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We apply the full theory of Loop Quantum Gravity (LQG) to cosmology and present a top-down
derivation of gauge-invariant cosmological perturbation theory from quantum gravity. The derivation
employs the reduced phase space formulation of LQG and the new discrete path integral formulation
defined in M. Han and H. Liu, Phys. Rev. D 101, 046003 (2020). We demonstrate that in the semiclassical
approximation and continuum limit, the result coincides with the existing formulation of gauge-invariant
cosmological perturbation theory in, e.g., K. Giesel et al., Classical Quantum Gravity 27, 055006 (2010).
Time evolution of cosmological perturbations is computed numerically from the new cosmological
perturbation theory of LQG, and various power spectrums are studied for scalar mode and tensor mode
perturbations. Comparing these power spectrums with predictions from the classical theory demonstrate
corrections in the ultralong wavelength regime. These corrections are results from the lattice discretization
in LQG. In addition, tensor mode perturbations at late time demonstrate the emergence of spin-2 gravitons
as low energy excitations from LQG. The graviton has a modified dispersion relation and reduces to the

standard graviton in the long wavelength limit.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a candidate for back-
ground independent and nonperturbative theory of quan-
tum gravity [1-4]. Among successful subareas in LQG,
applying LQG to cosmology is a fruitful direction in which
LQG gives physical predictions and phenomenological
impacts. Most studies of cosmology in LQG is based on
loop quantum cosmology (LQC): a LQG-like quantization
of symmetry reduced model (quantization of homogeneous
and isotropic degrees of freedom) [5—7]. However, in this
paper, we apply the full theory of LQG (quantizing all
degrees of freedom) to cosmology and present a top-down
derivation of cosmological perturbation theory from LQG.

A key tool in our work is the new path integral
formulation of LQG proposed in [8]. This path integral
is derived from the reduced phase space formulation of
canonical LQG. The reduced phase space formulation
couples gravity to matter fields such as dusts or scalar
fields (clock fields), followed by a deparametrization
procedure, in which gravity Dirac observables are
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parametrized by values of clock fields, and constraints
are solved classically. The dynamics of Dirac observables is
governed by the physical Hamiltonian H, generating
physical time evolution (the physical time is the value of
a clock field) in the reduced phase space. Our work
considers two popular scenarios of deparametrization:
coupling gravity to Brown-Kuchaf and Gaussian dusts
[9-12]. The path integral formulation is derived from
discretizing the theory on a cubic lattice y, followed by
quantizing the reduced phase space and the Hamiltonian
evolution generated by H,. We refer the readers to [8] for
detailed derivation of the path integral formulation, and to
[13] for the comparison with spin foam formulation.

The semiclassical approximation 7 — 0 of LQG can be
studied in this path integral formulation using the stationary
phase analysis. It is shown in [13] that semiclassical
equations of motion (EOMs) from the path integral con-
sistently reproduces the classical reduced phase space
EOMs of the gravity-dust system. These semiclassical
EOMs take into account all degrees of freedom (DOFs)
on y, and govern the semiclassical dynamics of the full
LQG. In addition, [8] shows that semiclassical EOMs
contain the unique solution satisfying the homogeneous
and isotropic symmetry. The solution reproduces the
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effective dynamics of u, scheme LQC:; i.e., it recovers the
Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmol-
ogy at low energy density while replacing the big bang
singularity by a bounce at high energy density.

In this work, we study perturbations on the homogeneous
and isotropic cosmology in this path integral formulation of
full LQG. We focus on the cosmological perturbation theory
at the semiclassical level. The dynamics of perturbations are
studied by taking the above homogeneous and isotropic as
the background and linearizing semiclassical EOMs of the
full LQG. The resulting linearized EOMs are in terms of
(perturbative) holonomies and fluxes on the cubic lattice y.
The initial condition of EOMs is imposed by the semi-
classical initial state of the path integral and uniquely
determines a solution. In practice, we solve these linearized
EOMs numerically and extract the physics of cosmological
perturbations. The perturbation theory developed here is
manifestly gauge invariant because it is derived from the
reduced phase space formulation.

There are cosmological perturbation theories based on
LQC instead of the full LQG, including the dressed metric
approach [14—16], deformed algebra approach [17-20] and
the hybrid model [21,22]. In all those approaches, LQC
quantum dynamics serves as the background for perturba-
tions. However the dynamics of LQC is ambiguous by
different treatments of Lorentzian terms in the Hamiltonian
constraint. The ambiguity can have no nontrivial effects on
predictions [23,24]. Our approach derives the cosmological
perturbation theory from the full LQG Hamiltonian (pro-
posed by Giesel and Thiemann [11]) which specifies the
Lorentzian term from the start. So ambiguities mentioned in
[23,24] do not present in our approach.

As a consistency check, we take the continuum limit of
linearized EOMs by refining the lattice y, and find results
agree with perturbative EOMs in [9], where the gauge-
invariant cosmological perturbation theory is developed
from classical gravity-dust theory on the continuum. Our
result provides an example confirming the semiclassical
consistency of the reduced phase space LQG. The cosmo-
logical perturbation theory from the reduced phase space
formulation closely relates to the standard gauge-invariant
treatment of cosmological perturbations [9].

Our top-down approach of the cosmological perturbation
theory opens a new window for extracting physical
predication from the full LQG and contacting with phe-
nomenology. As the first step, we relate holonomy and flux
perturbations to the standard decomposition into scalar,
vector, and tensor modes, and we numerically study their
power spectrums determined by the semiclassical dynamics
of LQG. Resulting power spectrums are compared with
predictions from the classical theory on the continuum.
This comparison demonstrates physical effects implied by
the lattice discreteness and cosmic bounce in LQG.

Our analysis of power spectrums mainly focuses
on scalar and tensor modes, since they have more

phenomenological impact. Concretely, we study the power
spectrum of the Bardeen potential ¥ for the scalar mode
perturbation (see Sec. V), and the power spectrum of metric
perturbations of the tensor mode (see Sec. VI). Power
spectrums are obtained by numerically evolving perturba-
tions from certain initial conditions imposed at early time.

Firstly it is clear that predictions from LQG semiclassical
EOMs are very different from the continuum classical
theory in case that the wavelength is as short as the lattice
spacing. However when we focus on wavelengths much
longer than the lattice spacing, differences in power
spectrums between LQG and the classical theory are much
larger in the ultralong wavelength regime than they are in
the regime where the wavelength is relatively short (but still
much longer than the lattice spacing). Power spectrums
from LQG coincide with the classical theory in the regime
where the wavelength is relatively short. At late time, this
difference of scalar mode power spectrums becomes
smaller, while the difference of tensor mode power spec-
trums becomes larger. For the tensor mode, the long
wavelength correction from LQG in the power spectrum
has a similar reason as in the dressed metric approach
[14,16]; i.e., it is due to the LQG correction to the
cosmological background. For the Bardeen potential P,
the difference of power spectrums is resulting from ¥ ~
wavelength x perturbation where corrections to perturba-
tions from the lattice discreteness are amplified by ultralong
wavelengths. Differences in power spectrums between
LQG and the classical theory vanish in the lattice con-
tinuum limit. Some more discussions about comparison are
given in Secs. V and VL.

At late time, tensor mode perturbations from LQG
give a wave equation of spin-2 gravitons with a modified
dispersion relation w(k)? = k*[1 + O(k?)] (see Sec. VI for
the explicit expression). w(k)?> reduces to the usual
dispersion relation of graviton in the long wavelength limit
or small k. For larger k, gravitons travel in a speed less
than the speed of light. Our result confirms that spin-2
gravitons are low energy excitations of LQG. It is in agree-
ment with a recent result from the spin foam formulation
[25]. The modified dispersion relation is in agreement with
a recent result in [26] obtained from expanding the LQG
Hamiltonian on the flat spacetime.

As another difference between LQG and the classical
theory, the cosmological perturbation theory from LQG
contain couplings among scalar, tensor, and vector modes,
although these couplings are suppressed by the lattice
continuum limit. For instance, the initial condition con-
taining only scalar mode can excite tensor and vector
modes in the time evolution at the discrete level. These
tensor and vector modes have small amplitudes vanishing
in the lattice continuum limit.

As a preliminary step toward making the full LQG
theory contact with phenomenology, this work has the
following limitations: firstly, our model focuses on pure
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gravity coupled to dusts and does not take into account the
radiative matter and inflation. However various matter
couplings in the reduced phase space LQG have been
worked out in [11]. Deriving matter couplings in the path
integral formulation is straightforward. Generalizing the
cosmological perturbation theory to including radiative
matter and inflation is a work currently undergoing.
Secondly, this work focuses on the semiclassical analysis,
and does not take into account any O(£%) quantum
correction (although effects from discreteness are dis-
cussed). By taking into account quantum corrections, the
continuum limit at the quantum level is expected to be
better understood.

Main computations in this work are carried out with
mathematica on high-performance-computing (HPC) serv-
ers. Some intermediate steps and results contain long
formulae that cannot be shown in the paper. mathematica
codes and formulae can be downloaded from [27].

This paper is organized as follows: Sec. II reviews the
reduced phase space formulation of LQG and the path
integral formulation. Section III discusses the semiclassical
approximation of the path integral and semiclassical
EOMs. Section IV discuss the cosmological solution,
linearization of EOMs with cosmological perturbations,
and lattice continuum limit. Section V focuses on scalar
mode perturbations, and discusses the initial condition and
the power spectrum. Section VI focuses on tensor mode
perturbations, including discussions of the late time
dispersion relation and the power spectrum.

II. REDUCED PHASE SPACE
FORMULATION OF LQG

A. Classical framework

Reduced phase space formulations of LQG need to
couple gravity to various matter fields at the classical level.
In this paper, we focus on two scenarios of matter field
couplings: Brown-Kuchai (BK) dust and Gaussian dust
[11,12,28,29].

The action of BK dust model reads

Sexplps G- T, S, W]

1

= =3 [ dxV]det(g)lplg” U, U, + 1], (2.1)

v,=-0,T+W;o,8, (2.2)
where T, $/=123 are scalars (dust coordinates of time and
space) to parametrize physical fields, and p, W; are
Lagrangian multipliers. p is interpreted as the dust energy
density. Coupling Spxp to gravity (or gravity coupled to
some other matter fields) and carrying out Hamiltonian
analysis [12], we obtain following constraints:

L[ Pp

Cot = C+ — | ——LE— + \/det BUUz+1)| =0,

2 | Ve Vdet(q)p(q p+1)
(2.3)
Co = C, + PT o — P;S%, = 0, (24)

2 P p 1

— 1+ g%U U, 2.5
P det(q) ( + q a /)') ( )

where a, # = 1, 2, 3 are spatial indices, P, P ; are momenta
conjugate to 7, S/, and C,C, are Hamiltonian and diffeo-
morphism constraints of gravity (or gravity coupled to
some other matter fields). Equation (2.5) is solved by

p=¢ (14 q*U,Up)""/2, e==+1. (2.7)

det(q)

The dust 4-velocity U being timelike and future pointing
fixes € =1 [10], so sgn(P) = sgn(p). Inserting this sol-
ution to Eq. (2.3) and using Eq. (2.6) lead to

C=—Py\/1+¢q"C,Cs/P*.

Thus —sgn(C) = sgn(P) = sgn(p). For dust coupling to
pure gravity, we must have C < 0 and the physical dust
p, P > 0 to fulfill the energy condition [28]. However, in
presence of additional matter fields (e.g., scalars, fermions,
gauge fields, etc.), they can make C >0 and p,P <0
corresponding to the phantom dust [10,11]. The case of
phantom dust may not violate the usual energy condition
due to presence of other matter fields. We solve P, P j from

Egs. (2.3) and (2.4):
h = \/ CZ - qaﬁcacﬂ

(2.9)

(2.8)

{ h  physical dust,
—h phantom dust,

P, =—5%(C,— hT ), (2.10)

are strongly Poisson commutative constraints. S7 is the
inverse matrix of 9,8/ (a = 1, 2, 3). An intermediate step
of the above derivation shows that P = C* — ¢*’C,Cj > 0.
It constrains the argument of the square root to be positive.
Moreover the physical dust requires C <0 while the
phantom dust requires C > 0.

We use A%(x), E%(x) as canonical variables of gravity.
A4(x) is the Ashtekar-Barbero connection and E%(x) =
V/detge?(x) is the densitized triad. a = 1, 2, 3 is the Lie
algebra index of SU(2). Gauge invariant Dirac observables
are constructed relationally by parametrizing (A, E) with
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values of dust fields 7'(x) = 7,5/ (x) = o/, i.e., A(0,7) =

A;‘l (x)|T(x)Er,Sj(x)Eaf and Ejd("? T) = E; <x>|T(X)ET,Sj(.X)EGj’
where o, 7 are dust space and time coordinates, and
j =1, 2, 3 is the dust coordinate index (e.g., Aj = AaS}’).

A¢(o,7) and El(c,7) satisfy the standard Poisson
bracket in the dust frame:

‘ 1
{Eu(0.7),A}(0.7)} = 518 8005 (0, '),

! k = 167G,

(2.11)

where £ is the Barbero-Immirzi parameter. The phase space
P of Aj-‘(a, 1), E)(0,7) is free of Hamiltonian and diffeo-
morphism constraints. All SU(2) gauge invariant phase
space functions are Dirac observables.

Physical time evolution in 7 is generated by the physical
Hamiltonian H, given by integrating / on the constant 7 =
7 slice S. The constant 7 slice S is coordinated by the value
of dust scalars S/ = ¢/ thus is called the dust space [11,12].
By Eq. (2.9), H, is negative (positive) for the physical
(phantom) dust. We flip the direction of the time flow 7 —
—7 thus Hy — —H,, for the physical dust. So we obtain
positive Hamiltonians in both cases:

1
— 3 2__Z 2
H) = /Sd o,|C(o,7) ) g Culo,7)".

C and C, = 2¢%C, are parametrized in the dust frame, and
expressed in terms of A9(s,7) and Ey(o, 7):

1 E}EX
C=—[F% — (%> + ey KIK)e 1 —2=—
K'[ Jjk (ﬂ ) det j k] b det(q)
2A
+7\/det(q), (213)
4 ELEk
=—Ft b (2.14)

T

where A is the cosmological constant.

Coupling gravity to Gaussian dust model is similar, so
we do not present the details here (while details can be
found in [12]). As a result the physical Hamiltonian has a
simpler expression

H, :Ld36C(0',1). (2.15)

The following Hamiltonian unifies both scenarios of the
BK and Gaussian dusts:

Hoz/d30'h(a, 7),
S

BK dust,

a=1
. (2.16)
a =0 Gaussian dust.

This physical Hamiltonian H, is manifestly positive.
However when C <0, Eq. (2.16) is different from
Eq. (2.15) by an overall minus sign, thus reverses the time
flow 7 — —z for the Gaussian dust.

The physical Hamiltonian H,, generates the 7 evolution:

d
L= (7.1} 2.17)

for all phase space function f. In particular, the Hamilton’s
equations are

dAj(o.7) _ xkp OH, dE, (0, 7) _«p SH,
dr 2 5E(0,7)’ dr 2 5A%(0.7)’
(2.18)

Functional derivatives on the right-hand sides of Eq. (2.18)
give

sH, = Ld%(% 8C — aq' %5@ + % C]ijqklcjcl‘SCIik)’

(2.19)

where C/h is negative (positive) for physical (phantom)
dust. In this work we focus on the cosmological perturba-
tion theory ¢;; = qy; + h;; (¢}; is the homogeneous and
isotropic cosmological background and #;; is the pertur-
bation) and linearized EOMs. The last term gives
55q7q"'C;C; = O(h;) since C;(¢") =0, thus does not
affect linearized EOMs. Compare 6H to the variation of
Hamiltonian Hgsr of pure gravity in absence of dust
motivates us to identify (dynamical) lapse function and
shift vector

(2.20)

N is negative (positive) for the physical (phantom) dust.
Negative lapse indicates that 7 in Eq. (2.18) flows from
future to past. Its origin is the flip ¢ — —7 before Eq. (2.12).
In this paper we focus on gravity coupled to the physical
dust. When we discuss the cosmological perturbation
theory from the semiclassical limit of LQG, we are going
to flip ¢ - —r back such that z flows to the future again.
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In that case, the dynamical lapse function and shift vector
Eq. (2.20) have to change to
C C;
N=-— E s N j =a ZJ .
They can be obtained directly from the variation 5(—H,)
(—H, is the physical Hamiltonian of physical dust if we do
not flip ¢ - —7 before Eq. (2.12).

In the gravity-dust models, we have resolved the
Hamiltonian and diffeomorphism constraints classically,
while the SU(2) Gauss constraint G,(6,7) = D;E}(0,7) =
0 still has to be imposed to the phase space. In addi-
tion, There are nonholonomic constraints: C (6, 1)2 -
433 1 Cu(o,7)* >0 and C < 0 for physical dust (C >0
for phantom dust).

These constraints are preserved by z evolution for gravity
coupling to the BK dust. Indeed, firstly, z evolution cannot
break Gauss constraint since {G, (o, 7), Hy} = 0. Secondly,
both /(. 7) and C; (o, 7) are conserved densities (thus N is
conserved) [11]:

(2.21)

dh(o,
dh(o.7) _ {h(s,7), Hy} = 0,
dr
dC;(c.7)
jdi'[ - {Cj<0', T), Ho} =0. (222)
Therefore C(o,7)> =133 | C,(6.7)> >0 is conserved.

About C < 0 (C > 0), suppose C < 0 (C > 0) was violated
in 7 evolution, there would exist a certain 7, that
C(6,79) =0, but then C(o,7)> =153, C,(0.7)* would
becomes negative if C;(c,7) # 0, contradicting the con-
servation of 4 (o, 7) and the other nonholonomic constraint.
If the conserved C;(c.7) =0, h(c,7)* = C(0,7)* is con-
served and thus cannot evolve from nonzero to zero. For
gravity coupled to the Gaussian dust, C;(o, 7) is conserved.
h(c,7) and C(o,7) are conserved only when C;(c,7) = 0.
C < 0 (C > 0) may be violated in 7 evolution for coupling
to the Gaussian dust if C;(o,7) # 0.

In our following discussion, we focus on pure gravity
coupled to dusts; thus we only work with physical dusts in
order not to violate the energy condition.

B. Quantization

We construct a fixed finite cubic lattice y which partitions
the dust space S. In this work, S is compact and has no
boundary. E(y) and V(y) denote sets of (oriented) edges
and vertices in y. By the dust coordinate on S, every edge
has a constant coordinate length yu. ¢ — O relates to the
lattice continuum limit. Every vertex v € V(y) is 6-valent,
having three outgoing edges ¢;(v) (I =1, 2, 3) and three
incoming edges ¢;(v — ul) where I is the coordinate basis
vector along the /th direction. It is sometimes convenient to
orient all six edges to be outgoing from v, and denote them
by e, (s = L):

ety = er(v), e = er(v—pl)™". (2.23)

Canonical variables A¢(a, 7), El (o, 7) are regularized by
holonomy h(e) and gauge covariant flux p“(e) at every
e€E(y):

hie) =P exp/A“r“/2,

e

1 ‘
pie) = —2ﬂ7tr [r“ﬂ ¢;jrdo’

A doTh(p, (0) Eb(0)eh(p, (o)) |, (2.24)

where ¢ = —i(Pauli matrix)“. S, is a two-face intersecting
e in the dual lattice y*. p, is a path starting at the source of e
and traveling along e until e N §,, then running in S, until
6. a is a length unit for making p“(e) dimensionless.
Because p“(e) is gauge covariant flux, we have

_1pb(61;—f;1,+)7bh(e1}—i;1,+)} .

(2.25)

1
pa(ev;l,—) = ETr[Tah(ev—IA;I.Jr)

The Poisson algebra of h(e) and p“(e) are called the
holonomy-flux algebra:

(2.26)

(2.27)

{pa(e)’ pb(el)} = _%5e,e’€abcpc(e/)’ (228)

h(e) and p“(e) are coordinates of the reduced phase space
P, for the theory discretized on y.

In quantum theory, the Hilbert space H, is spanned by
gauge invariant (complex valued) functions of all A(e)s,
and is a proper subspace of H) =®, L*(SU(2)). h(e)
becomes multiplication operators on functions in H(y).
p(e) = itR%/2 where RY is the right invariant vector field
on SUQ): Rf(h) = & |._of (e h). t = £ /a* is a dimen-
sionless semiclassicality parameter (£2 = fix). h(e), p*(e)
satisfy the commutation relations:

[i(e). hen] = .
[*(e). h(e')] = it5,.0 % (&),
[*(e). (€] = =itb, eanep™ (). (2:29)

as quantization of the holonomy-flux algebra.
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The physical Hamiltonian operators H are given by [11]

H= A, A=W o8 () (2.30)
veV(y)
A a JUN 1, BK dust,
M_(v)=CiC,-=> C!,C,,. a= 2.31
@) 4 ; { 0, Gaussian dust. ( )

In our notation, Hy =

Jsd3ch, C, and C, are the physical Hamiltonian, scalar constraint, and vector constraint on the

continuum. H=>", H,, C,, and C,, are their discretizations on . H= > H,, Cy, and CM are quantizations of H, C,,

and C, ,:
Conmms ST 515253 T (g, o€ () V,]) (2.32)
0,0 lﬂK‘f% et K vyl 51,058, vil5355 031353 s Voul)s
. 2 R X X o
Ca,v = lﬂzk‘f% . ‘2‘23 j:ISISZS38111213Tr(T h(av;llsl,1252)h<ev;l3s3)[h<ev;l353) 1v Vv])’ (233)

A oA 1+ 4% . 2A .
CI) = O,v+ D) CL,1}+7V1)’ KZ? |: Z CO“ Z 1):|’

veV(y veVv(y)
CL,L' = ’C(%;??PS“S;ilslS2S3€1‘1213Tr(ﬁ(€v;1,s1)[ﬁ(em,sl)_lv k]ﬁ(ev;lzsz)[ﬁ(ev;lzsz)_lv k]ﬁ(eu;mg)[ﬁ<€v;13s3)_1, V..
(2.34)
where V, is the volume operator at v:
Vv, = (00" (2.35)
QU _ ﬂ3a68ahc ﬁ“(ev;w) ; ﬁu(ev;l—) ﬁh(eu;2+) ;ﬁh(eu;z—) ﬁc(ey;3+) ;ﬁc(%s—) ‘ (2.36)

The Hamiltonian operator His positive semidefinite and
self-adjoint because M’ (v)M_(v) is manifestly positive
semidefinite and Hermitian, therefore admits a canonical
self-adjoint extension.

Classical discrete C,, and C,, can be obtained from
Egs. (2.3)—(2.34) by mapping operators to their classical
counterparts and [f.7,] = in{f,.f,}. Hence classical
discrete physical Hamiltonian H is

(2.37)

H = ZHD,

veV(y

H, =

2 - 4ZC

The absolute value in the square-root results from that H is
the classical limit of H, while H is defined on the entire H,

disregarding nonholonomic constraints in particular C> —
a3 CE>0fora=1

The transition amplitude A 41 plays the central role in
the quantum dynamics of reduced phase space LQG:

i
A i) = (Pl exp [—ETH] ). (238)

We focus on the semiclassical initial and final states
\}‘f W‘Pfg] for the purpose of semiclassical analysis.

‘Pf J) \Pfg] are gauge invariant coherent states [30,31]:

‘I’fg](h)—/ o Hwhl (e, (A(€)):
dh = H duy (h

veV(y

(2.39)

The gauge invariant coherent state is labeled by the gauge
equivalence class [g] generated by g(e) ~ g (e) = h;(L) g(e)hye
at all e. g(e) € SL(2,C).

coherent state on the edge e:

z//f}(e)(h(e)) is the complexifier
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i) = Y (2je+ e Uiy, (g(e)h(e)™), (2.40)

jg€Z+/2U{O}
where g(e) is complex coordinate of P, and relates to & (e), p“(e) by
gle) = e Pale)al2p(g) = =P (e)"/2p0(e)7"/2 pi(e),0%e) € R3. (2.41)

Applying Eq. (2.39) and discretizing time 7' = NArz with large N and infinitesimal Az,

Augin = [ Antuplle = ).

N+1
= [ an ] ool e, 0, e~ ) .4
i=1
~ AT |~ ~
s (g, e g, ) ). (2.43)

where we have inserted N + 1 resolutions of identities with normalized coherent state yry, =®, (8)/ ||1//; (e)||:

Jasimiw e aa=(5)" [T sunlbe)diple). i=tN=1 24

e€E(y

The above expression of A ;) leads to a path integral formula (see [8] for derivation):

9],

N+1
A1) = llwgllllwy | / dh H dg;p[g]eslom/" (2.45)

where we find the “effective action” S[g, i given by

N+1 N t
ix vy, Hlwg) Az
Slg. h] = Z (9it1.9:) ——22 [—0‘;1 |W$>I +l€i+1.i<7>:|: (2.46)
i=1 Git1 9i
1 2 1 2
gl+l’gl Z Z1+11 pl+1() _Epi<6) (247)

EE(y

with gy = ¢", gy 2 = 9. &114(55) = 0 as Az — 0 and is negligible. In the above, z;,;(e) and x;,;,;(e) are given by
1 T
Ziv1.i(e) = arccosh(x;, ;(e)). xip1i(e) = Etr[giﬂ(e) gi(e)]. (2.48)

III. SEMICLASSICAL EQUATIONS OF MOTION

In the semiclassical limit 7 — 0 (or £p < a), the dominant contribution to Ay, comes from the semiclassical
trajectories satisfying the semiclassical equations of motion (EOMs). Semiclassical EOMs has been derived in [8] by the
variational principle §S[g, h| = O (stationary phase approximation):

(1) Fori=1,...,N, at every edge e € E(y),

1 [ znd@ulgn (@'a(e)]  pileuleg(e)igle)] _ix o i [Hlvi) 61)

AT [\/xi(e) = Ty/xipri(e) + 1 sinh(p;(e)) a’ Oef(e) (v ]\u/g;) -0

where g¢¢(e) = g(e)e® ()™ (e%(e) € C) is a holomorphic deformation.
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(2) Fori=2,...,N + 1, at every edge ¢ € E(y),

1 Zi,i—l(e)tr[fagi(e)-{-gi—l(e)]

ix 0 (wylHyy )

At Vxiizi(e) = 1y/x i (e) + 1 -

pi(e)tr[f“gi(e)*gi(e)]} -
sinh(p;(e))

(3.2)

- d?Oi(e) <l//2~§' W;?L|> =0

(3) The closure condition at every vertex v € V(y) for initial data:

G =—-

e,s(e)=v

where A% (6) € SO(3) i given by e/ ™/2¢4¢~0'/2 —
A4 (B)7.
The initial and final conditions are given by g; = ¢’* and
gn+1 = g- Equations (3.1) and (3.2) come from 6S/8g = 0
and 6S/6g = 0, while Eq. (3.3) comes from 6S/6h = 0.
These semiclassical EOMs govern the semiclassical
dynamics of LQG in the reduced phase space formulation.

We can take Az — 0 in these semiclassial EOMs
since At is arbitrarily small. Solutions of EOMs with
A7 — 0 are time-continuous approximation of solutions of
Egs. (3.1)—(3.3).

It is proven in [8] that Eqs. (3.1)—(3.2) imply g; — ¢;.
as A7 — 0; i.e., g; = g(z) is a continuous function of 7.
Therefore, matrix elements <y/;§‘|lfl|w}i\_l) on right-hand
sides of Eqgs. (3.1)—(3.2) reduces to the expectation values
(w;|ﬁ|w}> as At — 0. Coherent state expectation values

~ . . !
of H have correct semiclassical limit

lim (7| H|t) = H[g],

t—0

(3.4)

where H[g| is the classical discrete Hamiltonian (2.37)
evaluated at p?(e), h(e) determined by g(e) in Eq. (2.41).
Note that the above semiclassical behavior of <1/7;|I:I|1/7f1>
relies on the following semiclassical expansion of volume
operator V, [32]:

2k+1

V,=(0,)% [1 Y (e dltmg) = 14)
n=1

n!
()] o=
)

where (Q,) = <1//{,|Q,,|y/ﬁ,) and this expansion is valid
when (0,) > £5.

(3.5)

'Firstly we apply the semiclassical perturbation theory of [32]
to O = H} [recall Eq. (2.30)] and all 0" (n > 1): ()| 0" i},) =
O[g]" + O(t). By Theorem 3.6 of [33], lim,_,0<y7§]|f(0)\y7§> =
f(Olg]) for any Borel measurable function on R such that
(W5l (0) F(O)liry) < oo.

> opie)+

A% (6, (e))ph(e) = 0.

e.t(e)=v

The time continuous limit of semiclassical EOMs is
computed in [13] and expressed in terms of p(e) =
(p'(e). p(e). p*(e))] and B(e) = (6'(e), 0*(e). 0P ()T
and their time derivatives:

<ZI;E2;Z> :%T(P’a)_l (gE;g{;EZ;) (3.6)

The matrix elements 7 is lengthy, and are given explicitly in
[34]. It is shown in [13] that Eq. (3.6) is equivalent to that
for any phase space function f on P,, its 7 evolution is
given by the Hamiltonian flow generated by H:

df

— ={f, H}. 3.7

L= (7.1} (3.7)
The closure condition is preserved by 7 evolution by

{G4,H} =0.

The lattice continuum limit of Eq. (3.6) is studied in [13].
We define u to be the coordinate length of every lattice
edge, the lattice continuum limit is formally given by 4 — 0
and |V(y)| = co while keeping x#*|V(y)| fixed. More
precisely, recall that Eq. (3.6) are derived with 7=
£3/a®> -0 and the assumption (Q,)~u® > 5 [see
Eq. (3.5)], the lattice continuum limit are taken in the
regime

Cp <pu<a, (3.8)
where a is a macroscopic unit, e.g., | mm. When keeping a
fixed, the lattice continuum limit sends y — O after the
semiclassical limit £, — 0 so £p < p is kept. In the lattice
continuum limit, EOMs (3.6) reduce to the EOMs (2.18) of
the continuum theory, when suitable initial conditions are
imposed (see [13] for details).

IV. COSMOLOGICAL BACKGROUND AND
PERTURBATIONS

A. Cosmological background

As in [8], we apply the following (homogeneous and
isotropic) cosmological ansatz to the semiclassical EOMs
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0(e1(v)) = uPKodi,

2u?
p(er(v)) = 2=5 Pody.

= (4.1)

Here Ky = Ky(z) and Py = Py(r) are constant on y but evolve with the dust time 7. Inserting the ansatz, left-hand
sides of EOMs (3.6) contain (1) dp“(e;(v))/dz and d#%(e;(v))/dr with a = I, which are proportional to Py = dP,/dz
and K, = dK,/dz, and (2) dp®(e;(v))/dz and d6“(e;(v))/dz with a # I, which are zero.

(1) EOMs of case (1) reduce to

4B [—2p*\/PoK + sin* (BuKo) + Au*Py] — sin®(2puK,)

=0, (4.2)
VP
V/Po[28 sin(2puKy) — (8 + 1) sin(4puKo)] + 2puPy = 0. (43)
where an effective Hamiltonian of cosmology can be extracted
2+ 1)/Pysin?(2BuK,)  +/Posin®(Buk,) 1
Ho(Py, Ky) = (#+1) (;Sl;l (2PuKy)  /Posin z(ﬂ/l 0) _Iap, (4.4)
47 H 3
Equations (4.2) and (4.3) can be written as Hamilton’s equations
;  OH OH ¢
P = e S — 4.5
7 9K, oP, (45)
(2) EOMs of case (2) are satisfied automatically, thus do not impose any constraints [8].
(3) Closure condition (3.3) is satisfied automatically.
By Hamilton’s equations (4.5), H. = H, /6 is conserved in 7 evolution:
e (B> + 1)\/Posin® (2BuKy)  /Posin®(BuK,) Lop2| k€ _xpV (4.6)
45242 u? 3700 6 6’ ‘

where £ > 0 is the dust energy per lattice site, and p = £/V
is the dust energy density [recall Eq. (2.9)]. V = p?Py*/? is
the volume per lattice site. Both p and V evolve in 7z while £ is
conserved. Note that because we use the dust to deparame-
trize gravity, the physical lapse was negative and 7 flowed
backward [recall Eq. (2.21)]. Butin Egs. (4.2), (4.3), and all
following equations, we have flipped the time orientation
7 — —1 to make the dust time flow forward.

The effective cosmological equations (4.2) and (4.3)
reduce to classical Friedmann equations when V is large
(low density p <« 1). It may be seen by the following lattice
continuum limit of H.; as u — 0, because the lattice
spacing u becomes negligible at large scale.

limfgr = VPKE-3APY (&)
reduces to h/6 = —C/6 for cosmology, and Egs. (4.5)
reduce to Friedmann equations. Figure 1 compares solution
Py(7) of Egs. (4.2) and (4.3) to solution P (7) of Friedmann
equations.

Effective equations (4.2) and (4.3) with finite 4 modify
Friedmann equations at high density p and lead to a

unsymmetric bounce to replace the big bang singularity.
The critical volume and density is given by

Vo= g S +IPRE L O),  po=E/Ve. (48)

p. depending on the conserved quantity £ indicates that the
cosmological effective dynamics given by Egs. (4.2) and
(4.3) is an analog of the uy-scheme LQC. The predicted
effective dynamics is problematic near the singularity/
bounce, because V, has to be of O(¢3) in order to have
Planckian critical density (for finite £), but V.~ £3 is
inconsistent with Eq. (3.5) and invalidate the semiclassical
approximation of H. Otherwise if V. is much larger than
¢, the bounce can happen at a low critical density, and is
not physically sound.

Therefore Eqs. (4.2) and (4.3) are only valid at the
semiclassical regime where the density p is low. Given our
purpose of the semiclassical analysis, it is sufficient for us
to only focus on solutions [Py (), Ky(7)] of Egs. (4.2) and
(4.3) in the semiclassical regime, and take them as back-
grounds to study perturbations.
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The left panel plots of Py(z) solving Egs. (4.2) and (4.3) (orange curve) and Py (7) solving Friedmann equations (blue curve).

Two solutions approximately coincide in 7 > 0 except for regime near the big-bang singularity. The solution of Eqgs. (4.2) and (4.3)
replaces the singularity by a bounce. The right panel enlarges the regime near where the bounce happens. The solutions use initial
conditions Py (1) = 0.153262, Ky(1) = 0.260992. Values of other parameters are A = 107, = 1,k = 1, and u = 1073. The final time

is T = 100.

Cosmological effective dynamics with better behavior at
the bounce is given by the pi-scheme LQC, where p,. is a
Planckian constant. Its relation to the full LQG theory is
suggested recently in [35]. However in this work, we focus
on the cosmological perturbation theory based on solutions
of Egs. (4.2) and (4.3), as analog of u, scheme.

B. Cosmological perturbations

Given a cosmological background Py(7), K((z) satisfy-
ing Egs. (4.2) and (4.3), we perturb p“(e;(v)), 0*(e;(v)) on
this background:

0 (e1(v)) = ulpKod; + X“(es(v))].

2u?

pler(v)) = e [Pod] + (es(v))], (4.9)

where X, ) are perturbations. We introduce a vector V*(v)
to contain both perturbations X, ) at v:

Ve(v) = (V(er(v)). X(es(v)". p=1.....18.

(4.10)

The dictionary between V?(v) and X*(e;(v)), Y*(e;(v)) is
given below:

Vi=Yle), VZ=)%ey), V’=DV(es)
VE=Y(e), VP =0(e), VO=D(e),
Vi=Yle), VE=Y'(es), V’=D(es),
VIO Xl(e)), VI =22e), V2= X(e),
VE=X%(e)), V=A%), VP =A%(ey),
VIO=2Xl(ey), VI7=2&(e3), V' =2a%es)

(4.11)

Thanks to the spatial homogeneity of Py(z), Ko(7), we
make the following Fourier transformation on the cubic
lattice y

. i Bk s - .
VP(z,6) —/ g e*ovr(r, k), o€ (uz)?,

7/p (2”)3
(4.12)

where ¢ are 3D coordinates at the vertex v.

Inserting perturbations Eq. (4.9) in semiclassical EOMs
(3.6), and applying Fourier transformation, we obtain the
following linearized EOMs for each mode k:

dVP(z, k
Vi) _ U, (u, 7, k)V¥ (7, k). (4.13)
dr
For simplicity we have assumed that
k = (k,0,0) (4.14)

has the only nonzero component k* = k. Our discussion
mainly focuses on the semiclassical regime where y is
negligible, this assumption does not lose generality in the
continuum limit g — 0, because the background is
Py(7), Ko(7) isotropic, the coordinate can always be chosen

-

such that k = (k,0,0).

The computation of U, (u, 7, k) is carried out by expand-
ing H up to quadratic order in perturbations followed by
derivatives, and H contains C,, with Lorentzian term shown
in (2.34). This computation is carried out on a HPC server
and uses the parallel computing environment of mathema-
tica with 48 parallel kernels. The entire computation lasts for
about two days. All mathematica codes can be downloaded
in[27]. The explicitexpression of 18 x 18 matrix U, (i, 7, k)
is too long to be shown in this paper but can be found in [27].
Appendix expands U, (u,7,k) = Uy, (7, k) + pU\", (7, k) +
O(u?) and shows explicitly matrices Uy, (7, k) and U,”, (7, k).
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The linearized closure condition Eq. (3.3) reads

0 = Po[(V'5 = VI¥)sin(Buky) — (V16 + V17)(cos(BuKo) — 1)]
+ BKo[=iV' sin(ku) + V' cos(ku) — VO sin(BuK,) + V sin(BuK,)
+ V7 cos(BukK,) + V8 cos(fuky) — VI = V7 — V8,
0 = Pylcos(ku)(V'*sin(BuKy) + V'3 cos(BuKy) — V'3) — i sin(ku) (V' sin(BuK,)
+ VP cos(BuKo) — V) = V' sin(BuK,) + V'® cos(Buky) — V'¥|
+ BK[iV? sin(ku) sin(BuK,) — cos(ku)(V° sin(fuK ) + V* cos(BuKy))
+ (=V? +iV*sin(ku)) cos(BuKy) + V3 sin(puk,) + V* + V7],
0 = Py cos(ku) (V' sin(BuKo) — V'*(cos(BuKo) — 1)) + i sin(ku) (V" sin(BuKo)
— Vi cos(BuKy) + V') + V1sin(BuKo) + V' cos(BuK,) — V']
+ BKolcos(ku)(V* sin(BuK,) — V> cos(BuKy)) — i sin(ku)(V* sin(BuK,)

— V2 cos(fuK,)) — V' sin(BuK,) — VO cos(fuky) + V> 4 VO,

where V? = V?(z, k). Closure condition is preserved by 7
evolution, because of {G¢, H} = 0 and Eq. (3.7).

Equations (4.13) and (4.15), derived from the full LQG,
govern the dynamics of cosmological perturbations. Given
initial conditions of V/=!+18 satisfying the closure con-
dition (4.15), the 7 evolution of V”s can be computed by
numerically solving Eqs. (4.13). Some results of numerical
solutions are discussed in Secs. V and VL

C. Continuum limit and second order
perturbative equations

Before we actually solve Egs. (4.13) and (4.15), we
would like to firstly derive their lattice continuum limits
u — 0 (keeping k fixed), and compare with some existing
results of the gauge invariant cosmological perturbation
theory.

First of all, the continuum limit of C,, C,,, and H,
reproduce C, C,, and h:

C, = 1’C(v) + O(u*), (4.16)

Cow = 1Co(v) + O (), (4.17)

3
H, = ih(v) + O() = ]c<v>2 -85 e, 0p

+ O(u*). (4.18)
The above relations not only can be checked perturbatively
up to O(V?) but also can be derived even nonperturbatively
asin [13]. Note that the absolute value in H, can be remove
here at the perturbative level.

The lattice continuum limit ¢ — O of linearized EOMs
(4.13) gives

(4.15)

[
dve(z, k i
D L0 V(e =0,

T

Uy (r, k) = }lli_r)lg)U’Z(/A, 7,k).  (4.19)

Matrix elements of Uy, (7, k) are given explicitly in the
Appendix. It is clear from Eq. (4.9) that, in the continuum
limit, V=19 and V»=10--+18 correspond to perturbations
of E! and A¢, respectively.

El(z,6) = Py(7)dl, + 6EL(z,0),

Aé(z,6) = BKy(7)d], + 6A%(z, o), (4.20)
SEL(1,3) = L ” (;137]‘)34?85155 (2, K),
5AY(7,5) = A ” ((21:;3 e*35A9(2,K), (4.21)
VP (7. k) = (8Eq(z. k), 8A7 (z.k))[1 + O(uk)],
k€ [-n/u.a/ul. (4.22)

We ignore the difference between V7 (7, k) and [SE/ (7, k),
8AY (7, k)] in the context of lattice continuum limit y — 0
(fixing k).

Here we choose the dust coordinate adapted to the lattice
ysothat I =1, 2, 3 is the coordinate index, i.e., the tangent
vector of e; is the /th coordinate basis.

The linearized closure condition (4.15) when pu — 0
gives

0 = ikV' + BKy(VO = V) = VIS + VI8, (4.23)

0 = ikV* — BKy(V? = V&) 4 V14 —v17, (4.24)
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0 = ikV® + BKo(V* = V7) = V13 4 v16, (4.25)
which coincide to the linearized Gauss constraint.

We solve linear equations (4.19) with p=1,...,9
[containing d)“(e;(v))/dz] for X“(e;(v)) [perturbations
of 6%(e;(v))]. Inserting solutions of X“(e;(v)) into
Egs. (4.19) with p=10,...,18 [containing dX“(e;(v))/dz]
we can obtain dX“(e;(v))/dz as functions of Y“(e;(v))
and d)“(e;(v))/dz. Then by taking time derivative to
Egs. (4.19) with p =1,...,9 and inserting solutions of
X(e;(v)) and dX“(e;(v))/dr, we obtain nine linear
second order differential equations of Y(e;(v)) = V*(v),
p=1,...,9 [perturbations of p“(e;(v))]:

d?vr(z, k) » dVv¥(z, k) » ,
T—i—%[,,(r,k)T—i- B, (r, k)V¥ (7, k) =0,
pov=1,...0. (4.26)

Inserting solutions of X“(e;(v)) into linearized closure
condition (4.25) gives three first order differential equations

of Y(e;(v)) =VP(v), p=1,....9

dv¥(r, k
Gz, k) = 6% (7. k) AGT vy (r.k) =0,
v=1,....,9, a=1,2,3. (4.27)
|
VP =0 exceptfor p=1,2,3,6,9,

Reference [27] contains explicit expressions of Egs. (4.26)
and (4.27) and mathematica codes for following deri-
vations.

In order to relate to the standard language of cosmo-
logical perturbation theory, we construct spatial metric
perturbations from the continuum limit of Eq. (4.9)

q1s(7, k) = Po(7)d;y + Shyy (7. k). (4.28)
where 8h;; is linear to VP=1-9,
A e e A -V -V
Shyy = A A O (R e Al
-V V8 —ve—v?  vipvi-v3
(4.29)

It is standard to decompose 6h;; into components corre-
sponding to scalar, tensor, vector modes

Shyy = Po(hi; + hi; + hiy), (4.30)

each of which correspond to certain set of components of
V? (see follows):

1. Scalar modes
We impose the following ansatz
Vo=V,

V2= V3=V - 2PE. (4.31)

V2 — V3 and V® + V? belongs to tensor modes (see below). The linearized closure condition Eq. (4.27) gives only one

nontrivial equation

o 4j Po(7)P !
d (V (= ">> _ diapky @ Po(@) dy(e k) o V@ H) (432)
dr \ Py(7) 4APy(7)? = 3Py(7)> dr 2Py (7)
Metric perturbations in scalar modes read
2y (k) — 2Kk*E(z, k) 0 0
hs, (. k) = 0 2y (k) 0 , (4.33)
0 0 2y (k)
Vv, V2 does not appear in metric perturbations. Then Eq. (4.26) reduces to
5 .
d W(T’ k) — _ 3P0(T) dlll(T’ k) , (4.34)
dr? 2Py(z) dr
d2E(z, k) Py() ( 4aPy(7) dy(z.k) 3dE(s, k)> w(z. k) (435)
de?  Po(r) \3Py(1)2 —4APy(z)> dr 2 de Py(7) ‘

plus a few other equations indicating the conservation law of closure condition (4.32). This result holds for both BK and

Gaussian dusts.
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2. Tensor modes

We impose the following ansatz

VP =0 exceptfor p=2,3,69 V' =V Vi=_-V? (4.36)

(traceless).

Note that the mode V° — V? has been considered above in scalar modes. The linearized closure condition Eq. (4.27) is
satisfied by the ansatz. Metric perturbations in tensor modes read

0 0 0
1
Wl (r, k) = old) 0 2V3(t, k) =2V%(z,k) + C(k) (4.37)
T
N0 —2V0(n k) + Clk)Py(z)  —2V3(z, k) Py(x)
Equation (4.26) reduces to
3. dhl(z, k) d?ht, (7, k)
K] (7. k) + 5 Po(e) =5 ==+ Po(e) — 57— = 0. (4.38)
This result holds for both BK and Gaussian dusts.
3. Vector modes
We impose the following ansatz
VP =0 exceptfor p=4,5738. (4.39)
Metric perturbations in vector modes read
| 0 V4, k) + V(t, k) V(1. k) + V8(1,k)
hy,(t, k) = — Po) V4t k) + V' (7, k) 0 0 , (4.40)
TNV k) + V(2 k) 0 0

Firstly, we insert the ansatz (4.39) and make the replacements V4 — —h}, — V7 and V> — —h{; — V¥ in both Eqs. (4.26)

and (4.27). Secondly we solve the linearized closure condition (4.27) for V7, Ve, Thirdly, we insert solutions of V7, V¥ in the
resulting Eq. (4.26) from above replacements. As a result, we obtain in total four nontrivial equations, in which two

equations can be expressed only in terms of /;;:

Py(7)[4aPy(7) (K> = 3APy (7)) + 9Py (7)?] dh},(z, k)

&Ry, (z. k)

4aPy(t)(k* = 2APy(7)) 4 6Py (7)?

where @ = 1, 0 corresponds to the BK or Gaussian dust.
Other two equations with explicit V7, V® are the con-
servation law of the closure condition.

We count DOFs of V# (before imposing closure con-
dition): scalar modes have 3 DOFs (p = 1, 2, 6), tensor
modes have 2 DOFs (p = 3, 9), and vector modes have 4
DOFs (p =4, 5,7, 8). In total 2 4 3 + 4 = 9 exhausts all
DOFs of Vr=l-9,

Scalar, tensor, and vector mode EOMs (4.35), (4.38), and
(4.41) coincide with the ones derived in [9], where they are
derived from classical gravity deparametrized by the BK
dust and cosmological perturbations. Some details of
comparing Eqs. (4.35), (4.38), and (4.41) to results in
[9] are presented in Sec. IV D. These results indicates that

Py(7) =0, (4.41)

dr dz?

our cosmological perturbation theory derived from LQG
has the correct semiclassical limit.

D. Comparison with results in [9]

This subsection focuses on the lattice continuum limit
# — 0 (keeping k fixed) of linearized semiclassical EOMs,
and compares them to the results in [9].

The metric perturbation 6/4;; can be decomposed into
scalar, tensor, and vector modes [9]:

5]’11_] = P0(2y/5” + 261815 + 28(1?}) + h}}) (442)

where v, £ parametrize scalar modes, and F,h’ para-
metrize vector and tensor modes. The above decomposition
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is in position space, while their Fourier transformations,
e.g., &(z, /2) = ffzo d%e‘”"gé'(r, G), are given by 9; — ik;
and

1
w = 2_PoV]’ (4.43)
2V ViV
E=— 2P, , (4.44)
i(VA+ V7 i(V3 + V8)>T
F= (0, : . (445
kP, kP, (4.45)
| 0 0 0

h' = 7|0 A e e A (4.46)

No  —ve—ve vigpvzoys

by comparing to Eq. (4.29). Here we have assumed the only

nonzero component of kis k* = k.
Following the standard cosmological perturbation
theory, we define

—BKV' + Py (V! +V'2)

B= ,
BPo(AP, — 3Kj)

(4.47)

G _2ik(BKV* +PoV'0)  2ik(BKV? + PV T
" BPy(3K3Z—AP,)  PPy(3K:i—AP)
(4.48)

For gravity coupled to BK dust, the dynamical shift vector
N; =C;/h is conserved [see Egs. (2.22) and (2.21)]. The
background C; = 0 so N; = 6N;. 6N, can be parametrized
by B and S;:

6N; = /Py(ik;B + S;). (4.49)

We are going to express our linearized EOMs in terms of
the conformal time # by

I _ ) = VP L) — B0,

4.50
dn dr ( )
1. Scalar modes
Equation (4.31) is equivalent to
5]’l[J:2P0(l[/5[J—k1ng), SJ:O, (451)

where y and £ coincide to (4.31) and (4.32), respectively.
The ansatz implies

8P03/2y'/

- 4.52
4AP% - 3P} (4.52)

Using conformal time 7 and changing variables, Eqs. (4.34)
and (4.35) can be rewritten as

dy (1. k) &y (n, k)

20~ =0 (43)
2
d iﬁ?z u +2H(n) dé‘g]]?, k) _ aH(n)B(n. k) —y(n. k) =0,

(4.54)

Egs. (4.53) and (4.54) at a =1 recover scalar mode
equations (3.38) in [9] when the additional scalar field is
absent.

2. Tensor modes

Equation (4.36) is equivalent to 6h;; = Pyhl,, B =0,
and S; = 0. Equation (4.38) can be rewritten in terms of
conformal time

thTJ (n. k) d2hITJ(’7’ k)
dn di?

I2hT, (1. k) + 2H =0, (4.55)

where ‘H is the Hubble parameter in conformal time #:

1 d\/Py(n)

H = (4.56)

VPo(n)  dn
This equation is the Fourier transform of Eq. (3.31) in [9]:

dn?, d*ht

-V2hl 4 oH—H 7 — 0, 4.57
1J + H dn + d}72 ( )

3. Vector modes

Equation (4.39) is equivalent to

5h[j - 2P08(1.Fj>, B = 0 (458)

After inserting solution of the linearized closure condition
to S, we have

S -0 g —__ A4ikPovPy d01 F (2. k)
e 27 2K%Py + 3P —4AP}  dr
(4.59)
4ikPy /Py dOFy)(z.k
S, = oy ek 60

C2K%Py+3PF—4AP}  dr

We check that Eq. (4.41) can be rewritten as
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d3(1~7:1) (n, k) I da(lfh (n, k)
dn dn?
- O‘H(’?)G(ISJ)(’?, k) =0,

2H(n)

(4.61)

which is the same as the vector mode equation (3.33)
in [9] when a = 1 Here e.g., 9 F 5 (n, k) = ik F 5 (n. k).

Furthermore, the conservation law MX—;(T) = @ =0

reduces Eq. (4.61) with a =1 to

where V; = S; — F.

V. SCALAR MODE PERTURBATIONS

A. Scalar mode perturbation theory

In this subsection, we make some further analysis on
scalar mode EOMs on the continuum. The entire Sec. V
specifically focuses on gravity coupling to BK dust with
a = 1. We define Bardeen potentials ® and ¥ which are
used in the standard gauge-invariant cosmological pertur-
bation theory,

O =-(H(B-&)+(B-£&))=HE+£",
Y=w+HB-E). (5.1)

Equations (4.53) and (4.54) can be expressed in terms of
® and Y:

20H + H(®' +2¥) + H*® +¥" =0, (5.2)

d-¥ =0, (5.3)
where we have used —H” + HH' + H> = 0 from back-
ground EOMs® and HB + B’ = 0 from the conservation
law (6N;)" = 0.

Moreover, recall that we have conserved quantities s
and C;:

h(k) = €y + e(k), (5.4)

€o.0¢(k), and e, (k) are conserved. ey = E/u’ is the
coordinate energy density and de, de; are perturbations.
SN, (k) = 6N5(k) =0 because of k = (k.0,0). h(k),
SN;(k) are Fourier transformations of h(s),SN, (o).

*Background EOMs Py = 2K\/Py, 2v/PoKy = —K2 + AP,
are given by continuum limits 4 — 0 of Egs. (4.2) and (4.3).
Using conformal time, the first equation is written as Ko = H
while the second equation is 2H' + H?> = AP,, whose derivative
gives H" + HH' = APyH. Inserting APy = 2H' + H? in H" +
HH' = APyH gives H" — HH' — H? = 0.

Conservation laws (5.4) and (5.5) can be expressed in terms
of @, £, and y:

K
K® + 3HD' + PyA® = de — €y(5® — k*
IHO+ PoA® = 7= [be — ol ).
(5.6)
. K
lkl/// = 4—130561, (57)

where k’® and iky’ are Fourier transformations of —V?®
and Opp'. In deriving above relations, we have used
¥ = ®, HB+B' =0, background EOMs P, = 2K\/P,
2/PoKy = —K3 + AP, [continuum limits x — 0 of
Egs. (4.2) and (4.3)], and the background conserva-
tion law 3y/Po(2K3 — APy) = ke, [continuum limit of
Eq. (4.0)].

Background EOMs Py = 2K /Py, 2v/PoKy = =K% +
AP, can be solved analytically by

Py(7) = (%) sin [‘/S_A (r— ro)] :

o (x §v/Acosh (B2 (7 — 75))
Ko(7) = (2/\) V3sinhi (A (7 — 7))

where the integration constant 7 is the dust time at the
big bang. Prefactors of P,, K, are determined by the
background conservation law 3/Py(2K3 — AP) = ke
Applying the background solution Py(z) to Eq. (4.34),
we can solve Eq. (4.34) for y/(z, k)

V3A

2

(5.8)

V3A

w(z.k) = Cy(k) — C, (k) coth[ :

(- To):| ;
(5.9)

where C, (k), C,(k) are arbitrary functions of k. Then the
conservation law Eq. (5.7) implies

- 3lkC1 (k)é'o

13
€1 3

(5.10)

Furthermore, inserting the solution w(z,k) into
Eq. (4.52) and ® =¥ =y + H(B —&'), we obtain &' in
terms of ®. Moreover we obtain @' in terms of ® by @' =
W + [H(B—=CE')] and ® — HE = £, Inserting resulting
@’ in Eq. (5.6), we solve & in terms of ®. Resulting £ and

E=¢/\/P, read

£(e.) 3Cy(kK) _ de | 2% 2d(z, k)sinhi[22 (z — 7,)]
T,K)= 2 12 2/3
k k% K2/3A1/3€0/

(5.11)
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dE(z.k) _2x 25V/3A[C, (k) — ©(z, k)]sinhi 22 (7 — 75)]esch[v/3A(z — 70)]

dr

By the above relations, a complete set of initial con-
ditions is given by values of de;, ¢ and the initial values
®(7;, k) and w(z;, k) (z; is the initial time). In practically
applying these initial conditions, e; specifies C;(k) by
Eq. (5.10), w(z;, k) specifies C,(k), then e, ®(z;, k), C, (k)
determines &(z;, k), £(z;, k). After that, the solution y(z, k)
is determined by C;(k),C,(k) via Eq. (5.9). The time
evolution of £(z, k) is determined by Eq. (4.35) and initial

values of &(z;, k), E(z;, k).

B. Initial condition

The time evolution of perturbations V7 is determined by
initial conditions. Our strategy for initial conditions is to
firstly study initial conditions of the continuum theory
discussed above, then translate these initial conditions to
EOMs (4.13) with finite u. In this section, we firstly focus
on scalar mode perturbations.

Here is our choice of initial conditions for scalar modes:
Firstly we require following properties of matter (the dust
in our case) are not changed by perturbations:

oe = oe; =0, (5.13)
where Je relates to the dust density, and Je; is the
perturbation of C; and relates to the velocity of the dust
[recall Eq. (2.10)]. Here ¢ = 0 means that there is no
additional matter energy3 pumped into the background
cosmological spacetime, and is an analog of the initial
vacuum state of matter often used in cosmological pertur-
bation theory. é¢; = 0 implies C; (k) = 0, then y = C, (k)
is independent of 7.

Furthermore we assume that the Bardeen potential
vanishes at initial time z;:

¥(z;, k) = ®(r;, k) =0, (5.14)
and the initial value of y is a constant:
vz, k) = C,. (5.15)

Therefore C,(k) = C, is a constant independent of k, and
the solution y(z, k) = C, is a constant at all time.

The above specifies a complete set of initial conditions.
They determine

Here the notion of energy is fixed by our foliation with dust
coordinates.

PN (5.12)
|
E(ri k) = % (5.16)
d&(z;, k)
dr
2 x 2V/3AC,sinhi[Y2A (7, — 7)]esch[v/3A(z; — 7))
- (K€o\/K)2/3 ’
(5.17)

as the initial condition for Eq. (4.35).
We translate the above initial condition in the continuum
to the initial condition for Eq. (4.13) with finite p: firstly

we make following setup for initial values of V7, V”
(p=1,...,9) at the discrete level by relating to above

initial values of w,yr, &, &
V413869 (7, k) =0, (5.18)

Vz(Thk) = V3(7ivk) =2Py(z;)w (7, k) — kzPO(Ti)g(Thk)’

(5.19)
VIt k) = 2Py(7))w(1;, k), (5.20)
VAT3869 (2. k) =0, (5.21)
V2(z,, k) = V3 (2, K)
= % PPy (e k) — KPS K,
(5.22)
VoK) = S PP Rl (523)

solve Vr=10....18

Initial values of V*=10--+18 can be determined by using
initial values of V=19 and V*='° _Initial values of V*
solves linearized closure condition (4.15) approximately up
to O(u).

C. Scalar mode power spectrum

We evolve with Eq. (4.13) from the initial condition of
yP=1--18 ysing fourth order implicit Runge-Kutta method.
With the solution V”(z, k), we obtain &, y using Eqgs. (4.43)
and (4.44), and Bardeen potential ¥ using Eq. (5.1).
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(a) Comparing the scalar mode power spectrum Py of Bardeen potential between the classical continuum theory and the

discrete theory from LQG. Dashed lines are Py from the classical continuum theory, while solid curves are from the discrete theory.
Different colors illustrate Py (as functions of k) at different time 7. (b) Plots of |k*E| = |(h}, — h3,)/2| versus k? at 7 = 10. In the
continuum limit £ does not depend on k. (c) Plots of |e(k*E)| where e(k*E) = k*(€ — £|,) are differences between solutions of
discrete EOMs and classical continuum theory. Orange dashed line separates approximately the k£ dominant region and the background

dominant region. Initial condition of those plots are imposed at z; = 1. Initial values of y,yr, &, & are given by Eqgs. (5.15)—(5.17) with
C, = 0.001, €, = 0.16, and 7, = 0. Values of other parameters used in numerical computations are A = 1075, a=1, =1,k = 1,

and = 1073,

Figure 2 demonstrates the power spectrum Py = |¥(z, k)|?
as a function of k and how Py evolves in time.

Note that in obtaining W at the discrete level, we apply
Eqgs. (4.43) and (4.44) to the discrete theory. Moreover we
define a discrete version of shift vector &N;(v) =
1(Cu.v/H,)\/Py linearized in perturbations V7, followed
by Fourier transform SN;(v) — 6N;(k) as in (4.12). We
define B(z, k) := 6N (k)/(ik\/Py) for the discrete theory.
‘H is given by Eq. (4.56) with background P, from
Egs. (4.2) and (4.3).

Figure 2 compares Py from discrete EOMs (4.13) (from
LQG) and Py from the continuum theory (in Sec. VA). We
find that two Pys coincide for relatively large k& while
different for small k. The difference comes from & ~
VP /(k*Py) by Eq. (4.44): although differences between
the discrete and continuum V”s are small and of O(u), the
small k*P,, amplifies these differences in £. As shown in
Fig. 2(c), the correction |e(k*E)| = [k*(€ = &|,_0)| of
K*E ~ ki, — h3, is approximately time independent but
depends on k* for relatively large k. However |e(k*E)|
becomes independent of k for small k& where the u
corrections mainly come from the cosmological back-
ground, e.g., from terms of O(uK,) in semiclassical

EOMs.* This leads to the fact that, at a late time when
K, becomes smaller, |¢(k*E)]| at small k becomes smaller.
Note that the ultralarge k with ku ~ 1 breaks the appro-
ximation to the continuum theory, and cause differences
between the discrete and continuum V?s. Thus the discrete
and continuum theory give different Pys in the ultralarge k
regime, although this difference is not shown in Fig. 2.
Equation (4.13) with finite 4 couples vector and tensor
modes to scalar modes, while these couplings are turned off
by the continuum limit ¢ — 0. With finite y, the scalar
model initial condition can excite tensor and vector modes
in the time evolution. Figure 3 plots power spectrums Py =
|hTy(z. k)[? and Py, = V(. k) ? at different time 7 evolved
from the scalar mode initial condition. Here h!; are given
by Eq. (4.46) with V7 satistfying discrete EOMs. V; =
S;—F) where F; are given by Eq. (4.45) and S =
(0,6N,,8N3)/\/Py with VP, 8N;, and P, satisfying
EOMs with finite u. Figure 3 demonstrates that the scalar
mode initial condition excites both tensor and vector mode
perturbations by EOMs with finite p. These tensor and

“If we expand EOMs (4.13) in i, O(u) terms are proportional
either to pk or to uk,.
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FIG. 3. The left panel plots tensor mode power spectrums Py = |h%, (7, k)|? as functions of k at different z, evolving from the scalar
mode initial condition (the same as in Fig. 2). Py at different 7 are illustrated by different colors. The other hZ, component |h,(z, k) [? is

even smaller than |h%(z,k)|?, thus is not demonstrated. The right panel plots vector mode power spectrums Py, = |)7(r k)|* at

different 7.
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FIG. 4. This figure plots the error of closure condition |G|> =
3_| G? where G, are given by Eqs. (4.15). |G|* at different 7 are
illustrated by different colors. |G| is much smaller than u* =
107'2 in the plotted range of k.

vector modes are all small and of higher order in ku (since u
is of length dimension, y expansion is the same as ku
expansion for relatively large k), while they can smoothly
grow as k becoming large. Figure 4 plots the error of
linearized closure condition in the 7 evolution and finds that
it is much smaller than z*.

VI. TENSOR MODE PERTURBATIONS

A. Modified graviton dispersion relation

We consider Eq. (4.13) in the late-time limit Ky = P/
(2P,) — 0 and absent of cosmological constant A = 0, and
we insert the tensor mode ansatz: V' = 0, V2 = —V?3, and
V6 = V° which turn off scalar modes at late time. The
closure condition Eq. (4.15) and the compatibility of
Eq. (4.13) at a late time leads to V421013141617 — ¢
V12 =yl y15 = y18 Equation (4.13) at a late time
gives the following wave equation for the tensor modes
metric /!, (valid for both a = 0, 1):

dthTJ(’?’ k)

ok PH .0 +

:O’

w(k)? = Si“ﬂé"“) (5 + 1 cos(h) = 2. (6.1)

The tensor mode metric perturbation relates to V>3%2 by

X 0 0 0
W' = N | o A VI 7 (6.2)
"\o —vo_ve y2oy3

Solutions of Eq. (6.1) are spin-2 gravitons with a modified
dispersion relation w(k)?. We expand the w(k)? in terms
of u
1
wo(k)? =k |1 - 6y2k2(3ﬁ2 +5) + O(u’k?) (6.3)
Gravitons travel in the speed of light in the continuum limit
u — 0 or the long wavelength limit k < p~!, while less

than speed of light for finite u. The finite y generates a
higher derivative term O(k*) in the wave equation of hY,

dthTJ("h k)
dn?
+ 0(Wk?) = 0.

1
+ kthTJ(’Y, k) - 8H2k4(3ﬁ2 + S)hITJ(’% k)
(6.4)

The result (6.1), derived from top to down in the full
theory of LQG, proves that LQG can give spin-2 gravitons
as low energy excitations. The modified dispersion relation
Eq. (6.1) is the same as the one in [26] obtained by
expanding the LQG Hamiltonian on the flat spacetime.
This result is also in agreement with a recent result from
spin foams [25].

Equation (4.13) with finite x contains another two
nontrivial equations showing couplings between V*=26
(tensor modes) and V#=7# (vector modes). Defining
u” = V?/P,, these equations (at late time) are shown below
by expanding in y

0=u"(n)+ %ku[—iu’z(n) + Bku ()]
+ % 2ud(n) + u(iku®(n) + pu'®(n))] + O(u?),

(6.5)
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FIG. 5. Plots of |hl,| and |hL,] as functions of kn at different k. Colored dots illustrate their initial values. The initial condition is

Initial values

are 4378 — 0,

imposed at #; = 0.05.

w=—u? =u® =u® =0.00999754 and u? =-u?=u®=u" =

—0.000099816. Values of parameters are A=0, a=1,=1,k=1, and g = 1073.

0=uB(n) - %kﬂ[—iulz(l’]) + pku® ()]
. 2iafk

3K3v/Po
+0(u?),

(=24’ () + p(iku*(n) 4 pu’®(n))]
(6.6)

while equations before the u expansion is too long to be
shown here and they can be downloaded in [27]. Couplings
between V=26 and V»=78 disappear in Eqgs. (6.5) and (6.6)
when p — 0.

B. Tensor mode power spectrum

We set A =0 in the discussion of tensor mode. The
background EOMs (4.2) and (4.3) with A=0and y — 0
can be solved analytically with H = 4/5. Then the tensor

le(h,)|

0.00012

0.00010} — k=1.
0.00008} k=2.
0.00006 | — k=3
0.00004} — k=4
0.00002} — k=5
0.00000 0.10 0.50 1 5 10 kn

mode EOM (4.55) at 4 — 0O can be written as a differential
equation in terms of x = kn:

hi; + g—dh[Tj + —d2h1Tj =

o 02 0, x=kn.

(6.7)

Therefore solutions at the continuum limit are functions of
kn: hj; = hi,(kn).

Semiclassical EOMs with finite 4 can be solved numeri-
cally for both the cosmological background and tensor
mode perturbations. Both initial conditions of the back-
ground Py, K, and tensor mode perturbations are imposed
at the conformal time 7;. The tensor mode initial condition
is given by u! #5378 = 0, /14578 =0, 13 = —u? = ub =
u’ #0and u” = —u? = u'® = u” # 0. Figure 5 plots time
evolutions of tensor mode perturbations 4}, as functions of

le(hly)l
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0.00010} — k=1.
0.00008} k=2.
0.00006 } — k=3
0.00004} — k=4
0.00002} — k=5
0.00000 0.10 0.50 1 5 10 kn

FIG. 6. Plots of |e(h},)| and |e(hl;)| where e(h];) = hj; — hi,|,, are differences between solutions of discrete and continuum

EOMs. Colored dots illustrate initial values.

|
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FIG. 7. Colored stars illustrate power spectrums |A%,| and |#%,], resulting from EOMs with u = 1072, as functions of kn at different
conformal times 7. Different colors label different . The blue curve is the power spectrum from the continuum theory. The initial

condition is the same as in Fig. 5.

124002-19



MUXIN HAN, HAIDA LI, and HONGGUANG LIU

PHYS. REV. D 102, 124002 (2020)

A1
0.00004 ¢
0.00003} — k=t

k=
0.00002} — k=38
— k=4
0.00001} — k=5.
n
0.05 0.10 050 1 5 10

2.x10”
15x1077 — k=t
k=2.
1.x1077 — k=3.
— k=4.
5.x1078 — K=5.

n
0.05 0.10 050 1 5 10

FIG. 8. Time evolution of the scalar modes A3, = (=V! + V2 4+ V?)/Py and u! = V!/P, excited by the tensor mode at different &,

with the same initial condition as in Fig. 5.

kn (at different k), where we find approximately h!, =
hl,(kn) (depending on k only through k) at late time, and
hl, = hl,(k, kn) at early time (especially when we evolve
from # toward the bounce). Figure 6 plots the difference
e(hj;) = hj; — h;|,_o between solutions of discrete and
continuum EOMs, and shows that |e¢(hY,)] is small and less
than O(u). When we evolve from 7 toward the bounce
(with large curvature), |e(h};)| becomes larger, and sug-
gests that the continuum theory approximates well to the
discrete theory only when the curvature is small.

Figure 7 plots power spectrums |hl,(n, kn)| and
|35 (17, kn)| as functions of k# at different conformal time
n. When k are relatively large (but still much smaller than
u~ 1), power spectrums with finite 4 approximately coincide
with results from the continuum EOM (4.55), but depart
from the continuum results for small &, similar to the scalar
mode power spectrum Fig. 2. To understand this departure,
we recall that Eq. (6.1) is an approximation of tensor mode
EOMs at the late time, so at earlier time we have

d2h1T1<’7’ k)

w(kPH 1.0+l

+0(Ky) =0.  (6.8)

O(K,) collects terms vanishing as Ky, — 0 while non-
vanishing at earlier time. The small k suppresses the first
term and make the term with background K| stand out,
while the background K, is different between the finite y

oA
0.00008
0.00006} /_// k=t
k=2.
0.00004 / — k=3.
y — k=4
0.00002} — k=5
: — )
0.05 0.10 050 1 5 10

FIG. 9. Time evolution of the vector mode h{, excited by the
tensor mode at different k, with the same initial condition as
in Fig. 5.

and 4 — 0. 4 — 0 removes the difference between discrete
and continuum theory.

Semiclassical EOMs couples tensor modes to scalar
and vector modes when u is finite. Figures 8 and 9 plot
scalar mode perturbations hj, = (=V!+ V2 4+ V3)/P,,
u' =V!/Py and vector mode perturbations hY, [see
Eq. (4.40)] excited by the tensor mode initial condition.
Their amplitudes | A7, |, |u;], and |h}, | are all less than O (u),
and suppressed by the lattice continuum limit g — 0. On
the other hand, fixing the value of y, small effects from p
can accumulate and increase |y, |, [u;|, and |h},| when the
evolution time is long.

We note a different between the analysis here and in
Sec. VI A: here the tensor-mode initial condition is at early
time, and there are scalar mode perturbations excited at late
time, while in the discussion in Sec. VI A, we turn off scalar
modes at late time.

VII. CONCLUSION AND OUTLOOK

In this work we derive the cosmological perturbation
theory from the path integral formulation of the full LQG
and the semiclassical approximation. In the lattice con-
tinuum limit, the result is consistent with the classical
gravity-dust theory. Numerical studies of discrete semi-
classical EOMs indicate some interesting corrections to
power spectrums especially in the regime where wave-
lengths are very long. Our result provides a new routine of
extracting physical predictions in cosmology from the full
theory of LQG.

Our approach is a preliminary step toward relating LQG
to observations, and at present has a few open issues which
should be addressed in the future. These issues are
summarized below:

(1) This work focuses on pure gravity coupling to dusts,
while neglecting radiative matter. This work also
does not take into account the inflation. We have to
generalize our work to include these perspectives in
order to make contact with observations of cosmic
microwave background. Fortunately, it is straight-
forward to generalize the reduced phase space LQG
to standard-model matter couplings [11]. Deriving
matter couplings in the path integral is a work
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currently undergoing. Therefore in the near future,
we should be able to include the radiative matter and
inflation in our analysis. The result should be
compared with the recent work [36], where the
inflationary cosmological perturbation theory is
studied in the classical theory of gravity and matter
coupling to dust.
The initial state plays a crucial role in the cosmo-
logical perturbation theory. In above discussions,
initial conditions of perturbations are translated from
corresponding initial conditions in the classical
continuum theory. We have neglect impacts on the
initial condition of O () from the discreteness and of
O(¢%) from quantum effects, while both of them are
nontrivial at early time in cosmology. Therefore
choices of initial states for cosmology, including
their semiclassical and quantum properties, should
be an important aspect to be understood in the future.
|
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APPENDIX: Uy, (k) AND U/, (z.k)

We expand the 18 x 18 matrix U, (u, 7, k) as a power
series in u
U, (u.7. k) = U’u(z. k) + U/, (2. k) + O(u?).  (Al)

All nonzero matrix elements in Uy, (7, k) are given by

2K, 2\/P,
(U0)1,1 = \/—P_o’ (U0)1,11 = T
2y/Py 2K,
U — T 5 U =
( 0)1,12 ﬂ ( 0)2,2 \/P_O
2ik(1 4+ 2K
o) k(1 + 32225 (Uy)yg = 2ikafiK}
o APy 0029 = /Py (=3K2 + APy)’
2\/P0 2k2a\/P0
Uohwo=—"7—  Uohan=—3707 —2rp
p 3pKG — PAPy
/ Pa
U)oty = 2VP(1 + —3K§+APO) (Ug)y s = 2ikaKy\/ Py
0)2,12 = ; ) 0)2,15 = 73K(2)—AP0 )
2ikaK0\/P0 2K0
U =, U =—,
( 0)2,18 3K(2) _ APO ( 0)3,3 \/}TO
. af*K?
(U)se = — 2ikapK} (U)o = - 2ik(1 + 52255,
0 VPo(=3KG + APy)’ > PV Po ’
a
U _2yP U _2VP0(1 +—31(5+APO)
(Uo)s.10 _—ﬁ ) (Uo)s gy = I )
- 2k%av/P, _ 2ikaKy\/P,
(U0)312——27, ( 0)315—_27’
’ 3pKG — PAP, ’ 3K5— APy
af*K?
(Ug)s 1 = 2ikaK g/ Py (Up)as = 2Ko(1 + SK%—AOPO)
03,18_3K%_AP0’ 0/44 — \/}TO ’
2a/32K(3) Za/}K%\/PO

U - 5
s = UBo3k3 + APy

(U0)4,13 == 3K(% — AP, ’
_ 2VPo((B+a)p* =3(1 + B*))KG + APy)

(U0)4,16 — ﬂ(3K(2) _ AP())

(U ) - ZikaKo\/PO
’ O 3K APy
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af? K
2Ky(1 + 2 13
Uppos - U TRR) ) 2PKE
- VP 87 VP(3K3 + APy)
(Uy) 2aﬂK0\/— (Uo)s 1 = 2ikaKy+\/Py
0)5.14 = 3K2 APy’ 0)5.16 73}((% AP,
~2VP((B+a)p* = 3(1 + B))KG + APy) _ ik
(Uo)s.i7 = 5 ) (Uo)er = 57>
‘ B(3KG — AP) ‘ BAVPoy
ik ik
U =, U =—,
( 0)6,2 ﬁ\/Pa ( 0)6,3 ﬁ\/ﬁa
af? K
2K,y(1 +: 2 13
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’ VP ® = VPa(=3K; + APy)
2lkaK0\/ITO ZlkaKO\/P_O
(U0)6,l] = m (UO)6.12 = m,
2apK}\/Py 2VPy((3 + @) = 3(1 + 2)K3 + APy)
(Uo)e,ls A2 | AD (Uo)e1s = ’
=3Kj + APy’ ﬁ(3KO APy)
20K 2ik(1 + 5
(Uo)74 = o o (Ug)ys =————,
T V/Po(=3KG + APy) ’ Bv/Po
af? K
(Uy) 2K0(1 +3x2- KEAP,) (Uy)sg — 2ikapK3
v VPo T UR(3K ARy
G PGB +af =30+ PNKG+AP) o 2ikaKoyPy
( 0)7 13 = 5 ) (Uo)71a = A2 AD
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_2a(k* + BPK3)\/Po 4ikaKy\/Py
<U0)7 16 — ’ (U0)7 17~ 32  AD °
’ ﬂ(3K0 APy) ’ 3K5— APy
2ik(1 —I—ﬂ) 2 k3
(Ug)ga = — 3K2-AP, (Ug)ys = 20p°K;
i BVPy 857 /Po(-3K2 + APy)’
af’K?
(U ) - 2ikaﬂK% (U ) B 2K0(1 + 31(3_/\0[:0)
PR VP(=3KG + APy) v VP
_ 2ikaKy+/Py ~ 2VP((B+a)p* =3(1 + ) K5 + APy)
Uo)s 13 =505 - (Uo)g 14 = 5 ,
3K — AP PBKG— APy)
(Uy) 4zkaK0\/_ (Ul 1s = _2a(K* + B*K5)V/Po
0/8.16 = T 3K2 AP, 0/8,17 B3KE—APy)
ik ik
U =—, U =——)
( 0)9.] ﬁ\/l—)a ( 0)9,2 ﬂ\/[TO
ik Zaﬁng
U =—, U = ,
( 0)9,3 ﬂ\/P_O ( 0)9,6 \/}TO(_3K(2) +AP0)
ap? K
(U,) 2Ko(1 + 3K2- APO) (Ug)o 11 = _2ikaK0\/P—0
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2ikaKyy/Py 2VPA(((B + a)f = 3(1+ f2)KE + APy)
(Uo)o.1n = 22 AD (U0)9 15 = )
’ 3K5 - — APy’ ﬁ(3KO APy)
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(Ug)o 15 = % vPo (U)o, = —2K*(1+ p*) = B> K} — B APy
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0 0
2K ik
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0
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N 2ikapKp o KT S
( 0)15,12 - _\/ITO(—:;K%—FAPO)’ ( 0)15,15 - \/P_O ’
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a 2 g2
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