be used to infer black hole parameters and/
or as a test of general relativity.
The observable signature of this shape in interferometry

is the “projected position function” of the underlying curve
[13]. By counting of (functional) degrees of freedom, one
expects to be able to reconstruct the full curve from this
information, but no proof was given in Ref. [13]. This paper
provides a simple constructive proof of this fact, complet-
ing the argument that the universal signature discussed in
Refs. [5,13] encodes the photon ring shape and giving a
straightforward method to recover it.
Measuring the full projected position function of a

photon ring requires absolute phase tracking, which may
be experimentally challenging with present technology.
A more plausible near-term goal is the measurement of the

visibility amplitude alone, which provides only partial
information: for a closed, convex curve, the amplitude
encodes only the set of projected diameters, or widths, of
the shape [13]. The second purpose of this paper is to
explore the information contained solely in the widths of a
closed, convex shape. We show that the freedom in
reconstructing a closed, convex shape from its widths
consists of one choice of an odd function on the circle,
and we give a constructive method for producing all shapes
that share a given set of widths.
The shape of astrophysical photon rings is expected to

closely approximate that of the theoretical “critical curve”
predicted by general relativity for Kerr black holes. The
third purpose of this paper is to explore the detailed shape
of this critical curve as encoded in its interferometric
observables. We analytically show that the critical curve
is an ellipse to quadratic order in (either) the black hole spin
or observer inclination, and derive the associated ellipse
parameters. At extremal spin (and any inclination), we
show that the critical curve is the convex hull of a Cartesian
oval, a classical shape first studied by Descartes in 1637.
We also compute analytically the projected position func-
tion of the equatorial critical curve at any spin. Finally,
we find approximate expressions for the critical curve that
provide an excellent fit over the entire parameter range,
including the extremal limit. These expressions are
obtained by using a certain notion of “shape addition”
that naturally arises in our study. By adding together a
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circle, an ellipse, and a certain cuspy triangle, we obtain a
closed curve that we dub the phoval. This four-parameter
family of shapes encompasses the three-parameter critical
curve of the Kerr black hole to very high accuracy.
This paper is organized as follows. In Sec. II, we show

how to reconstruct a general plane curve from its universal
signature on long interferometric baselines. We then
specialize in Sec. III to closed, convex curves (including
a certain cuspy generalization). Next, we present a series of
examples in Sec. IV, before finally turning to the study of
the Kerr critical curve in Sec. V. In the appendices, we also
connect with the Cauchy surface area theorem, review the
method of implicitization of plane curves, and study the
algebraic geometry of the Kerr critical curve.

II. GENERAL CURVES

Consider a smooth (possibly disjoint) plane curve,
together with a set of Cartesian axes. Fix a polar angle
φ and let û be the outward unit vector in that direction,

û ¼ ðcosφ; sinφÞ: ð1Þ

This vector is not to be viewed as a vector field, but rather
as a fixed vector (for each choice of φ) that can be placed at
any point in the plane.
For each φ ∈ ½0; πÞ, consider the set of points rI on the

curve such that û is normal to the curve at these points.
Consider the generic case in which the curvature is non-
vanishing at these points.1 Each point has a sign SI defined
by whether û points toward (þ) or away (−) from the center
of curvature. Letting n̂I denote the unit normal pointing
toward the center of curvature, we have

SIðφÞ ¼ n̂IðφÞ · ûðφÞ ∈ f�1g: ð2Þ

For each point, we further define the projected position,

zIðφÞ ¼ rIðφÞ · ûðφÞ: ð3Þ

The information directly available in the universal inter-
ferometric signature of a narrow curve is the set fSIðφÞ;
zIðφÞg for all 0 ≤ φ < π (see Eq. (36) and surrounding
discussion in Ref. [13]).
Above, we considered fixing φ and finding a list of

points rI . We may instead imagine fixing I and varying φ,
such that the functions rIðφÞ parametrize the curve. Each
segment I may have a different range of φ. The direction of
increasing φ defines an orientation for each segment, but
this does not necessarily provide a consistent orientation

across segments that join. In particular, the orientation flips
when curves join at inflection points. The normal n̂I is
continuous over each segment I, and points in the direction
of the center of curvature, which is given by a 90° counter-
clockwise rotation of the tangent vector r0IðφÞ. A Frenet-
Serret formula relates the two directly by

r0IðφÞ ¼ −RIðφÞn̂0IðφÞ; ð4Þ

where RIðφÞ > 0 is the radius of curvature at rIðφÞ.
From Eqs. (1), (2), and (4), we obtain expressions for the

tangent and normal to the curve at rIðφÞ,

r0IðφÞ ¼ SIRIðφÞðsinφ;− cosφÞ; ð5Þ

n̂IðφÞ ¼ SIðcosφ; sinφÞ: ð6Þ

Here, we dropped the φ-dependence of SI, imagining that
we restrict to a single segment I, over which it is constant.
Together, Eqs. (3), (5), and (6) imply that the projected

position zI and its first derivative are given by

zIðφÞ ¼ xIðφÞ cosφþ yIðφÞ sinφ; ð7Þ

z0IðφÞ ¼ −xIðφÞ sinφþ yIðφÞ cosφ; ð8Þ

where xI and yI are the Cartesian positions rI ¼ ðxI; yIÞ.
Inverting gives the parametrization as

xIðφÞ ¼ zIðφÞ cosφ − z0IðφÞ sinφ; ð9aÞ

yIðφÞ ¼ zIðφÞ sinφþ z0IðφÞ cosφ: ð9bÞ

Taking a derivative and comparing with Eq. (5) gives the
curvature radius as

RIðφÞ ¼ −SI½zIðφÞ þ z00I ðφÞ�: ð10Þ

Since Eqs. (9) parametrize the curve over some collection
of segments I, this completes the proof that the entire curve
can be uniquely reconstructed from the observational data.
Note that the sign SI contains redundant information; the
full curve follows entirely from zIðφÞ.

III. CLOSED, CONVEX CURVES

A convex curve is one for which every tangent line
intersects the curve precisely once. In the formalism
developed above, a closed, convex curve consists of a
“top” segment with SI ¼ −1 joined with a “bottom”
segment with SI ¼ þ1. The angle φ takes the full range
½0; πÞ on each segment, jumping discontinuously between 0
and π at the joining points. We may eliminate these jumps
as well as the signs by instead parametrizing the bottom
segment with φ ∈ ½π; 2πÞ, so that the whole curve is
described by φ ∈ ½0; 2πÞ—see Fig. 1. That is, if an

1Isolated points where the curvature vanishes (and n̂I is ill-
defined) are to be treated as a limit, where n̂I can change sign and
the number of different points I can change. A finite segment of
the curve with vanishing curvature (straight line) can be approxi-
mated by a very small curvature over the region.
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interferometric observation reveals two segments with
opposite signs that smoothly join (i.e., a closed, convex
curve), then it is convenient to promote φ to the full
range ½0; 2πÞ and thereby deal with a single parametrized
curve rðφÞ.
We will call this φ the normal angle. It is the angle that

the inward normal vector makes with the negative x-axis.
(With these conventions, φ reduces to the usual polar angle
when the curve is an origin-centered circle.) The formulas
for the tangent (5) and normal (6) become

r0ðφÞ ¼ RðφÞð− sinφ; cosφÞ; ð11Þ

n̂ðφÞ ¼ −ðcosφ; sinφÞ: ð12Þ

These are the counterclockwise tangent (positive orienta-
tion) and the inward normal. One may regard Eq. (12) as
the definition of the normal angle φ of a convex curve
(stipulating that n̂ is the inward unit normal).
To represent projected position for a closed, convex

curve we use f ¼ −Sz instead of z, or equivalently,

fðφÞ ¼ −rðφÞ · n̂ðφÞ: ð13Þ

More explicitly, we have

fðφÞ ¼ xðφÞ cosφþ yðφÞ sinφ: ð14Þ

The curvature radius (10) is now given by

RðφÞ ¼ fðφÞ þ f00ðφÞ; ð15Þ

while the parametrization (9) takes an identical form,

xðφÞ ¼ fðφÞ cosφ − f0ðφÞ sinφ; ð16aÞ

yðφÞ ¼ fðφÞ sinφþ f0ðφÞ cosφ: ð16bÞ

This is just the vector ðfðφÞ; f0ðφÞÞ rotated by φ.
The function fðφÞ contains information both about the

“curve itself” and about the choice of Cartesian axes.
Rotations of the plane induce rotations on the circle, i.e.,
translations in φ. By contrast, translations of the plane
r → rþ ðX; YÞ change fðφÞ by [see Eq. (14)]

f → f þ X cosφþ Y sinφ: ð17Þ

In practice, one will typically want to compute the
projected position function fðφÞ from a plane curve given
in parametric form ðxðσÞ; yðσÞÞ. The angle φ that we have
defined satisfies

tanφðσÞ ¼ −
x0ðσÞ
y0ðσÞ ; ð18Þ

which allows one to directly compute φðσÞ. Plugging into
Eq. (14) then provides the projected position in terms
of σ, but comparison with observations (and/or use of the
framework of this section) requires knowledge of f in terms
of φ. The needed inversion to find σðφÞ is in general highly
nontrivial. Note, however, that one can easily plot fðφÞ as a
parametric curve ðφðσÞ; fðφðσÞÞ.

A. Extension to cuspy curves

In the previous section, we showed that for a smooth
convex curve, the projected position function f provides a
parametrization of the curve by the normal angle φ.
Conversely, any C1 function fðφÞ on the circle defines a
closed curve via Eqs. (16). However, this curve is in general
not convex or even simple or smooth. To guarantee a
closed, convex curve one must choose fðφÞ to be a C2

function such that fðφÞ þ f00ðφÞ is strictly positive.2 This
ensures that the curvature never vanishes, proving that the
closed curve is convex.
However, it is interesting (and important for the decom-

position discussed below) to ask what sort of nonconvex
curves may be represented within this framework. That is,
suppose one chooses some fðφÞ that is C2 on the circle
(so as to keep the curvature radius finite), but otherwise
arbitrary. What kind of curve is defined by the para-
metrization (16)? To examine this question, we will take
Eq. (15) to be the definition of R (which can now be
negative), and we will take Eq. (12) to be the definition
of n̂ (which can now also point away from the center

FIG. 1. In the general framework capable of handling arbitrary
plane curves (Sec. II), a closed, convex curve is described by two
segments: its “top” (S ¼ −1, green), and its “bottom” (S ¼ þ1,
blue). Each of these segments is separately parametrized by
φ ∈ ½0; πÞ (not shown). In the framework of Sec. III, we instead
parametrize the whole curve with a single angle φ (purple)
ranging over ½0; 2πÞ. This provides a counterclockwise orienta-
tion around the curve (depicted with arrows). We use a single
inward-pointing normal vector n̂.

2One can also obtain a convex shape by choosing fðφÞ such
that fðφÞ þ f00ðφÞ is strictly negative. However, in this case the
normal vector n̂ defined by (12) points outward, such that the
shape is not properly parametrized by the normal angle.
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of curvature). The other equations in Sec. III hold without
modification.
Computing the signed curvature k from Eqs. (16), we

find that k ¼ 1=jRj. That is, the curvature is always
positive, although it diverges wherever R vanishes, signal-
ing the presence of a sharp cusp. At such a cusp, the unit
tangent r0ðφÞ=jr0ðφÞj flips sign [see Eq. (11)]. This means
that the parameter φ provides a consistent orientation of the
whole closed curve, with the tangent changing direction at
cusps. Notice, however, that the normal defined by Eq. (12)
does not change sign: it is by definition continuous on the
whole curve (but no longer always points toward the center
of curvature).
In summary, the curves defined using Eqs. (16) with a

generic function fðφÞ that is C2 on the circle are either
convex, or composed of individually convex segments
joined at sharp cusps. An example of the latter is shown
in Fig. 2.
As fðφÞ is defined on the circle, it is tempting to analyze

its Fourier series. At first, this approach works beautifully:
the zeroth moment is related to the perimeter of the curve
(Appendix A), and the first moment can always be set to
zero by a translation of the Cartesian origin. However, the
higher moments are not as convenient because the basis
functions fcosðmφÞ; sinðmφÞg define pointed stars with
sharp cusps for integers jmj > 1. For odd m, these are
m-pointed stars, with their parametrization tracing their
shape twice (e.g., Fig. 5 bottom), while for even m, these
are 2m-pointed stars, with their parametrization tracing
them only once.

B. Antipodal decomposition

A closed, convex curve admits a natural, well-defined
notion of antipodal points: those whose tangent lines
have the same slope. In our framework, two antipodal
points have normal angles φ that differ by π. For each
normal angle φ, we introduce the antipodal displacement
vector A and the midpoint position m along the antipodal
chord,

AðφÞ ¼ rðφÞ − rðφþ πÞ; ð19Þ

mðφÞ ¼ rðφÞ þ rðφþ πÞ
2

: ð20Þ

Each of these vector functions defines a closed curve on
the plane. The curve defined by A is symmetric under
reflections through the origin (or equivalently, rotations
by π), since A flips sign under φ → φþ π. It encodes the
overall dimensions of the original curve and for this reason
will be called its hull. The curve defined by m is in general
displaced from the origin and always features sharp cusps,
sincem returns to itself after a lapse of only φ, during which
time the continuous normal n̂ flips sign. This midpoint
curve encodes the original curve’s position on the plane as
well as its fine features. The parametrization mðφÞ traces
out the midpoint curve twice over the range φ ∈ ½0; 2πÞ, as
illustrated in Fig. 2.
In other words, the notion of antipodal points naturally

leads to a decomposition of any closed, convex curve into a
symmetric, centered hull and a cuspy, displaced midpoint
curve. The full curve is recovered by vector addition of the
hull and midpoint curves, identifying points that share a
common normal angle. Each point on the midpoint curve
has two normal angles that differ by π, so that the full
midpoint curve is thus included twice in the sum. An
example is illustrated in Fig. 4.
The projected positions of the hull and midpoint curves

will be denoted d and C, respectively,

dðφÞ ¼ −A · n̂ > 0; ð21Þ

CðφÞ ¼ −m · n̂: ð22Þ

These are to be interpreted as the projected diameter and
centroid, respectively (Fig. 3). The projected diameter is
always positive, while the projected centroid can take either
sign. The full projected position f is decomposed into d
and C as

fðφÞ ¼ 1

2
dðφÞ þ CðφÞ; ð23Þ

or equivalently,

dðφÞ ¼ fðφÞ þ fðφþ πÞ; ð24Þ

FIG. 2. The framework developed for closed, convex curves is
naturally extended to a class of cuspy curves by allowing fðφÞ to
be an arbitrary C1 function on the circle. The parametrization (16)
provides a consistent orientation around the curve (depicted with
arrows), and the normal vector (12) varies continuously. In this
example of fðφÞ ¼ sin 3φ, the full range φ ∈ ½0; 2πÞ traces over
the closed curve twice. After one loop around the figure (green),
the normal vector has switched sign (top point); after the second
loop (red), it has returned to its original leftward orientation.
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CðφÞ ¼ 1

2
½fðφÞ − fðφþ πÞÞ�: ð25Þ

That is, the projected diameter and centroid are the parity-
even and parity-odd parts of the projected position,
respectively. This decomposition is very natural in the
context of interferometry, where d is encoded in the
visibility amplitude, while C appears as an overall phase
(see Eq. (3) in Ref. [13]).
It is often convenient to regard dðφÞ and CðφÞ as being

defined on the smaller range φ ∈ ½0; πÞ. That is, we may
view a closed, convex curve as being specified by a single
function fðφÞ ranging over the full circle φ ∈ ½0; 2πÞ, or
equivalently, it can be repackaged into two functions dðφÞ
and CðφÞ ranging over φ ∈ ½0; πÞ.
Under shifts of the origin r → rþ ðX; YÞ, we have

dðφÞ → dðφÞ; ð26Þ

CðφÞ → CðφÞ þ X cosφþ Y sinφ: ð27Þ

That is, all the coordinate origin information is contained in
CðφÞ, while dðφÞ remains invariant under translations,
as required by its interpretation as the projected diameter.
To study shapes intrinsically, one might fix a canonical
choice of C by demanding that the dipole vanish,R
CðφÞe�iφdφ ¼ 0. However, for interferometric measure-

ments tracking absolute phase, the coordinate origin is
“known” and the dipole of C contains important informa-
tion about where the curve is located on the image.

We can view a measurement of dðφÞ as a measurement of
the hull of the underlying curve. The remaining freedom is
a choice of closed plane curve made of individually convex
segments joined together at cusps.

IV. EXAMPLES

We now illustrate the framework of the previous section
(Sec. III) with a series of examples.

A. The point

The most trivial example is that of a curve that has
degenerated to a single point ðX; YÞ. Its projected position
function is the pure dipole

fpoint ¼ X cosφþ Y sinφ: ð28Þ

This form may be added to any other fðφÞ to induce a
translation. It can also be used to add sharp corners to a
shape by demanding that it hold exactly over some finite
range of φ. The parametrization then “hovers” at this point
for that lapse of φ, during which time the normal vector
still advances, creating a discontinuity in the normal (and
tangent) vector of the shape. The next example will
illustrate this behavior.

B. Curves of constant width

Curves with d0ðφÞ ¼ 0 are generally called curves of
constant width. These are the curves whose hull is a circle.
The simplest example is the circle itself,

fcircle ¼ R; ð29Þ

where R is the radius. In this framework, one can easily
construct other curves of constant width by adding an
arbitrary function CðφÞ that is parity-odd,

fc:w: ¼ Rþ CðφÞ: ð30Þ

For example, choosing CðφÞ ¼ A sin 3φ with sufficiently
small A creates a triangular object with rounded sides
and rounded corners. Similarly, CðφÞ ¼ A sin 4φ creates a
rounded square, and so on. The rounded pentagon with
CðφÞ ¼ A sin 5φ is shown in Fig. 4.
The most famous example of a noncircular constant-

width curve is perhaps the Reuleaux triangle, which is
composed of three circular arcs joined at 120° angles. This
is a slightly subtle example in our formalism, as it contains
sharp corners. These are handled by using the point form
(28) over the lapses of φ corresponding to the jumps in n̂ at
the corners. The remainder of the shape consists of three
circular arcs, each with curvature center at the opposite
vertex of the triangle. These are constructed using appro-
priate segments of the shifted circles f ¼ Dþ X cosφþ
Y sinφ with appropriately chosen centers ðX; YÞ. Choosing

FIG. 3. For a closed, convex curve, each angle φ defines a pair
of antipodal points rðφÞ and rðφþ πÞ (blue dots). In interferom-
etry, one measures the projection of these points onto a line at
angle φ (purple). We denote by dðφÞ the projected distance (red),
which is the angle-dependent projected diameter, or width, of the
shape. The midpoint between the antipodes is denoted mðφÞ, and
its projection CðφÞ is interpreted as an angle-dependent projected
centroid (green).
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the geometric center of the Reuleaux triangle to be the
origin and letting the top vertex lie on the positive y-axis,
the projected position function is

fRx ¼ D

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1 − 1

2
ffiffi
3

p sinφ − 1
2
cosφ 0 ≤ φ ≤ π

3
;

1ffiffi
3

p sinφ π
3
≤ φ ≤ 2π

3
;

1 − 1

2
ffiffi
3

p sinφþ 1
2
cosφ 2π

3
≤ φ ≤ π;

− 1

2
ffiffi
3

p sinφ − 1
2
cosφ π ≤ φ ≤ 4π

3
;

1þ sinφffiffi
3

p 4π
3
≤ φ ≤ 5π

3
;

1
2
cosφ − 1

2
ffiffi
3

p sinφ 5π
3
≤ φ ≤ 2π:

ð31Þ

Although complex to write down, this function has a
simple behavior, oscillating continuously (but not smoothly)
between maxima and minima in a manner reminiscent of a
pure sinusoid (Fig. 5). It can be very closely approximated
by a function of the form Aþ B sin 3φ, but it is not exactly
of this form.

C. Ellipse

The parametrization of the ellipse by polar angle θ is

RðθÞ ¼ ðR1 cos θ; R2 sin θÞ; ð32Þ

where R1 and R2 are the semiaxis lengths in the x and
y directions. The normal angle φðθÞ is found from
Eq. (18), which becomes

tanφ ¼ R1

R2

tan θ: ð33Þ

This relation is simple enough that it can be inverted as

cos θ ¼ R1 cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1cos

2φþ R2
2sin

2φ
p ; ð34Þ

sin θ ¼ R2 sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1cos

2φþ R2
2sin

2φ
p : ð35Þ

Plugging into Eq. (32) with rðφÞ ¼ RðθðφÞÞ then yields the
parametrization of the ellipse by normal angle,

xðφÞ ¼ R2
1 cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
1cos

2φþ R2
2sin

2φ
p ; ð36Þ

yðφÞ ¼ R2
2 sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
1cos

2φþ R2
2sin

2φ
p : ð37Þ

The projected position is calculated from Eq. (14) as

fellipse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1cos

2φþ R2
2sin

2φ
q

; ð38Þ

which is invariant under antipodal exchange φ → φþ π.
Hence, we find

dellipse ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1cos

2φþ R2
2sin

2φ
q

; Cellipse ¼ 0: ð39Þ

That is, the ellipse has antipodal symmetry.

D. Circlipse

Adding the projected position functions of two shapes
produces a third shape corresponding to the vector sum
of points that share a common normal angle. A simple
nontrivial example is the sum of a circle and an ellipse, or a
“circlipse”:

fcirclipse ¼ R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1cos

2φþ R2
2sin

2φ
q

: ð40Þ

This is an antipodally symmetric shape with an oval form.
The semiaxes in the x and y directions are R0 þ jR1j and
R0 þ jR2j, respectively. As discussed in Sec. V below, the
hull of the Kerr critical curve is closely approximated by a
circlipse over the entire parameter space (see also Fig. 6).
We are unaware of precious discussion of this shape, which
arose in our studies of the Kerr critical curve. Using the
method of implicitization reviewed in Appendix B, we find
that the circlipse is part of the vanishing locus of an order 8
polynomial, which does not appear to correspond to
previously studied octic curves.
When R0 ¼ 0, the circlipse reduces to an ellipse, and

when R1 ¼ R2 ¼ 0, it becomes a circle. If only one of R1 or
R2 vanishes, then we obtain a singular limit that produces a
“racetrack” shape,

frace track ¼ R0 þ R2j cosφj: ð41Þ

This function produces two half-circles of radius R0

separated by a distance of 2R2, constructed by cutting a

FIG. 4. Illustration of the decomposition of a convex shape into
its hull and midpoint curve. The projected position function
fðφÞ ¼ 1þ sinð5φÞ=28 produces a rounded pentagon of con-
stant width (left). Its parity-even part dðφÞ ¼ 2 defines a circle
(middle), while its parity-odd part CðφÞ ¼ sinð5φÞ=28 defines a
sinestar (right). We may therefore regard the rounded pentagon as
the sum of a circle and a sinestar.
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FIG. 5. Illustration of the relationship between the projected position function fðφÞ (left) and its associated curve (right). We also show
the functionRðφÞ (middle), whose absolute value is the radius of curvature. When this function passes through zero, the curve develops
a cusp. (The star shown in the bottom-right is traced twice as the parameter ranges over the full circle φ ∈ ½0; 2πÞ and hence has only five
cusps, despite the ten zero-crossings of R.) From top to bottom, we show the circle [Eq. (29) with R ¼ 1], the Reuleaux triangle
[Eq. (31) withD ¼ 2], the ellipse [Eq. (38) with R1 ¼ 2 and R2 ¼ 1], the pebble [Eq. (43)], and the five-pointed sinestar fðφÞ ¼ sin 5φ.
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circle vertically through its center and separating the pieces
horizontally. Joining the two with straight lines produces a
racetrack shape. The circlipse (40) is closed at any nonzero
R1, meaning that its R1 → 0 limit is indeed the full closed
racetrack. We may also take Eq. (41) to represent the full
closed curve if we adopt the natural convention that kinks
in fðφÞ are to represent straight lines.

E. A cuspy triangle

Whereas studying dðφÞ for the Kerr critical curve led us
to consider the circlipse, studying CðφÞ led us to

fcuspy triangle ¼ arcsinðχ cosφÞ; ð42Þ

where χ ∈ ½−1; 1�. This shape is a cuspy triangle, ranging
from small and equilateral as χ → 0 to finite and isosceles
as jχj → 1. The limiting case jχj ¼ 1 contains a straight line
encoded by kinks in f at φ mod π ¼ 0. This parametriza-
tion also moves the triangle rightward with increasing χ.
This cuspy triangle closely approximates the midpoint
curve of the Kerr critical curve (Fig. 6 bottom), with the
parameter χ an increasing function of dimensionless
spin a=M.

F. Pebble

As a final example we consider the function

fpebble ¼ 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þ2cos2φþ ð1=2Þ2sin2φ

q
þ 1

4
sin32φþ 1

3
sin3φ; ð43Þ

which produces an irregularly shaped “pebble” (Fig. 5).

V. THE KERR CRITICAL CURVE

The Kerr critical curve [1] is a theoretical closed curve on
the image plane of a camera aimed at a black hole. It is
defined by the asymptotic arrival positions of photons that
orbit the black hole arbitrarily many times before escaping
to the camera. The shape depends on the black hole spin
parameter a and the observer inclination θo relative to
the spin axis, with the overall size set by the black hole
mass M. Successive images of bulk matter emission
asymptote to the critical curve (e.g., Ref. [6]). In this
section, we study the critical curve shape as encoded by its
interferometric observables. We discuss general features of
the curve, derive analytic results in various limits, and give
analytic formulas that faithfully approximate the shape over
the entire parameter space.

A. General properties

The original work of Bardeen [1] provides a parametric
formula for the critical curve. In the notation of Refs. [6,15],
Bardeen’s formula is

αðr̃Þ ¼ −
λðr̃Þ
sin θo

; ð44aÞ

β�ðr̃Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðr̃Þ þ a2cos2θo − λðr̃Þ2cot2θo

q
; ð44bÞ

with

λðr̃Þ ¼ aþ r̃
a

�
r̃ −

2ðr̃2 − 2Mr̃þ a2Þ
r̃ −M

�
; ð45aÞ

ηðr̃Þ ¼ r̃3

a2

�
4Mðr̃2 − 2Mr̃þ a2Þ

ðr̃ −MÞ2 − r̃

�
: ð45bÞ

Here, α and β are Cartesian “screen coordinates” (with
units of M) describing the image. We set G ¼ c ¼ 1 and
use the range 0 < a < M, treating the edges as limits. The
curve is parametrized by r̃ in two separate segments �,
corresponding to its upper-half (þ) and lower-half (−).
The orientation is clockwise in the upper-half plane and
counterclockwise in the lower-half plane (see, e.g., Fig. 3
in Ref. [6]).
The parameter r̃ represents the radius at which photons

orbit before reaching the detector. The allowed range is the

FIG. 6. The shape decomposition of the critical curve. The hull
is closely approximated by a circlipse [Eq. (40)], while the
midpoint curve is closely approximated by the cuspy triangle
(42). The bottom panel shows a blow-up of these triangles with
scale indicated in units of M. We have set M ¼ 1 and chosen an
equatorial observer θo ¼ π=2 with black hole spins (from pink to
blue) 10%, 30%, 50%, 70%, 90%, 99%, 99.99%.
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subset of the region r̃ ∈ ½M; 4M� for which β remains real.
(Allowing r̃ to take any values defines a larger object, the
critical locus, that we study in Appendix C.) This range
shrinks to zero at vanishing spin and/or inclination, where all
photons orbit at the same radius. Thus, this parametrization
can only be used at nonzero spin and inclination.
The normal angle φ is determined from Eq. (18) using

Eqs. (44). After some simplification, we find that

tanφðr̃Þ ¼ βðr̃Þ
αðr̃Þ − a sin θoðr̃þM

r̃−MÞ
: ð46Þ

Inverting for r̃ðφÞ would provide fðφÞ analytically, but
unfortunately, this requires solving a sextic polynomial.
Nonetheless, it is straightforward to use φðr̃Þ to make

parametric plots of fðφÞ. Defining arctanðx; yÞ ∈ ð−π; π� to
be the usual principal argument of the complex number
xþ iy, we have

φ�ðr̃Þ ¼ arctan

�
αðr̃Þ − a sin θo

�
r̃þM
r̃ −M

�
; β�ðr̃Þ

�
; ð47Þ

where φ� is the normal angle in the upper-half (þ) and
lower-half (−) planes. This formula holds modulo 2π;
to obtain our canonical range φ ∈ ½0; 2πÞ, one must
add 2π to φ−.
Together, Eqs. (14), (44), and (47) imply that fðφÞ can be

plotted as the two-segment parametric curve
ðφ�ðr̃Þ; fðφ�ðr̃ÞÞ. However, particular values of fðφÞmust
still be extracted numerically (say, by a graphical method
using the plot data). Similarly, the decomposition into dðφÞ
and CðφÞ requires a numerical method.
In Fig. 6, we illustrate the properties of the Kerr critical

curve in the language of this paper. We pick the equatorial
observer θo ¼ π=2 for which the shape variation with spin
is greatest. Similar patterns are seen at smaller inclination
angles, albeit with less overall variation.
In studying the projected position function of the critical

curve, we have found some simple functional forms that
approximate it to remarkably high accuracy. In particular,
the even part dðφÞ is well-described by the circlipse form
shown above in Eq. (40), while the odd part CðφÞ is well-
described by the cuspy triangle (42) together with a
horizontal translation (28). The precise critical curve is
therefore well-described by the projected position function

fðφÞ ¼ R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1sin

2φþ R2
2cos

2φ
q

þ ðX − χÞ cosφþ arcsinðχ cosφÞ: ð48Þ

We will call this a phoval, for “photon ring oval”.
We have chosen the translation parameter X such that

X cosφ is the dipole term in the Fourier cosine series of
this function. The intrinsic shape of the phoval has four
parameters, namely: three nonnegative radii R0, R1, R2,
together with an asymmetry parameter −1 ≤ χ ≤ 1.
Provided the parameters are chosen such that the shape

is convex, the phoval has two preferred axes that intersect it
orthogonally. In the form (48) with X ¼ 0, these are the x
and y axes. The horizontal radius is R0 þ R1 and the
vertical radius is R0 þ R2. The relative size of R1 and R2

determines how flattened or rounded the associated edges
are, and the parameter χ introduces a horizontal asymmetry
in this roundedness.
The phoval provides an excellent fit to the Kerr critical

curve. For each choice of black hole spin and observer
inclination, we plot the critical curve projected position
function fðφÞ as described above. We then fit the functional
form (48) to the plot data, finding best-fit parameters and
normalized root-mean-square (RMS) residuals, defined as
the average of the squared-deviation divided by the span,
i.e., hðδfÞ2i=ðfmax − fminÞ. Repeating this procedure over
the whole parameter space, sampled uniformly in spin
a ∈ ð0;MÞ and inclination θo ∈ ð0; π=2� (in practice, we
start at values very close to the edges of these ranges), we
find a median normalized RMS deviation of 10−5. The
largest residuals are a few times 10−3, occurring in the
extremal limit a → M. (We have computed for a as large as
a ¼ .9999M.) That is, the fit works to a part in 105 over the
vast majority of the parameter space, and to a part in 103

near extremality. Examples are shown in Fig. 7.
Very recently, Ref. [16] showed that the critical curve

may also be approximated to great accuracy by a limaçon
curve, building on an older observation of Ref. [17]. A
direct comparison of the fit quality is difficult, since the fit
diagnostics differ. In particular, our diagnostic is tied to the
interferometric signature fðφÞ, whereas theirs is tied to the
radial distance from an origin on the image plane.

B. Expansion in small spin or inclination

At zero spin or inclination, the critical curve is precisely
circular, as required by symmetry. It remains circular at first

FIG. 7. The Kerr critical curve as a phoval. We show two
examples of fitting the phoval shape (dashed curves) to critical
curve (solid). The resulting phoval is visually indistinguishable
from the critical curve, both in terms of the projected position
function (left) and the image plane curve (right). The parameters
and normalized RMS residuals are displayed in the table. We
have set M ¼ 1 in this figure.
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order in spin, and then takes the shape of an ellipse at
second order [18]. Here, we reproduce this small-spin
result, correcting some errors in the formulas for the ellipse
parameters. We also provide the analogous result at small
inclination, proving that the critical curve is also an ellipse
at second order in inclination (for any spin), and finding
closed-form expressions for its parameters.
As discussed below Eqs. (45), the parameter r̃ breaks

down in the limit of small spin or small inclination.
Studying these limits requires an alternative expression
of the critical curve. We can eliminate the problematic
parameter by using the formula

r̃ ¼ M þ 2M△ cos

�
1

3
arccos

�
1 − a2

M2

△3

��
;

△ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

aða − α sin θoÞ
3M2

r
; ð49Þ

which follows from the k ¼ 0 case3 of Eq. (122) in
Ref. [15] [wherein λ̃ ¼ λðr̃Þ], along with Eq. (44a) above.
This expresses r̃ in terms of α, which is one of the screen
coordinates. Since the curve itself remains finite in the
limit, the range of α must similarly remain finite, indicating
that it can be used as a parameter in these limits.
That is, we may now discuss the critical curve as a pair of

ordinary functions β�ðαÞ. Combining Eqs. (44a) and (44b)
gives

β�ðαÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðr̃ðαÞÞ þ ða2 − α2Þcos2θo

q
; ð50Þ

with r̃ðαÞ provided by Eq. (49). Another way of organizing
this information is to write

α2 þ β2 ¼ a2cos2θo þ Fða; α sin θoÞ; ð51Þ

where

F ¼ r̃3

a2

�
4Mðr̃2 − 2Mr̃þ a2Þ

ðr̃ −MÞ2 − r̃

�
þ α2sin2θo; ð52Þ

with r̃ given by Eq. (49). In regarding F as a function of a
and α sin θo, we are suppressing dependence on the overall
scale M.
This function F has a regular expansion at small spin

(for any inclination) as well as at small inclination (for any
spin). We may imagine expanding to some fixed order in
either parameter and determining the critical curve from
Eq. (51). The functional form of (51) shows immediately
that, at quadratic order in either small parameter, the critical

curve is determined by the roots of a quadratic polynomial
in α and β. This is on general grounds a conic section, and
since the critical curve is closed, it must be an ellipse. That
is, Eq. (51) immediately shows that the critical curve is an
ellipse at small spin and/or inclination.
It is rather straightforward to extract the parameters

of the ellipse by performing the expansion in F. When
expanding in spin, we find

F ¼ 27M2 þ ð4α sin θoÞa −
�
α2sin2θo
9M2

þ 4

�
a2 þOða3Þ:

ð53Þ

Let us first consider the shape at linear order. Plugging into
Eq. (51), we obtain

ðα − 2a sin θoÞ2 þ β2 ¼ 27M2 þOða2Þ; ð54Þ

demonstrating that the curve is a circle of radius 3
ffiffiffi
3

p
M

centered at α ¼ 2a sin θo. At quadratic order, we find

�
α − 2a sin θo
1 − a2sin2θo

18M2

�
2

þ β2 ¼ 27M2 − 3a2cos2θo þOða3Þ:

ð55Þ

This can be put in the canonical form of an ellipse,

�
α − α0
R1

�
2

þ
�
β

R2

�
2

¼ 1; ð56Þ

with

α0 ¼ 2a sin θo þOða3Þ; ð57Þ

R1 ¼ 3
ffiffiffi
3

p
M

�
1 −

a2

18M2

�
þOða3Þ; ð58Þ

R2 ¼ 3
ffiffiffi
3

p
M

�
1 −

a2cos2θo
18M2

�
þOða3Þ: ð59Þ

The shape of the critical curve of a slowly spinning black
hole was previously analyzed in Ref. [18]. Our Eq. (57) is
in agreement with their Eq. (22), but our Eqs. (58) and (59)
differ from their Eqs. (23) and (24) by some simple factors.
We have checked numerically that our results are correct.
The ellipse parameters at small inclination (for any spin)

can be found by the same method: expand F to quadratic
order in α sin θo and compare to the canonical form. This
produces rather unwieldy analytic formulas that we do not
display here. In Appendix C, we find somewhat less
unwieldy formulas using an algebraic geometry approach.
In particular, we are able to write the ellipse parameters as

3The other inversions k ¼ 1 and k ¼ 2, reproduced in Eq. (C2)
below, are not needed to recover the critical curve at
sufficiently small spin or inclination. See Fig. 1 of Ref. [6]
and Eqs. (123)–(125) of the revised arXiv version of Ref. [15].
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rational functions of the spin a and the radius b̃ðaÞ of the
zero-inclination critical curve [see Eqs. (C27)–(C33) below].

C. Extremal limit

We now consider the extremal (a → M) limit of the
critical curve. In this case, the curve picks up a straight line
(the “NHEKline”) that can be attributed to the near-horizon
geometry [1,19]. This straight line means that our descrip-
tion in terms of functions β�ðαÞ breaks down as a → M.
However, it is still instructive to analyze the portion of the
curve for which it remains valid. This will lead us to the
result that the extremal critical curve is the convex hull of a
pair of Cartesian ovals.
As noted in the previous section, the substitution of r̃ðαÞ

[Eq. (49)] into β�ðr̃Þ [Eq. (44)] provides a valid para-
metrization β�ðαÞ of the entire critical curve only for
sufficiently small spin and inclination. Above a certain
threshold in these parameters, we recover only a part of
the critical curve with this substitution (with the other
portion requiring another inversion of λðr̃Þ given in
Eq. (C2) below). We will see that in the extremal limit
a → M (for any inclination), this part is precisely the non-
straight portion of the curve, i.e., the curve minus its
NHEKline. Thus, to study this portion, we set a ¼ M in
Eqs. (49) and (52), finding the comparatively simple
expressions

r̃ ¼ M

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ α sin θo

M

r !
; ð60Þ

and

F ¼ α2 sin2 θo2 −
r̃3ðr̃ − 4MÞ

M2
; ð61Þ

so that Eq. (51) becomes

ðα −M sin θoÞ2 þ β2 − 12M2 ¼ 8M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ α sin θo

M

r
: ð62Þ

This curve fails to close for sin θo >
ffiffiffi
3

p
− 1. Comparing

with Eq. (A6) of Ref. [19], we see that the missing segment
is precisely the NHEKline α ¼ −2M csc θo with endpoints
β� ¼ �M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ cos2 θo − 4 cot2 θo

p
, as claimed above.

To elucidate the shape of the extremal critical curve, we
may square both sides of Eq. (62) to obtain a quartic
equation E ¼ 0, with

E ¼ ½ðα −M sin θoÞ2 þ β2 − 12M2�2
− 64M3ð2M þ α sin θoÞ: ð63Þ

After a simple translation in α to Cartesian coordinates
ðx; yÞ ¼ ðα −M sin θo; βÞ, we recognize E to be the defin-
ing equation for a pair of Cartesian ovals,

ðx2 þ y2Þ2 þ kðx2 þ y2Þ þ lxþm ¼ 0; ð64Þ

with parameters k ¼ −24M2, l ¼ −64M3 sin θo, and m ¼
16M4ð1 − 4 sin2 θoÞ.4 Squaring Eq. (62) introduced an
unphysical curve in Eq. (63): solving for β gives

β2 ¼ 12M2 − ðα −M sin θÞ2 � 8M3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ α sin θ

p
;

ð65Þ

with only the plus sign corresponding to the physical
critical curve (62) (more precisely, its nonstraight
portion).
The full set of solutions (65) describes a pair of Cartesian

ovals. When sin θo ≤
ffiffiffi
3

p
− 1, the ovals are both convex

and the outer one is the full critical curve. When
sin θo >

ffiffiffi
3

p
− 1, the outer oval becomes nonconvex, and

the critical curve is formed by adjoining the NHEKline
to the portion of the oval described by Eq. (62). That is, at
any observer inclination, the extremal critical curve is the
convex hull of a Cartesian oval.
It is entertaining to ponder how a shape first studied by

Descartes in 1637 is thereby embedded into the Kerr metric
of general relativity.
In Appendix C, we recover the extremal critical curve

in a different way, by viewing it as a subset of a larger
“critical locus.” The critical locus includes additional
curves corresponding to unphysical values of the parameter
r̃, but as a result can be described as an algebraic variety
(in this case, the vanishing locus of a single polynomial).
The extremal critical locus is composed of the full pair
of Cartesian ovals (63) together with a straight line, as
illustrated in Fig. 8.5

D. Extremal, equatorial shape

Recently, Ref. [16] noted that the extremal critical curve
of an equatorial observer is the convex hull of a cardioid.
This fact is apparent in the rightmost panel of Fig. 8, given
that the fully degenerate case of a Cartesian oval is known
to be a cardioid. We may also see it algebraically by noting
that for θo ¼ π=2, the polynomial (63) defining the

4Under a different translation, it is also possible to put E
in the form ½ð1 −m2ÞðX2 þ Y2Þ þ 2m2cX þ A2 −m2c2�2 ¼
4A2ðX2 þ Y2Þ that is more traditionally given for the Cartesian
oval, at the cost of complicated expressions for the parameters
m, c, and A.

5The critical locus at generic spin does not contain a Cartesian
oval. This follows from the fact demonstrated in Appendix C that
its defining polynomial Co is of the form

Q
3
i¼1½β2 − fiðαÞ�, with

none of the fi a polynomial [see Eqs. (C8), (C13), (C16)]. At
extremality, one of these factors becomes a quadratic describing a
simple line (with multiplicity two), implying that the other two
factors necessarily multiply to form a quartic polynomial—the
Cartesian ovals (63).
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Cartesian ovals can be recast in the canonical form of
a cardioid,

ðX2 þ Y2Þ2 − 4AXðX2 þ Y2Þ ¼ 4A2Y2; ð66Þ

with X ¼ αþM, Y ¼ β, and A ¼ 2M.
The normal-angle parametrization for the convex hull

of the cardioid (i.e., the extremal, equatorial critical curve)
can be computed in closed form. We begin with the
parametrization of the full cardioid (66) by polar angle
θ ∈ ½0; 2πÞ,

αðθÞ ¼ Mð1 − 4 cos θ þ 2 cos 2θÞ; ð67aÞ

βðθÞ ¼ Mð−4 sin θ þ 2 sin 2θÞ: ð67bÞ

The angle φðθÞ is found from Eq. (18), which becomes

tanφ ¼ − cot
3θ

2
: ð68Þ

This relation is simple enough that it can be inverted as

θIðφÞ ¼
2φþ ð2I þ 1Þπ

3
; I ∈ Z: ð69Þ

Since the cardioid is not a closed, convex curve, we must
resort to the general framework of Sec. II to describe its
shape. Plugging into Eqs. (67) with rðφÞ ¼ RðθðφÞÞ then
yields the parametrization by φ ∈ ½0; πÞ of the edge-on
extremal cardioid in three segments with I ∈ f−1; 0; 1g,

αIðφÞ ¼ αðθIðφÞÞ; βIðφÞ ¼ βðθIðφÞÞ: ð70Þ

Equivalently, these segments can be stitched into a single
curve with φ ∈ ½−π; 2πÞ,

αðφÞ ¼ M

�
1þ 4 cos

2φ

3
þ 2 cos

4φ

3

�
; ð71aÞ

βðφÞ ¼ M

�
4 sin

2φ

3
þ 2 sin

4φ

3

�
: ð71bÞ

Discarding the I ¼ −1 piece results in an open, convex
curve consisting of two segments I ¼ 1 (“top”) and I ¼ 0
(“bottom”), whose convex hull is the critical curve. This is
equivalent to restricting the parametrization (71) to the
circle φ ∈ ½−π; πÞ.
The projected position on the range φ ∈ ½−π; πÞ is then

calculated from Eq. (14) as

fðφÞ ¼ M

�
cosφþ 6 cos

φ

3

�
: ð72Þ

By making this function 2π-periodic, we can extend it to
our canonical range φ ∈ ½0; 2πÞ, on which it becomes

fðφÞ ¼ M cosφþ
�
6M cos φ

3
; 0 ≤ φ ≤ π;

−6M cos φþπ
3

π ≤ φ ≤ 2π:
ð73Þ

This formula gives the exact projected position function of
the extremal, equatorial critical curve. The kink at φ ¼ π
represents the NHEKline.

E. Projected position for equatorial critical curves

We can in fact analytically compute the projected
position of the critical curve for any equatorial observer,
not just at extremal spin. This is possible because the sextic
polynomial discussed below Eq. (46) degenerates to a cubic
when θo ¼ π=2.
More explicitly, when θo ¼ π=2, Eq. (46) reduces to

cos2 φðr̃Þ ¼ r̃ðr̃ − 3MÞ2
4Ma2

; ð74Þ

FIG. 8. The extremal critical locus (black) consists of a vertical line together with a pair of Cartesian ovals. The physical critical curve
(dashed, red) is a subset of this locus that can be succinctly described as the convex hull of the ovals. At small observer inclinations, the
ovals are nearly circular and concentric about the origin, and the line is far away to the left. As the inclination is increased
(sin θo ¼ 0.3; 0.5;

ffiffiffi
3

p
− 1 ≈ 0.732, 0.9, 1 from left to right), the line moves toward the larger oval, which flattens to meet it; the smaller

oval moves leftward. The line touches the oval at the critical inclination sin θo ¼
ffiffiffi
3

p
− 1, where the NHEK spacetime becomes visible

[19]. After the kiss, the line remains attached to the oval, which develops a dimple as it smiles in response. The inner oval continues to
move left, eventually merging with the dimple at the cusp of a cardioid.
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which is a cubic equation in r̃ with positive discriminant

△3 ¼
33 cos2 φ
24a6

�
1 −

a2

M2
cos2 φ

�
> 0: ð75Þ

Hence, it has three real roots given for k ∈ f0; 1; 2g by

r̃ðkÞðφÞ ¼ 3M þ a cosφ
cos½1

3
arccosð aM cosφÞ − 2πk

3
� : ð76Þ

Plugging the root r̃ð0ÞðφÞ into Eqs. (44) yields the para-
metrization ðαðφÞ; β�ðφÞÞ by normal angle φ, where one
is to choose þ for φ ∈ ½0; πÞ and − for φ ∈ ½π; 2πÞ.6 The
projected position is then calculated from Eq. (14) as

fðφÞ ¼ αðr̃ð0ÞðφÞÞ cosφþ βðr̃ð0ÞðφÞÞ sinφ; ð77Þ

with the choice of sign � in βðr̃Þ given by signðπ − φÞ.
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APPENDIX A: PERIMETER

The Cauchy surface area theorem states (in two dimen-
sions) that the perimeter of a closed, convex curve is
the average of its projected diameters. The framework of
Sec. III provides an elegant proof of this fact. Using
Eq. (16), we have

P ¼
Z

2π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðφÞ2 þ y0ðφÞ2

q
dφ ðA1Þ

¼
Z

2π

0

jfðφÞ þ f00ðφÞjdφ: ðA2Þ

For a closed, convex curve, the quantity fðφÞ þ f00ðφÞ is
the radius of curvature [Eq. (15)], which is nonnegative.
We therefore have

P ¼
Z

2π

0

½fðφÞ þ f00ðφÞ�dφ ðA3Þ

¼
Z

2π

0

fðφÞdφ: ðA4Þ

Under the decomposition (23), the parity-odd piece CðφÞ
does not contribute to the integral, while the parity-even
piece contributes

P ¼
Z

π

0

dðφÞdφ: ðA5Þ

Thus, the perimeter of a closed, convex curve is the integral
of the projected diameter. When dðφÞ is constant, we have
Barbier’s theorem: the perimeter of a constant-width shape
is πd.

APPENDIX B: REVIEW OF PLANE
CURVE IMPLICITIZATION

A classical result in algebraic geometry states that every
plane curve with rational parametrization can be recast in
implicit form as a polynomial equation. The original curve
is composed of one or more of the roots of this polynomial,
with additional real roots corresponding to other parameter
ranges in the formula defining the original curve. The set of
all such curves forms an algebraic variety. The conceptually
simplest approach to finding this associated algebraic
variety is via the method of resultants. Since many readers
may be unfamiliar with this approach, we present a brief
sketch here.
Consider a rational curve parametrized by σ,

ðxðσÞ; yðσÞÞ ¼
�
p1ðσÞ
p0ðσÞ

;
p2ðσÞ
p0ðσÞ

�
: ðB1Þ

Wemay regard this curve as the intersection of two surfaces
in R3 given by the two polynomials

fðσÞ ≔ xðσÞp0ðσÞ − p1ðσÞ ¼ 0; ðB2Þ

gðσÞ ≔ yðσÞp0ðσÞ − p2ðσÞ ¼ 0: ðB3Þ

Two polynomials fðxÞ ¼ anxn þ an−1xn−1 þ � � � þ a0
and gðxÞ ¼ bmxm þ bm−1xm−1 þ � � � þ b0 admit a common
root if and only if the determinant of the ðmþnÞ×ðmþnÞ
Sylvester matrix

Mðf;gÞ¼

2
66666666666666664

an an−1 � �� a0 0 � � � 0

0 an � �� a1 a0 � � � 0

..

. . .
. . .

.

0 � � � 0 an an−1 � � � a0
bm bm−1 � �� b0 0 � � � 0

0 bm � �� b1 b0 � � � 0

..

. . .
. . .

.

0 � � � 0 bm bm−1 � � � b0

3
77777777777777775

ðB4Þ

6On the range φ ∈ ½0; πÞ, the root r̃ð2ÞðφÞ yields a para-
metrization with the opposite (clockwise) orientation, while
the root r̃ð1ÞðφÞ traces twice over the upper half of the curve
defined by mapping the ðλ; ηÞ-space curve C− [15] onto the image
plane via Eqs. (44).
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vanishes. The determinant detMðf; gÞ of this Sylvester
matrix is known as the resultant of the two polynomials f
and g. Since the condition detM ¼ 0 is satisfied at the
intersection of the surfaces (i.e., on the rational curve),
but does not involve the parameter σ, it provides the desired
implicit form.

APPENDIX C: THE KERR CRITICAL LOCUS
AS AN ALGEBRAIC VARIETY

The basic object of study in algebraic geometry is an
algebraic variety (the set of solutions to a system of
polynomials). As reviewed in Appendix B, the implicitiza-
tion of a rational plane curve always results in a polynomial
(the resultant) whose vanishing locus (an algebraic variety)
contains the plane curve. In general, this vanishing locus
may also include other curves that are traced by the original
parametrization with different ranges of the parameter. In
such cases, rather than examine the original curve indi-
vidually, it may be more profitable to view it as a subset
of its containing algebraic variety. Here, we adopt this
algebro-geometric perspective and study the Kerr critical
curve as a subset of its associated algebraic variety, which
we dub the critical locus to distinguish it from the physical
critical curve. A similar approach was adopted for the study
of timelike orbits in Ref. [20].
Following Ref. [15], we will first study the critical curve

in the space of photon conserved quantities ðλ; ηÞ, rather
than on the image plane ðα; βÞ. This is because there is not
just one image plane but rather infinitely many, one for each
observer inclination θo. By working in ðλ; ηÞ-space, we can
derive general results that map back to the image plane(s)
via Eqs. (44). In this appendix, we will use the inverse form
of these equations,

λ ¼ −α sin θo; η ¼ ðα2 − a2Þ cos θo þ β2: ðC1Þ

For any choice of observer θo, each point ðλ; ηÞ defines
either two or zero points on the image plane, according to
whether there exist real solutions of Eqs. (C1) for ðα; βÞ.
We define the ðλ; ηÞ-space critical locus to be the set of

all points ðλðr̃Þ; ηðr̃ÞÞ in the real ðλ; ηÞ-plane obtainable
from the parametrization (45) for some real value of r̃. One
may invert λðr̃Þ to obtain r̃ðλÞ by solving a cubic equation,
resulting in three roots (Eq. (122) of Ref. [15])

r̃ðkÞðλÞ ¼ M þ 2M△λ cos

�
2πk
3

þ 1

3
arccos

�
1 − a2

M2

△3
λ

��
;

△λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

aðaþ λÞ
3M2

r
; ðC2Þ

with k ∈ f0; 1; 2g. In particular, note that Eq. (49) is
recovered as r̃ð0Þð−α sin θoÞ. Substituting Eq. (C2) into
ηðr̃Þ [Eq. (45)] defines three functions

ηiðλÞ ≔ ηðr̃ðiþ1ÞðλÞÞ; i ∈ f1; 2; 3g; ðC3Þ

which together parametrize the entire critical locus.
While this description allows us to write each part of the

critical locus as an ordinary function, the price to be paid is
that this involves rather complicated irrational functions.
However, returning to the original parametrization (45)
of the critical locus, we see that the latter is a rational curve.
Therefore, as reviewed in Appendix B, it is possible to
recast the critical locus in implicit form as the vanishing
locus of a polynomial in λ and η. Hence, the critical locus is
an algebraic variety (though the physical critical curve by
itself is not).
From the point of view of the complicated functions

ηiðλÞ, this is rather remarkable: Although none has a
terminating series expansion in λ, the product

Pðλ; ηÞ ≔
Y3
i¼1

½η − ηiðλÞ� ðC4Þ

must in fact be a terminating polynomial. It is by definition
cubic in η, and we shall see that it has degree 6 in λ.
Furthermore, since the original parametrization (45) is also
rational in a, the function P is a polynomial in a as well.
This fact will be useful for small-spin expansions.

1. Polynomial defining the Kerr critical locus

We now derive the polynomial defining the Kerr critical
locus as an algebraic variety. Comparing the rational
parametrization (45) with Eqs. (B1)–(B3), we infer that
the associated polynomials f and g may be taken to be

fðr̃Þ ¼ r̃2ðr̃ − 3MÞ þ a2ðr̃þMÞ þ aðr̃ −MÞλ; ðC5Þ

gðr̃Þ ¼ r̃3½r̃ðr̃ − 3MÞ2 − 4a2M� þ a2ðr̃ −MÞ2η: ðC6Þ

Computing their resolvant yields

detMðf; gÞ ¼ 4ðM2 − a2ÞM2a6Cðλ; ηÞ; ðC7Þ

with

Cðλ; ηÞ ¼ ðM2 − a2Þη3 þ c2ðλÞη2 þ c1ðλÞη
þM2ðλ − aÞ3c0ðλÞ; ðC8Þ

c2ðλÞ ¼ ð3M2 − 2a2Þλ2 − 4a3λ

− ð27M4 − 33M2a2 þ 2a4Þ; ðC9Þ

c1ðλÞ ¼ ð3M2 − a2Þλ4 − 4a3λ3

− 6ð9M4 − 5M2a2 þ a4Þλ2 þ 4ð27M4 − a4Þaλ
− ð54M4 þ 33M2a2 þ a4Þa2; ðC10Þ
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c0ðλÞ ¼ λ3 þ 3aλ2 − 3ð9M2 − a2Þλ
þ ð27M2 þ a2Þa: ðC11Þ

By construction, the resolvant detMðf; gÞ is a polynomial
whose vanishing locus in the real ðλ; ηÞ-plane is precisely
the Kerr critical locus. Therefore, it must be proportional
to the polynomial P defined in Eq. (C4). Comparing the
coefficients of their Oðη3Þ terms then shows that (for
jaj ≠ M)7

Cðλ; ηÞ ¼ ðM2 − a2ÞPðλ; ηÞ: ðC12Þ

We refer to C as the critical polynomial.
Note that it would have been very challenging (if at

all possible) to derive the polynomial expression (C8) by
explicit multiplication of the product (C4).

2. Polynomial description on the image plane

Now consider the image plane ðα; βÞ of an observer with
inclination θo. We define the image plane critical locus as
the θo-dependent set of all (real) points ðα; βÞ obtained by
solving Eqs. (C1), when λ and η lie on the ðλ; ηÞ-space
critical locus. This is equivalent to the set of all real curves
parametrized by Eqs. (44) for any real value of the
parameter r̃.
As in the previous subsection, we may view this locus

either as a set of ordinary functions or as an algebraic
variety. For the former, we use the local description ηiðλÞ of
the ðλ; ηÞ-space critical locus (C3). Plugging into Eq. (C1)
gives a description of the corresponding curves βiðαÞ (if
they exist) on the observer screen. By the same procedure
as in main text [see Eqs. (51) and (52)], they are obtained as
the roots of the quadratic equations for βi given by

Ci ≔ α2 þ β2i − a2 cos2 θo − Fiða; α sin θoÞ ¼ 0; ðC13Þ

Fiða; α sin θoÞ ¼ ηið−α sin θoÞ þ α2 sin2 θo; ðC14Þ

with i ∈ f1; 2; 3g. Note that only a portion of the full
critical locus in ðλ; ηÞ-space is mapped to the observer
screen in this way, namely the portion for which β2 ≥ 0.
The actual critical curve is a further subset illustrated in
Fig. 1 of [6]. Note that F1 recovers Eq. (52) in the main
body, which defines the physical critical curve on the
observer screen for sufficiently small spin and inclination.
The situation here is analogous to that described for

ðλ; ηÞ-space above Eq. (C4): While explicit, the functions
Ciða; α sin θoÞ are rather complicated due to their depend-
ence on the cubic roots (C2). However, the curves Ci ¼ 0

together form the vanishing locus of the critical polynomial
under the substitution (C1),

Coðα; βÞ ≔ Cð−α sin θo; ðα2 − a2Þ cos2 θo þ β2Þ: ðC15Þ

Since Cðλ; ηÞ is a polynomial in λ, η, and a, we see from the
form of Eq. (C15) that Co is polynomial in all of α, β, sin θo
(degree 6), and a (degree 8). More explicitly, the product
C1C2C3 must be a polynomial proportional to Co, and
comparison of the coefficients of their Oðβ6Þ terms shows
that (for jaj ≠ M),

Coðα; βÞ ¼ ðM2 − a2ÞC1C2C3: ðC16Þ

Though each of the expressions Ci for i ∈ f1; 2; 3g is not
individually a polynomial (with their expansion in small
parameters a or sin θo producing infinite power series),
their product C1C2C3 is a polynomial of finite degree.

3. Extremal spin factorization

As discussed in Sec. V C, the extremal limit a → M of
the critical curve is rather subtle, requiring two separate
a → M limits [19]. Here we have passed to the critical
locus and described it as an algebraic variety, which
depends only on the physical parameters a and M, and
hence has only a single limit a → M. Setting a ¼ M in
Eq. (C8), the critical polynomial Cðλ; ηÞ degenerates to a
quadratic polynomial in η, which factorizes into

Cðλ; ηÞ ¼ M2ðλ − 2MÞ2Eðλ; ηÞ; ðC17Þ

Eðλ; ηÞ ¼ η2 þ 2ðλ2 þ 2Mλ − 11M2Þη
þ ðλ −MÞ3ðλþ 7MÞ: ðC18Þ

Upon mapping to the image plane ðα; βÞ via Eq. (C1), the
(multiplicity 2) factor λ − 2M ¼ 0 defines a double line
α ¼ −2M csc θo, a portion of which forms the NHEKline
that becomes visible when sin θo >

ffiffiffi
3

p
− 1. On the other

hand, the remaining factor becomes a quartic polynomial in
both α and β, already given as Eq. (63) in the main text,
which defines a pair of Cartesian ovals. The full extremal
critical locus is illustrated in Fig. 8. Note that the infinite
vertical line is associated with roots of Co that become
complex for any a < M; no vestige of this feature remains
for nonextremal black holes.

4. Small spin factorization

In the case of a nonrotating Schwarzschild black hole
(a ¼ 0), the critical polynomial Coðα; βÞ factorizes as

Coðα; βÞ ¼ M2ðα2 þ β2Þ2ðα2 þ β2 − 27M2Þ: ðC19Þ

The vanishing locus of this polynomial is the circular
critical curve of radius 3

ffiffiffi
3

p
M. Note the “circle of zero

7When a ¼ M, the polynomial C remains well-defined
but degenerates to a simpler quadratic in η. Hence it defines
the extremal critical locus as a quartic in β (see discussion in
Sec. C 3 below).
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radius” factor α2 þ β2. At higher order in spin, this
becomes a second piece of the critical locus, a small oval
inside the larger critical curve. We have not factorized the
polynomial at higher order in spin. However, we have
checked that the polynomial vanishes to Oða2Þ when
evaluated on the ellipse ansatz (56) with the given param-
eters (57), (58), and (59).

5. Small inclination factorization

The image plane of a polar observer (θo ¼ 0) is best
described in terms of the impact parameter b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
(see Eq. (61) of Ref. [6]). On the pole, the critical
polynomial Coðα; βÞ defined in Eq. (C15) reduces to a
cubic polynomial in b2,

CoðbÞ ¼ ðM2 − a2Þb6 − ð27M4 − 30M2a2 − a4Þb4
− 96M2a4b2 þ 64M2a6 ¼ 0: ðC20Þ

Its 6 roots (4 are real and 2 complex conjugates) are

b ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηið0Þ þ a2

q
; i ∈ f1; 2; 3g; ðC21Þ

with ηiðλÞ as defined in Eq. (C3). Two of these roots satisfy
b > 0, and hence are part of the image plane critical locus.
The actual critical curve has radius (see Eq. (67) of Ref. [6])

b̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η1ð0Þ þ a2

q
: ðC22Þ

This formula allows us to pick out the physical part of the
critical locus (i.e., the critical curve) at higher order in
sin θo. Using the ellipse ansatz (56),

β2 ¼ R2

�
1 −

�
α − α0
R1

�
2
�
; ðC23Þ

together with R1¼ b̃þOðsinθoÞ and R2 ¼ b̃þOðsin θoÞ,
we plug into the critical polynomial (C15) and find that to
leading order Oðsin θoÞ,

α0 ¼ b̃2Xa sin θ; R1 ¼ R2 ¼ b̃; ðC24Þ

where

X ¼ −
2ða2b̃2 − 27M4 − a4Þ

3ðM2 − a2Þb̃4 − 2X b̃2 − 96M2a4
; ðC25Þ

X ¼ 27M4 − 30M2a2 − a4: ðC26Þ

Plotting numerically shows that α0 > 0 for all positive
spins 0 < a ≤ M. That is, the critical curve remains circular
at linear order in inclination, with a rightward origin shift
given by Eqs. (C24) and (C25).
Repeating the procedure at next order Oðsin2 θoÞ, we

find the ellipse parameters

α0 ¼ b̃2Xa sin θ; ðC27Þ

R1 ¼ b̃ −
X3Yða sin θÞ2

16b̃ða2b̃2 − 27M4 − a4Þ3ðM2 − a2Þ3 ; ðC28Þ

R2 ¼ b̃þ b̃4X2 − 1

2b̃
ða sin θÞ2; ðC29Þ

where

Y ¼ 64M4a8Z0 þ 32ð9M2 − 7a2ÞM4a6Z2b̃
2

−M2a2Z4b̃
4; ðC30Þ

Z0 ¼ 31a12 − 1674M2a10 þ 7053M4a8 − 12636M6a6

þ 12393M8a4 − 7290M10a2 þ 2187M12; ðC31Þ

Z2 ¼ 25a10 − 721M2a8 þ 2382M4a6 − 3078M6a4

þ 2025M8a2 − 729M10; ðC32Þ

Z4 ¼ a16 − 3544M2a14 þ 61796M4a12 − 309528M6a10

þ 746334M8a8 − 1006344M10a6

þ 784404M12a4 − 332424M14a2 þ 59049M16:

ðC33Þ

To produce these equations, we have used Eq. (C20), which
is obeyed by b̃, to reduce the degree of the polynomials
in b̃. The initial result of solving for R1 yielded a
polynomial of degree 14 in the irrational expression b̃.
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