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We explore the cosmological implications at effective level of matter creation effects in a dissipative fluid
for a Friedmann-Lemaitre-Robertson-Walker geometry; we also perform a statistical analysis for this kind
of model. By considering an inhomogeneous ansatz for the particle production rate, which we obtain for a
created matter of dark matter type, we can have a quintessence scenario or a future singularity known as a
little rip; this is in dependence of the value of a constant parameter, η, which characterizes the matter
production effects. The dimensionless age of this kind of universe is computed, showing that this number is
greater than the standard cosmology value; this is typical of universes with the presence of dark energy. The
inclusion of baryonic matter is studied. We implement the construction of the particle production rate for a
dissipative fluid by considering two approaches for the expression of the bulk viscous pressure: we find
that, in the Eckart model, we have a big rip singularity leading to a catastrophic matter production, and in
the truncated version of the Israel-Stewart model this rate remains bounded, which leads to a quintessence
scenario. For a nonadiabatic dissipative fluid, we obtain a positive temperature, and the cosmic expansion
obeys the second law of thermodynamics.
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I. INTRODUCTION

We are far from understanding the nature of the late
times acceleration of the observable Universe [1]. However,
this challenge has motivated an exhaustive search for
models or scenarios beyond general relativity that attempt
to roughly describe the current stage of the Universe in
order to elucidate the nature of the catalyst of this
accelerated expansion, usually termed as “dark energy.”
As is well known, the cosmological constant approach is a
promising scenario, but it has yet to face its own battles. For
instance, the origin of the cosmological constant must be at
Planck scales, but its effects are observed only at cosmo-
logical scales (the current accelerated expansion). This
difference between scales where the cosmological constant
becomes relevant has made the problem unmanageable; at
Planck scales the value of the cosmological constant is
greater by approximately 120 orders of magnitude than
expected. A reconciliation for the capricious behavior of
the cosmological constant at different scales was proposed
in Ref. [2], but this description depends on a quantum
formulation for the fluctuations of spacetime: nowadays
there is no quantum theory of gravity; therefore, the
description made was at a semiclassical level. This scheme

lacks a full characterization of these quantum fluctuations
and consequently of their cosmic evolution.
Another more recent but no less controversial problem of

our current Universe is the so-called H0 tension, H0 being
the Hubble constant; this value represents the rate of
expansion of the Universe at present time. The problem
lies in the discrepancy between the value reported forH0 by
the Planck collaboration [3] and the one reported in [4].
This difference between both values is not attributable to
systematic errors. These errors have originated, for exam-
ple, with schemes where dark energy has a peculiar
interaction with dark matter. There may be a response to
solve this tension among other possible scenarios; that is,
we keep looking at models beyond standard cosmology, see
for instance [5]. An interesting review of the interacting
scheme for the dark sector can be found in [6]. Other
scenarios promote the idea that H0 tension is the result of a
tension in the value T0 of the cosmic microwave back-
ground (CMB) temperature. Despite some schemes alle-
viating the H0 tension, this implies a new paradigm
regarding the well-established value for the temperature
of the CMB [7]. Other proposals suggest that an enhance-
ment in the geometric description of the Universe is a viable
alternative to resolve the aforementioned tension with no
need of making use of exotic components or a reformu-
lation of our conception of the gravitational interaction.
Reference [8] found that theH0 tension can be mitigated by
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considering only a nonvanishing torsional tensor to
describe the dark matter sector.
In this work we consider the bulk viscous effects plus

matter production in the cosmological fluid as an alternative
to describe the late times behavior of the observableUniverse;
it is well known that viscosity effects have a negative
contribution to the pressure of the cosmological fluid; there-
fore, such effects lead to accelerated cosmic expansion. On
the other hand, in some works it is discussed that matter
production is due to the expansion of theUniverse [9]. For this
latter scenario the production of particles is in consequence
only of the dynamical gravitational background; i.e., the
created particles interact only with gravity, therefore their
abundance is determined by their unique masses. Given the
features of the component known as dark matter, this
theoretical scenario has been the subject of various tests to
explain its nature. Despite the fact that dark matter only
interacts with gravity, there could be various mechanisms for
its production [10]. As we will see below, the bulk viscous
pressure can be written in terms of the matter production rate
if we take into account the adiabatic condition for the entropy,
i.e., S ¼ constant. We will focus on the cosmological
implications of the model at an effective level. In the first
part of this work we assume an inhomogeneous matter
production rate; in general, this term is assumed to be constant
or can be given as a function of theHubble parameter,Γ ∝ H,
but in this work we consider a generalization for this
production rate given as Γ ¼ ΓðH; _HÞ. A similar form for
this term was considered in Ref. [11] by the authors. We
obtain this kind of model in order to have a consistent
description. In addition, we must include baryonic matter;
once it is included, we obtain a quintessence dark energy
behavior that is allowed by the model at the effective level if
we restrict the parameters of the resulting model with the use
of recent observational data. In the second part of this work,
we drop the ansatz philosophy for thematter production term,
Γ, and we consider two approaches for the dissipative effects
in the cosmic fluid. In this second part, such approaches lead
us to a specific form for the matter production term. As we
will see later, in one case the description allows a phantom
cosmology leading to a catastrophic production of matter.
However, for the second approach, the model only allows a
quintessence dark energy behavior again. An interesting
characteristic of a dissipative fluid is the generation of
entropy; in the perfect fluid description the entropy produc-
tion and heat dissipation are lost [12]. However, a recent work
showed that at cosmological scales the second law of
thermodynamics is still valid [13]. On the other hand, in
the literature, we find that bulk viscous effects are not ruled
out at all by the observational data, which provide a
framework in which the H0 tension can be weakened [14].
As additional examples, see for instance Ref. [15], where it
was stated that the presence of dissipative effects in the fluid
contribute significantly to reproduce the experimental mea-
surements of the longitudinal polarization of hyperons

produced in relativistic heavy-ion collisions. In Ref. [16]
was found that when the inflationary process is attenuated by
dissipative causes, the inflaton interchanges its energydensity
with an emerging radiation component, which can be
associated to the CMB, and at late times such a model leads
to a cosmological constant type evolution.
Over the years the approach in which matter production

effects are employed has changed slightly. At first it was
thought that these effects were important only in the early
Universe by providing a natural explanation for the
reheating phase of the inflationary process [17] or, depend-
ing on the rate of matter production, by proving that the
origin of the Universe could be free of an initial singularity
[18]. However, in the meantime it has also been shown that
the matter production effects can play an important role in
cosmic evolution, in Ref. [11], supported by cosmological
observations, the authors showed that this scheme leads
to an Universe in which the dark energy sector can be
emulated by the particle production. Other relevant scenar-
ios in which the production of matter has an important
character can be found in [19]; this work explores the
possibility that the current state of the Universe is transitory
and will eventually present a decelerated phase, this
transition is possible by considering matter creation in
their model. Another example is given in [20] where the
cosmological model encloses entropic forces with matter
creation. Other interesting works can be found in [21–24].
The outline of this work is as follows: in Sec. II we

provide the cosmological equations for a model with matter
creation effects and viscosity. Under the adiabatic condition
for the entropy we construct the effective parameter state
and we explore an inhomogeneous ansatz for the particle
production rate. We obtain the corresponding Hubble
parameter and we calculate the age of this kind of
Universe and we consider the inclusion of baryons. In
Sec. III we perform the statistical analysis of the model
with baryonic matter and the use of current observational
data. In Sec. IV we proceed in the inverse order, with the
consideration of the dissipative and matter creation effects
we construct the form of the particle production rate, Γ. We
do not use the ansatz philosophy.We explore the well-known
Eckart model and the truncated version of the causal Israel-
Stewart description, where a cosmological constant evolu-
tion can be emulated. In Sec. V we provide a description of
the cosmological model when the entropy production is not
adiabatic; we find that the temperature of the fluid is positive
and obeys the second law of thermodynamics. Under this
approach the cosmic expansion does not have the problem
of negative entropy or temperature. Finally, in Sec. VI we
give the final comments of our work. We will consider
8πG ¼ c ¼ kB ¼ 1 units throughout this work.

II. MATTER CREATION AND BULK VISCOSITY

For a dissipative fluid the local equilibrium scalars, such
as the particle number density and its energy density, are
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not altered by the dissipative effects. However, the pressure
deviates from the local equilibrium pressure

peff ¼ pþ Π; ð1Þ

where Π is the bulk viscous pressure. From now on the
quantity pþ Π will denote effective pressure for the
dissipative fluid. In this description the Friedmann equa-
tions for a flat Friedmann-Lemaitre-Robertson-Walker
spacetime can be written as follows:

3H2 ¼ ρ; _H þH2 ¼ −
1

6
½ð1þ 3ωÞρþ 3Π�; ð2Þ

with ρ being the energy density of the dissipative fluid, H
denotes the Hubble parameter, and the dot stands for
derivatives with respect to time. In the previous equations
we have considered a barotropic equation of state between
the density and the pressure given as p ¼ ωρ, where ω is
commonly known as parameter state and is constrained
to the interval [0, 1). Note that the consideration of the
Friedmann equations given in (2) leads to a nonconserva-
tion equation for the energy density

_ρþ 3Hð1þ ωÞρ ¼ −3HΠ: ð3Þ

On the other hand, if matter creation exists, i.e., gravita-
tional particle production, then the continuity equation for
the particle number density takes the form

_nþ 3Hn ¼ nΓ; ð4Þ

where the possibilities Γ > 0, Γ < 0 denote source or sink
of particles, respectively. Γ it is also known as the particle
production rate. From the Gibbs equation [12]

TdS ¼ d

�
ρ

n

�
þ pd

�
1

n

�
; ð5Þ

we can write

nT _S ¼ _ρ − ρð1þ ωÞ _n
n
;

¼ −3HΠ − ρΓð1þ ωÞ; ð6Þ

where the Eqs. (3) and (4) were considered. Note that for this
approach the entropy is no longer a constant. However, if we
assume _S ¼ 0, i.e, an adiabatic dissipative fluid with particle
creation in order to be in agreement with the standard
cosmological model, then we obtain the following condition

Π ¼ −ρð1þ ωÞ Γ
3H

: ð7Þ

We will have a negative contribution from the viscous
pressure to the non equilibrium pressure if the particle

production rate is positive, i.e., no annihilation. If we
insert the previous equation in (3), then we can write the
continuity equation for the density in its standard form,
_ρþ 3Hð1þ ωeffÞρ ¼ 0, where the effective parameter state
has the form

ωeff ¼ ω − ð1þ ωÞ Γ
3H

: ð8Þ

It is worthy to mention that if the dissipative fluid behaves as
standard dark matter, we have ω ¼ 0 (p ¼ 0), then the
effective parameter only depends of the particle production
effects (this case was considered in Ref. [11]); in such a case
the condition Γ > 3H must be fulfilled in order to have an
effective phantom behavior.

A. Ansatz for the particle production rate

The most simple assumption for Γ is given by a constant
production rate. However, in order to study the implications
of matter production on the cosmic expansion, some
specific functions of the Hubble parameter for the particle
production rate have been studied, for instance Γ ∝ Hα, α
being an appropriate constant [11,25–29]. A more general
form for Γ can be found in Ref. [30], where

Γ ¼ Γðρ; pðρÞ; H; _H; Ḧ;…Þ; ð9Þ

and the function pðρÞ is viable by means of the equation
state. The form given in Eq. (9) for Γ is known as an
inhomogeneous particle production rate. In our case wewill
consider Γ given as

Γ ¼ ΓðH; _HÞ ¼ γ0ðHÞ _H ¼ dγðHÞ
dt

; ð10Þ

where the prime denotes derivatives with respect to the
Hubble parameter by means of the chain rule. Note that the
form of Γ given above together with Eq. (7) lead us to a
direct integration of Eq. (3), yielding

ρ ¼ ρ0a−3ð1þωÞ exp ½ð1þ ωÞγðHÞ�; ð11Þ

then if γðHÞ ∝ lnðHδÞ and δ being a constant, we could
consistently write an expression for the Hubble parameter
by means of the first Friedmann equation. We focus on the
following expression:

γðHÞ ¼ 2

�
1 −

1

η

�
ln

�
H
H0

�
; ð12Þ

with η being a constant value and H0 being the value of the
Hubble parameter at the present time. Using the above γ
function and (10), we can write
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Γ
3H

¼ −
2

3

�
1 −

1

η

�
ð1þ qÞ; ð13Þ

where q is the deceleration parameter defined as 1þ q ≔
− _H=H2. As can be seen, the particle production rate can be
written as a function of the deceleration parameter. On the
other hand, using the acceleration equation (2) together
with the expression for the viscous pressure obtained from
the adiabatic condition (7), one gets

Γ
3H

¼ 1 −
2

3

ð1þ qÞ
ð1þ ωÞ : ð14Þ

By equating both expressions for the quotient Γ=3H, we
arrive to the following result:

1þ q ¼ 3

2

�
1

1þ ω
−
�
1 −

1

η

��
−1
: ð15Þ

Then the deceleration parameter takes a constant value if
matter creation effects are introduced in a dissipative fluid.
Note that if in the previous expression we consider the
value η ¼ 2ð1þ ωÞ=ð3þ 5ωÞ, we have q ¼ 0, which
represents a Dirac-Milne universe. This kind of universe
expands at constant rate since ä ¼ 0. For standard dark
matter we have q ¼ −ð1 − 3η=2Þ; in this case the accel-
erated cosmic expansion will take place only if the
condition η < 2=3 is satisfied and there is no accelerated
expansion for η ¼ 2=3. Using the Eq. (14) we can write for
the effective parameter (8)

ωeff ¼ −1þ 2

3
ð1þ qÞ ¼ −1þ

�
1

1þ ω
−
�
1 −

1

η

��
−1
:

ð16Þ

As expected, the effective parameter state has a contribu-
tion from the matter creation effects. If the following
conditions are satisfied η > ð1þ ωÞ=ω or 0 < η <
2ð1þ ωÞ=ð3þ 5ωÞ, the effective parameter (16) will
behave as a phantom or quintessence fluid; therefore,
accelerated cosmic expansion can be obtained for a dis-
sipative fluid with matter creation effects in the presence of
ordinary matter. On the other hand, for ω ¼ 0 we have
ωeff ¼ −1þ η, thus from the condition 0 < η < 2=3,
the dissipative fluid will behave as quintessence and will
exhibit phantom behavior with η < 0. For a Dirac-
Milne Universe we will have ωeff ¼ −1=3.
Using the Friedmann constraint (2), and after both

inserting Eq. (12) and properly rearranging the terms,
we have 3H2 ¼ ρ ¼ ρ0a−3ð1þωÞ expðγðHÞÞ. We obtain
for the normalized Hubble parameter this:

EðzÞ ¼ Ω1=2ð1−ΔÞ
ρ ð1þ zÞ3ð1þωÞ=2ð1−ΔÞ; ð17Þ

where we have defined Δ ≔ ð1þ ωÞð1 − 1=ηÞ, Ωρ corre-
sponds to the standard definition of the density parameter
Ωρ ≔ ρ0=3H2

0, and we also used the relation between
the scale factor and the redshift, 1þ z ¼ a−1, besides
EðzÞ ≔ HðzÞ=H0. Note that for η ¼ 1 we have a null
contribution from matter creation effects and we recover
the standard cosmology. In the standard dark matter case
we have

EðzÞ ¼ Ω1=2ð1−ΔÞ
ρ ð1þ zÞ3=2ð1−ΔÞ ð18Þ

for the quintessence scenario we have 0 < η < 2=3, there-
fore −∞ < Δ < −1=2, then as we approach to the far
future, we have for the normalized Hubble parameter,
Eðz → −1Þ → 0. For the phantom regime we have
η < 0, thus Δ > 1, which leads to a singular scenario as
we approach to the far future, Eðz → −1Þ → ∞. A similar
behavior is obtained for the energy density as we approach
to the far future, for quintessence ρ → 0 and ρ → ∞ for
phantom. It is worthy to mention that in the phantom
scenario the singular nature takes place only at the far
future and not for a specific value of the redshift, therefore
this kind of singularity corresponds to a little rip. From the
current observational data it is not possible to determine
if the final fate of the Universe is a future singularity or
not, but if consistency with the supernova is demanded,
then this kind of singular model could represent a viable
alternative to the ΛCDM model [31–33]. If we consider
Eq. (17) and HðaÞ ¼ d ln a=dt, then we can compute the
dimensionless age of the Universe:

H0tðaÞ ¼
Z

a

0

da0

a0Hða0Þ : ð19Þ

As stated in Ref. [34], the value for the dimensionless age
at present time, H0t0, is around 1 for the ΛCDM model,
and this is independent of the transition from the decel-
erated to accelerated stage. The authors call this fact a
“synchronicity problem” given that it appears we are
living in a special time. In Fig. (1) we show the behavior
of the dimensionless age of the Universe if we consider
Eq. (17) with a quintessence behavior. We also consider
the value ω ¼ 1=3 and we give the value 0.315� 0.007 [3]
to the energy density parameter Ωρ; according to the latest
Planck collaboration results, this case corresponds to the
dashed line in the figure. On the other hand, if we consider
that created matter is the only component of the Universe
that we must have (Ωρ ¼ 1, this corresponds to the solid
line of the plot), then this latter case is closer to the value 1
at present time (a ¼ 1). Note that at the present time
the value of the dimensionless age of the Universe is
increased in both cases; however, the obtained values are
close to 1. The augmentation in the age of the Universe at
the present time by dark energy for phantom dark energy
was discussed in Ref. [35].
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B. Including baryonic matter

It is worthy to mention that if we consider only the matter
creation effects we are left with a constant deceleration
parameter in our description: this can be seen in Eq. (15).
Despite the fact that dark energy behavior can be obtained
for certain values of the parameters η andω, the model itself
is not consistent with the ΛCDM model and the type Ia
supernovae data; this issue can be alleviated with the
inclusion of baryons as done in Ref. [36]. In this new
scenario the form of the normalized Hubble parameter can
be expressed as follows

�
H
H0

�
2

¼ ΩBð1þ zÞ3 þ ð1 −ΩBÞð1þ zÞ3ð1þωÞ
�
H
H0

�
2Δ
;

ð20Þ

where we take into account the normalization condition,
ΩB þ ΩCM ¼ 1; i.e., for the late times description of
the Universe we only consider the contribution from the
gravitationally created matter and baryons. From the
previous expression it is not possible to find the normalized
Hubble parameter analytically. However, if we consider the
acceleration equation (2) with the assumption, pB ¼ 0,
and Eqs. (7), (12) together with the standard relationship
between the redshift and the scale factor given above;
we can write the following differential equation for the
normalized Hubble parameter

ð1þ zÞEdE
dz

−E2 −
1

3
ð1þωÞð1−ΩBÞð1þ zÞ

×

�
1−

1

η

�
d lnE
dz

¼ 1

2
½ð1þ 3ωÞð1−ΩBÞ þΩBð1þ zÞ3�;

ð21Þ

from which EðzÞ can be obtained by numerical integration.
We will use this equation to constrain the parameters of the
model with the use of current cosmological observations
later. In this we will have at effective level from the
contribution of baryons and matter creation effects

ωeff ¼
η − 1

1þ ΩB
3H2

0
ð1−ΩBÞη ð1þ zÞ3ð1−ηÞ ; ð22Þ

where we have considered Eq. (7) for the pressure together
with the assumption that created matter behaves as standard
dark matter, ω ¼ 0, and pB ¼ 0.

III. OBSERVATIONAL CONSTRAINTS

In this section we study to what extend the evolution
implied by Eq. (21) describes appropriately the observa-
tions. In particular, we use the latest type Ia supernovae
sample called Pantheon [37] consisting in 1048 data points.
The data gives us the apparent magnitude m at maximum
from which we can compute the distance modulus μ ¼
m −M with M being the absolute magnitude for type Ia
supernovae. Here we compute the residuals μ − μth and
minimize the quantity

χ2 ¼ ðμ − μthÞTC−1ðμ − μthÞ; ð23Þ

where μth ¼ 5 log10 ðdLðzÞ=10pcÞ gives the theoretical
distance modulus, dLðzÞ is the luminosity distance given by

dLðzÞ ¼ ð1þ zÞ C
H0

Z
dz
EðzÞ ; ð24Þ

C is the covariance matrix released in [37], and the
observational distance modulus takes the form

μ ¼ m −M þ α1X − α2Y; ð25Þ

where m is the maximum apparent magnitude in band B, X
is related to the widening of the light curves, and Y corrects
the color. Usually, the cosmology—specified here by μth—
is constrained along with the parameters M, α1, and α2.
These nuisance parameters are then marginalized to obtain
the posterior probabilities for our parameters of interest: w,
ΩB, and η. In the statistical study we use a prior for ΩB
and we assume w ¼ 0, assuming the contribution be as
dark matter. Then the free parameters to fit are ΩB and η,
using the value ΩB ¼ 0.0493� 0.0006 based on [38].
In this case it is possible to obtain as best fit values
ΩB ¼ 0.049� 0.001, and η ¼ 0.174� 0.015. The confi-
dence contours for 1σ and 2σ are shown in Fig. (2). If we
insert the constrained values for ΩB and η in Eq. (22)
together with the Hubble constant reported in Ref. [3], then
one gets that at present time the effective parameter that
lies in the interval ½−0.840997;−0.810997�; this interval is
within the quintessence region determined by the DES

FIG. 1. Age of the Universe with quintessence behavior.
The dashed line corresponds to Ωρ ≈ 0.3 and the solid line
corresponds to Ωρ ¼ 1. The value ω ¼ 1=3 was considered
for both plots.
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collaboration (Dark Energy Survey) for the parameter
state at present time, ωde;0 ¼ −0.95þ0.33

−0.39 [39]. On the other
hand, as we approach the far future, from Eq. (22) one gets
ωeffðz → −1Þ → η − 1 ¼ −0.826� 0.015, thus the value
of the parameter state at the far future is very close to its
present time value. Therefore this model represents a
quintessence dark energy behavior along the cosmic
evolution and is in agreement with some sets of observa-
tional data such as the latest Planck results (ωde;0 ¼
−1.028� 0.031) and DES collaboration, where the
quintessence behavior for dark energy is allowed.

IV. CONSTRUCTING Γ FROM VISCOUS MODELS

In this section we construct the particle production rate
from bulk viscous considerations. We will not consider a
specific ansatz for this term. According to the Israel-
Stewart formalism, the bulk viscous pressure must obey
the following transport equation [40,41]

Π ¼ −3ξðρÞH − τ _Π −
ζ

2
τΠ

�
3H þ _τ

τ
−
_ξ

ξ
−

_T
T

�
; ð26Þ

where T is the barotropic temperature, which is also a
function of the energy density by means of the integrability
Gibbs condition, and ξðρÞ is the bulk viscosity coefficient
(given that it is a function of the energy density, we must
have ξðρÞ ≥ 0, which is a typical form for the bulk viscosity
coefficient and can be found in the literature as ξ ∝ ρs, s
being a constant). In general, an interesting parametrization
for the bulk viscosity coefficient is given in terms of the
scalar expansion of the fluid, i.e, ξ ∝ Θ where Θ ¼ H, thus

ξ ∝ ρ1=2, i.e., s ¼ 1=2; physically this represents an
increasing viscosity in the case of increasingly movements
in the fluid [42].1 On the other hand, τ represents the
relaxation time for bulk viscous effects. In Ref. [43], it was
shown with a perturbative method that the Israel-Stewart
theory fulfills the causality and stability conditions. The
energy functional can be written as

P
8
A¼1ΩAðδZAÞ2 where

δZA represents a certain combination of the perturbation
functions, then the positivity of this functional is guaran-
teed for ΩA ≥ 0. A specific term is given as

Ω3ðλÞ ≔ ðρþ pÞ
�
1 − λ2

��∂p
∂ρ

�
S
þ ξ

τðρþ pÞ
��

≥ 0;

ð27Þ

this requirement was shown to hold for all λ where,
0 ≤ λ ≤ 1, by taking the case λ ¼ 1 one gets�∂p

∂ρ
�

S
þ ξ

τðρþ pÞ ≤ 1; ð28Þ

note that the first term corresponds to the adiabatic speed of
sound, usually denoted as c2s , and the second term is
identified as the speed of the bulk viscous perturbations, c2b,
therefore from the above condition we have v2 ¼ c2s þ
c2b ≤ 1 and this latter expression guarantees the causality of
Israel-Stewart model. For a barotropic fluid, p ¼ ωρ, and
using the Eq. (28) we obtain

c2b ≔
ξ

τρð1þ ωÞ ≤ 1 − ω; ð29Þ

usually the rhs of the previous equation is written as
ϵð1 − ωÞ, where ϵ is a constant parameter. Therefore, from
the previous equation, we write for the relaxation time
τ ¼ ξ=c2bρð1þ ωÞ ¼ ξ=ϵð1 − ω2Þ. From the Friedmann
equations (2), we can write for the bulk viscous pressure

Π ¼ −2 _H − 3ð1þ ωÞH2: ð30Þ

0.047 0.048 0.049 0.050 0.051 0.052

0.12
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0.20

0.22

FIG. 2. Confidence contours at 1σ and 2σ for the η and ΩB
parameter in the case of Eq. (21) keeping w ¼ 0.

1The introduction of a four-velocity field uα provides the 1þ 3
decomposition of spacetime. The metric tensor splits as
gαβ ¼ hαβ − uαuβ, where hαβ is the projection tensor and is
orthogonal to uα. The kinematics of the four-velocity field takes
the form [12]

∇αuβ ¼
1

3
Θhαβ þ σαβ þ ωαβ − _uαuβ;

where Θ ¼ H generalizes the Newtonian expansion and σαβ and
ωαβ generalize the Newtonian shear and Newtonian vorticity,
respectively. _uα represents a four acceleration (the dot represents
a time derivative). Spatial homogeneity and isotropy demand
_uα ¼ σαβ ¼ ωαβ ¼ 0. The scalar expansion determines the vol-
ume evolution.
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In order to illustrate some results, in the following sections
we will study two cases separately.

A. Eckart model

If we consider τ ¼ 0 in Eq. (26) we obtain the Eckart
model. This approach have been studied exhaustively
despite its superluminal propagation problem. However,
this represents a manageable framework for viscous effects,
see for instance the references contained in [44], where the
Eckart framework is studied in the late and early Universe
and tested with recent observational data. From the Eq. (26)
with τ ¼ 0, the Friedmann equation (2) and the standard
definition for the bulk viscous coefficient, we can write

Π ¼ −3ξðρÞH ¼ −3sþ1ξ0H2sþ1: ð31Þ

If we consider the previous expression in Eq. (7), then we
arrive at an explicit form for the particle production rate
given as

ΓðHÞ
3H

¼ 3sξ0
ð1þ ωÞH

2ðs−1=2Þ: ð32Þ

Note that in order to maintain gravitational particle pro-
duction, Γ > 0, we must have ξ0 > 0 for null viscous
effects; we do not have particle production. The case
s ¼ 1=2 simplifies the above equation, leading to a con-
stant rate for the production of particles, and it is given as
Γ ¼ ffiffiffi

3
p

ξ0=ð1þ ωÞ or Γ ¼ ffiffiffi
3

p
ξ0 for the standard dark

matter case. Now, using Eqs. (7) and (30), we can write

Γ
3H

¼ 1þ 2

3ð1þ ωÞ
�

_H
H2

�
; ð33Þ

and by means of (32) the previous expression takes the
following form:

_H
H2

¼ −
3

2
f1þ ω − 3sξ0H2ðs−1=2Þg: ð34Þ

If we consider the standard dark matter case, ω ¼ 0,
together with the case s ¼ 1=2, then Eq. (34) can be
integrated straightforwardly, yielding

HðtÞ ¼ H0

�
1þ 3

ffiffiffi
3

p

2

�
1ffiffiffi
3

p − ξ0

�
H0ðt − t0Þ

�−1
; ð35Þ

whereH0 denotes evaluation ofHðtÞ at t ¼ t0. The expansion
of the Universe is guaranteed for 0< ξ0<1=

ffiffiffi
3

p
. However,

for ξ0 > 1=
ffiffiffi
3

p
the Hubble parameter becomes negative;

therefore, we can write it in the following convenient form

HðtÞ ¼ 2

3
ffiffiffi
3

p
�

1

ξ0 − 1=
ffiffiffi
3

p
�
ðts − tÞ−1; ð36Þ

where we have defined

ts ¼ t0 þ
1

H0

�
2

3
ffiffiffi
3

p ðξ0 − 1=
ffiffiffi
3

p Þ

�
: ð37Þ

Notice that ts is a constant value andwill represent a value for
the time in the future when the Hubble parameter becomes
singular. According to the classification for future singular-
ities given in [45], we have a big rip singularity at t ¼ ts. Thus
inserting the Hubble parameter (36) in Eq. (32) with s ¼ 1=2
and ω ¼ 0, one gets

ΓðtÞ ¼ 3
ffiffiffi
3

p
ξ0H ¼

�
2ξ0

ξ0 − 1=
ffiffiffi
3

p
�
ðts − tÞ−1: ð38Þ

As can be seen, the particle production rate becomes singular
as we approach ts. This result is contradictory since, in
the phantom scenario as the Universe reaches the future
singularity, matter or any structure must be disaggregated.
However, we must keep in mind that have been shown that
phantom scenarios are unstable; i.e., at quantum level they
have an unbounded negative energy that leads to the absence
of a stable vacuum state. On the other hand, in order to avoid
this kind of problem, Ref. [46] proposes the interaction of
phantomparticles and standardmatter, at least gravitationally.
In consequence, the gravitational interaction allows proc-
esses, such as the spontaneous production from thevacuumof
a pair of phantom particles and a pair of photons, to mention
some. In this case the phase space integral is divergent; this
indicates a catastrophic instability. This instability can be
avoided by imposing a non-Lorentz invariant momentum
space cutoff, but despite this correction the density number
of photons and phantom particles can be written as
n ∝ ðΓ × age of the UniverseÞ, and, according to the diffuse
gamma ray background observations the production rate of
photons, Γ, leads to higher values from the typical ones for
the energy of the produced photons. Then, any cosmic ray
experiment on Earth should be detecting more events than
normal and more energetic than those detected until now.
These bounds for Γ and n together with other considerations
of Ref. [46] suggest that the origin of phantom must come
from new physics beyond the standard model of particles.
See also Refs. [47,48] for similar discussions on the topic.

B. Israel-Stewart approach

Setting ζ ¼ 0 in the transport equation (26) leads to
the truncated version of the Israel-Stewart theory [40,41].
This effective model has been widely studied at a cosmo-
logical level in several contexts, see the references in [49].
Therefore, if we consider the truncated transport equa-
tion (26) together with the Friedmann equations (2) and the
continuity equation for the energy density (3), we obtain a
second order differential equation for the Hubble parameter
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Ḧ þ 3H _Hð1þ ωÞ þ 9

2
ϵð1 − ω2Þ

�ð1þ ωÞ
3sξ0

H1−2s − 1

�
H3

þ ϵð1 − ω2Þ
3s−1ξ0

_HH2ð1−sÞ ¼ 0: ð39Þ

Taking the value s ¼ 1=2, as discussed in Ref. [50], if
dissipative effects are included in the ΛCDM model, the
case s ¼ 1=2 is the only value that allows us to write the
standard form of the well-known de Sitter solutions,
H0 ¼ � ffiffiffiffiffiffiffiffiffi

Λ=3
p

, in the limit ξ → 0; if we also consider
the change of variable x ¼ lnða=a0Þ, then we can solve for
the Hubble parameter in the standard dark matter case

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ðβ½c2 þ ln ð1þ zÞ�Þ

cosðβc2Þ

s
ð1þ zÞα; ð40Þ

where c2 is an integration constant given as

c2 ¼
1

β
arctan

�
2fα − ð1þ q0Þg

β

�
: ð41Þ

The form written in Eq. (40) for the Hubble parameter is
obtained from the condition Hðz ¼ 0Þ and the first deriva-
tive H0ðz ¼ 0Þ. Given that we are solving a second order
differential equation, and for simplicity in the notation,
we have defined α ¼ 3=4þ ffiffiffi

3
p

ϵ=4ξ0 together with

β ¼ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵ=ξ0ð

ffiffiffi
3

p
− 6ξ0 − 3ξ0=2ϵ − ϵ=2ξ0Þ

q
, which are

also constants. On the other hand, q0 is the deceleration
parameter evaluated at z ¼ 0. Note that at present time
z ¼ 0, the Hubble parameter (40) takes the value H0.
In Fig. (3) we depict the normalized Hubble parameter,

HðzÞ=H0. In Ref. [51] the velocity of bulk viscous
perturbations was constrained to the interval 10−11 ≪
c2bðϵÞ ≲ 10−8 in order to obtain a similar behavior as the
ΛCDM model at a perturbative level; therefore, we will
consider these values for the parameter ϵ and the interval
½10−6; 10−2� for the constant ξ0. As discussed earlier, the
solution (40) depends on the value of the deceleration
parameter at present time; we will consider its definition
coming from the ΛCDM model qðzÞ ¼ −1þ 3ð2½1þ
ðΩΛ;0=Ωm;0Þð1þ zÞ−3�Þ−1 together with the normalization
conditionΩΛ;0 þ Ωm;0 ¼ 1 and the recent value reported by
the Planck collaboration for Ωm;0 [3]. With these consid-
erations we obtain −0.538 ≤ q0 ≤ −0.517. In the upper
panel of Fig. 3 we perform a comparison with the ΛCDM
model (shaded region in blue), and the dashed lines
correspond to our viscous model with ξ0 ¼ 10−2,
ϵ ¼ 10−11; 10−8, and the aforementioned values for q0.
As can be seen, the model coincides with theΛCDMmodel
from the present time (z ¼ 0) to the far future (z ¼ −1) and
also in the past (z > 0). In the lower panel we show the
behavior of the normalized Hubble parameter when we

vary the value of the constant ξ0 to 10−6, in this case we can
see that the normalized Hubble parameter tends to zero
(dotted lines). As the value of the parameter ϵ grows, the
model deviates significantly from the ΛCDM model,
but this could represent an unstable scenario for the viscous
model.
Then, if we consider the Eq. (33) with ω ¼ 0, we can

obtain for the particle production rate

ΓðzÞ ¼ 3HðzÞ − 2ð1þ zÞ dHðzÞ
dz

;

¼ H0ð1þ zÞα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ðβ½c2 þ ln ð1þ zÞ�Þ

cos ðβc2Þ

s

× ½3 − 2αþ β tan ðβ½c2 þ ln ð1þ zÞ�Þ�: ð42Þ

In this case, we have that if at some stage of the
cosmic evolution the argument βðc2 þ lnð1þ zÞÞ of the
tangent function takes the value πð1þ 2nÞ=2 with
n ¼ 0;�1;�2;…, then the particle production rate
diverges. From the previous equation we can write the
quotient

FIG. 3. Hubble parameter in the truncated Israel-Stewart model.
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Γ
3H

¼ 1 −
2

3
αþ β

3
tan ðβ½c2 þ ln ð1þ zÞ�Þ: ð43Þ

We show the behavior of the above expression in Fig. (4)
with ξ0 ¼ 10−2, ϵ¼10−11;10−8, and q0 ¼ −0.538;−0.517,
each case is represented by the dashed and solid lines. The
behavior of this quotient is related to the effective param-
eter as given in Eq. (8). For ω ¼ 0 the quotient remains
positive and tends to 1 at the far future (z ¼ −1). This
means that along the cosmic evolution we will always have
dark matter production (Γ > 0) and, as shown in the plot,
the matter production does not become catastrophic.
Relating the obtained behavior for the quotient with ωeff
given in (8), we can see that the cosmological viscous fluid
with matter production effects from the present time
(z ¼ 0) to the future will behave as quintessence dark
energy and at the far future will emulate a cosmological
constant behavior: at this stage the matter production stops.
If we consider the value ξ0 ¼ 10−6, the resulting behavior
for Γ=3H is similar as the one shown in Fig. (4). Therefore,
the truncated Israel-Stewart model with matter production
does not allow a phantom scenario.
To end this section, we discuss the following ansatz for

the Hubble parameter

Hðt > tsÞ ¼
jAj
ts

�
t
ts
− 1

�
−1
; ð44Þ

this ansatz was proposed in Ref. [52] for the full Israel-
Stewart model in order to study some of its thermody-
namics properties. One interesting feature of this ansatz is
that the cosmic evolution starts from an initial singularity
given at t ¼ ts, and which possesses the characteristics of a
big bang and represents an expanding Universe since
jAj > 0. Inserting the ansatz (44) in the truncated differ-
ential equation of the Israel-Stewart model (39), we obtain a
quadratic equation for jAj: the solutions will be given as

jAj� ¼
ð3þ 3

ffiffiffi
3

p
ϵ=ξ0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3ϵ2

ξ2
0

− 6
ffiffi
3

p
ϵ

ξ0
þ 36ϵ

q
3

ffiffiffi
3

p
ϵ=ξ0 − 9ϵ

; ð45Þ

then jAj is a constant given in terms of the parameters ϵ and
ξ0. Thus, using the Eq. (33) with the ansatz (44), we obtain
the following expression for the particle production rate:

ΓðtÞ ¼ 1

ts

�
t
ts
− 1

�
−1
f3jAj� − 2g: ð46Þ

Keeping in mind that the condition 3jAj� > 2 is always
fulfilled, we understand that the cosmic evolution starts
from an initial singularity and will be driven by a
dissipative fluid with infinite matter production at the
beginning (Γ > 0), and such production decays as the
Universe expands. In this case we have the following
simple expression for the quotient between the particle
production rate and the Hubble parameter:

Γ
3H

¼ 1 −
2

3jAj�
: ð47Þ

Adopting the values for the parameters ξ0 and ϵ as in
the previous case, we obtain some different cases for (47).
With ξ0 ¼ ½10−6; 10−2� and ϵ ¼ ½10−11; 10−8�, we have that
Γ=3H ≈ 1 if we consider the solution jAjþ, then by means
of Eq. (8) withω ¼ 0, we find that the dissipative fluid with
matter production behaves as a cosmological constant
along the cosmic evolution. On the other hand, for jAj−
with the same set of values for ξ0 and ϵ we have that
depending on the election of these values, the quotient can
be positive but ≪ 1, negative, or zero. Using the Eq. (8)
with ω ¼ 0, we can see that for a positive quotient the
effective parameter is excluded from the quintessence
region, and for negative quotient ωeff turns positive leading
to a decelerated expansion. For the case of null particle
production we have q ¼ 1=2 by means of Eq. (14); this
result also represents a decelerated cosmic expansion.
Therefore, the interesting case is given by the solution
jAjþ, but as in the case discussed previously, no phantom
regime is allowed.

V. NONADIABATIC EXPANSION

The results obtained in the previous sections emerge
from the adiabatic condition for the entropy, i.e., _S ¼ 0,
leading to a constant entropy in time. However, if we
consider nonadiabaticity, then the thermodynamics descrip-
tion of the cosmological model becomes more consistent
[53]. From Eqs. (4), (10), and (12) we can compute the
particle number density, yielding

nðHÞ ¼ n0
V

�
H
H0

�
2ð1−1

ηÞ
; ð48Þ

FIG. 4. Quotient Γ=3H.
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where V is the Hubble volume given as ða=a0Þ3. Note
that for H ¼ H0, we simply have the constant density
number, n0=V, and for an expanding Universe this density
is always positive. With the inclusion of dissipative effects
we must consider the following evolution equation for the
temperature [12]

_T
T
¼ −3H

�∂p
∂ρ

�
þ n _S

�∂T
∂ρ

�
; ð49Þ

the integrability condition,

∂2S
∂T∂n ¼ ∂2S

∂n∂T ; ð50Þ

still holds, therefore we can write

n
∂T
∂n þ ðρþ pÞ ∂T∂ρ ¼ T

∂p
∂ρ : ð51Þ

If we consider these results together with Eqs. (4), (6), and a
barotropic equation of state in the expression (49), we
obtain

_T
T
¼ −3Hω

1þ 3Π
ρð1þωÞ þ Γ

3H

1þ Π
ρð1þωÞð1− Γ

3HÞ
þ Γ

3Hð1− Γ
3HÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
;

ΞðtÞ

ð52Þ

by considering the relationship between the redshift and
the scale factor the equation for the temperature can be
written as

1

T
dT
dz

¼ 3ωð1þ zÞ−1ΞðzÞ; ð53Þ

if we integrate

TðzÞ ¼ T0 exp

�
3ω

Z
z

0

Ξðz0Þ
1þ z0

dz0
�
: ð54Þ

It is worthy to mention that the obtained expression for the
temperature is definite positive, in the case where we have
null contribution from dissipative and matter creation effects,
Π ¼ Γ ¼ 0, the temperature takes the standard definition
obtained in a single fluid description, TðzÞ ¼ T0ð1þ zÞ3ω,
and for the standard dark matter case the temperature takes a
constant value, as in the ΛCDM model.
On the other hand, if we consider the expression (6), we

can write

_S ¼ 9H3

nT

�
−
2

3
ð1þ qÞ þ ð1þ ωÞ

�
1 −

Γ
3H

��
; ð55Þ

and the expression (30) was considered for the bulk viscous
pressure. Now, inserting Eq. (13) in the previous result
one gets

_S ¼ 9H3

nT

�
2

3
ð1þ qÞ

�
ð1þ ωÞ

�
1 −

1

η

�
− 1

�
þ ð1þ ωÞ

�
:

ð56Þ

As can be seen the entropy production has contributions
from matter creation and dissipative effects. For the
standard dark matter case we have

_S ¼
8<
:

9H3

nT0

n
1 − 2

3

ð1þqÞ
η

o
; quintessence;

9H3

nT0

n
1þ 2

3

j1þqj
η

o
; phantom;

ð57Þ

where we have considered that, at effective level, both cases
can appear. In order to be in agreement with the second
law of thermodynamics, _S > 0, the conditions T0 > 0 and
n > 0 must be satisfied together with the following cases:
(i) in the quintessence scenario the conditions 1 > 2ð1þ
qÞ=3η and η > 0 must be satisfied, the positivity of the
entropy production is guaranteed for η < 0, (ii) for the
phantom regime the fulfillment of the second law is
achieved with η > 0 and for η < 0 we must have
1 > 2j1þ qj=3η. Thus, under the nonadiabatic condition
for the entropy the cosmic expansion is free of the negative
entropy or temperature problem [54].

VI. FINAL REMARKS

In this work we studied the cosmic evolution that
emerges from the consideration of matter creation effects
in a viscous fluid under the adiabatic condition for the
entropy, i.e., constant entropy. As a first approach we
adopted an inhomogeneous ansatz for the particle produc-
tion rate, Γ. In this first scheme we obtained that the model
at effective level could describe phantom or quintessence
regimes depending on the values of the parameters η and ω,
being the case of interest the dark matter type behavior for
created matter denoted by ω ¼ 0. For this special case
phantom and quintessence behaviors are still present. On
the other hand, we computed the dimensionless age of this
kind of Universe for two cases: created matter represents
the whole content of the Universe and created matter
represents the actual matter of the Universe. For both cases
we got that the age for these kinds of universes deviates
from 1 but remains close to this value; this is characteristic
of universes with the presence of dark energy. However,
when the deceleration parameter is computed in this first
description we obtain a constant parameter as a result;
therefore a model of this kind is not consistent with the
cosmological observations or the ΛCDMmodel. In order to
fix this issue we considered the inclusion of baryonic matter
and performed the statistical analysis for the model in order
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to constraint the parameters ΩB and η with ω ¼ 0.
Therefore, with the constrained parameters we proved that
this model behaves as quintessence dark energy along the
cosmic evolution.
As a second approach we dropped the ansatz philosophy

for the particle production rate and we constructed such a
term with the consideration of two descriptions for the
bulk viscous pressure: the Eckart model and the truncated
version of the Israel-Stewart formalism. The particle
production rate has a relevant role in the cosmic evolution
since

ωeff ¼ −
Γ
3H

;

for ω ¼ 0, as discussed previously. If Γ > 3H, the phantom
scenario is allowed and the case Γ < 3H could represent
quintessence or decelerated expansion. In the Eckart
description a big rip singularity appears, then in this case
the Γ term also exhibits a singular behavior leading to a
catastrophic matter production. This scenario contradicts
the expected behavior of the phantom regime where matter
or any structure must be diluted. We infer that this conduct
is due to the fact that the Eckart formalism is noncausal;
therefore, it is not appropriate to describe late times in any
type of universe. On the other hand, if the truncated version
of the Israel-Stewart model is considered, then we have
several possibilities to study; however, in this work we
focused only on two cases: an analytical solution for the
Hubble parameter emerging from this approach and an
ansatz for the Hubble parameter that leads to a cosmic
evolution with an initial singularity with the properties of a
big bang. It is worthwhile to mention that in this scenario
the catastrophic matter production is not present. For the
analytical solution of the Hubble parameter, we observed
that the corresponding Γ term leads to a quintessence dark
energy evolution and at the far future the model could
mimic the ΛCDM model. These scenarios are possible if
the parameter ϵ (a constant parameter responsible of
characterizing the velocity of bulk viscous perturbations)

lies in a specific interval such that, at a perturbative level,
the viscous model is close to ΛCDM. If we consider other
values for ϵ we could have other possibilities for the cosmic
evolution of the model, but our description could reveal an
unstable behavior. When the ansatz for the Hubble param-
eter is considered, we have two branches characterized
by jAj�; for the branch jAjþ the cosmological constant
expansion is emulated by our model, and if we consider the
branch jAj− then decelerated expansion is obtained. Then,
this latter case is not favored and must be discarded.
We must emphasize that it seems that the scenario of

dark matter type production plus other cosmological effects
does not allow the crossing to the phantom regime; i.e, we
only have access to a quintessence dark energy scheme.
The case of dark matter type production was discussed by
the authors in Ref. [11]. We would like to comment that
according to some recent tentative results the quintessence
scenario seems to be the elected candidate by the observ-
able Universe to lead its late times behavior; in Ref. [55],
it is reported that the cosmic expansion could be slower
than we think since the catalyst of such expansion is a
quintessence component. Thus, the kind of model as
studied in this work could provide a viable theoretical
framework to describe our Universe.
Finally, we discuss the cosmic expansion of our model

if we implement the nonadiabaticity condition. In this
description we observe that the temperature of the viscous
fluid is positive definite, and in the case of dark matter type
behavior, ω ¼ 0, we got that such temperature takes a
constant value as in the ΛCDM model even if Π and Γ are
different from zero. For Π ¼ Γ ¼ 0, we recover the single
fluid description at the thermodynamics level. Then, the
model obeys the second law if we take into account some
conditions for the parameters of the model. These phantom
or quintessence scenarios have positive entropy and
temperature.
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