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We consider the mimetic tachyon model in the Lagrange multiplier approach. We study both the linear
and nonlinear perturbations and find the perturbation and non-Gaussianity parameters in this setup. By
adopting two types of the scale factor as the power-law (a ¼ a0tn) and intermediate (a ¼ a0 expðbtβÞ) scale
factors, we perform a numerical analysis on the model which is based on Planck2018 TT, TE, EE+lowE
+lensing +BAO +BK14 and Planck2018 TTT, EEE, TTE and EET datasets. We show that the mimetic
tachyon model with both the power-law and intermediate scale factors, in some ranges of its para-
meter space is instabilities-free and observationally viable. The power-law mimetic tachyon model with
26.3 < n < 33.0 and the intermediate mimetic tachyon model with 0.116 < β < 0.130 are consistent with
observational data and free of the ghost and gradient instabilities.
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I. INTRODUCTION

Although a canonical scalar field, slowly rolling its flat
potential, gives a simple model of inflation which solves
some problems of the standard model of cosmology, it
predicts the scale invariant, adiabatic and almost Gaussian
dominant modes of the primordial perturbations (precisely,
this model predicts small, still nonvanishing primordial
non-Gaussianity) [1–9]. However, some extended models
of inflation, predicting the non-Gaussian distributed per-
turbations, have attracted a lot of attentions [9–22]. One
way to get a model with non-Gaussian distributed pertur-
bations, is to consider the noncanonical scalar field such as
Dirac-Born-Infeld (DBI) or tachyon fields [23–35]. In this
paper, we focus on the tachyon scalar field. It is possible to
consider this scalar field, which is associated with D-branes
in string theory [27–29], as responsible for both the early
time inflation [30,36] and late time acceleration [30,37,38].
On the other hand, in 2003 Chamseddine and Mukhanov

have proposed a new approach to the general relativity in
which a nondynamical scalar field (ϕ) relates the physical
metric (gμν) to an auxiliary metric (g̃μν) as follows [39]

gμν ¼ −g̃αβϕ;αϕ;βg̃μν: ð1Þ
This proposal, called mimetic gravity, has this important
property that respects the conformal symmetry as an
internal degree of freedom [39]. Also, the definition (1)
ensures that by performing a Weyl transformation on the
auxiliary metric, the physical metric remains invariant.
In the mimetic gravity, there is the following constraint

gμνϕ;μϕ;ν ¼ −1; ð2Þ

obtained from Eq. (1). The contribution of the matter fields
coupled to gμν in the action of the mimetic gravity, leads to
an extra term in the Einstein’s field equations correspond-
ing to a−3. This extra term in the field equations, which
mimics the matter component, is considered as a source of
the dark matter [39]. The mimetic gravity scenario can be
studied in another approach by considering the Lagrange
multipliers in the action of the theory, as proposed in
Refs. [40–42]. In Ref. [43], the authors have studied some
models of the mimetic gravity which are ghost-free. Also,
considering a potential term for the mimetic field leads to
some interesting cosmological results. This case has been
discussed in [44]. Several extension of the mimetic gravity
have been studied by authors, such as the braneworld
mimetic scenario [45], nonminimal coupling in the mimetic
model [46,47], fðGÞ model of the mimetic gravity [48],
Horndeski mimetic gravity [40,49], unimodular fðRÞ
mimetic gravity [50], fðRÞ theories in the mimetic model
[51–53] and Galileon mimetic gravity [54]. The (in)
stability issue in the mimetic gravity is an important subject
that has attracted a lot of attention. In fact, the authors seek
for the mimetic models which are free of the ghost and
gradient instabilities [55–69]. In this regard, the authors of
Ref. [70] have shown that by considering the direct
coupling between the curvature of the space-time and
the higher derivatives of the mimetic field, it is possible
to have an instabilities-free mimetic model in some ranges
of the parameter space. Also, in Ref. [71] the authors have
studied the higher-derivatives Lagrangian model to show
the possibility of evading from instabilities. However, in
Ref. [33] it has been shown that, considering a DBI mimetic
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gravity model is one way to overcome the ghost and
gradient instabilities in the mimetic gravity.
In this paper, we assume the tachyon field to be the

mimetic field, study the inflation and perturbations in this
model and compare the results with observational data.
From planck2018 data, we have some constraints on the
perturbation and non-Gaussianity parameters by which we
can explore the observational viability of the inflation
models. In fact, by assuming ΛCDMþ rþ dns

d ln k model,
Planck2018 TT, TE, EEþ lowEþ lensingþ BAOþ
BK14 data gives the constraint on the scalar spectral index
as ns ¼ 0.9658� 0.0038 and the constraint on the tensor-
to-scalar ratio as r < 0.072, respectively [72,73]. The
constraint on the tensor spectral index, implied by
Planck2018 TT, TE, EEþ lowEþ lensingþ BK14þ
BAOþ LIGO and Virgo2016 data is −0.62 < nT < 0.53
[72,73]. Also, Planck2018 TTT, EEE, TTE and EET data
gives the constraint on the equilateral amplitude of the non-
Gaussianity as fequil ¼ −26� 47 [10]. By numerical
studying of these parameters in our inflation model and
compare the results with released data, it is possible to
constraint the model’s parameters observationally.
The paper is organized as follows: In Sec. II, we study

the mimetic tachyon model and obtain the main equations
of the model. In Sec. III, we consider both the linear and
nonlinear perturbations and find perturbation and non-
linear parameters in the mimetic tachyon model. In
Sec. IV, we reconstruct the model in terms of the e-folds
number. The power-law inflation in the mimetic tachyon
model is studied in Sec. V. In this section, we show this
model is free of instabilities. We also find the perturbation
and non-Gaussianity parameters in terms of the model’s
parameter. We perform a numerical analysis on the model
and compare the results with several observational datasets
to obtain some constraints on the model’s parameter space.
In Sec. VI, we study the intermediate inflation in the
mimetic tachyon model. In this section also, by performing
a numerical analysis, we explore the (in)stability issue and
the observational viability of the model. In Sec. VII, we
present a summary of the paper.

II. MIMETIC TACHYON MODEL

We consider the following action for the mimetic
tachyon model in the Lagrange multiplier approach

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R − VðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2αX

p

þ λðgμν∂μϕ∂νϕþ 1Þ
�
; ð3Þ

where, R is the Ricci scalar, VðϕÞ presents potential of the
tachyon field, α is the constant warp factor. Also, X ¼
− 1

2
∂μϕ; ∂μϕ and the parameter λ is a Lagrange multiplier,

entering the mimetic constraint (2) in the action.

Note that, in the Lagrangian formalism generally one is
not allowed to impose the constraints on the action from the
beginning. This is an important point in the Lagrangian
formalism. We should first obtain the main equations of
motion and then impose the constraints, as it has been done
in paper [33]. In this regard, we show that the mimetic
tachyon action (3) leads to nonzero sound speed providing
the propagating curvature perturbation. The Einstein’s field
equations in the mimetic tachyon model are obtained by
varying action (3) with respect to the metric

Gμν ¼ κ2
�
−gμνVðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2αX

p
þ αVðϕÞ∂μϕ∂νϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2αX
p

þ gμνλðgμν∂μϕ∂νϕþ 1Þ − 2λ∂μϕ∂νϕ

�
: ð4Þ

In the flat FRW background with the metric

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð5Þ

and from the field equations (4), we obtain the following
Friedmann equations

3H2 ¼ κ2
�

Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α _ϕ2

q − λð1þ _ϕ2Þ
�
; ð6Þ

2 _H þ 3H2 ¼ κ2½V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α _ϕ2

q
þ λð _ϕ2 − 1Þ�: ð7Þ

Variation of the action (3) with respect to the tachyon field
gives the following equation of motion in the mimetic
tachyon model

αϕ̈

1 − α _ϕ2
þ 3αH _ϕ − 2λðϕ̈þ 3H _ϕÞ þ V 0

V
− λ0ð1 − _ϕ2Þ ¼ 0:

ð8Þ

To study the inflation and observational viability of the
mimetic tachyon model, we should obtain the slow-roll
parameters in this model. These parameters are obtained
from the following definitions

ϵ≡ −
_H
H2

; η≡ 1

H
d ln ϵ
dt

; s≡ 1

H
d ln cs
dt

; ð9Þ

where cs is the sound speed of the primordial perturbations.
This parameter is defined as c2s ¼ P;X

ρ;X
where, P is the

pressure, ρ is the energy density and the subscript “; X”
demonstrates derivative of the parameter with respect to X.
In this regard, the square of the sound speed in the mimetic
tachyon model is given by
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c2s ¼ −
2κ−2 _Hð1 − α _ϕ2Þ32

½2ðα _ϕ2 − 1Þλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α _ϕ2 þ 1

q
þ Vα� _ϕ2

¼
ðα _ϕ2 − 1Þð2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α _ϕ2 þ 1

q
− VαÞ

2ðα _ϕ2 − 1Þλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α _ϕ2 þ 1

q
þ Vα

: ð10Þ

If 0 < c2s ≤ c2, the model is free of gradient instabil-
ity [74,75].
To seek for the observational viability of the mimetic

tachyon model, in the following we study the perturbations
in this setup and obtain the perturbation and non-Gaussian
parameters in this setup.

III. PERTURBATIONS IN THE MIMETIC
TACHYON MODEL

In this section, we study the perturbations in our mimetic
tachyon setup in both linear and nonlinear level which help
us to explore the model and its viability, in details.

A. Linear perturbation

We start with the perturbed ADM line element given by

ds2 ¼ −ð1þ 2RÞdt2 þ 2aðtÞϒidtdxi

þ a2ðtÞ½ð1 − 2ΨÞδij þ 2Θij�dxidxj; ð11Þ

where ϒi ¼ δij∂jϒþ vi. The vector vi satisfies the con-
dition vi;i ¼ 0 and also R and ϒ are 3-scalars [76]. In this
perturbed metric, we have denoted the spatial curvature
perturbation by Ψ and the spatial symmetric and traceless
shear 3-tensor by Θij. Now, we consider just the scalar part
of the perturbations at the linear level as

ds2 ¼ −ð1þ 2RÞdt2 þ 2aðtÞϒ;idtdxi

þ a2ðtÞð1 − 2ΨÞδijdxidxj; ð12Þ

written within the uniform-field gauge (δϕ ¼ 0). We can
use the perturbed metric (12) and expand the action (3) up
to the second order in the perturbations as

S2 ¼
Z

dtd3xa3W
�
_Ψ2 −

c2s
a2

ð∂ΨÞ2
�
; ð13Þ

which is named the quadratic action and where the
parameter c2s is given by Eq. (10). Also, the parameter
W is defined as

W ¼
½2ðα _ϕ2 − 1Þλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α _ϕ2 þ 1

q
þ Vα� _ϕ2

2H2ð1 − α _ϕ2Þ32

¼
− 3

4
_ϕ2ðð2α _ϕ2 − 2Þλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α _ϕ2 þ 1

q
þ VαÞ

ðð− _ϕ2 − 1Þλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α _ϕ2 þ 1

q
þ VÞκ2ð1

2
α _ϕ2 − 1

2
Þ
: ð14Þ

One of the perturbation parameters which is constrained
by the observational data, is the scalar spectral index.
To obtain this parameter in the mimetic tachyon model, we
use the following two-point correlation function

h0jΨð0;k1ÞΨð0;k2Þj0i ¼ ð2πÞ3δð3Þðk1 þ k2Þ
2π2

k3
As;

ð15Þ

with the power spectrum defined as

As ¼
H2

8π2Wc3s
: ð16Þ

Now, it is possible to find the scale dependence of the
perturbation as

ns − 1 ¼ d lnAs

d ln k

����
csk¼aH

: ð17Þ

The scalar spectral index, ns, in terms of the slow-roll
parameters is obtained as

ns ¼ 1 − 2ϵ − η − s: ð18Þ

By writing the 3-tensor Θij of the tensor part of the
perturbed metric (11), in terms of the two polarization

tensors (ϑðþ;×Þ
ij ) as Θij ¼ Θþϑþij þ Θ×ϑ

×
ij, one can obtain

the following expression for the second order action of the
tensor mode

ST ¼
Z

dtd3x
a3

4κ2

�
_Θ2
þ −

1

a2
ð∂ΘþÞ2 þ _Θ2

× −
1

a2
ð∂Θ×Þ2

�
:

ð19Þ

Following the method used in the scalar part, leads to the
amplitude of the tensor perturbations as

AT ¼ 2κ2H2

π2
: ð20Þ

By using Eqs. (27)–(29), we find the tensor spectral index
in this setup as
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nT ¼ d lnAT

d ln k
¼ −2ϵ: ð21Þ

Another important perturbation parameter is the tensor-
to-scalar ratio which is defined as

r ¼ AT

As
¼ 16csϵ: ð22Þ

By performing a numerical analysis on ns, nT , and r and
comparing the results with the observational data, we can
find some constraints on the model’s parameter space. After
obtaining the parameters describing the linear perturba-
tions, in the next subsection, we study the nonlinear
perturbations to seek for the non-Gaussian feature of the
primordial perturbations and more constraints on the
model’s parameters.

B. Nonlinear perturbations

In studying the primordial perturbations, the linear level
of the perturbations gives us no information about the non-
Gaussian feature. Therefore, we should go to the nonlinear
level of the perturbations and use the three-point correlation
function. In this regard, by expanding the action (3) up to
the third order in the small perturbations, and introducing
the new parameter Z satisfying

ϒ ¼ Ψ
H

þ κ2a2Z; ð23Þ

and

∂2Z ¼ W _Ψ; ð24Þ

we find the cubic action, up to the leading order in the slow-
roll parameters of the model, as follows

S3 ¼
Z

dtd3x

��
3a3

κ2c2s

�
1 −

1

c2s

�
ϵ�Ψ _Ψ2 þ

�
a
κ2

×

�
1

c2s
− 1

�
ϵ

�
Ψð∂ΨÞ2 þ

�
a3

κ2

�
1

c2sH

�

×

�
1

c2s
− 1

�
ϵ

�
_Ψ3 −

�
a3

2

c2s
ϵ _Ψð∂iΨÞð∂iZÞ

�	
: ð25Þ

In the interaction picture, we have the following expres-
sion for the three-point correlation function for the spatial
curvature perturbation [9,77]

hΨðk1ÞΨðk2ÞΨðk3Þi
¼ ð2πÞ3δ3ðk1 þ k2 þ k3ÞBΨðk1;k2;k3Þ; ð26Þ

where

BΨðk1;k2;k3Þ ¼
ð2πÞ4A2

sQ
3
i¼1 k

3
i
EΨðk1;k2;k3Þ; ð27Þ

and the power spectrum A2
s is defined by Eq. (16). The

parameter EΨ is given by

EΨ ¼
�
1 −

1

c2s

��
3

4

�
2
P

i>jk
2
i k

2
j

k1 þ k2 þ k3
−

P
i≠jk

2
i k

3
j

ðk1 þ k2 þ k3Þ2
�

−
1

4

�
2
P

i>jk
2
i k

2
j

k1 þ k2 þ k3
−

P
i≠jk

2
i k

3
j

ðk1 þ k2 þ k3Þ2
þ 1

2

X
i

k3i

�

−
3

2

� ðk1k2k3Þ2
ðk1 þ k2 þ k3Þ3

��
≡

�
1 −

1

c2s

�
ϒ; ð28Þ

where, the expression inside the square bracket is replaced
by ϒ. By using the parameter EΨ, the following so-called
“nonlinearity parameter,” measuring the amplitude of the
non-Gaussianity, is defined

f ¼ 10

3

EΨP
3
i¼1 k

3
i
: ð29Þ

The nonlinearity parameter depends on the values of the
momenta k1, k2, and k3. Also, the different values of the
momenta lead to different shapes of the primordial non-
Gaussianity. For every shape, there is a special configura-
tion of three momenta, leading to a maximal signal of the
amplitude of the non-Gaussianity. In our model, there is a
maximal signal in the equilateral configuration which has
been shown in Fig. 1. Note that, to plot this figure, we have
introduced the parameters x2 ≡ k2

k1
and x3 ≡ k3

k1
and we see

that there is a peak at k1 ¼ k2 ¼ k3 (also, in Refs. [24,78–
80] it has been shown that in the k-inflation and higher

FIG. 1. 3D plot of the function ϒ versus x2 ≡ k2
k1
and x3 ≡ k3

k1
.

The figure shows that there is a peak for ϒ at k1 ¼ k2 ¼ k3.
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order derivative models the signal becomes maximal at the
equilateral configuration). In this regard, in the following,
we focus on the equilateral configuration in which we have
k1 ¼ k2 ¼ k3 [78]. In this limit, we have

Eequil
Ψ ¼ 17

72
k3
�
1 −

1

c2s

�
; ð30Þ

leading to

fequil ¼ 85

324

�
1 −

1

c2s

�
: ð31Þ

By using this nonlinear parameter obtained in the equi-
lateral configuration, we can study the non-Gaussian
feature of the perturbations in our mimetic tachyon setup
numerically.
Note that, to obtain the constraint on fequil, we follow the

Planck papers on the non-Gaussianity [10,81,82]. As has
been said in the mentioned papers, it is possible to use the
definition of the amplitude of the non-Gaussianity, sound
speed and the scalar spectral index in every model to find
some constraints on the model’s parameters from the
observational constraint on fequil. In this way, one can
explore the viability of the models. Following the Planck
papers, we use the observational constraints on fequil to find
the constraints on c2s and therefore model’s parameters.
Also, we use the constraints on r − ns to find the con-
straints on the model’s parameters. In this regard, we can
present the prediction of our model for non-Gaussianity.
We should clarify that our constraints on the non-
Gaussianity and sound speed parameters, are obtained
by using the simple conversion and rough estimate. In
fact, the proper analysis is performed by considering the
Gaussian distributed sampling based likelihood, centered
on the non-Gaussian estimate, and using Jeffreys’ priors
(see [10] for more details). However, with our simple
estimate, we just try to give the flavor of the constraints that
one could obtain by performing a proper analysis. To this
end, we should find the potential and the Lagrange
multiplier in our model which we do in the next sections.

IV. RECONSTRUCTION THE MODEL IN TERMS
OF THE E-FOLDS NUMBER

One can write the slow-roll parameters, in terms of the
e-folds number defined as

N ¼
Z

Hdt: ð32Þ

To this end, we should first find the potential and Lagrange
multiplier in our model. By using Eq. (7), and implying the
constraint Eq. (2), we find the potential in the mimetic
tachyon model as

V ¼ 2HðNÞH0ðNÞ þ 3H2ðNÞffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
κ2

; ð33Þ

where we have used a prime to show a derivative of
the parameter with respect to the e-folds number. The
lagrange multiplier also is obtained from Eqs. (6) and (33)
as follows

λ ¼ −
3H2ðNÞαþ 2HðNÞH0ðNÞ

2ð−1þ αÞκ2 : ð34Þ

After obtaining the potential and lagrange multiplier, we
find the following expression for the sound speed of the
mimetic tachyon model

c2s ¼ −
2H0ðNÞð−1þ αÞ2

ð4α − 2ÞH0ðNÞ þ 3HðNÞα2 : ð35Þ

Also, the parameter W is obtained as

W ¼ HðNÞð4α − 2ÞH0ðNÞ þ 3H2ðNÞα2
2ð−1þ αÞ2κ2H2ðNÞ : ð36Þ

To find the slow-roll parameters, following [83,84],
we introduce a new scalar field φ, identified by
the number of e-folds N. Also, this new parameter
parametrizes the scalar field ϕ as ϕ ¼ ϕðφÞ. In this
regard, we can write _ϕ as _ϕ ¼ dϕ

dφ
dφ
dt ¼ dϕ

dφH, which with

constraint equation (2) gives dϕ
dφ ¼ 1

H. In this way, we have

also dV
dϕ ¼ dV

dφ
dφ
dϕ ¼ H dV

dN. Now, the slow-roll parameters in
the mimetic tachyon model and in terms of the e-folds
number are given by

ϵ ¼ −H0ðNÞ
2HðNÞ ; ð37Þ

η ¼ −
HðNÞH00ðNÞ þ ðH0ðNÞÞ2

HðNÞH0ðNÞ ; ð38Þ

and

s ¼ 3α2ðHðNÞH00ðNÞ − ðH0ðNÞÞ2Þ
ð8α − 4ÞðH0ðNÞÞ2 þ 6HðNÞα2H0ðNÞ : ð39Þ

By using the equations obtained in this section, we
can express the perturbation and non-Gaussianity param-
eters in terms of the Hubble parameters and therefore
e-folds number. In the following, by adopting some sui-
table scale factors, we study the mimetic tachyon model
numerically.
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V. POWER-LAW INFLATION IN THE MIMETIC
TACHYON MODEL

To study the power-law inflation in the mimetic tachyon
model, we use the following scale factor

a ¼ a0tn: ð40Þ

By this scale factor, the Hubble parameter is obtained as
follows

HðNÞ ¼ ne−
N
n : ð41Þ

Now, from equations (37)–(41) we find the slow-roll
parameters in the power-law mimetic tachyon model as

ϵ ¼ 1

2n
; η ¼ 1

n
; s ¼ 0: ð42Þ

Also, the sound speed is obtained as

c2s ¼
2ð−1þ αÞ2

3α2n − 4αþ 2
; ð43Þ

and the parameter W is given by

W ¼ 3α2n − 4αþ 2

2nð−1þ αÞ2κ2 : ð44Þ

By using these equations we can find the ranges of the
parmeters α and n leading to gradient and ghost instabil-
ities-free mimetic tachyon model, corresponding to the
constraints 0 < c2s ≤ 1 and W > 0. The results are shown
in Fig. 2. As figure shows, the mimetic tachyon model
in most ranges of its parameter space is free of instabilities,
making it an interesting mimetic gravity model.

We can also study the perturbation parameters numeri-
cally to seek for the observational viability of the mimetic
tachyon model. This gives us more constraints on the
model’s parameters. By using Eqs. (18) and (42), we can
find the scalar spectral index in terms of the model’s
parameters and study it numerically. The left-upper panel of
Fig. 3 shows the ranges of the parameters α and n which
lead to ns ¼ 0.9658� 0.0038, obtained from Planck2018
TT, TE, EEþ lowEþ lensingþ BAOþ BK14 data. The
right upper panel of this figure shows that the ranges
of the model’s parameters leading to r < 0.072, obtained
from same dataset. The lower panel of Fig. 3 demonstrates
the range of the parameters α and n which leads to
−0.62 < nT < 0.53, obtained from Planck2018 TT,
TE, EE þ lowE þ lensing þ BK14 þ BAO þ LIGO
and Virgo2016 data. We have also studied the behavior of
r − ns and r − nT in the background of several datasets at
68% and 95% CL. The results are shown in Figs. 4 and 5.
The constraints obtained from this numerical analysis are
summarized in Table I.
As mentioned before, the non-Gaussian feature of the

primordial perturbations is important issue in studying the
inflation models. Here, we study the equilateral configu-
ration of the non-Gaussianity in comparison with obser-
vational data. To numerical study of the equilateral non-
Gaussianity, we use Eq. (31), where the sound speed is
given by equation (43). By using the combined temperature
and polarization data analysis at 68% CL, planck2018
gives the constraint on the equilateral non-Gaussianity as
fequil ¼ −26� 47. From this constraint, we have found the
ranges of the model’s parameter space leading to the
observationally viable values of the non-Gaussianity in
the equilateral configuration. The result is shown in Fig. 6.
This figure shows in some ranges of the parameter space,
we have observationally viable values of the equilateral
non-Gaussianity. Also, from Planck2018 TTT, EEE, TTE

FIG. 2. The coral regions show the ranges of the model’s parameters in the power-law mimetic tachyon model which lead to
0 < c2s ≤ 1 (left panel) and W > 0 (right panel).
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FIG. 3. The plum regions in the upper panels demonstrate the ranges of the model’s parameters in the power-law mimetic tachyon
model leading to the observationally viable values of the scalar spectral index (left one) and tensor-to-scalar ratio (right one), which are
obtained from Planck2018 TT, TE, EEþ lowEþ lensingþ BAOþ BK14 data. The plum regions in the lower panel shows the range of
the model’s parameters leading to the observationally viable values of the tensor spectral index, which is obtained from Planck2018 TT,
TE, EEþ lowEþ lensingþ BK14þ BAOþ LIGO and Virgo2016 data.

FIG. 4. Tensor-to-scalar ratio versus the scalar spectral index of
the power-law mimetic tachyon model. The black lines have been
drawn to show the behavior of r − ns. The parameter n increases
in the direction of the arrow.

FIG. 5. Tensor-to-scalar ratio versus the tensor spectral index of
the power-law mimetic tachyon model. We have also zoomed the
r − nT plot out to see its evolution clearly. The parameter n
increases in the direction of the arrow.
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and EET data at 68% CL, the constrain on the sound speed
is as c2s ≥ 0.0035 (this is obtained from the constraint
fequil ¼ −26� 47 released by Planck2018). Table II,
shows the viable ranges of parameter n for some sample
values of α, corresponding to this observationally viable
range of the square of the sound speed in the power-law
mimetic tachyon model. Figure 7 shows the behavior of the
equilateral configuration of the non-Gaussianity versus the
sound speed in the background of the Planck2018 TTT,

EEE, TTE and EET data at 68%, 95% and 99.7% CL. This
figure shows that the equilateral non-Gaussianity versus the
sound speed in this model is consistent with observational
data. However, note that, every possible value of the sound

TABLE I. The ranges of the model’s parameters in which the tensor-to-scalar ratio, the scalar spectral index and the tensor spectral
index of the power-law mimetic tachyon model are consistent with different datasets.

Planck2018 TT;
TE;EEþ lowE
þlensingþ BK14

þBAO

Planck2018 TT;
TE;EEþ lowE
þlensingþ BK14

þBAO

Planck2018 TT;
TE;EEþ lowE lensing

þBK14þ BAO
þLIGO& Virgo2016

Planck2018 TT;
TE;EEþ lowE lensing

þBK14þ BAO
LIGO&Virgo2016

α 68% CL 95% CL 68% CL 95% CL
0.3 not consistent 32.4 < n < 38.5 38.1 < n < 230.2 30.5 < n
0.5 27.9 < n < 36.4 25.3 < n < 42.1 22.6 < n < 130.3 18.4 < n
0.8 26.1 < n < 36.2 24.0 < n < 41.1 9.60 < n < 52.4 7.90 < n

FIG. 6. The plum region shows the ranges of the model’s
parameters in the power-law mimetic tachyon model leading to
the observationally viable values of the equilateral amplitude of
the non-Gaussianity, which is obtained from Planck2018 TTT,
EEE, TTE and EET data.

TABLE II. The ranges of the model’s parameters in which the
equilateral configuration of the non-Gaussianity in the power-law
mimetic tachyon model is consistent with the Planck2018 TTT,
EEE, TTE and EET data at 68% CL.

α ¼ 0.3 α ¼ 0.5 α ¼ 0.8

n < 1010 n < 186 n < 12.2

FIG. 7. The amplitude of the non-Gaussianity in the equilateral
configuration versus the sound speed in the power-law mimetic
tachyon model.

FIG. 8. The square of the sound speed versus the tensor-to-
scalar ratio in the power-law mimetic tachyon model.
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speed is not observationally viable. In fact, according to the
Eq. (22), the sound speed is related to the tensor-to-scalar
ratio. The observationally viable values of r, set some
constraints on the sound speed of the primordial perturba-
tion. Figure 8 shows the behavior of the square of the sound
speed versus the tenor-to-scalar ratio in the power-law
mimetic tachyon model. To plot this figure, we have
considered the Planck2018 TT, TE, EEþ lowEþ
lensingþ BAOþ BK14 data, used in Fig. 4. From this
data analysis, we have found that for r > 0.44, the sound
speed reach unity and therefore there would be no non-
Gaussianity in the model. To obtain some constraints on the
sound speed and the nonlinear parameter, we use the
constraints on n, obtained in studying r − ns behavior in
comparison with observational data. The results are shown
in Table III. According to our analysis and considering
both Planck2018 TT, TE, EEþ lowEþ lensingþ BAOþ
BK14 and Planck2018 TTT, EEE, TTE and EET datasets
at 68% CL, the power-law mimetic tachyon model is
observationally viable if 26.3 < n < 33.0 and 0.310 <
α < 0.398. In these ranges, the model is instabilities-free
and also the perturbation and non-Gaussianity parameters
are observationally viable.
Note that, to obtain the constraits, we didn’t fix ϵ. This

parameter is defined by Eq. (42) which is in terms of the
model’s parameters. To obtain the constraints, we have
used these equations.

VI. INTERMEDIATE INFLATION IN THE
MIMETIC TACHYON MODEL

In this section, we study the intermediate inflation in the
mimetic tachyon model. The intermediate inflation is
described by the following scale factor [85–87]

a ¼ a0 exp ðbtβÞ; ð45Þ

where, 0 < β < 1 and b is a constant. The above scale
factor of the intermediate inflation demonstrates that its
evolution is faster than the power law inflation (a ¼ tp) but
slower than the standard de Sitter inflation (a ¼ expðHtÞ).
By using the scale factor (45), we get the following Hubble
parameter

HðNÞ ¼ N

�
N
b

�
−1
β

β: ð46Þ

The slow-roll parameters in the intermediate mimetic
tachyon model, obtained from Eqs. (37)–(39) and (46),
take the following forms

ϵ ¼ β − 1

2Nβ
; η ¼ 2 − β

Nβ
;

s ¼ −3βα2

6βα2N þ ð8β − 8Þα − 4β þ 4
: ð47Þ

Also, c2s and W are obtained as

c2s ¼
2ð1 − βÞð−1þ αÞ2

3βα2N þ ð4β − 4Þα − 2β þ 2
; ð48Þ

W ¼ 3βα2N þ ð4β − 4Þα − 2β þ 2

2βNð−1þ αÞ2κ2 : ð49Þ

The ranges of α and n leading to gradient and ghost
instabilities-free intermediate mimetic tachyon model are
shown in Fig. 9. These ranges are corresponding to the
constraints 0 < c2s ≤ 1 and W > 0. From this figure, we
find out that the intermediate mimetic tachyon model too,
in some ranges of its parameter space, is free of gradient
and ghost instabilities.
As in the previous section, we study the perturbation

parameters to check the observational viability of the
intermediate mimetic tachyon model. By substituting
Eq. (47) in Eqs. (18), (21), and (22), we obtain the
perturbation parameters in terms of the model’s parameter.
Now, we can study the model numerically and compare the
results with several observational datasets. The left-upper
panel of Fig. 10 shows the ranges of the parameters α and β
leading to ns ¼ 0.9658� 0.0038. This constraint is
obtained from Planck2018 TT, TE, EEþ lowEþ
lensingþ BAOþ BK14 data. From the same dataset, we
have r < 0.072, leading to the range shown in the right-
upper panel of Fig. 10. The lower panel of Fig. 10
demonstrates the range of the parameters α and n which
leads to −0.62 < nT < 0.53, obtained from Planck2018
TT, TE, EEþ lowEþ lensingþ BK14þ BAOþ LIGO
and Virgo2016 data. As before, to obtain some constraints
on the model’s parameters, we have studied the behavior of
r − ns and r − nT in the background of several datasets at
68% and 95% CL. The results are shown in Figs. 11 and 12.
Table IV shows the constraints obtained from this numeri-
cal analysis. Note that, in the numerical analysis of this
section we adopt N ¼ 60 and b ¼ 10.
Now, we study non-Gaussian feature to find more

information about the viability of the intermediate mimetic
tachyon model. Here also, we consider the equilateral
configuration of the primordial non-Gaussianity with
k1 ¼ k2 ¼ k3. By using Eq. (31), where the sound speed
is given by Eq. (48), we can perform a numerical analysis
on the equilateral non-Gaussianity. From the constraint

TABLE III. The observationally viable ranges of the several
parameters in the power-law mimetic tachyon in confrontation
with Planck2018 TT, TE, EEþ lowEþ lensingþ BAOþ BK14
data at 68% CL.

α r c2s fequil

0.5 r < 0.044 0.0173 < c2s fequil < −10.7
0.8 r < 0.012 0.117 × 10−2 < c2s fequil < −160
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FIG. 9. The coral regions show the ranges of the model’s parameters in the intermediate mimetic tachyon model which lead to
0 < c2s ≤ 1 (left panel) and W > 0 (right panel).

FIG. 10. The plum regions in the upper panels demonstrate the ranges of the model’s parameters in the intermediate mimetic tachyon
model leading to the observationally viable values of the scalar spectral index (left one) and tensor-to-scalar ratio (right one), which are
obtained from Planck2018 TT, TE, EEþ lowEþ lensingþ BAOþ BK14 data. The plum regions in the lower panel shows the range of
the model’s parameters leading to the observationally viable values of the tensor spectral index, which is obtained from Planck2018 TT,
TE, EEþ lowEþ lensingþ BK14þ BAOþ LIGO and Virgo2016 data.
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fequil ¼ −26� 47, obtained from the Planck2018 com-
bined temperature and polarization data analysis at
68% CL, we have found the observationally viable range
of α and β, as shown in Fig. 13. Also, as mentioned before,
from the constraint on fequil, we have c2s ≥ 0.0035 which
gives the viable ranges of parameter β in the intermediate
mimetic tachyon model. These ranges, for some sample
values of α, are summarized in Table V. The behavior of the

equilateral configuration of the non-Gaussianity versus the
sound speed in the background of the Planck2018 TTT,
EEE, TTE, and EET data at 68%, 95%, and 99.7% CL is
shown in Fig. 14. In the intermediate case also, it is
necessary to find the observationally viable values of the
sound speed. In this regard, we use the Eq. (22) and the
observationally viable values of r, to set some constraints
on the sound speed. The result is shown in Fig. 15. To plot
this figure also, we have considered the Planck2018 TT,
TE, EEþ lowEþ lensing þ BAOþ BK14 data, used in
Fig. 11. From this numerical analysis, we have found that
the constraint on the sound speed in the intermediate
mimetic tachyon model is as c2s < 0.668 at 68% CL.
From the constraints on β in Table IV, we have obtained
some constraints on the sound speed and the nonlinear
parameter, summarized in Table VI. According to our
analysis and based on both Planck2018 TT, TE, EEþ
lowEþ lensingþ BAOþ BK14 and Planck2018 TTT,

FIG. 11. Tensor-to-scalar ratio versus the scalar spectral index
in the intermediate mimetic tachyon model. The black lines have
been drawn to show the behavior of r − ns. The parameter β
increases in the direction of the arrow.

FIG. 12. Tensor-to-scalar ratio versus the tensor spectral index
in the intermediate mimetic tachyon model. We have also zoomed
the r − nT plot out to see its evolution clearly. The parameter β
increases in the direction of the arrow.

TABLE IV. The ranges of the model’s parameters in which the tensor-to-scalar ratio, the scalar spectral index and the tensor spectral
index in the intermediate mimetic tachyon model are consistent with different datasets.

Planck2018 TT;
TE;EEþ lowE
þlensingþ BK14

þBAO

Planck2018 TT;
TE;EEþ lowE
þlensingþ BK14

þBAO

Planck2018 TT;
TE;EEþ lowE lensing

þBK14þ BAO
þLIGO& Virgo2016

Planck2018 TT;
TE;EEþ lowE lensing

þBK14þ BAO
LIGO&Virgo2016

α 68% CL 95% CL 68% CL 95% CL
0.8 not consistent 0.119 < β < 0.141 0.138 < β < 0.455 0.116 < β < 1
0.85 0.122 < β < 0.133 0.114 < β < 0.143 0.115 < β < 0.411 0.097 < β < 1
0.9 0.117 < β < 0.136 0.111 < β < 0.144 0.091 < β < 0.332 0.076 < β < 1

FIG. 13. The plum region shows the ranges of the model’s
parameters in the intermediate mimetic tachyon model leading to
the observationally viable values of the equilateral configuration
of the non-Gaussianity, which is obtained from Planck2018 TTT,
EEE, TTE, and EET data.
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EEE, TTE, and EET datasets at 68%, the intermediate
mimetic tachyon model is observationally viable if 0.778 <
α < 0.810 and 0.116 < β < 0.130. In these ranges, the
model is free of ghost and gradient instabilities and also
the perturbation and non-Gaussianity parameters are obser-
vationally viable.

VII. SUMMARY AND CONCLUSION

In this paper we have studied the tachyon model in the
context of the mimetic gravity and Lagrange multiplier
approach. We have assumed that the scalar field in the
tachyon model is a mimetic field. In this regard, we have
obtained the Einstein’s field equations, corresponding
Friedmann equations and the equation of motion. After
that, we have studied both the linear and nonlinear
perturbations in the mimetic tachyon model and found
perturbations and non-Gaussianity parameters in terms of
the potential of the mimetic tachyon field and the lagrange
multiplier. Then, we have constructed the model in terms
of the Hubble parameter and e-folds number. This recon-
struction has prepared us to study the mimetic tachyon
model for two types of the inflation: power-law and
intermediate inflation.
By adopting the power-law scale factor a ¼ a0tn, we

have obtained the slow-roll parameters, sound speed andW
in terms of n and α (the constant warp factor). By
performing a numerical analysis on these parameters, we
have shown that the power-law mimetic tachyon model in
some ranges of its parameter space is free of gradient and
ghost instabilities (corresponding to 0 < c2s ≤ 1 and W,
respectively). We have also studied the perturbation param-
eters ns, r, and nT numerically and compared the results
with Planck2018 TT, TE, EEþ lowEþ lensingþ BAOþ
BK14 and Planck2018 TT, TE, EEþ lowEþ lensingþ
BK14þ BAOþ LIGO and Virgo2016 datasets. In this
regard, we have obtained some constraints on the param-
eters n and α, shown in several figures and tables. We have
also explored the non-Gaussian feature of the primordial
perturbation numerically, to find more information about
the observational viability of the model. To this end, we
have considered the equilateral configuration of the non-
Gaussianity with k1 ¼ k2 ¼ k3. By using the observational
constraint on the equilateral amplitude of the non-
Gaussianity, we have obtained the ranges of the parameters
n and α leading to the viable values of fequil. Then, we have
used the relation between the equilateral non-Gaussianity
and the sound speed and also the relation between the
sound speed and the tensor-to-scalar ratio, to find some
more constraint on the model’s parameter space. Our data
analysis, based on both Planck2018 TT, TE, EE+lowE

FIG. 14. The amplitude of the non-Gaussianity in the equi-
lateral configuration versus the sound speed in the intermediate
mimetic tachyon model.

FIG. 15. The square of the sound speed versus the tensor-to-
scalar ratio in the intermediate mimetic tachyon model.

TABLE V. The ranges of the model’s parameters in which the
equilateral configuration of the non-Gaussianity in the inter-
mediate mimetic tachyon model is consistent with the
Planck2018 TTT, EEE, TTE, and EET data at 68% CL.

α ¼ 0.8 α ¼ 0.85 α ¼ 0.9

0.0103 < β < 0.169 0.0106 < β < 0.096 0.0108 < β < 0.046

TABLE VI. The observationally viable ranges of the several
parameters in the intermediate mimetic tachyon in confrontation
with Planck2018 TT, TE, EEþ lowEþ lensingþ BAOþ BK14
data at 68% CL.

α r c2s fequil

0.85 r < 0.049 0.242 × 10−2 < c2s
< 0.269 × 10−2

−107 < fequil

< −96.9
0.9 r < 0.033 0.936 × 10−3 < c2s

< 0.112 × 10−2
−279 < fequil

< −232
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+lensing +BAO +BK14 and Planck2018 TTT, EEE, TTE
and EET datasets at 68% CL, shows that the power-law
mimetic tachyon model is observationally viable and free
of instabilities, if 26.3 < n < 33.0 and 0.310 < α < 0.398.
We have also checked the mimetic tachyon model with

the intermediate scale factor a ¼ a0 exp ðbtβÞ. By this scale
factor, we have obtained ϵ, η, s, c2s and W in terms of the
intermediate parameters and warp factor. We have analyzed
the parameters c2s and W numerically and have shown that
the intermediate mimetic tachyon model in some ranges of
the model’s parameter space is instabilities-free. By per-
forming a numerical analysis on the perturbation param-
eters and comparing the results with Planck2018 TT, TE,
EEþ lowEþ lensingþ BAOþ BK14 and Planck2018
TT, TE, EE +lowE+lensing+BK14+BAO+LIGO and
Virgo2016 datasets, we have found some constraints on
the model’s parameters, which are shown in several figures

and tables. A numerical analysis on the non-Gaussian
feature of the primordial perturbation in the intermediate
mimetic tachyon model has shown that it is possible to have
the observationally viable values of the equilateral con-
figuration of the amplitude of the non-Gaussianity in this
model. In summary, using both Planck2018 TT, TE, EEþ
lowEþ lensingþ BAOþ BK14 and Planck2018 TTT,
EEE, TTE and EET datasets at 68% CL, shows that the
intermediate mimetic tachyon model is observationally
viable and free of ghost instabilities, if 0.778 < α <
0.810 and 0.116 < β < 0.130.
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