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The one-point probability distribution function (PDF) is a powerful summary statistic for non-Gaussian
cosmological fields, such as the weak lensing (WL) convergence reconstructed from galaxy shapes
or cosmic microwave background (CMB) maps. Thus far, no analytic model has been developed that
successfully describes the high-convergence tail of the WL convergence PDF for small smoothing scales
from first principles. Here, we present a halo-model formalism to compute the WL convergence PDF,
building upon our previous results for the thermal Sunyaev-Zel’dovich field. Furthermore, we extend our
formalism to analytically compute the covariance matrix of the convergence PDF. Comparisons to
numerical simulations generally confirm the validity of our formalism in the non-Gaussian, positive tail of
the WL convergence PDF, but also reveal the convergence PDF’s strong sensitivity to small-scale
systematic effects in the simulations (e.g., due to finite resolution). Finally, we present a simple Fisher
forecast for a Rubin-Observatory-like survey, based on our new analytic model. Considering the
fAs;Ωm;Σmνg parameter space and assuming a Planck CMB prior on As only, we forecast a marginalized
constraint σðΣmνÞ ≈ 0.08 eV from the WL convergence PDF alone, even after marginalizing over
parameters describing the halo concentration-mass relation. This error bar on the neutrino mass sum is
comparable to the minimum value allowed in the normal hierarchy, illustrating the strong constraining
power of the WL convergence PDF. We make our code publicly available at https://github.com/
leanderthiele/hmpdf.
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I. INTRODUCTION

While the cosmic microwave background (CMB) histor-
ically has been the driving force in cosmological parameter
inference, we are now experiencing a proliferation in
high-quality data from the late-time matter distribution.
In contrast to the primary CMB, late-time fields are
described by nonlinear clustering of matter, rendering
the distribution of many relevant observables highly
non-Gaussian. For such non-Gaussian fields, the problem
of extracting all information contained therein is unsolved;
while for Gaussian fields, such as the primary CMB, the
power spectrum is an optimal summary statistic containing
all the information, no such summary statistic is known in
the non-Gaussian case.
One late-time field of interest is the weak lensing (WL)

convergence. Weak gravitational lensing describes the
deflection of light by the matter distribution, imparting a
shear and magnification on the images of observed back-
ground galaxies or CMB fluctuations. The WL convergence

is a redshift-weighted measure of the integrated matter
density along the line of sight; thus, it is a powerful probe
of the matter distribution.
Since in the course of the nonlinear gravitational

clustering the matter distribution departs significantly from
Gaussianity, appreciable amounts of information leak
from the power spectrum into higher-order statistics.
This motivated previous studies to consider parameter
inference from such measures of non-Gaussianity, such
as the WL skewness and bispectrum [1–8]. An alternative
summary statistic is the one-point probability distribution
function (PDF), which simply constitutes the histogram
of WL convergence pixel values. Originally considered in
the context of peak statistics [9,10], more recent studies
have demonstrated that the WL convergence PDF can add
significant constraining power in parameter inference, not
only in the σ8-Ωm plane, but also on the neutrino mass sum
(e.g., Refs. [11–13]).
In some respects WL shares similarities with the thermal

Sunyaev-Zel’dovich (tSZ) effect, which describes the
scattering of CMB photons by hot electrons residing mostly
in massive halos. Because the tSZ signal is approximately*lthiele@princeton.edu
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proportional to M5=3
halo, the halo model allows an excellent

description of the tSZ PDF. This fact was recently utilized
in order to construct a semianalytic model for the tSZ PDF
[14,15] (here “semi” accounts for the fact that the model
contains some functions that are most accurately fixed by
fitting to numerical simulations).
In this work, we demonstrate that the halo-model

formalism developed in the tSZ context can be applied
to the WL convergence PDF as well, with small modifi-
cations due to two complications: 1) in contrast to tSZ, the
WL convergence signal does not include the additional
M2=3

halo temperature bias, which brings the distribution closer
to Gaussian and renders the halo model slightly less
accurate; 2) furthermore, while the tSZ signal is strictly
positive, the WL convergence receives negative contribu-
tions from underdense regions (voids). In contrast to
previous works on the subject [6,16–18], our formalism
is better suited to describe relatively large positive values of
the convergence PDF (which are sourced by massive
halos), while performing less well in the only mildly
nonlinear regime and especially at negative convergences.
As we will show, our formalism is also not very accurate
when the convergence field is smoothed on large angular
scales. Perturbative methods [1,2,19–23], and the large
deviation statistics formalism developed in Refs. [24,25]
are better suited in such a situation. In terms of physical
input, our formalism is quite similar to the stochastic
numerical method developed in Refs. [26–28].
Besides a theoretical model for the expected form of the

WL PDF, in order to do parameter inference we also require
a prescription for its statistical distribution. While this
distribution is non-Gaussian and difficult to compute, a first
step is the computation of the covariance matrix. In terms of
practical applications, the covariance matrix can be useful if
the PDF is sufficiently downsampled such that the like-
lihood can be computed in the Gaussian approximation, as
was done in Ref. [14]; alternatively, non-Gaussian infer-
ence methods such as likelihood-free inference [29] can
benefit from the covariance matrix as a starting point. In
view of these potential applications, we generalize the halo-
model formalism to compute not only the one- but also the
two-point PDF, the latter being sufficient for computation
of the covariance matrix.
The remainder of this paper is structured as follows. In

Sec. II, we present the theoretical part of this work, starting
from the general theory of weak gravitational lensing and
proceeding to our halo-model formalism for the one- and
two-point PDFs. There, we also discuss the modifications
to the formalism in comparison to the tSZ case. In Sec. III,
we present various results obtained with our formalism
for the one-point PDF: a number of calculations intended
to build up intuition on the WL convergence PDF, and
comparisons to two independent sets of numerical simu-
lations. In Sec. IV, we turn to the two-point PDF and the
covariance matrix of the one-point PDF. We perform a null

test and compare the analytic covariance matrix to a large
N-body simulation. In Sec. V, we utilize the previous
results to produce a simple Fisher parameter forecast. We
conclude in Sec. VI. Further analytic calculations useful in
building up intuition are presented in Appendix A, some
details on the numerical evaluation of the formalism are
collected in Appendix B, and in Appendix C we discuss the
validity of several approximations.

II. THEORY

A. Background

Gravitational lensing distorts and magnifies the shapes
of distant sources (e.g., galaxies or CMB fluctuations) as a
result of the projected gravitational potential of matter
along the line of sight (LOS), including dark and baryonic
matter. In the weak lensing limit, these effects are encoded
in the lensing convergence field, κðn̂Þ:

κðn̂Þ ¼
Z

∞

0

dzδðxðχðzÞn̂; zÞÞWκðzÞ; ð1Þ

where χðzÞ is the comoving distance to redshift z, δ is the
matter density fluctuation, δðxÞ≡ ðρðxÞ − ρ̄Þ=ρ̄, and the
lensing projection kernel is given by

WκðzÞ ¼ 3

2
ΩmH2

0

ð1þ zÞ
HðzÞ

χðzÞ
c

Z
∞

z
dzs

dn
dzs

ðχðzsÞ − χðzÞÞ
χðzsÞ

;

ð2Þ

where dn=dzs is the distribution of sources, normalized
such that

R
dzdn=dz ¼ 1. Note that for CMB lensing,

dn=dz ¼ δDðz − z�Þ, where δD is the Dirac δ function and
z� ≈ 1100 is the redshift of last scattering. For weak lensing
due to galaxies, dn=dz is generally a more complicated
function. Note that we have specialized to the case of a flat
universe in Eqs. (1) and (2). For reference, the lensing
convergence is related to the lensing potential, ϕðn̂Þ, via
κðn̂Þ ¼ −∇2ϕðn̂Þ=2 (where ∇2 is the two-dimensional
Laplacian on the sky), or κl ¼ lðlþ 1Þϕl=2 in harmonic
space.
Given a 3D halo density profile [e.g., the Navarro-Frenk-

White (NFW) profile [30]], we can define the lensing
convergence profile, κðθ;M; zÞ for a halo of mass M at
redshift z:

κðθ;M; zÞ ¼ Σ−1
critðzÞ

Z
LOS

ρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ d2Ajθj2

q
;M; z

�
dl; ð3Þ

where ρðr;M; zÞ is the halo density profile, dAðzÞ is the
angular diameter distance to redshift z, and ΣcritðzÞ is the
critical surface density (in physical units here) for lensing at
redshift z assuming a source distribution dn=dz,
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Σ−1
critðzÞ ¼

4πGχðzÞ
c2ð1þ zÞ

Z
∞

z
dz0

ðχðz0Þ − χðzÞÞ
χðz0Þ

dn
dz0

ð4Þ

¼ 8πG
3ΩmH2

0

HðzÞ
cð1þ zÞ2W

κðzÞ: ð5Þ

For a spherically symmetric density profile, the conver-
gence profile is azimuthally symmetric, i.e., κðθ;M; zÞ ¼
κðθ;M; zÞ. For the NFW density profile, analytic forms
exist for the convergence profile. One subtlety, however,
is the nonconvergence of the enclosed mass in the NFW
profile as r → ∞, which thus necessitates a radial cutoff in
calculations using this profile.

B. WL PDF in the halo model

In Ref. [15], an analytic approach based on the halo
model was constructed to describe the one-point PDF of
the tSZ field, building on a simpler model presented in
Ref. [14]. In particular, the effects of halo overlaps along
the LOS and halo clustering, which were neglected in
Ref. [14], were included in Ref. [15]. However, the
expressions derived in Ref. [15] are more broadly appli-
cable to the one-point PDF of any (projected) cosmic field
that can be modeled in a halo-based approach. The halo
model approach is very accurate for the tSZ field as this
field is heavily dominated by contributions from massive
halos (e.g., Refs. [31–33]), due to the temperature depend-
ence of the tSZ signal. A primary goal of this paper is to
assess the accuracy of this model for other cosmic fields, in
particular the WL convergence field. Thus, as a first step to
model the WL convergence PDF, we can simply use the
expressions from Ref. [15], but with the y (tSZ) profile
replaced by the κ profile defined in Eq. (3). The rest of
the formalism derived in that work then goes through
unchanged.
For completeness and ease of reference in later sections,

we include the derivation of the one-point κ PDF in this
formalism here. In some places, algebraic manipulations
are omitted for brevity; we refer the interested reader to
Ref. [15] for full details.

1. One-halo term

We refer to the (differential) κ one-point PDF as PðκÞ.
Considering a bin spanning ½κi; κiþ1�, we define the binned
version of the PDF as

pi ¼
Z

κiþ1

κi

dκPðκÞ: ð6Þ

The fundamental concept underlying the model developed
in Refs. [14,15] is that pi quantifies the sky fraction
subtended by κ values in the range ½κi; κiþ1�. For an
individual spherically symmetric halo with an azimuthally
symmetric projected κ profile κðθÞ, this sky fraction is

simply the area in the annulus between θðκiÞ and θðκiþ1Þ,
where θðκiÞ is the angular distance from the center of the
profile to the radius where κðθÞ ¼ κi. If we then assume
that halos are sufficiently rare that they never overlap on the
sky, the one-point PDF is simply given by adding up the
annular area contributions from all halos:

pi ¼
Z

dzdM
χ2

H
dn
dM

πðθ2ðκiÞ− θ2ðκiþ1ÞÞ þ δið1−FhalosÞ;

ð7Þ

where dnðM; zÞ=dM is the halo mass function (i.e., the
number of halos of mass M at redshift z per unit mass and
comoving volume), θðκ;M; zÞ is the inverse function of
κðθ;M; zÞ, Fhalos is the total sky area subtended by all halos
(assuming some radial cutoff for the halo profiles), δi is
unity if κ ¼ 0 lies in the bin and zero otherwise, and
redshift and mass dependences have been suppressed in the
equation for compactness. Equation (7) is only accurate in
the limit in which halos do not overlap on the sky;
moreover, it neglects effects due to the clustering of
halos. While these assumptions are (moderately) accurate
for the tSZ field, they are not accurate for the WL
convergence field.
We thus seek a more general approach, in which these

limiting assumptions are discarded. The basic ideas and
results for our improved formalism were presented for the
tSZ field in Ref. [15]; here, we adapt the formalism to the
WL convergence field and introduce a more compact
notation. Our goal is to compute the one- and two-point
PDFs, PðκaÞ and Pðκa; κb;ϕÞ, where ϕ is the angular
separation between two sky locations at which we measure
the two convergence values κa and κb. It will be convenient
to work in Fourier space, introducing

Pa ≡
Z

dκaeiλaκaPðκaÞ; ð8Þ

Pab ≡
Z

dκadκbeiðλaκaþλbκbÞPðκa; κb;ϕÞ; ð9Þ

where we have abbreviated the notation for conciseness.
We will separate the PDFs into a one- and a two-halo

term, writing P ¼ P1hP2h. In this section we compute the
one-halo term, i.e., we ignore the clustering of halos for the
moment. We introduce two further pieces of notation: we
denote the projected halo mass function

n≡ nðM; zÞ ¼ χ2ðzÞ
HðzÞ

dnðM; zÞ
dM

; ð10Þ

which gives the expected number of halos per unit mass
and redshift interval in a unit solid angle; furthermore we
introduce the quantities
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K̂ðθÞ
a ≡ eiκðθÞλa − 1; ð11Þ

KðlÞ
a ≡

Z
θ
K̂ðθÞ

a J0ðlθÞ; ð12Þ

where κ are the convergence profiles,
R
θ ≡

R
2πθdθ and we

have again suppressed the mass and redshift dependences.
First, we consider a narrow bin of width dMdz in mass-

redshift space, such that halo overlaps can be neglected for
the infinitesimal number of halos in this bin. For a given
realization of the halo distribution, we have at the arbitrarily
chosen origin 0

eiλaκð0Þ ¼ 1þ
X
h

K̂ðθhÞ
a ; ð13Þ

where the sum runs over all halos in the given mass-redshift
bin and θh is their separation from the origin. Thus, we find
for the one-point PDF

P1h
a ¼ heiλaκð0Þih

¼ 1þ dMdzn
Z
n̂
K̂ðn̂Þ

a

¼ 1þ dMdznKð0Þ
a ; ð14Þ

where the subscript h indicates that we are averaging over
realizations of the halo distribution. Likewise, we find for
the two-point PDF

P1h
ab ¼ heiλaκð0ÞeiλbκðϕÞih

¼ 1þ dMdzn

�
Kð0Þ

a þ Kð0Þ
b þ

Z
n̂
K̂ðn̂Þ

a K̂ðn̂−ϕÞ
b

�

¼ P1h
a P1h

b

�
1þ dMdzn

Z
l
KðlÞ

a KðlÞ
b J0ðlϕÞ

�
; ð15Þ

where we have introduced
R
l≡

R
ldl=2π. Note that to

the order considered so far, terms of the form 1þ dMdzA
can equally well be written as expdMdzA. Under the Born
approximation, the convergence is an additive quantity.
Thus, the complete PDFs can be obtained by convolution,
which is equivalent to multiplication in Fourier space:

P1h
a ¼ exp

Z
M;z

Kð0Þ
a ; ð16Þ

P1h
ab

P1h
a P1h

b

¼ exp
Z
M;z;l

KðlÞ
a KðlÞ

b J0ðlϕÞ; ð17Þ

where we have introduced
R
M ≡ R

dMn,
R
z≡

R
dz for

brevity. As we have demonstrated in Ref. [15], expanding
the exponentials to first order leads to the approximate
model from Ref. [14]. In this sense, terms of order np in the

Taylor expansion of P1h can be interpreted as describing
overlaps of p halos along the line of sight.

2. Two-halo term

The two-halo term arises from the dependence of halo
density on the underlying long-wavelength linear density
field, which at sky location n̂ and redshift z we denote by

δðn̂Þ≡ δlinðn̂; zÞ: ð18Þ

The change in the halo density can to a first approximation
be written as

n → nðn̂Þ ¼ n½1þ bδðn̂Þ�; ð19Þ

where b≡ bðM; zÞ is the linear halo bias. In order to
compute the two-halo term in the PDFs, we proceed in
two steps: first, we compute the correction to the one-halo
term in a given realization δ, obtaining Pδ, and then we
perform the average over realizations. We note that in
contrast to Ref. [15] we denote by Pδ only the multipli-
cative correction factor to the PDF. Using the substitution in
Eq. (19), the required correction factors can be written
down immediately:

Pδ
að0Þ ¼ exp

Z
z
αaδð0Þ; ð20Þ

Pδ
abð0Þ ¼ exp

Z
z
αaδ

�
−
ϕ
2

�
þ αbδ

�
ϕ
2

�
þ βabδð0Þ; ð21Þ

where we have introduced

αa ≡
Z
M
bKð0Þ

a ; ð22Þ

βab ≡
Z
M;l

bKðlÞ
a KðlÞ

b J0ðlϕÞ: ð23Þ

We take the opportunity to point out a subtlety here: because
we are working with a fixed realization δ at the moment,
isotropy is broken and the PDFs depend explicitly on sky
location. Thus, we need to assume that the linear density field
δ varies sufficiently slowly that the halo model formalism we
have been assuming still makes sense. As we will explicitly
demonstrate inAppendixA 1, this assumption is equivalent to
the statement that the linear matter correlation function
vanishes on scales similar to typical halo radii. Now all that
is left to do is to perform the average over realizations of δ,
giving the clustering corrections

P2h ¼ hPδiδ: ð24Þ

We remind the reader that for light-cone integrals fiðn̂Þ ¼R
z Wiδðn̂Þ the Limber approximation allows us to write
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hfið0ÞfjðϕÞiδ ¼
Z
z
HζðϕÞWiWj; ð25Þ

where ζðϕÞ is the redshift-dependent line-of-sight projected
matter correlation function,which in terms of the linearmatter
power spectrum can be written as

ζðϕÞ ¼
Z

kdk
2π

Plinðk; zÞJ0ðkϕχðzÞÞ: ð26Þ

Utilizing the Limber approximation and the identity hexi ¼
ehx2i=2 valid for Gaussian distributed x, we obtain

P2h
a ¼ exp

Z
z

Hζð0Þ
2

α2a; ð27Þ

P2h
ab

P2h
a P2h

b

¼ exp
Z
z
H

�
αaαbζðϕÞ þ

1

2
β2abζð0Þ

þ βabðαa þ αbÞζ
�
ϕ

2

��
: ð28Þ

This concludes the main theoretical part of this work. We
would like to point out two features of the formalism
presented here. 1) Although we have assumed that halos
are only described by their mass and redshift, one could
consider additional labels c (e.g., related to halo environment
or formation history). Thiswould introduce a c dependence in
thehalomass functionn and add further integrations over c on
equal footing with the mass integrations (the redshift inte-
grations are special because of the simplification introduced
by the Limber approximation). 2) The general formalism
applies to any N-point PDF. For example, for the three-point
PDF one would have to compute three-index objects γijk that
are analogous toαi and βij. However, the “momentum” labels
lwould turn into vectorial quantities now, which presumably
complicates the required integrations considerably.

C. WL PDF contributions from nonvirialized
matter and voids

The expressions above only account for the contributions
to the WL κ PDF due to matter in halos (“virialized
matter”). For the Compton-y field, this approximation was
very accurate due to the temperature dependence of the tSZ
signal, which strongly biases the y field toward electrons
in massive halos. For κ, this approximation is less accurate,
as the WL convergence field is an unbiased tracer of the
matter distribution. Moreover, in contrast to Compton-y,
there are negative-signal regions in the κ field (i.e.,
projected underdensities in the matter distribution). We
thus require some method to treat both the “matter outside
of halos” and “voids.”
With regard to the matter outside of halos, one option

would be the following. We assume that the rest of the κ
map (not accounted for by the halo-based model) is purely

a Gaussian random field (GRF) that is uncorrelated with the
virialized-halo part of the κ map. We can compute the
variance of this GRF (call it the “residual variance”) by
simply using the halo model to compute the angular power
spectrum Cκκ

l and truncating the halo model integrals at the
M values above which the explicit profile-based calculation
is used (so that the variance contributed by those objects is
not double counted). Alternatively, we could compare the
variance of the halo-model PDF with the variance obtained
from the “Halofit” fitting function [34,35], and extract the
residual variance from the difference of these quantities.
After computing the residual variance, a Gaussian PDF
of this width can be convolved with the halo-based PDF to
obtain the final κ PDF.
We implement both approaches described above. We

find the changes in the PDF with respect to the unmodified
halo-model-only result to be extremely minor. The first
approach suffers from the problem that the halo model
becomes ill defined in the low-mass regime relevant to this
calculation, and thus the small residual variance is quite
uncertain. On the other hand, we frequently find the
variance computed from Halofit to be smaller than the
variance deduced from the halo-model PDF, invalidating
the basic assumption. Thus, in this work we do not include
either of these ideas for incorporating convergence con-
tributions from matter outside of halos, instead using only
the halo model described in the previous section. If exact
results are necessary, we recommend testing stability with
respect to the lower limit in mass integrations.
With regard to the negative-κ voids, a simple prescription

is based on the fact that the mean hκi ¼ 0 by construction.
Thus, to a first approximation, we simply compute the halo-
model PDF as described above and then shift it such that
the physical constraint is enforced. This idea clearly fails to
provide an accurate description of the negative-κ tail of the
PDF. It also is not immediately obvious that it leads to good
predictions for the positive-κ tail, primarily because it does
not take into account void-halo correlations. Thus, com-
parison to numerical simulations will be crucial in assess-
ing the accuracy of this simple approximation.

III. RESULTS: ONE-POINT PDF

Before discussing various results obtained with the
formalism developed in the previous section, we mention
several choices for fitting functions and numerical settings.
For the halo mass function dn=dM and the linear bias b,
we use the fitting functions of Ref. [36]. We describe halos
with anNFWprofile, using the concentration-mass relationof
Ref. [37]. We use the Colossus package [38] for calculations
in the halomodel, andCAMB [39] andCLASS [40,41] (with
Halofit corrections from Refs. [34,35]) for matter and WL
convergence power spectra. As mentioned before, the NFW
profile necessitates a radial cutoff; we find the WL con-
vergence PDF to be nearly independent of this cutoff and
choose it at rmax ¼ 1.6rvir, where rvir is computed according
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to Ref. [42] and the prefactor of 1.6 is chosen to obtain good
agreement between the halo-model-computed and Halofit-
computed WL convergence power spectra. Unless otherwise
stated, all halo masses are given in terms ofM ≡M200c, and
we choose integration limits 11 ≤ log10 M=h−1 M⊙ ≤ 16,
so that the PDF is very well converged (as will be shown
in Sec. III C). For simplicity, we specialize to a Dirac-δ
distribution of source galaxies, dn=dz ¼ δDðz − zsÞ, at a
single source redshift zs. In order to incorporate pixelization
effects, we convolve the convergence profiles with a window
function

Wpix
1pt;l ¼ 4

π

Z
π=4

0

dφsincðcosðφÞlaÞsincðsinðφÞlaÞ; ð29Þ

where a is half the pixel side length. This prescription is
only approximate: there is no precise method to incorporate
quadratic pixels while keeping the convergence profiles
azimuthally symmetric. However, the error incurred is neg-
ligible for the purposes of thiswork.Note that it would also be
irrelevant in any real parameter inference, since for realistic
shape noise levels the Wiener filter one would apply to the
map (as described in Sec. V) cuts off harmonic-space modes
before the pixelization effect becomes relevant.
Having developed the analytic formalism in the previous

section, we now proceed to discuss various results in the
following subsections. In Sec. III A, we examine the effect
of corrections (overlaps and clustering) on the WL one-
point PDF. In Sec. III B, we compare our model’s pre-
dictions to results from two sets of cosmological N-body
simulations. In Sec. III C, we disentangle the contributions
from different halo mass and redshift intervals to the PDF.
In Sec. III D, we discuss the dependence of the WL PDF on
cosmological and concentration model parameters.

A. Impact of overlaps and clustering

As discussed before, our formalism utilizes a halo-
model-based framework similar to the tSZ PDF calculation
in Ref. [14], with the crucial difference that we incorporate
corrections arising from halo clustering and overlaps along
the line of sight (as developed in Ref. [15]). Naturally, we
should examine the size of these corrections. In Fig. 1, we
plot the exact result from our formalism in red, while the
result neglecting halo clustering is represented in green.
As noted in Ref. [14], the result neglecting overlaps is only
applicable if the minimum halo mass contribution is
relatively large; thus, we plot two versions of the PDF
neglecting both overlaps and clustering with different
minimum masses in solid/dashed blue. These results are
shown for four different choices of source redshift ranging
from zs ¼ 1 to 2.5.
We see that both clustering and overlaps constitute

substantial corrections, of order a few 10%. This is in
marked contrast to the conclusion we drew in the tSZ case,
where the clustering effect was subdominant and did not

exceed a few percent. As we shall see in Sec. III C, the
convergence PDF receives larger contributions from low-
mass halos at lower redshifts in comparison to the tSZ PDF,
which explains the more pronounced clustering contribu-
tion. We note the unphysical divergence of the results
neglecting overlaps near κ ¼ 0, which is removed by the
improved model presented in this work.

B. Comparison to numerical simulations

We compare results from our formalism to WL con-
vergence PDFs extracted from two different sets of N-body
simulations, namely MassiveNuS1 (Sec. III B 1) [43] and
Takahashi et al.2 (hereafter T17) (Sec. III B 2) [44]. Both
of these simulations provide ray-traced WL convergence
maps. We provide further details on each simulation
analysis below.

1. Comparison to MassiveNuS

We analyze a set of 104 ray-traced weak lensing
convergence maps from the MassiveNuS simulation suite,

FIG. 1. The effects of clustering and overlaps for four different
source redshifts zs. The PDF neglecting clustering (green) seems
to show similar behavior to what was observed in the tSZ case
[15], but the clustering effect is much more pronounced. Note that
the shift to hκi ¼ 0 does not make sense in the no-overlaps
formalism: by assumption, the sky is infinitely large so the
condition is automatically satisfied (this corresponds to the
divergence at κ ¼ 0).

1http://astronomy.nmsu.edu/aklypin/SUsimulations/Massive
NuS/.

2http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.
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which are derived from a set of N-body simulations that
include dark matter and an approximate treatment of
massive neutrinos via a linear response method [43].
Each convergence map is 3.5 × 3.5 deg2 with 5122 square
pixels, corresponding to a pixel side length of 0.41 arcmin.
The effect of the pixel window is treated in our analytic
calculations via Eq. (29). The simulations include maps
for a wide range of cosmological parameters, but we
consider only the fiducial simulated cosmology, with
parameters given by Ωm ¼ 0.3, Ωb ¼ 0.046, h ¼ 0.7,
As ¼ 2.1 × 10−9, ns ¼ 0.97, and zero neutrino mass
(σ8 ¼ 0.8523 is a derived parameter). We use these
parameters in all analytic calculations that compare to
MassiveNuS.
We analyze convergence maps constructed with

δ-function source planes at various redshifts. We consider
κ values ranging from ½−5σκ; 20σκ�, where σκ is the
variance of the κ field measured from the full simulation
set for each source redshift option. The bins are linearly
spaced with width σκ=5. In all PDF measurements, we
enforce the constraint that hκi ¼ 0.
To ensure that the simulation results are robust to cosmic

variance fluctuations resulting from the small map size,
we also analyze a set of 105 convergence maps that were
produced for covariance matrix estimation at the fiducial
cosmology, using additional, independent N-body simu-
lations. We subdivide this large set into ten subsets of
104 maps each, and verify that any fluctuations in the
measured κ PDFs across the subsets are negligible.
In Fig. 2, we plot a comparison between the fiducial

analytic one-point PDF (solid red) and the PDF measured
in MassiveNuS (black), for four different source redshifts,
zs ¼ 1, 1.5, 2, 2.5. While the discrepancies at negative κ are
entirely expected, the large differences in the positive-κ tail
are not expected given our intuition that the halo model
should perform very well in this regime. In order to explain
these discrepancies, we plot WL convergence power
spectra in Fig. 3. We observe good agreement between
the Halofit result (blue) and the fiducial result (solid red)
computed using the standard halo model expressions (e.g.,
Ref. [45]). On the other hand, MassiveNuS lacks power
for l≳ 103. This is likely related to small-scale resolution
effects in the simulation, presumably a combination of
finite mass resolution and force softening (e.g.,
Refs. [46,47]). As a simple test of whether these resolution
effects can explain the discrepancies seen in the one-point
PDFs, we calibrate a k-space filter with which we smooth
the NFW density profiles such that the resulting conver-
gence power spectra match the MassiveNuS results. We
find the filter

WðkÞ ¼ ½1þ ðkRÞ2�−0.7; ð30Þ

where R ¼ 0.17h−1 Mpc comoving, to yield relatively
good agreement. The resulting power spectra are plotted

in dashed red in Fig. 3. Having calibrated the filter WðkÞ
on the power spectra, we then compute the resulting one-
point PDF, plotted in dashed red in Fig. 2. We observe
much better agreement now. In the part of the PDF that is
relatively close to Gaussian the analytic result matches
the simulations almost exactly. Small discrepancies
remain in the high-κ tail, which is not surprising since
our smoothing filter was calibrated solely on the two-
point correlation function, while the one-point PDF in the
tail depends strongly on higher-order correlation func-
tions. Thus, we conclude that the resolution effects
leading to a lack of power at high l are likely responsible
for the high-κ discrepancy between our model and the
simulation result, rather than a deficiency of our halo
model formalism.

2. Comparison to T17

We analyze a set of 108 full-sky, ray-traced weak lensing
convergence maps from T17 [44], which are derived from a
suite of large dark-matter-only N-body simulations. The
maps are provided in HEALPix [48] format at resolution
Nside ¼ 8192, corresponding to an approximate pixel scale

FIG. 2. Comparison between the MassiveNuS simulations
results (black) [43] and our analytic model (red) for the WL
convergence one-point PDF, for four different source redshifts.
Solid red: fiducial result of our model; dashed red: the result
obtained by smoothing the NFW density profiles with a k-space
filter calibrated on the convergence power spectra measured in
MassiveNuS, as described in the text and illustrated in Fig. 3.
This filter captures the non-negligible effects due to the finite
resolution of the simulation. Here, as well as in the other plots in
which we show simulation data, the error bars would be invisible
by eye.
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of 0.43 arcmin. The parameters used in the simulations are
Ωm ¼ 0.279, Ωb ¼ 0.046, h ¼ 0.7, σ8 ¼ 0.82, ns ¼ 0.97,
and zero neutrino mass. We match these parameters in all
analytic calculations that compare to T17.
In our comparison to the T17 simulations we focus on

the effect of smoothing the convergence maps. Thus,
we only produce results for a single source redshift,
zs ¼ 1.0334, but apply Gaussian filters of varying full-
width half-maximum (FWHM) values to the convergence
maps. We consider κ values ranging from ½−5σκ; 20σκ�,
where σκ is the variance of the κ field measured from
the full simulation set for each choice of smoothing
filter. The bins are linearly spaced with width σκ=5. In
all PDF measurements, we enforce the constraint that
hκi ¼ 0.
The results are plotted in Fig. 4. Black curves are

simulation results, while red is the analytic result.
Focusing on the upper panel [where no additional smooth-
ing has been applied to the maps apart from the inherent
pixelization, which is treated via Eq. (29)], we again
observe a discrepancy between the fiducial analytic result
(solid red) and the simulation. As a further test to our
hypothesis that the discrepancy can be explained with
simulation resolution effects, we again construct a k-space
smoothing filter for the NFW profiles. We choose the
redshift-dependent filter

Wðk; zÞ ¼ 1

1þ kRðzÞ ;

RðzÞ ¼ 0.055h−1 Mpc × ½logð1þ zÞ þ 0.07�: ð31Þ

The function RðzÞ was chosen to give a good fit to the
softening lengths employed in the T17 simulation, with
some adjustments of the prefactor (our R is about 10%
smaller than the softening length). We find the resulting
one-point PDF to be largely independent of the precise
functional form chosen for Wðk; zÞ, as long as it decreases
steadily to ∼0.5 when kR ∼ 1. The natural correspondence
between the smoothing scale R and the softening length
is a further indication that simulation resolution effects
are responsible for the observed discrepancies in the one-
point PDF.
A second purpose of this section is to evaluate how well

our formalism can describe the PDF of convergence maps
smoothed with a Gaussian filter. As we explicitly show in
Appendix A 2, as the smoothing scale increases the PDF
becomes closer to Gaussian (as is physically expected)
and receives larger contributions from the two-halo term.
These facts imply that our formalism, which is most
accurate for the non-Gaussian parts of the PDF that are
dominated by massive halos, is expected to perform worse.

FIG. 3. Convergence power spectra. Blue is the Halofit result,
while solid red is our fiducial analytic result from the halo model.
The MassiveNuS power spectra (black) show a deficiency in
power at l≳ 103, likely due to resolution effects. The dashed red
lines are analytic power spectra obtained by smoothing the NFW
density profiles, as described in the text, in order to mimic the
resolution effect.

FIG. 4. Comparison between the T17 simulation results (black)
[44] and the analytic result (red) for the convergence one-point
PDF, for four different Gaussian smoothing scales labeled by
their FWHM in the panels. Solid red: fiducial result of our model;
dashed red: the result obtained by smoothing the NFW density
profiles; dotted red: the result obtained by convolving with a
Gaussian such that the final variance matches the variance
measured in the simulation. Note that in the top and bottom left
panels the analytic variance is slightly larger than the one
measured in the simulations, and thus no dotted line is plotted.
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Thus, comparison to simulated maps is a useful test of the
domain of validity. This is plotted in the lower three panels
of Fig. 4. We observe that, as should be expected, the
difference between solid and dashed red becomes negli-
gible as the smoothing scale increases. However, our
formalism does not recover the simulation PDFs very well.
As the smoothing scale increases, the PDF receives more
and more contributions from nonvirialized matter, which is
not included in our halo-model formalism. One attempt to
solve this problem is to convolve the analytic PDF with a
Gaussian such that the resulting variance hκ2i is equal to the
variance measured in the simulation. The results of this
procedure are plotted as dotted red lines. Although the
agreement (naturally) gets better, it is still far from perfect.
One possible explanation is the fact that we do not describe
the negative-κ regime accurately enough in our formalism,
and upon convolution with a relatively broad Gaussian this
inaccuracy leaks into the positive-κ part.
Thus, we draw two conclusions from our comparison

with the T17 simulations. 1) We have presented further
evidence that convergence one-point PDFs measured in
simulations are susceptible to large errors due to small-
scale resolution effects. Thus, the discrepancies observed in
Figs. 2 and 4 do not invalidate our analytic formalism. 2)
Our approach seems inadequate to generate accurate
predictions for the PDF of convergence maps smoothed
over scales larger than a few arcminutes. Perturbative
methods are likely better suited to compute theoretical
predictions in this regime.

C. Halo mass and redshift contributions

We now proceed to build up some physical intuition on
the dominant contributions to the convergence PDF. Since
we label halos solely by their mass and redshift, we
disentangle the contributions that different mass and red-
shift intervals give to the PDF. In Fig. 5, we plot heat maps
of the mass and redshift contributions to the PDF for source
redshifts zs ¼ 1 and 2.5. Each of the three rows represents
a different bin of the PDF at comparable values of the
convergence κ in units of the respective standard deviation
σκ. Each pixel in the individual heat maps corresponds to
the fraction of the final value of the PDF if all masses and
redshifts smaller than or equal to the one corresponding to
the pixel are included (thus, the upper right corner has by
definition a value of one in each heat map). Note that
overlaps make the interpretation of these heat maps some-
what complicated, in particular for low values of κ. In terms
of redshift evolution, we can clearly see the growth of
structure modulated by the lensing kernel. In terms of mass
contributions, the intuitive picture that higher values of κ
are sourced by more massive objects is confirmed.

D. Parameter dependence

In this section, we discuss the dependence of the
convergence one-point PDF on the cosmological model

as well as the halo concentration-mass relation. The results
presented here are a prerequisite for the Fisher forecast in
Sec. V, but are also useful as a means to build up intuition.
We show results for a single source redshift zs ¼ 1.
We choose our fiducial cosmology as h¼0.7,Ωm ¼ 0.3,

Ωb¼0.046, As¼2.1×10−9, ns¼0.97, and Σmν¼0.06 eV.
We assume the normal hierarchy for the neutrino masses.
Following Ref. [37], we write the concentration-mass
relation as

cðM; zÞ ¼ A

�
M
M0

�
B
�
1þ z
1þ z0

�
C
; ð32Þ

where we choose M0 ¼ 1014.5h−1 M⊙, z0 ¼ 0.35, so as to
break the leading degeneracy between the three parameters
A, B, C (cf. Fig. 5).
Our results are shown in Fig. 6, with varied cosmology in

the left panel and varied concentration model in the right
panel. The solid/dashed lines generally represent parameter
variations by �10%, except for the neutrino mass sum,
where solid corresponds to 0.12 eVand dashed to massless
neutrinos. Note that the residual curves for Ωm and A were
shrunk by the stated factors to increase readability. With
regard to varied cosmological parameters, with a fixed
fractional change Ωm has by far the strongest influence on

FIG. 5. Cumulative mass and redshift contributions to the
PDF for source redshifts 1 and 2.5 (columns). The rows represent
different values of the convergence in units of the standard
deviation. Note the different vertical scales in different rows.

ACCURATE ANALYTIC MODEL FOR THE WEAK LENSING … PHYS. REV. D 102, 123545 (2020)

123545-9



the PDF. From the slight shape difference in the residual
curves, we can hope that the degeneracy between neutrino
mass sum and other parameters is not too large. With regard
to the concentration model, the amplitude has by far the
largest effect, while the variation with halo mass and
redshift are of minor importance. This finding rests on
the fact that the mass and redshift integrands are relatively
sharply peaked aroundM0, z0 for our simple Dirac-δ source
distribution (cf. Fig. 5), a condition that may not be met in
the case of a more realistic source distribution.

IV. RESULTS: TWO-POINT PDF

As numerical evaluation of the two-point PDF is some-
what involved, we collect some useful simplifications in
Appendix B. In order to validate the analytic formalism for
the two-point PDF, and by extension the covariance matrix,
we perform two tests, detailed in the following.

A. Two-point correlation function

In Fig. 7, we plot a comparison between the (isotropic)
two-point correlation function obtained in our formalism
with the result predicted by the Halofit fitting function (for
sources at zs ¼ 1). Note that while the one-halo term can be
directly computed in our formalism, the two-halo term is
simply inferred as the difference of the other two curves.

The top x axis in the figure indicates the comoving scale
at the approximate redshift where the main contribution to
the one-point PDF is sourced. The small discrepancies on
large scales are due to the relatively large minimum halo
mass chosen in the computation. We confirmed that the
precise choice of this cutoff has no effect on the covari-
ance matrix. Note that the relatively good agreement on
large angular scales is a good indication that we are
treating the halo clustering effect correctly (in fact, this is
the first direct validation, since the comparison of the one-
point PDF to numerical simulations is complicated by
simulation resolution effects). However, as we show in
Appendix A 1, the correlation function is not sensitive to
all terms in the two-point PDF. The discrepancies on small
scales are likely stemming from the Halofit rather than
the halo model side, since we do not expect Halofit to be
accurate on these rather nonlinear scales. (Another pos-
sible explanation would be deviations from the NFW
profile on small scales in the numerical simulations used
to calibrate Halofit.) We point out that this type of plot is
useful to identify numerical instability in a calculation of
the covariance matrix.

B. Covariance matrix

Given the one- and two-point PDFs, the covariance
matrix of the one-point PDF can be computed as

FIG. 6. Dependence of the convergence one-point PDF on
cosmology (left panel) and concentration model (right panel). For
an explanation of the parameters A, B, C see the text. Solid/
dashed lines represent in-/decreases of the respective parameter
by 10%, except for the neutrino mass sum Σmν, for which the
fiducial model is 0.06 eV while solid/dashed represent 0.12 and
0 eV respectively.

FIG. 7. Comparison between the two-point correlation function
reduced from our formalism for the two-point PDF and the
Halofit computation, for sources at zs ¼ 1. Small discrepancies
on large scales are related to the choice of radial cutoff or
minimum halo mass. The discrepancies on small scales are likely
due to inaccuracies of Halofit in the very nonlinear regime.
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Covab ¼
1

Npix

X
ϕ

½PabðϕÞ − PaPb�: ð33Þ

Here, the indices label the κ bins, and the sum runs over
all pixel separations in a given map. Npix is the number
of pixels in the map, i.e., related to the sky coverage.
In practice, it is accurate enough to explicitly perform
the sum over pixels for the smallest separations and
approximate the remaining summation by an integral.
Note that Pabðϕ ¼ 0Þ ¼ Paδab.
We measure the covariance matrix using the 108 full-sky

T17 simulations and compare it to our analytic result. As
discussed in Sec. III B 2, resolution issues appear to cause a
discrepancy between the analytic result and the T17 (and
also MassiveNuS) simulations. Thus, in order to make the
comparison as direct as possible, we compute the covari-
ance matrix with the smoothed NFW profiles described
before, corresponding to the dashed red line in the top panel
of Fig. 4.
In the bottom panel of Fig. 8, we show a comparison of

the correlation matrices (i.e., Covab=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CovaaCovbb

p
). We

observe good agreement in the general structure. The
analytic model is able to recover the transition to anti-
correlation at low κ (albeit displaced by about one bin).

The simulations appear to have more correlations in the
high-κ bins, although these bins are noisy and dominated
by rare events in the simulations. There appears to be a
step-like feature in the simulation covariance matrix at
κ ∼ 0.23, transitioning rather suddenly from high to low
correlation. The analytic model does not predict such a
feature, and since the halo model should work well at this
relatively large convergence, we are inclined to trust the
model more than the simulations.
In the top panel of Fig. 8, we show a comparison

between the diagonal elements (we divide out the respec-
tive one-point PDFs). While the model recovers the
diagonal elements to better than an order of magnitude
(and to within ∼10% for κ ≳ 0.1), there are systematic
differences that cannot be explained by noise in the
simulations. Given the limitations of our model with regard
to nonvirialized matter, we concede that the discrepancies
at low κ are likely due to failure of the model. However,
for κ ≳ 0.1, we would expect the halo model to perform
well, while, as we have already seen in Sec. III B 2, the
simulations are susceptible to resolution issues. Although
we have tried to take these into account by smoothing the
NFW density profiles with a filter calibrated on the one-
point PDF, it is likely that the covariance matrix depends
differently on this filter and thus systematic discrepancies
are still to be expected. This also highlights the possible
dangers in purely simulation-based inference procedures,
which could be biased by such resolution effects.

V. FISHER FORECAST

In this section, we present a simple Fisher matrix
parameter forecast using the WL convergence PDF. We
assume a Rubin-Observatory-like survey with sky coverage
of 20 000 deg2, pixel size Ωpix¼ð0.41 arcminÞ2 and source
density ngal ¼ 45 arcmin−2. The latter number is taken
from Ref. [11]; in contrast to this work we make the
simplifying assumption of a Dirac-δ source distribution at
zs ¼ 1. (Note that the inclusion of tomographic information
would further improve the forecast error bars computed
here.) Our fiducial cosmological model is the same as in
Sec. III D.
In order to upweight the cosmological signal with

respect to the shape noise, we convolve the convergence
profiles with a Wiener filter, constructed as

Fl ¼ Cκκ
l =ðCκκ

l þ NlÞ; ð34Þ

where we compute the convergence power spectrum using
Halofit and the noise power spectrum Nl ¼ 0.32=ngal is
flat. Applying the Wiener filter is crucial in optimizing the
sensitivity of the one-point PDF, since it is a real-space
statistic.
The shape noise in the filtered maps has the correlation

function

FIG. 8. Comparison of the analytic and T17 covariance
matrices. Top panel: diagonal elements, rescaled by the respective
one-point PDFs. Bottom panel: correlation matrices (T17 in
upper left triangle, analytic in lower right triangle; the color codes
are as in the top panel).
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ζκ;snðϕÞ ¼
X
l

lþ 1=2
2π

NlF2
lW

pix
2pt;lPlðcosϕÞ; ð35Þ

where Wpix
2pt;l is the pixel window function,

Wpix
2pt;l ¼ 4

π

Z
π=4

0

dφ½sincðcosðφÞlaÞsincðsinðφÞlaÞ�2;

ð36Þ

where a is half the pixel side length. The “noisy” one-point
PDF and covariance matrix are computed as

psn;a ¼ ðG1½Pi�Þa; ð37Þ

Covsn;ab ¼
X
ϕ

½ðGðϕÞ
2 ½PijðϕÞ�Þab − ðG1½Pi�ÞaðG1½Pj�Þb�;

ð38Þ

where Gn½·� indicates convolution with an n-dimensional

Gaussian. Here, G1 has variance ζκ;snð0Þ and GðϕÞ
2 has the

covariance matrix

CðϕÞ
sn ¼

�
ζκ;snð0Þ ζκ;snðϕÞ
ζκ;snðϕÞ ζκ;snð0Þ

�
: ð39Þ

In Fig. 9, we plot the same PDFs already shown in Fig. 6,
this time including the shape noise contribution. We bin the
PDFs into bins of width Δκ ¼ 1.65 × 10−3, and quote the
number of pixels expected in the model survey. Again, the
parameter variations are 10% for all parameters except
the neutrino mass sum, for which the variation is 100%
(dashed is massless neutrinos, solid is Σmν ¼ 0.12 eV).
Note that, for clarity, we rescaled some of the curves in the
bottom row of Fig. 9 by the given amounts. It is interesting
to see that the Wiener filter not only serves the purpose of
minimizing the noise contribution, but also increases the
sensitivity of the PDF on cosmology in comparison to the
concentration model (compare Fig. 6, which has the same
parameter variations). This can be understood as a conse-
quence of the suppression of small-scale power which
makes the exact shape of the convergence profiles (and thus
the concentration model) less relevant, while the main
dependence on the cosmological model comes through the
halo mass function. This will be crucial for the parameter
forecast.
We compute the Fisher matrix as

Fab ¼
∂pT
∂θa Cov

−1 ∂p
∂θb þ

1

2
trCov−1

∂Cov
∂θa Cov−1

∂Cov
∂θb ;

ð40Þ

where p is the binned one-point PDF and θ is the parameter
vector (indexed by a, b). Contrary to conventional wisdom,

the second term in the Fisher matrix is not always
negligible and changes parameter constraints by a few
10%. In the data vector, we include the PDF in the interval
κ ∈ ½−0.03; 0.17�; we find the constraints to be relatively
independent of the choice of binning. It is worth noting that
we are including some negative-κ part of the PDF, which is
not well described by our model. However, due to the
Wiener filter and noise convolution it is rather challenging
to cleanly exclude this regime, and as we will argue below
we do not believe that keeping the uncertain values
invalidates the major conclusions from our forecast.
We consider six free parameters, namely fAs;Ωm;Σmνg

on the cosmology side and fA; B;Cg in the parametrization
of the concentration model from Ref. [37]. For the con-
centration model, we choose the mass and redshift pivots
described at the end of Sec. III D (in the end we rescale A to
the original value).
In Fig. 10, we plot four different Fisher forecasts,

differing solely by the priors we place on the concentration
model and the scalar fluctuation amplitude As. Black
includes no priors at all, magenta includes the error bars
on A, B, C from Ref. [37] as diagonal Gaussian priors,
green includes the CMB prior from Ref. [49] on As, and
orange includes both priors. For clarity, in Table I we quote
the fractional 1σ constraints (in percent) on the three
cosmological parameters as well as the concentration

FIG. 9. The convergence one-point PDFs, as a function of
parameter variations, including shape noise of σκ;sn ¼ 0.2. The
plotting conventions are the same as in Fig. 6; however, since in
this plot we applied a Wiener filter to the convergence profiles
the convergence values on the κ axis are not directly comparable.
As in Fig. 6, all parameter variations are 10%, except for Σmν for
which it is 100%. The bottom row shows the ratio of the residuals
to the square-root of the diagonal elements of the covariance
matrix.
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model parametrization for the different choices of priors.
We observe that if priors on the concentration model as
well as As are included, our results suggest that the WL
convergence PDF alone can provide an error bar on Σmν

comparable to the minimum possible neutrino mass sum.
Including tomographic information and/or the full WL
convergence power spectrum would only improve these
constraints.

Our simple Fisher forecast has several limitations:
(1) We are assuming a Gaussian likelihood even though

we know that the one-point PDF is a non-Gaussian
statistic. Unfortunately, the full likelihood for this
observable is not yet known. Evidence of a small
bias when assuming a Gaussian likelihood was seen
for the tSZ PDF in Ref. [14]. However, a Gaussian
likelihood was used and shown to be unbiased
for the WL PDF in Ref. [11], albeit with the caveat
that high-κ bins were removed, which Gaussianizes
the statistic. The PDF observable could be a useful
opportunity to apply new methods in likelihood-free
inference (e.g., Refs. [29,50]).

(2) We work in the Fisher approximation; however,
Markov chain Monte Carlo results from Ref. [11]
indicate that this is not a bad approximation.

(3) Our analytic covariance matrix is likely not exact
for small values of κ; however, our results from
Sec. IV B indicate that the formalism tends to
overestimate the covariance matrix in this regime,

FIG. 10. Four Fisher forecasts for parameter constraints from the weak lensing one-point PDF. We are assuming Gaussian shape noise
as described in the text, Rubin Observatory sky coverage of 20 000 deg2, and a source density of 45 arcmin−2 in a Dirac-δ distribution at
redshift zs ¼ 1. The ellipses are 1σ confidence intervals. Black: both cosmology and concentration model are completely inferred from
the data; magenta: including simulation priors from Ref. [37] on the concentration model; green: including CMB prior from Ref. [49] on
As; orange: including both priors on the concentration model and As.

TABLE I. 1σ constraints on cosmological and concentration
model parameters, for four different choices of priors. The
numbers are relative to the fiducial value, in percent.

σðXÞ=Xfid½%�
As Ωm Σmν A B C

No priors 11 2.1 490 9.3 30 58
þDuffy2008 8.5 1.1 350 1.9 6.7 8.1
þPlanck2018 (As) 1.4 1.9 230 8.8 27 58
þDuffy2008þ Planck2018 (As) 1.4 1.0 132 1.7 6.6 8.0
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which implies that in this respect our forecast
parameter constraints are conservative.

(4) Our formalism is unable to make exact predictions for
the negative-κ tail. However, this loss of detail also is
likely to imply that our forecast is conservative.
Including full information from the negative-κ region
would only improve the constraints found here.

(5) We make the simplifying assumption of a Dirac-δ
source distribution in a single bin. Accounting for a
realistic spread in the source distribution would
likely not significantly affect the constraints; more-
over, Ref. [11] has demonstrated that tomography
with multiple source bins has the potential to
significantly improve the constraints.

(6) It is not clear that the Wiener filter employed is
optimal. One possibility would be to consider the
PDFs of maps smoothed on various scales simulta-
neously. This approach should recover some of
the scale-dependent information contained in the
full N-point functions that is lost when compressing
to the zero-lag one-point PDF. The cross-covariance
between the PDFs should be easy to compute in a
simple extension of the formalism presented above
(all terms in our model for the covariance matrix are
symmetric under interchange of two convergence
profiles, the modification should amount to breaking
that symmetry by filtering them with two different
kernels).

(7) We do not consider any cosmology dependence of the
concentration model (although this is likely small),
and our prior on the concentration model parameters
may be optimistic, particularly given baryonic effects
on the small-scale matter distribution.

The last point implies that a more robust understanding of
the concentration-mass relation and halo density profiles in
general would be extremely beneficial for parameter
inference from the WL PDF, similar to the WL power
spectrum.
Our forecast is similar in setup to the simulation-based

one presented in Ref. [11]. However, there are a few key
differences: 1) they do not make the simplifying
assumption of a Dirac-δ source distribution; 2) they filter
the convergence maps with a different l-space filter; 3) they
are able to use more of the negative-κ regime; 4) they
(naturally) cannot marginalize over small-scale modeling
uncertainties; 5) they do not include noise correlations,
which we find to have an appreciable effect. As a
consequence of these differences, we find the agreement
between our results and theirs to be satisfactory. For a
rough qualitative comparison, we consider our result with
the concentration-model prior (i.e., the second row in
Table I), where we have σð109AsÞ¼0.18, σðΩmÞ ¼ 0.003,
σðΣmνÞ ¼ 0.21 eV. We find that including the effect of
noise correlations gives about a factor of 2 degradation in
constraints, which is approximately offset by increasing the

source number density by a factor of 4. Thus, for the
purposes of this rough comparison, we choose the tur-
quoise contours in Fig. 3 of Ref. [11] as reference (these
do not include noise correlations and have a source
density of 13.25 arcmin−2). Approximating the posterior
as Gaussian, we read off σð109AsÞ ¼ 0.1, σðΩmÞ ¼ 0.006,
σðΣmνÞ ¼ 0.12 eV. Thus, our halo-model-only forecast
reproduces these simulation-derived constraints to within
a factor of 2. Note, however, the difference in orientation of
ellipses involving Ωm.
As a final result of this section, we explore the con-

straints’ dependence on the choice of the minimum and
maximum convergence values in the data vector p. We
consider the three-parameter figure of merit,

FOM ¼ ðdetF−1
cosmoÞ−1=3; ð41Þ

where Fcosmo is the sub-block of the Fisher matrix corre-
sponding to the cosmological parameters fAs;Ωm;Σmνg.
We work with the maximum set of priors, corresponding to
the orange lines in Fig. 10. A heat map of this quantity as a
function of minimum and maximum cutoff is shown in
Fig. 11. Again, we emphasize that the “convergence”
values quoted there are related through the Wiener filter
to the physical convergence, making the interpretation
somewhat difficult. The first conclusion from Fig. 11 is
that the minimum cutoff κmin is rather important for
the constraining power. Second, for the minimum cutoff
chosen in our analysis above, κmin ¼ −0.03, the informa-
tion content of the positive-κ tail is essentially saturated

FIG. 11. Dependence of the normalized three-parameter
figure of merit, as defined in Eq. (41), on the minimum/
maximum κ cutoff. We observe that the negative-κ part of the
PDF contains substantial information, and that our fiducial
choice of κmax ¼ 0.17 extracts essentially all of the information
content (assuming κmin ¼ −0.03).
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with our choice of κmax ¼ 0.17. In fact, using a somewhat
smaller value of κmax could serve to Gaussianize the
likelihood for the WL PDF, evidently without a significant
loss in constraining power.

VI. CONCLUSIONS

We have developed a halo-model-based formalism for
the weak lensing convergence one-point and two-point
PDFs (and, by extension, the covariance matrix of the one-
point PDF). The strengths of our model lie in its superior
speed compared to simulations, the ability to explicitly
marginalize over small-scale uncertainties (parametrized
through the concentration model), and its interpretability.
As expected on physical grounds, the accuracy of our

model is highest in the positive-convergence tail. We have
shown that, in this regime, discrepancies in the one-point
PDF with respect to numerical simulations are explained by
simulation resolution issues and do not invalidate our
method. It may be argued that as soon as the convergence
map is smoothed on a sufficient scale, the simulation
resolution effects would be less severe. However, at the
wave numbers at which the MassiveNuS simulations start
to show appreciable power deficiencies, the Wiener filter
employed in this work still assumes values of order 0.1;
thus, smoothing on a reasonable scale appears not sufficient
to neutralize the small-scale issues in the simulations.
On the other hand, in the negative convergence regime

and for large smoothing scales our formalism is less
accurate. Alternative approaches are likely better suited
for accurate theoretical predictions in these regimes.
Validation of the covariance matrix was found to be

challenging, and discrepancies with respect to the simu-
lations remain over a range of convergence values.
However, discrepancies at low κ are likely irrelevant in
any real analysis due to the dominance of the shape noise
contributions there. The smaller discrepancies at high κ
could simply be due to resolution effects in the simulations,
as we already demonstrated for the one-point PDF itself.
Using our formalism, we have performed a Fisher forecast

in the fAs;Ωm;Σmνg parameter space for a Rubin-
Observatory-like survey. We have found that the conver-
gence PDF alone could provide a 1σ error bar on Σmν that is
comparable to the minimum neutrino mass sum allowed
from oscillation experiments, if a CMB prior on As and
simulation priors on the concentration-mass relation are
included. Our results are in good agreement with previous
simulation-based forecasts, and could be generated in a
fraction of the time. We have also presented arguments why
the several limitations of our simple forecast are likely to
render it conservative, i.e., a more sophisticated analysis
would probably find a further improvement in constraints
(although this gain could be negated by the inclusion and
marginalization of systematic errors in the measurement of
convergence values). Our work demonstrates that an analytic
approach to non-Gaussian WL statistics is feasible for

upcoming surveys, at least in terms of the statistical
constraining power. Tests for biases will necessitate end-
to-end simulation analyses, which are beyond the scope of
this work.
We believe that a comprehensive model for the weak

lensing convergence one-point PDF and its covariance
matrix would be most accurate if it combines different
approaches. For example, one could imagine taking sim-
ulation results for the negative-convergence and Gaussian
part of the PDF, while the positive-convergence tail is
generated with our formalism. A desirable side effect of
this method could be that smaller simulation volumes
are required in order to sample the quasilinear part of
the density field.
Possible extensions of our model could involve the use

of compensated density profiles (e.g., Ref. [51]) (which
could help improve accuracy near the Gaussian peak of the
PDF), the effective halo model approach from Ref. [52],
and the inclusion of voids.
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APPENDIX A: SOME ANALYTIC
CALCULATIONS

1. Proof that we recover the power spectrum

We can show quite easily that the two-point function is
given by

CðϕÞ ¼ ½∂2
ab logPab�λa¼λb¼0; ðA1Þ

where ∂a ≡ −i∂=∂λa. Note that the one-point factors in the
two-point PDF give no contribution, since their logarithm is
a sum of functions that depend only on λa or λb. Since the
Fourier-space PDF Pab is a product of one- and two-halo
terms, the correlation function becomes a sum.
The one-halo term is given by Eq. (17):

logP1h
ab ⊃

Z
M;z;l

KðlÞ
a KðlÞ

b J0ðlϕÞ: ðA2Þ

Performing the differentiation, we obtain
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C1hðϕÞ ¼
Z
l
J0ðlϕÞ

Z
M;z

�Z
θ
κðθÞJ0ðlθÞ

�
2

; ðA3Þ

which is equivalent to the standard expression

C1hðlÞ ¼
Z
M;z

jκ̃lj2: ðA4Þ

The two-halo term is given by Eq. (28):

logP2h
ab ⊃

Z
z
H

�
αaαbζðϕÞ þ

1

2
β2abζð0Þ

þ βabðαa þ αbÞζ
�
ϕ

2

��
: ðA5Þ

Since αa ¼ 0, βab ¼ ∂aβab ¼ 0 when λa ¼ λb ¼ 0, only
the first term in the square brackets survives, and we get

C2hðϕÞ ¼
Z
z
HζðϕÞ

�Z
M;θ

bκðθÞ
�
2

: ðA6Þ

Transforming to conjugate space, this gives

C2hðlÞ ¼
Z
z

H
χ2

Plinðl=χ; zÞ
�Z

M;θ
bκðθÞ

�
2

: ðA7Þ

We see that this is not exactly equal to the usual halo model
calculation, which would have an extra Bessel function in
the square brackets. The difference, as remarked above,
arises from the fact that we approximate the linear over-
density field as approximately constant over the typical size
of a halo, so that the linear power spectrum becomes
negligible whenever the argument lθ of the neglected
Bessel function would become appreciable.

2. Large smoothing limit

In this section we briefly discuss how smoothing the
convergence field with a Gaussian filter of large aperture
affects the one-point PDF. Denoting the smoothing scale by
σ, we have for the smoothed convergence profiles

κσðθÞ ¼ GaussianσðθÞ � κðθÞ; ðA8Þ

which, after inserting the conjugate space expressions,
leads to

κσðθÞ ¼
Z
θ0;l

κðθ0ÞJ0ðlθÞJ0ðlθ0Þe−l2σ2=2: ðA9Þ

In general, the ratio θ0=σ will attain its maximum when θ0 is
comparable to the projected halo radius. Of course, this
varies with halo mass and redshift, but it is still reasonable
to formally introduce a scale θ̂ that characterizes typical

halo extents. Since we assume σ to be large, we can
expand in θ̂=σ.
The zero-order term in the expansion parameter θ̂=σ is

given by

κð0Þσ ðθÞ ¼ σ−2e−θ
2=2σ2 κ̄; ðA10Þ

where we have introduced

κ̄ ≡
Z
θ
κðθÞ: ðA11Þ

It simply measures the total amount of signal in a single
halo, which is then smoothed into a Gaussian by the σ filter.
We now compute the nth-order cumulants kn. Similarly

to the power-spectrum calculation performed in the pre-
vious section, the cumulants are related to derivatives of
logP, so that the cumulants naturally split into one- and
two-halo terms:

k1hn ¼ ½∂n
a logP1h

a �λa¼0

¼ 2π

n
σ2−2n

Z
M;z

κ̄n; ðA12Þ

k2hn ¼ ½∂n
a logP2h

a �λa¼0

¼ σ4−2n
Z
z

Hζð0Þ
2

Xn−1
m¼1

�
n

m

�
2π

m
2π

n −m

×

�Z
M
bκ̄n−m

��Z
M
bκ̄m

�
: ðA13Þ

Thus, we see that the scalings with the expansion
parameter are

k1hn ∝ ðθ̂=σÞ2n−2; k2hn ∝ ðθ̂=σÞ2n−4: ðA14Þ

From this, we can draw two conclusions:
(1) Increasing the order of a cumulant by one introduces

two powers of the expansion parameter. Thus, in the
limit where the expansion parameter is small, we
converge at a Gaussian distribution.

(2) The cumulants arising from the clustering term are
larger by two powers of the expansion parameter, so
that for large enough smoothing scales the two-halo
term eventually takes over (despite being only a
relatively small correction in the unsmoothed case).

APPENDIX B: NUMERICAL EVALUATION

For efficient computation of the one- and especially
the two-point PDF, two observations can be made. First,
integrals of the form
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Z
M;θ

eiκðθÞλ ðB1Þ

can be transformed to

Z
dκeiκλ

Z
M
π
dθ2ðκÞ
dκ

; ðB2Þ

where θðκÞ is the inverse function of the convergence
profile κðθÞ. Thus, we can use the FFT. Note that this
requires that the convergence profiles are invertible (mon-
otonic). Application of l-space filters (such as the pixel
window function or the Wiener filter) can occasionally lead
to nonmonotonic profiles; in that case we split the integral
into segments in which the convergence profiles are
monotonic.
Second, in the two-point PDF it is not necessary to

compute the KðlÞ
a from Eq. (12) explicitly, since the integral

over l reduces to

Z
l
J0ðlθaÞJ0ðlθbÞJ0ðlϕÞ; ðB3Þ

which has the analytic form [Eq. (3) on p. 411 of Ref. [53]]

½4π2Δðθa; θb;ϕÞ�−1: ðB4Þ

Here, Δ denotes the area of the triangle with the arguments
as its sides. If no triangle can be formed, the integral
vanishes. The case ϕ ¼ 0 is relevant for this work; then the
integral is a multiple of δDðθa − θbÞ and this propagates
through in such a way that the zero-separation two-point
PDF simplifies to

Pðκa; κb;ϕ ¼ 0Þ ¼ PðκaÞδDðκa − κbÞ; ðB5Þ

as it should.

APPENDIX C: VALIDATING ASSUMPTIONS OF
THE HALO MODEL APPROACH

There are two distinct classes of assumptions made in
this work. The first class comprises the basic underpinnings
of the halo model. In comparing to two different sets of
simulations, we have seen that we can describe the
convergence PDF accurately well into the non-Gaussian
tail, while our model has deficiencies for κ ≲ 0 and for large
smoothing scales. These problems are consistent with
intuitive expectation: we know that any halo model
formalism would face these problems. On the other hand,
the second class of assumptions refers to certain technical
choices made in the formalism that could in principle be
dropped without leaving the realm of the halo model.

1. Born approximation

The first of these is the Born approximation. Our
formalism crucially requires this approximation, since it
relies on the additivity of the convergence signal. While we
do not examine the Born approximation in any detail here,
we note two reasons why we believe it to constitute only a
minor correction to the PDF. 1) We performed a simple
numerical test in which we placed a single halo of mass
1014h−1 M⊙ at z ¼ 0.5 and ray traced a parallel beam
through its potential. The resulting deflection angles are in
extremely good agreement with the Born approximation.
Although this does not test for higher-order effects such as
lens-lens coupling, it still constitutes a simple test dem-
onstrating the smallness of post-Born terms. 2) Some tests
have already been performed in the literature [54,55],
seemingly coming to the conclusion that post-Born terms
are quite negligible for galaxy lensing.

2. Triaxiality

The second technical assumption is the neglect of halo
triaxiality. Our formalism could in principle be adapted
quite easily to allow for triaxiality, introducing more
integrations over a shape-distribution function and halo
orientations. However, these additional integrations, com-
bined with the fact that the projected convergence profiles
would no longer be azimuthally symmetric, renders the
computation substantially more complex. Thus, we explic-
itly test for the influence of triaxiality on the convergence
PDF. To this end, we measure the distribution of principal
axes ratios in the MassiveNuS halo catalog. This distribu-
tion is plotted in Fig. 12. We find that the relatively coarse

FIG. 12. Measured axes ratio distribution from the MassiveNuS
halo catalog, used to construct the simplified simulations that
we utilize to assess the effect of ellipsoidal vs spherical halos
(cf. Fig. 13). Note that the lower triangular part of these matrices
is necessarily zero by the definition of a > b > c. We note the
peaks near b ¼ c ¼ 0 in the lowest mass bin, which are due to
imprecise axes ratio measurements and spurious halo identifica-
tions close to the simulation’s resolution limit.
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binning in both mass and redshift is sufficient to capture the
variation of the shape distribution. The extreme principal
axes ratios for the lowest mass bin are likely driven by
nonvirialized objects erroneously included in the halo
catalog by the halo finder. However, this mass bin gives
only a negligible contribution to the PDF (cf. Sec. III C).
Then, we perform simplified simulations as described

in more detail in Ref. [15]. In short, these simulations
randomly populate maps with convergence profiles drawn
from a given distribution and measure the PDF in the end.
By construction, the simplified simulations do not include
the clustering effect, but this is immaterial for the purposes
of the test we want to perform here. For the convergence

profiles, we proceed as follows. First, for a halo of given
mass and redshift, we compute the NFW density profile.
Then, we deform this spherically symmetric profile
according to ratios of principal axes drawn from the
distribution described before. Finally, we perform a
random rotation of the resulting ellipsoid and then
integrate the density along the line of sight to obtain
the convergence. The result of this procedure is plotted in
Fig. 13. The green line with round markers is the analytic
result assuming spherically symmetric profiles, while the
blue line is the described set of simplified simulations
with ellipsoidal halos. As a consistency test, we also run
the simplified simulations with the principal axes distri-
bution set to a delta function at b=a ¼ c=a ¼ 1 (i.e., all
halos are spherically symmetrical); the result from this test
is represented by the orange line. First, we observe some
discrepancies between the green and orange lines, which
in principle we should expect to coincide. However, there
are two reasons why perfect agreement is not reached:
first, we remind the reader that our treatment of the
quadratic pixels is not entirely correct; second, we expect
some systematic errors in the numerical integration
through the deformed NFW profiles. Thus, we consider
this code test as passed. Keeping this in mind, the
discrepancies between the analytic result and the simpli-
fied simulations incorporating triaxial halos are relatively
small. Thus, triaxiality can certainly not account for the
discrepancies we observed between our model and the
MassiveNuS as well as the T17 simulations. We conclude
that more reliable modeling of small scale matter cluster-
ing is of much greater importance than incorporating the
small corrections from triaxiality.

3. Substructure

A final assumption is the lack of substructure in the
density profiles. Considering our results concerning tri-
axiality, it is reasonable to assume that, given the map
pixelization, the error incurred by ignoring substructure is
relatively small as well. Given the dramatic effect the
Wiener filter in Sec. V had in suppressing the one-point
PDF’s sensitivity on the concentration model, it is unlikely
that parameter inference would require incorporation of
substructure corrections.
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535, L9 (2000).

[46] J. M. Zorrilla Matilla, S. Waterval, and Z. Haiman, Astron.
J. 159, 284 (2020).

[47] M. Joyce, L. Garrison, and D. Eisenstein, arXiv:2004.07256
[Mon. Not. R. Astron. Soc. (to be published)].

[48] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K.
Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J.
622, 759 (2005).

[49] Planck Collaboration, Astron. Astrophys. 641, A6 (2020).
[50] J. Alsing, T. Charnock, S. Feeney, and B. Wand elt, Mon.

Not. R. Astron. Soc. 488, 4440 (2019).
[51] A. Y.Chen andN.Afshordi, Phys.Rev.D101, 103522 (2020).
[52] O. H. E. Philcox, D. N. Spergel, and F. Villaescusa-Navarro,

Phys. Rev. D 101, 123520 (2020).
[53] G. N. Watson, A Treatise on the Theory of Bessel Functions

(Cambridge University Press, Cambridge, England, 1922).
[54] A. Petri, Z. Haiman, and M. May, Phys. Rev. D 95, 123503

(2017).
[55] A. Barthelemy, S. Codis, and F. Bernardeau, Mon. Not. R.

Astron. Soc. 494, 3368 (2020).

ACCURATE ANALYTIC MODEL FOR THE WEAK LENSING … PHYS. REV. D 102, 123545 (2020)

123545-19

https://doi.org/10.1051/0004-6361:20053531
https://doi.org/10.1051/0004-6361:20053531
https://doi.org/10.1086/318660
https://doi.org/10.1111/j.1365-2966.2005.09782.x
https://doi.org/10.1111/j.1365-2966.2005.09782.x
https://doi.org/10.1093/mnras/stt1013
https://doi.org/10.1093/mnras/stt1013
https://doi.org/10.1086/312480
https://doi.org/10.1103/PhysRevD.99.083508
https://doi.org/10.1103/PhysRevD.99.083508
https://doi.org/10.1103/PhysRevD.94.103501
https://doi.org/10.1093/mnras/stx1626
https://doi.org/10.1093/mnras/stx1626
https://arXiv.org/abs/1411.8004
https://doi.org/10.1103/PhysRevD.99.103511
https://doi.org/10.1103/PhysRevD.99.103511
https://doi.org/10.1086/340048
https://doi.org/10.1086/341604
https://doi.org/10.1086/341604
https://doi.org/10.1086/504032
https://arXiv.org/abs/astro-ph/9609149
https://doi.org/10.1093/mnras/281.2.369
https://doi.org/10.1086/304372
https://doi.org/10.1086/305515
https://doi.org/10.1093/mnras/sty664
https://doi.org/10.1093/mnras/sty664
https://doi.org/10.1093/mnras/staa053
https://doi.org/10.1103/PhysRevD.80.123020
https://doi.org/10.1103/PhysRevD.80.123020
https://doi.org/10.1103/PhysRevD.84.063004
https://doi.org/10.1103/PhysRevD.84.063004
https://doi.org/10.1103/PhysRevD.83.023009
https://doi.org/10.1103/PhysRevD.83.023009
https://doi.org/10.1093/mnras/sty819
https://doi.org/10.1093/mnras/sty819
https://doi.org/10.1086/304888
https://doi.org/10.1086/304888
https://doi.org/10.1046/j.1365-8711.2002.05889.x
https://doi.org/10.1046/j.1365-8711.2002.05889.x
https://doi.org/10.1088/0004-637X/758/2/75
https://doi.org/10.1103/PhysRevD.88.063526
https://doi.org/10.1046/j.1365-8711.2003.06503.x
https://doi.org/10.1088/0004-637X/761/2/152
https://doi.org/10.1088/0004-637X/724/2/878
https://doi.org/10.1088/0004-637X/724/2/878
https://doi.org/10.1111/j.1745-3933.2008.00537.x
https://doi.org/10.1111/j.1745-3933.2008.00537.x
https://doi.org/10.3847/1538-4365/aaee8c
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://arXiv.org/abs/1104.2932
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1086/305262
https://doi.org/10.1086/305262
https://doi.org/10.1088/1475-7516/2018/03/049
https://doi.org/10.3847/1538-4357/aa943d
https://doi.org/10.3847/1538-4357/aa943d
https://doi.org/10.1086/312696
https://doi.org/10.1086/312696
https://doi.org/10.3847/1538-3881/ab8f8c
https://doi.org/10.3847/1538-3881/ab8f8c
https://arXiv.org/abs/2004.07256
https://doi.org/10.1086/427976
https://doi.org/10.1086/427976
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1093/mnras/stz1960
https://doi.org/10.1093/mnras/stz1960
https://doi.org/10.1103/PhysRevD.101.103522
https://doi.org/10.1103/PhysRevD.101.123520
https://doi.org/10.1103/PhysRevD.95.123503
https://doi.org/10.1103/PhysRevD.95.123503
https://doi.org/10.1093/mnras/staa931
https://doi.org/10.1093/mnras/staa931

