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The search for primordial gravitational waves in the cosmic microwave background (CMB) will soon be
limited by our ability to remove the lensing contamination to B-mode polarization. The often-used
quadratic estimator for lensing is known to be suboptimal for surveys that are currently operating and will
continue to become less and less efficient as instrumental noise decreases. While foregrounds can, in
principle, be mitigated by observing in more frequency bands, progress in delensing hinges entirely on
algorithmic advances. We demonstrate here a new inference method that solves this problem by sampling
the exact Bayesian posterior of any desired cosmological parameters, of the gravitational lensing potential,
and of the delensed CMB maps, given lensed temperature and polarization data. We validate the method
using simulated CMB data with nonwhite noise and masking on up to 650 deg? patches of sky. A unique
strength of this approach is the ability to perform joint inference of cosmological parameters, which control
both the primordial CMB and the lensing potential, which we demonstrate here for the first time by
sampling both the tensor-to-scalar ratio, r, and the amplitude of the lensing potential, A,. The method
allows us to perform the most precise check to-date of several important approximations underlying CMB-
S4 r forecasting, and we confirm these yield the correct expected uncertainty on r to better than 10%.
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I. INTRODUCTION

The gravitational lensing of the cosmic microwave
background (CMB) is a key cosmological observable.
Current and next generation CMB probes are all targeting
significant improvements in sensitivity to the lensing effect
[1-8]. These will correspond to large improvements in the
precision with which we can reconstruct the gravitational
lensing potential, ¢, and with which we can “delense” the
CMB to reveal the unaltered primordial signal. The inferred
maps of ¢ encode a wealth of information about the late-
time structure and geometry of the Universe, both by
themselves and in cross-correlation with other tracers of
matter. Delensing, which can remove the spurious fore-
ground B-mode polarization generated by lensing, will be
crucial in searching for the hypothesized primordial
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B-mode signal sourced by inflationary gravitational waves.
Despite the importance of the lensing effect, however, it is
still an open question how in practice to optimally extract
cosmological information from the very low-noise obser-
vations of the lensed CMB achievable in the near future.

Up until very recently, all CMB lensing analyses have
used a quadratic estimator (QE) [9,10] to produce a point
estimate of ¢. Obtaining cosmological constraints then
proceeds by either 1) taking the auto power spectrum of this
reconstructed ¢, debiasing the spectrum, and computing
error bars with a combination of analytic calculations and
Monte Carlo simulations, then comparing to model C?¢
power spectra, or 2) cross-correlating ¢ with other low-
redshift probes of structure, and similarly, computing the
expected response with various semianalytic techniques.
This is the approach taken in the first detection of the
lensing effect in the CMB from cross-correlating WMAP
with NVSS galaxies [11], the first CMB-only detection by

© 2020 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.123542&domain=pdf&date_stamp=2020-12-28
https://doi.org/10.1103/PhysRevD.102.123542
https://doi.org/10.1103/PhysRevD.102.123542
https://doi.org/10.1103/PhysRevD.102.123542
https://doi.org/10.1103/PhysRevD.102.123542

MILLEA, ANDERES, and WANDELT

PHYS. REV. D 102, 123542 (2020)

the Atacama Cosmology Telescope [12], the first detection
of lensing in the B-mode polarization by the South Pole
Telescope [13], the Planck lensing results [14—18], as well
as in the large body of other work steadily improving the
fidelity of the lensing measurements [19-24]. Delensing
can be implemented by using the estimate of ¢ to undo the
lensing deflection in the data maps or by creating a B mode
template that can be subtracted. Again, this requires using
Monte Carlo simulations to quantify the resulting bias and
uncertainties in the power spectra of the delensed maps.
The first CMB-only delensing analysis used the QE to
estimate ¢ maps from Planck temperature data and then
inverted the lensing deflection [25].

As successful as the QE has been, however, it will soon
become obsolete because it becomes statistically subopti-
mal as instrumental noise levels dip below ~5 pK-arcmin
[26-28]. This threshold is being crossed with currently
available data sets.

Several methods have been proposed to improve upon
aspects of the standard QE procedure. Mirmelstein et al.
[29] derive a more optimal spatial weighting of the
quadratically estimated ¢ before taking its power spectrum,
although do not improve the ¢ estimate itself. Horowitz
et al. [28] and Hadzhiyska et al. [30] work in the small-
scale limit (Z Z 5000), where a lower variance ¢ estimator
can be analytically derived, but which is not optimal on all
scales, in particular, not on the intermediate and large scales
which are relevant for r estimation. Caldeira et al. [31] train
a neural network to extract a ¢ map from noisy lensed
CMB data, finding near optimality on relevant scales, but it
is not straightforward how one would quantify uncertainties
on ¢ in such an analysis. Finally, there are a class of near-
optimal maximum a posteriori (MAP) estimators of ¢
generated by maximizing the Bayesian posterior P(¢|d, 6),
where d is the data and 6 represents cosmological param-
eters or directly the theoretical bandpowers (we will refer to
this as the “marginal posterior” and the associated “‘mar-
ginal MAP” for reasons that will be clear in a moment).
Hirata and Seljak [32,33] were the first to explore such an
approach and to develop an approximate maximization
technique, while Carron and Lewis [34] recently made the
maxmization procedure exact.

A major challenge associated with any new point
estimate of ¢ is the quantification and propagation of
uncertainty when trying to estimate cosmological param-
eters from the estimated ¢ or from data delensed by the
estimate. Although Monte Carlo simulations can help,
these will generally depend on the same cosmological
parameters one is trying to estimate in the first place. As
an example, consider attempting to use the marginal
MAP ¢ to infer the theoretical ¢p bandpowers (in our

notation, the case, where 6= {C%’}). Since P(¢|d,0)
depends on C‘;"' , the resulting estimate inherits a Wiener-
filter-like multiplicative bias, which depends explicitly—
but not analytically—on C?‘/’ itself. This circularity

seriously complicates any attempt to debias and/or probe
properties of C?‘f’ in this way.

Despite these challenges, some progress has been made
using these new ¢ estimates. Adachi et al. [35] were recently
the first to apply a non-QE method to actual CMB data,
demonstrating that delensing data from the POLARBEAR
telecope with the algorithm from [34] yielded a 22%
reduction in lensing B modes, compared to only 14% when
delensing with the QE. The circularity problem is partially
ameliorated by a procedure they develop termed “over-
lapping B-mode deprojection,” wherein for each bandpower
that is delensed, a ¢ estimate is constructed only from modes
outside of that multipole range. This reduces the size of the
bias and its dependence on the theoretical spectra themselves
but at the price of a 5%-35% reduction in the delensing
efficiency depending on the multipole range considered.
Skipping ahead slightly, we remark that the new method-
ology introduced in this paper would fully remove this
delensing efficiency penalty, as well allowing inference of
other cosmological parameters governing C;/f'/’ or the dele-
nsed bandpowers themselves.

In parallel, there have also been attempts to unify near-
optimal estimation of ¢ with simultaneous inference of
cosmological parameters. The main approach has been to
extend the marginal posterior from P(¢|d, ) to include
the 6 as free parameters rather than fixing them, then
marginalize out ¢ to arrive at constraints on 6 given by
P(6|d) = [d¢pP(¢,0|d). Hirata and Seljak [32,33] con-
sider the case of = {C";ﬁ}, use the Laplace approximation
to perform the integral over ¢, then compute a maximum
likelihood estimator with Gaussian error bars for the

resulting P(C?¢|d). Carron [36] developed a similar
method for 6 = r which does not assume Gaussian error
bars on r but still uses an underlying Laplace approxima-
tion. Both are useful forecasting methods, but the former
has never been checked in the presence of required analysis
complexities such as pixel masking, and the brute-force
integration employed by the latter does not scale computa-
tionally to these cases.

In this paper, we develop a complete Bayesian solution
which unifies optimal inference of ¢ along with delensing
and cosmological parameter inference. This is achieved by
further extending P(¢, 8|d) to include the unlensed CMB
fields, hereafter f, rather that analytically marginalizing
over them as was implicit in the marginal posterior (hence,
the name). The resulting “joint posterior,” P(f, ¢, 0|d),
theoretically extracts all of the information in d for (f, ¢, 6)
and completely summarizes the uncertainty on all of these
quantities. As we will demonstrate, it also allows us to
perform parameter inference by using Monte Carlo sampling
to compute the integral in P(6|d)= [dfd¢pP(f.4.0|d).
This avoids use of the Laplace approximation, whose
accuracy is difficult to check and may be poor due to the
nonlinearity of the lensing problem.
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The challenge is that this is a very high-dimensional and
non-Gaussian posterior, with around ~10° dimensions for
the cases considered in this work. Previous attempts at
sampling in this space have been blocked by the extreme
degeneracies generated by parameter expansion—from ¢
to (f,¢,0)—resulting in more parameter degrees of
freedom than data. These nonlinear degeneracies render
the exploration of the joint posterior surface extremely
difficult. To make progress, one has to find a way to
condition the posterior into a more manageable form. We
do so here by finding a reparametrization of the posterior
from variables (f, ¢, 0) to new variables (f', ¢, 8), which
have a posterior distribution, which we are then able to
sample efficiently with the combination of a Gibbs block
sampler and Hamiltonian Monte Carlo (HMC) [37]. The
resulting fast-mixing chain yields samples of (f’,¢’,8),
which can be easily converted to samples of (f,¢,0) in
postprocessing.

The final piece of the procedure is LenseFlow, which is
a numerical algorithm for lensing a map [38]. LenseFlow
reformulates lensing into solving an ordinary differen-
tial equation (ODE) and makes it possible to com-
pute the gradients and determinants that arise in the
reparametrization.

We use our method to compute, for the first time, the
exact Bayesian posterior, P(r|d), in the presence of
realistic analysis complexities, notably pixel masking.
Doing so, we can check existing forecasts for r similar
to those performed for CMB-S4, South Pole Observatory,
or Simons Observatory [5,8,39,40]. These rely on approx-
imations which, among other things, ignore masking [27].
Pixel masking couples modes together and leaks E into B
mode polarization exactly like lensing, so it is particularly
worrisome that it might impact delensing in some unex-
pected way. We present these results in Sec. V D.

The power of the methodology developed here is
not just that it works for forecasting but that it is ready
to be applied to analysis of real data, including the
many extra complexities which arise. We demonstrate
this with simulations, which include the effect of beams,
nonwhite noise, and Fourier and pixel masking. We
work in the flat-sky approximation and consider patches
of sky as large as 512 x 512 pixels or ~650 deg®. We
focus on the specific problem of delensing and inference
on the tensor-to-scalar, r, and the amplitude of the
lensing potential, A,. The procedure is conceptually
straightforward to generalize to sampling other cosmo-
logical parameters (or to sample bandpowers directly),
to the curved sky and larger sky area, and to include
foreground components. An accompanying software
package, CMBLensingjl (see Sec. VIA), is available
online.

'See Ref. [41].

II. THE DATA MODEL AND PRIOR
ASSUMPTIONS

The Bayesian posterior for the lensing problem is
completely specified by a data model and a set of priors.
The data model we use, which is flexible enough to handle
real experiments, is

d=AL@)f +n, (1)

where d is the data, f are the unlensed CMB fields, and 7 is
the instrumental noise. In this paper, we will work with
only polarization data since they give the tightest con-
straints for low noise levels, although the equations (and
our code) are generic to temperature, polarization, or
temperature and polarization data. The term [(¢) encodes
the lensing displacement operation, which can be written
for f in the T/Q/U basis as a function of 2D position on
the sky x,

(L(#))(x) = f(x + V(x)). (2)

Note that L(¢) is a linear operator acting on f but has a
nonlinear dependence on ¢. We use LenseFlow [38] to
implement [ (¢) numerically. This is a necessity for our
application because no other known numerical approxi-
mation allows practical calculation of determinants or of
gradients of inverse lensing” with respect to ¢, both of
which are needed by the reparametrization which we will
describe in Sec. III. Another advantage of LenseFlow is that it
allows us easily to apply the full lensing displacement,
rather than, e.g., having to rely on a truncated Taylor
approximation. We will assume the lensing Born approxi-
mation, although it would be straightforward to include a
curl potential to the deflection field to model these effects.
We omit a detailed treatment of post-Born effects because
their importance in the context of this paper will be
marginal for current and upcoming surveys [42-45].

Instrumental transfer functions and user-chosen masking
are encoded in the operator,

A = KMB, 3)

which is the product of a Fourier mask [K, a pixel mask M,
and a beam B. In general, M can be chosen to mask the
boundaries of the field and any foreground contaminated
areas (such the as the areas around detected discrete
sources), and K can be chosen to restrict the analysis to
only certain modes in the 2D Fourier plane. Typical choices
we use for these operators as well as data simulated
according to Eq. (1) are shown in Fig. 1.

*Gradients of forward lensing are simple for many algorithms,
but easy gradients of inverse lensing appear unique to LenseFlow.
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FIG. 1. Typical simulated data and mask choices used in this
work. Specifically, these correspond to the configuration BIG
(see Table II) with a true value of r = 0.01. Reconstructed maps
from this exact data are shown in Fig. 6. We note that an apodized
pixel mask and an isotropic Fourier mask are not algorithm
requirements, rather arbitrary choices we made for this example.

We take Gaussian priors on the fields f, ¢, and n,

f~N(0,Cs(r)) (4)
|

(4L’ r &
{5 poxp el en {-wfs}

¢ ~N(0,Cy(Ay)) (5)
n~N(0,C,), (6)

where C,, C/(r), and Cy(A,) denote the covariance
operators for the experimental noise, unlensed CMB
polarization, and lensing potential. The latter two have
explicit dependence on the scalar-to-tenser ratio, r, and a
lensing spectral amplitude parameter, Ay, given by

Cf(") = C:f + (”/”*)Cff (7)

where ij, C;‘f, and C;; are covariance operators for CMB

scalar perturbations, tensor perturbations, and the lensing
potential field, computed at fiducial ACDM parameters.3

Finally, we chose the following weakly informative
priors for r and A, [47]:

-172, n(Ay) ocA(Zl/z. 9)

x(r) < r
We find little impact on our sampling algorithm for
different priors, and different choices that can be of
importance sampled into the final chains if desired.
With this final ingredient specified, the posterior dis-
tribution is now fully defined and given by Eq. (10),

P(f, ¢, F,A¢|d) X

detC;(r)!/2 detCy(Ay)'? (rAy)!/?

2
jeo{-xli}

(10)

detCY/?
&*
exp{—E
Plp,r,Ayld)
( o14) detZ‘.[l/2

where X, =C, + AL(¢)C(r)L(¢) AT, and we use the
shorthand x?/N = x"N~!x.

Note that the conditional distribution P(f|¢, r, A, d) is
Gaussian in f (although all the other conditionals are non-
Gaussian). Because of this, it is possible analytically to
marginalize over f,

Pld.r.Ayld) = / AP porAyd).  (12)

3Spectra are computed using CAMB (see Ref. [46]) with
fiducial settings k* = 0.002, r* = 0.1, A;@ =1, w, = 0.0224567,
o, = 0.118489, 7 =0.055, 6s=0.0104098, logA = 3.043,
ng = 0.968602, and n, = —r*/8. Note that for simplicity, in
Eq. (7), we are implicitly fixing », rather than enforcing the single
field consistency relation.

) 11
detC(/](A(p)l/z (rA{/))1/2 ( )

[
to arrive at Eq. (11), which, as previously mentioned, we
refer to as the marginal posterior.

As discussed in [38], the joint and marginal posteriors
have a crucial distinction. All of the operators whose
determinants and inverses appear in the joint posterior
are sparse in simple bases; e.g., C,, is sparse in pixel space
for typical instrumental noise, and C; and C, are diagonal
(and even isotropic) in Fourier space. The action of these
operators can thus be evaluated in O(N; log N,y ), where
N ix is the number of pixels in the maps, as the limiting step
is an FFT to transform into the sparse bases. However, X,
which is introduced in the marginal posterior, is not sparse
in any simple basis.

This would limit us in several ways if we were
attempting to use the marginal posterior for sampling.
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Evaluating gradients of detX; with respect to ¢, which
would be needed by the HMC sampler (see Sec. IV), would
now have to be done through a costly Monte Carlo
procedure [34]. This procedure involves solving Ny ~
500 conjugate gradient problems, each of which require
Ncg ~ 100 conjugate gradient iterations, with each iter-
ation having similar computation cost as a single joint
posterior gradient. Hence, marginal posterior gradients are
slower than joint posterior gradients by a factor of an order
NmcNcg, which can in practice be a very large number.
Even if this were overcome (if the total CPU cost was not
prohibitive, the Nyc steps can at least be done in parallel),
there is another even more serious limitation. No algorithm
we are aware of can robustly evaluate det X, itself faster
than O(N};), which in practice makes this impossible for
maps larger than about 32 x 32 pixels. Without an ability
to evaluate this determinant and hence, the value of our log
posterior, the accept/reject step of the HMC is impossible.
For these reasons, we find that sampling the joint posterior
is the more promising path, and the one which we take.
In summary, we choose to work with the higher dimen-
sional joint posterior because it has a structure that
allows the use of powerful Markov chain Monte Carlo
(MCMC) sampling techniques such as HMC. This
approach is typical for the implementation of high-
dimensional Bayesian hierarchical models, starting with
their first application in cosmology [48] which applied
Gibbs sampling to CMB power spectrum inference, or the
more recent application to nonlinear large scale structure
reconstruction and inference in the Bayesian origin
reconstruction from galaxies (BORG) sampler [49-51].

III. REPARAMETRIZING THE POSTERIOR

The joint posterior, parametrized as in Eq. (10) by the
unlensed CMB fields and the lensing potential, is nearly
unusable in practice due to the presence of large non-
Gaussianities and degeneracies. These issues already
appeared in a milder form in the temperature-only CMB
lensing posterior [52], where the solution was to change
from the unlensed to the lensed (or from a “sufficient” to an
“ancillary”) parametrization. The situation is more challeng-
ing for the polarized CMB lensing/delensing problem we
treat in this paper, and the solution in [52] is not powerful
enough. In the context of polarization, Millea et al. [38]
encountered the same underlying problem when maximizing
P(f,¢|d,0), but the “cooling scheme” solution presented
there does not have an obvious analog for sampling.
Additionally, here we have the complexity of degeneracies
in the full (f, ¢, 0) space, which must be dealt with.

A key aspect of this work is that we develop a physically
motivated reparametrization, which works for polarization
and yields a posterior, which is significantly less degenerate
and more Gaussian than the original P(f, ¢, r, A4|d). The
reparametrization is fully invertible and consequently, does

not introduce any approximations to the inference; it only
serves to increase the efficiency of sampling or maximiza-
tion. We first describe the reparametrization (which we also
refer to as “mixing,” since it mixes the various parameters)
and afterwards explain the motivation behind it.

We perform a change of variables from (f,¢) to new
variables, which we call (f’,¢’), which are defined by

P'=G(Ay)h (13)
[ =L@)D()f. (14)

The operator D(r) is defined to be diagonal in the E, B
Fourier domain, and G(A,) is diagonal in the Fourier
domain, with

SOENIHGEN g

D(r) = [

Cr(r) Cy(r)
R

where Cf(r) = C4(r) + Ny, and Ny, denotes the effective
power contribution of lensing to the CMB polarization,
which we set equal to 5 pK-arcmin white noise (this seems
to work better than using the actual lensing contribution
that rolls off at higher #). The operators N, and N, are
taken to be diagonal in the Fourier domain and are intended
to represent the effective noise for f and ¢ in the data. Even
if the noise covariance is not actually diagonal in Fourier
space, the requirement is only that it needs to be approxi-
mated sufficiently well by a Fourier diagonal approxima-
tion. Since we explicitly take the instrumental noise in our
simulations to be diagonal in Fourier space, we use directly
N; = Cn. For N, we compute an iterated “N,” noise as
described in Smith er al. [27].

The reparametrized posterior needs the determinant of
the Jacobian of the transformation, where the Jacobian is

af.¢) [L@D(r) £L(@)D(r)f a1
af.¢) 0 G(4,) I

We have intentionally chosen the reparametrization such
that the Jacobian is upper triangular, since in this case, the
determinant does not involve the complicated off diagonal
term. Additionally, because we model L(¢) with LenseFlow,
we have detl(¢) =1, independent of ¢ [38]. Also,
since D(r) and G(A,) are diagonal in Fourier space, their
determinants are easy to compute. This gives a final
tractable reparametrized posterior, which is given by

log P(f', ¢'. 1. Ay|d)
=log P(f(f'.#'.r.Ay). (d. Ay). . Ay|d)
—logdetG(A,) — logdetD(r). (18)

123542-5



MILLEA, ANDERES, and WANDELT

PHYS. REV. D 102, 123542 (2020)

Note that, by design, the new determinant terms are
independent of f and ¢. This means that the best-fit
(f,¢) at fixed (r,A;) can be computed by running the
maximization in the mixed parametrization, then taking the
best-fit (f,¢’) and unmixing them. The maximization is
much easier in the mixed parametrization, and can be done
with coordinate descent similarly as in [38], but with the
cooling scheme no longer needed.

Gradients of the mixed posterior can be computed
from gradients of the original posterior with an application
of the chain rule using the Jacobian in Eq. (17). Both
evaluating the value of and gradients of the reparametrized
posterior are only about twice the computational cost of the
original posterior, stemming from the presence of a second
lensing operation L(¢), which appears in Eq. (14).

The choice of D(r) and G(A,) can be motivated as
follows. Consider the toy statistical problem of obtaining
constraints on a scalar parameter, 6, given data, d, where

d=s+n, s ~N(0,S(0)), n~N(0,N).

The field n represents noise and s the signal field, with a
covariance operator S(6) depending on the unknown
parameter. The goal in this toy example is to find an
invertible reparametrization s — s’ of the form s’ = G(6)s,
which minimizes the dependence between 8 and s’ given d.
In the ideal case, such a choice of G(@) would have the
property that P(0|s’,d) =~ P(0|d), meaning s provides
minimal additional information for € beyond what is
already contained in d. Such a property would imply
that a single iteration of a Gibbs sampling algorithm for
(0,s") would return an approximate marginal draw
from P(0|d).

Another way of phrasing this goal is to choose G(6) such
that the information content in (d, s") for 8 is minimized.
Note that the marginal information in d for @ is fixed
regardless of G(6) since we are simply considering repar-
ametrization of the same data model. So by minimizing the
joint information in (d, s") for €, we are implicitly mini-
mizing the additional information in s’ for 6 beyond that
given by d.

A way to describe this mathematically is to start by
letting F(6; G) denote the Fisher information for 6 given
(d,s); in particular,

2
F0:6) = { -2 1og Pd. 5'|6) . (19)
00 d.s'~P(d.s'|6)

where the dependence on G(6) is implicit in the
reparametrized density P(d, s'|0). Then, F(0;G) can be
explicitly computed using standard matrix algebra/calculus
to arrive at

F(0;G) = u[S(G'G) (N"! + S™)(G™'G)
+(G1G)? +2SS7(G™'G) + = (S71S)3],

(20)

1
2

where the overdots refer to derivative with respect to the
scalar 6. Finally, we seek to minimize the Fisher informa-
tion, and rather than doing so at any fixed 6, we integrate
over the prior for 0, which can be any arbitrary probability
function, P(0). Thus, we seek G(0), which is a mini-
mizer in

argmén/d&]—"(&; G)P(0). (21)

In the case that G(6), S(0), and N are diagonal with
positive entries, we can define H(6) =logG(0) such
that H =G 'G. Now F(0;G)P(0) = L(0.H(0)) for a
Lagrangian £, which yields N Euler-Lagrange equations
(corresponding to N diagonal entries of G) that characterize
the stationary points of (21) given by

d d
N7IS + 21) —log G(0) + —log S(A) =0, (22
(NS +21) 210g 6(0) + - log S(0) = 0, (22)

where we have applied a boundary condition such that

Eq. (22) is invariant to the choice of prior. An explicit
solution is then given by

S(0) + 2N]1/2

G(o — . 23

0« |29 23)

which is additionally invariant to multiplication by any
diagonal matrix that does not depend on 6.

Notice that for coordinates which are noise dominated,
we have G(0) o S(0)~'/2. It is simple to see analytically
that in this limit, the posterior becomes exactly separable
given this choice of G(@). This also conforms to the
expectation from Jewell et al. [53], who derived the same
result in this limit. For coordinates which are signal
dominated, we instead have G(6) « 1, which also matches
intuition since in this limit, the data determine s perfectly.
Equation (23) is thus in some sense an optimal way to
connect these two limits. One can additionally regard this
result as an extension of Racine et al. [54], who derived a
modified Gibbs proposal step, which also works in both
limits. The advantage of our result is that it is generic and
not limited to Gibbs sampling, and that it does not affect the
detailed balance of the Monte Carlo chains or force us to
include any extra efficiency-reducing accept/reject steps.

This toy example directly explains the mixing matrix
G(A,) given in Eq. (16); it is just Eq. (23) with S = C, and
N chosen as previously described. Although the (¢,A,)
block of the lensing posterior is not exactly the same as
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FIG. 2. Three figures which are helpful in understanding the benefit of the reparametrization (described in Sec. III), which makes
sampling possible. Data configuration 2PARAM (see Table II) is assumed for these figures. Left two panels: The reparamaterization
includes switching from sampling the unlensed CMB fields, f, to sampling the “mixed” fields, f’. The left two panels show that the
power variation in a typical f/ unmixed by various ¢ is very small, an indication that large moves are allowed in Gibbs samples from the
conditional P(¢'|f’, d). For comparison, the much larger variation in a typical  when delensed by various ¢ is shown, indicating that
the lensed parametrization performs very poorly for polarization as is the case here. Right panel: Empirically, one finds that mixed E is
mostly lensed E at all scales, while mixed B is lensed B at large scales but unlensed B at small scales. We demonstrate this here by cross-
correlating the mixed with the lensed or unlensed fields. This qualitatively conforms to the expectations of what should give a
parametrization that is minimally degenerate (see discussion in Sec. III).

(s,0) in the toy example, in particular the P(s|6,d)
conditional is Gaussian in the toy example whereas as
the corresponding ¢ conditional is not, the problems are
sufficiently similar that this works very well.

The mixing matrix D(r) given in Eq. (14) is also similar;
the first term indeed is just Eq. (23) with S=C randN=C,.
There is, however, an additional prefactor of (Cf / Cf)l/ 2
present and also a lensing operation in Eq. (14) before
arriving at the final mixed field, f’. The motivation for this
can be understood by applying a similar argument as in our
toy example. Suppose we wish to make f’ and ¢’ more
independent and increase the width of the conditional
P(¢'|f',6.d) so that it is on the order of the marginal
distribution P(¢'|0, d). We have argued that a way to do this
is to decrease the information content for ¢’ in (d, f'). One
way to do so is to prevent the power in ' from being
informative about ¢’. The prefactor in Eq. (14) serves exactly
this purpose, since it boosts power in f’ to look like lensed
power, independent of whether ¢ causes a large or small
lensing. This shifts the information in P(¢’|f', 6, d) from the
lensed B-mode power to the less informative lensed B-mode
phase coupling. Typical power spectra of f” are shown in the
left two panels of Fig. 2, as well as an illustration of how
the power in f is less informative than, e.g., the power in the
lensed field, f, explaining why f does not work well as a
parameter when considering polarization data.

Another way to understand why the mixed parametriza-
tion works well is to ask what choice of variables render the
posterior distribution in Eq. (10) explicitly independent
between f’ and ¢'. In the limit of low signal-to-noise where
only the prior terms matter, an independent choice of
variables is trivially (f,¢) since the prior is explicitly
separable between them. As we move away from this limit,
the data likelihood begins to couple f and ¢, so it is clear
the right choice will be some combination of them.

The mixing indeed has exactly this behavior in these
limits, as demonstrated in the right panel of Fig. 2.
Here, we plot the cross-correlation coefficient at different
scales between the mixed maps and either lensed or
unlensed ones. For scales where signal-to-noise is low
(like medium and small scales in B), the mixed field f’
looks like the unlensed field. In the high signal-to-noise
limit (such as in E, or at very large scales in B), f’ becomes
a mixture of f and ¢. In particular, we find it tracks the
lensed field.

The end result of all of this is a dramatically better
conditioned posterior, resulting in large Gibbs moves and
much faster chain mixing for the sampling procedure we
describe in the next section. The improvement is not limited
to our particular Gibbs sampler, however, and we expect
that any sampling algorithm applied to this problem would
benefit drastically from this reparametrization. Finally, we
note that although the reparametrization in our toy example
is optimal in the sense that it can be rigorously and
analytically derived, the full mixing in Eqgs. (13) and (14)
is almost certainly not optimal. Instead, it is based on
physical intuition and simple analogy to the covariance
estimation problem, and it would be worthwhile to inves-
tigate even better choices.

Algorithm 1. P(f",¢', r,A;|d) sampler. The Gibbs sampling

algorithm,

I:  Initialize A, and ry anywhere within the prior range.
2:  Initialize fields f{, and ¢{, with quasisamples.

3: fori=1...ndo

4: fi~ Py Apicis o1, d) >CG

5: ¢ ~P(P'|Apiz1sriz1, i, d) >HMC
6: Ayi~PAylrioy, fin@ln d) >Slice
7: ri~ P(r|fe b Ay d) >Slice
8: end for
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TABLE I. List of tuning parameters used in Gibbs algorithm 1.

Ny Effective noise used in D(r) See Sec. 1II
N, Effective noise used in G(A,) See Sec. III
A £(r), neg Parameters for conjugate gradient sample of f’ See Sec. IVB
€y My, Ay (Ay) HMC leapfrog and momentum parameters for ¢’ See Sec. IVC
K Number of over-relaxation samples for r and A, See Sec. IVD

IV. THE GIBBS CHAIN

Next, we outline the details of our Gibbs chain for
sampling P(f',¢',r,Ay|d). The procedure itself is sum-
marized in algorithm 1 and is a standard block Gibbs
sampler with each of f’, ¢/, r, and A, sampled on separate
passes. A list of all of the tuning parameters that will be
needed are also summarized in Table L.

There is a fair amount of freedom in setting up the
sampler; our motivation comes from two considerations.
First, the conditional distribution of f” is Gaussian; hence, it
is advantageous to split this piece off into its own Gibbs
pass and use a sampling technique specifically tailored for
this situation. Second, the r and A slices are qualitatively
quite different from the other parameters since they are
“global” parameters that are correlated at a small level with
everything else, making it more difficult to simply include
them in a joint HMC pass. We therefore split these off as
well, and since they are one dimensional, it is easy to use
slice sampling. This also has the advantage of letting us
build up a Blackwell-Rao posterior for these parameters.

We now describe the different passes in more detail.

A. Initializing f| and ¢; with quasisamples

The choice of initialization can shorten the “burn-in
time,” that is, the number of samples required for the
Markov chain to equilibrate. Although initialization is less
critical for our case since our reparametrization results in
good mixing properties of the chains, the method described
here is so simple it is worth utilizing. First, we note that
while we do have easy access to the best fit of the
distribution, which would seem like reasonable starting
point, in very high-dimensional spaces, the best fit is often
extremely far from the bulk of the posterior mass (e.g., for
an n-dimensional standard normal distribution, the prob-
ability mass associated with the interior of the unit sphere
centered on the origin goes to 0 as n — o0). Instead, we use
the following cheap way to generate a point which more
closely resembles a true sample and should reside closer to
the bulk of the posterior.

First, we randomly sample A, and r( from their priors
to generate their starting values in the chain. We then
initialize f{, and ¢ to zero and iterate the following two
steps:

To~ P[0, Apos 7o, d) (24)

¢6 = ¢6 + (ZA;,lvq;/ IOg P(¢/|f6’A¢O7 ro, d)|¢(’1 (25)

The first step [Eq. (24)] is a draw from the conditional
distribution of f’, which, as we will describe below, can be
done with one run of a conjugate gradient solver. The
second step [Eq. (25)] is a quasi Newton-Raphson iteration
where a is a step size, which we compute via line search to
maximize the resulting log P at each iteration, and A is an
approximate negative Hessian of log P with respect to ¢/,
which we take as

Ay (Ay) = GIA4 NS +Cy(Ay)~"], (26)

where N, is the same approximate noise covariance
appearing in Eq. (16).

Note that if we replaced Eq. (25) with a conditional
sample of ¢, we would recover exactly our sampling
algorithm given in algorithm 1 with a fixed A, and ry.
Hence, we call the point generated by this procedure a
“quasisample,” since it involves sampling in the f” direction
but maximization in the ¢’ direction. In practice, an
important aspect of quasisamples is that they do not contain
the mean-field feature, which would otherwise exist in the
joint best fit, g?ﬁ 7> [38] and which would slow the initial
convergence of our chains. We find 20 iterations of
Egs. (24)—(25) are sufficient.

B. The f' Gibbs pass

The first step of each full chain iteration is to draw a
conditional sample of f’. We can do so by solving one
conjugate gradient problem [48]. This is because the
conditional f posterior is Gaussian,

P(fl. Ay, r.d)
= N(As(r. )" 'L(@)' ATC d. Ap(r,)7"). (27)

where the inverse covariance A(r, ) is given by
As(r.¢) = L(¢)'ATC,'AL(p) + Cf(r)~".  (28)
A sample, f;, is then drawn by computing,

fi=An(r.¢)”" x [L($)TATC;d
+L(P)TATC, ' 2E + C,(r)7128),  (29)
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where £, and &, are independent unit normal random fields,
resampled at each iteration, and the inversion of A/(r, ¢) is
done via conjugate gradient. Finally, because the mixing
is a linear function of f, a sample of the mixed field, f;-, is
simply given by f; = L(¢;)D(r;)f;. Note that conjugate
gradient is, by design, tailored to exploit the positive
definiteness of Ay, or equivalently, the convexity of the
f conditional. This is why it is advantageous to split f” into
its own Gibbs step, rather than, e.g., including it in a larger
HMC pass which would not be exploiting the convexity
and hence, be much less efficient.

For the conjugate gradient solver, we use a simple
diagonal preconditioner, 1~\f(r), given by

As(r) = B'K'C;'KB + C/(r)~". (30)

Although we find this is sufficient for the simulated data
considered here, this step does account for roughly half of
the total run time of the entire sampling algorithm and is
thus worth improving further. A promising avenue we
expect to try in the future is to use the neural network-based
Wiener filter given by Miinchmeyer and Smith [55]; this
assumes ¢ = 0 but could potentially be a powerful pre-
conditioner. Other techniques developed for Wiener filter-
ing without preconditioner could be adapted to the lensing
problem, possibly in combination with a neural precondi-
tioner [56,57]. We also note that one could absorb the final
mixing step into the quantity in brackets in Eq. (29),
although in practice we do not do so and instead solve
Eq. (29) exactly as written, which we find to be more
numerically stable.

C. The ¢’ Gibbs pass

The next step of the sampling algorithm is to draw a
conditional sample of ¢'. Because this conditional distri-
bution is not Gaussian, no specialized tricks like in the
previous subsection exist, and we instead use a single HMC
pass [37] to draw a sample.

There are only two tunable inputs to the HMC algorithm:
1) a mass matrix, which should approximate the Hessian of
the distribution to give the most efficient sampling, and 2) a
prescription for the length of each Hamiltonian trajectory.
For the mass matrix, we again use the Hessian approxi-
mation, Ay, given in Eq. (26). For the trajectories, we
perform a leapfrog symplectic integration with n;, = 25
steps of size €, = 0.02. This choice is hand tuned to work
well for a range of configurations similar to the main ones
we consider in this work but may need to be retuned for
sufficiently different analyses.

Fortunately, it is fairly straightforward to perform this
tuning. To begin with, the choice of ¢, is set uniquely by the
need to limit symplectic integration error. This error comes
from two sources: 1) errors in the posterior gradient itself,
and 2) errors due to the finite step size, €;,. Before choosing

€,, we first make sure the contribution from (1) is
subdominant. For this, the number of LenseFlow ODE steps
is relevant because we compute gradients of the lensing
operator by running a separate ODE for the gradient, rather
than by backpropagating a gradient through the original
ODE [see Sec. IV of [38]]. The gradient generated by the
gradient ODE will differ from the true gradient due to ODE
integration error. In practice, we find we need a fourth order
Runge-Kutta integration with ten steps before the LenseFlow
gradient error is a subdominant contribution to the sym-
plectic integration error. Another source of error in the
posterior gradient is floating point truncation. We find the
dominant source comes from the sums involved in the inner
products in the posterior in Eq. (10) and that these errors
can be significantly reduced with Kahan summation [58].
With this, we are able to run the entire analysis with 32-bit
instead of 64-bit floating point numbers, which doubles
performance on most CPUs and gives potentially much
more drastic speed improvements on GPUs, depending on
hardware (fast 64-bit support on GPUs is limited to high-
end models). Once this and the number of LenseFlow ODE
steps are set, €, is then simply tuned to give small enough
integration errors such that the HMC acceptance is
near 80%.

Given ¢, the choice of n;, comes from integrating
long enough to meet the “no U-turn criteria” [59]. We
have checked the integration length on representative data
configurations and multiple random starting points, and
find n;, = 25 is adequate. We note that we do not adaptively
change either n, or ¢, throughout our chains (the full “no
U-turn sampler” of [59] usually refers to an algorithm
where the integration length is adaptively chosen at each
step). We do this for simplicity and since we have not found
very obvious regions of parameter space which appear
to need significantly different values. The reparametriza-
tion of Sec. III in particular helps us avoid the “funnel
problem,” [60] which might otherwise cause such a need.
Nevertheless, it is worth exploring more sophisticated
HMC sampling techniques in the future, since, as we will
discuss in Sec. V C, our chains have autocorrelation lengths
which could be even further improved.

D. The A; and r Gibbs passes

Finally, we sample the conditional distribution of each of
Ay and r on separate Gibbs passes. Because these are one-
dimensional probability distributions, we can directly probe
these functions on a grid and use inverse transform
sampling (often called “slice sampling”) to draw a sample.
Moreover, we find that the log conditional densities are
typically quite smooth and close to quadratic, so we
can compute a very accurate interpolation of the log
probability. For the simulations given in this paper, we
use 200 grid points over the intervals A, € [0.75, 1.25] and
r € [1070,0.1], respectively, with the r grid points quad-
ratically spaced to ensure sufficient resolution near r = 0.
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There are two additional tricks, which come at no extra
computational cost, which we utilize to reduce the number
of samples required for convergence. First, we use MCMC
over-relaxation [61]; instead of drawing a single sample
from the discretized density, K samples are drawn inde-
pendently, one of which is chosen depending on the rank
(among the K draws) of the parameter value from the
previous Gibbs iteration parameter. In the simulations
below, we set K = 15, and we find that this can sometimes
reduce the chain autocorrelation time by 10%-20%.
Second, we save the interpolated conditional densities at
each step and use these to construct Rao-Blackwell
estimates of the marginal posterior densities,

P(r|d) ~ Z’P rlfh,

i Ag.ind) (31)

P(Ayld) ~ ZPAWI Lfghd).  (32)

This helps reduce the variance of the estimated posteriors
slightly faster than just building up a histogram of the
Monte Carlo samples, particularly deep in the tails of
distribution.

V. SIMULATION RESULTS

A. Description of runs

With the details of our posterior and the sampling
algorithm specified, we now turn to actually running chains
and interpreting results. We have picked three different
configurations of simulated data, the details summarized in
Table. II, which are meant to resemble possible CMB-S4
resolutions and noise levels, but slightly smaller sky area.
We will describe these runs first, then come back to a more
quantitative discussion of chain convergence as well as
some scientific conclusions that can be extracted from these
results.

All of our configurations include a Gaussian beam with
a 2-3 arcmin full width half max (FWHM). We take
isotropic Gaussian 1 uK-arcmin polarization noise with a
power spectrum, which includes a contribution from a 1/f
knee, modeled via £}, and oy, parameters [62]. The runs
are all in the flat-sky approximation and include a border
mask, M, of various widths. Although the runs we have
chosen here use an apodized border mask, we find that
unapodized masks work just as well. This is helpful if, for
example, there are so many point sources that apodizing
them all would discard too much data. In addition to a pixel
mask, we also apply an isotropic low-pass mask in Fourier
space, [K, generally near the Nyquist frequency. Although
we do not do so here, it is completely straightforward to
use an anisotropic Fourier mask instead, which can be
useful in limiting systematics by masking scan-parallel and
scan-perpendicular directions differently. Finally, we use
grid sizes between 256 x 256 and 512 x 512 pixels. The
latter is around the limit of what is currently computation-
ally possible on performance hardware and covers about
650 deg?, with an effective unmasked region of around
450 deg?. This is about a third to a fifth of the planned
CMB-S4 deep field, where our procedure is most appli-
cable, with several years remaining to scale up to the full
patch or beyond.

The first run we describe uses data simulated in
configuration 2PARAM. In this configuration, we sample
both r and A;. We show a trace of the sampled values for
these two parameters in Fig. 3. We will asses convergence
and correctness of the chains in the next subsection, but for
now, one can at least see by eye the stationarity of the
samples and that they cover the true input values, as
expected. For this case, we have also run an identical copy
of the chain, including identical starting random seed,
but which uses G(A;) = 1 instead of the fiducial choice,
which we described in Sec. III. The impact of not using the
fiducial G(A,) is shown in orange. There is a dramatic
reduction in the convergence of the A, samples (the

TABLE II. Parameters for the different configurations of simulated data used in this work.

Configuration 2PARAM Configuration MANY Configuration BIG
Map size 256 x 256 256 x 256 512 x 512
Pixel width 2 arcmin 3 arcmin 3 arcmin
Total area 73 deg? 160 deg? 650 deg”
White noise level in P 1 pK-arcmin 1 pK-arcmin 1 pK-arcmin
(fknee’ aknee) (100’3) (10073) (10073)
Beam FWHM 2 arcmin 3 arcmin 3 arcmin
Fourier masking (K) 2 < ¢ <5000 2 < <3500 2 < ¢ <3500
Pixel masking (M) 0.4°border + 0.6° apod 0.6° border + 0.9° apod 1.2°border + 1.8°apod
Sampled parameters (6) r, Ay r r
Fiducial r r=0.04 r ={0.04,0.02,0} r={0.02,0.01,0}
Chain iterations 10000 5000 4000
Autocorrelation length for 6 22 5-33 12
Wall time (one GPU) 48 h 19 h 50 h
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FIG. 3. Samples of r and A, at each iteration for two chains with the same data and starting random seed, but different choices for

parametrizing the posterior (see Sec. III). The blue line corresponds to using our optimized G(A ;) reparametrization, whereas the orange
line shows the highly suboptimal choice of G(A,) = 1. No burn in is removed in either case. The simulated data here are generated
according to configuration 2PARAM (see Table II). The run time for a chain of this length is 48 hours on one GPU.

autocorrelation length is ~25 times larger), highlighting the
importance of our reparametrization. We do not show a
case where we set the other mixing matrix, D(r), to the
identity matrix; in that case, the impact would be so drastic
that it would be impossible to even run a chain at all.

In Fig. 4, we show the posterior distribution for r and A
computed from these samples, for demonstration plotted
using the getdist [63] package instead of our Blackwell-
Rao estimate. This ability to compute joint constraints on
parameters which control both the unlensed CMB fields
and lensing potential, with the Bayesian procedure having
implicitly performed an optimal lensing reconstruction and
delensing, is a unique strength of our procedure and a
key result of this work. Note the very small correlation
between rand A (p = 0.10); this is evidence that estimates
of r are not strongly limited by knowledge of the theoretical
lensing spectrum amplitude, or conversely, that lensing
reconstruction and hence, delensing efficiency is not
strongly limited by the true value of r. This was expected
from the intuition that the lensing reconstruction is mostly
dominated by small scales whereas r is mainly estimated
from large scales, but our procedure allows us to quantify
this explicitly.

Next, we describe a set of simulations in the configu-
ration BIG. Since we have ascertained that there is little
dependence on Ay for r estimation, in these runs, we fix
Ay = 1. We also increase the grid size to 512 x 512 and the
pixel size to 3 arcmin pixels, giving a total sky area of
~650deg?, which is the largest sky area we analyze in this
work. We note that although 3 arcmin pixels may seem
large compared to ~1 arcmin typical lensing deflections,
LenseFlow is able to lense maps accurately up to scales very

m G(Ay) =1
I optimized G(A,)

1 1
0.10 0.15 0.9 1.0 1.1
T A¢

1
1
1
1
!
1
11

0.05

0.00

FIG. 4. Posterior distribution for r and Ay from a chain on
simulated data in configuration 2PARAM (see Table II). The
samples that comprise this plot are shown in Fig. 3. For
demonstration, here we use the getdist [63] plotting package
rather than our Blackwell-Rao posterior density estimate. The
ability to examine joint constraints on these parameters while
performing optimal delensing for a realistic data set with masking
is a unique strength of our approach. Here, we find these two
parameters are highly uncorrelated, providing evidence that A
can be fixed without impacting r estimation. The orange curve
shows a suboptimal choice of the G matrix, which causes that
chain to converge more slowly.
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FIG. 5. Top panel: The trace of r samples from chains in

configuration BIG (see Table II). Three different fiducial values
of r are explored, with the true value given by the black dashed
line and each chain in a different color. No burn in is removed.
Bottom panel: The same samples binned into histograms, as well
Blackwell-Rao estimates of the posterior density, as described in
Sec. IV D. These estimates recover very smooth distributions,
even in the case where the true r is zero and the constraint is just
an upper bound.

close to the Nyquist frequency [38], which here is 7 =
3400 and contains nearly all of the available information
given our choice of beam for this configuration. For these
runs, we use simulated data with three different fiducial
values for the tensor-to-scalar ratio, r = {0,0.01,0.02}.
Posterior distributions for r are shown in Fig. 5, this time,
using the Blackwell-Rao estimate. We can see that each
case covers the truth, and that in the » = O case, the chain
samples of r oscillate against zero, as expected.

Of course, the chains contain not just samples of the
parameters 6, but also samples of f and ¢ at each iteration.
In Fig. 6, we compare the posterior mean of ¢ and some
quantities derived from f against the simulation truth for
configuration BIG. In the first column, we show the
posterior mean reconstructed ¢, multiplied in Fourier space
by the wave number £ to make smaller scale structure more
easily visible. The posterior mean can be regarded as the
“optimal” point estimate of ¢ in the sense that it minimizes
the posterior expected squared error against the truth. This
estimate is slightly lower variance than the marginal MAP
estimate given by [34] [the two differ only due to the non-
Gaussianity of P(¢|d)], although we leave to a future work
determining whether there is a meaningful difference. The
remaining two columns of Fig. 6 show the posterior mean
“E-lensed-into-B” maps (the average over all chain samples
of unlensed E and zero B, lensed by ¢), as well as the

posterior mean of the unlensed B map. These latter two
quantities are useful data products from the chains, as we
will describe in the next section.

B. What can the f and ¢ samples be used for?

Despite the seemingly valuable information contained
in the samples of full maps or their associated posterior
mean, it is worth asking “what explicitly can these actually
be used for?” In terms of a principled statistical analysis
for parameter inference within a standard cosmological sky
model with Gaussian initial conditions, the answer is
actually “not much”; the map samples are just a by-product
of the Monte Carlo marginalization, which we used to
obtain constraints on the cosmological quantities which we
were really after, here r and A . Indeed, we cannot readily
use the samples of f and ¢ to estimate any other cosmo-
logical parameters that were not jointly sampled in the
first place.

The real situation is somewhat less pessimistic, however.
For example, if we have a physical reason to believe that
having jointly sampled extra parameters would not actually
impact the lensing reconstruction and delensing, then it
may be still be a valid approximation to derive further
constraints from the samples. One such case is the search
for primordial scalar non-Gaussianity, where constraints on
the local type non-Gaussianity become limited at small
scales by lensing-induced variance and could be signifi-
cantly improved by delensing [64]. Although part of the
locally non-Gaussian primordial signal would affect the
reconstruction, Coulton et al. [64] demonstrated this effect
is small and quantifiable, meaning our posterior mean
delensed maps would be excellent candidates to be used in
these searches. Furthermore, our posterior delensed B maps
could be used in the search for primordial tensor non-
Gaussianity as well [65], with near-optimal results as long
as any potential non-Gaussianity is perturbatively small.

The outlook on samples is even better when we consider
what can be done in cross-correlation with other probes.
Take, for example, the posterior unlensed B map. We could
cross-correlate this map with some tracer of foreground B
contamination from the Milky Way; if any correlation were
detected, it would indicate that whatever foreground
cleaning had been performed was insufficient, and we
would deduce that our corresponding r samples could be
biased. Similarly, the sampled maps, their mean, or even the
mean power spectrum of the maps, could be inspected for
anything that correlates with an instrumental effect as a way
to search for systematics.

From searching for contaminants, it is only a small step
to using our posterior samples to check all aspects of the
data model (containing the cosmological model, the lensed
sky signal, noise, etc.) itself. It is worth recalling the well-
known quote by George Box that “all models are wrong but
some are useful.” [66] This quote applies to CMB data just
as much as to any other data set. One way to check if the
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FIG. 6. True input maps (top row) as compared to posterior mean maps (bottom row) computed by averaging over chain samples. This
chain uses configuration BIG (see Table II) with a true value of » = 0.01. The data for this chain are shown in Fig. 1. The first column
shows the ¢ map multiplied in Fourier space by ¢ to visually enhance smaller scales, the middle column shows E modes that have been
lensed into B, and the final column shows the reconstructed primordial B modes.

standard model of lensed CMB data is useful is to use it to
simulate data starting from the posterior samples and then
to check whether this replicated data reproduce the salient
features of the actual data. This technique for model
evaluation is called “posterior predictive checks” (PPCs)
and was introduced in a Bayesian context in [67]; see [68]
for a recent application in cosmology. In the literature,
PPCs are typically based on the parameters ; using the
samples of the latent fields f, and ¢ would allow defining
much more fine-grained PPCs of the model.

The samples can also be used in other more quantitative
ways. Consider, for example, a cross-correlation analysis
between the CMB and another low-redshift probe of matter
fluctuations. One can generally write down the likelihood,
L(digwz |, 0), Where dq,,., is the low-redshift data. The full
posterior given both data sets is

P(f.9.0 (33)

d? dlow—z) = P(f’ ¢7 0|d)£(d10w—zl¢’ 0)

If the low-redshift data are sufficiently less constraining on
¢ than the CMB data, then the importance sampling of the
CMB chain is an easy and efficient way of obtaining a
Monte Carlo representation of the new posterior for both
data sets.

Another analysis which could use the samples would be
to split delensing into two steps: 1) obtain E-lensed-into-B
samples from small scale CMB data, then 2) use these
samples to delense large-scale CMB data and search for
nonzero r. Delensing via the samples rather than via a
single point estimate of ¢ is a convenient way to propagate
the (fully non-Gaussian) delensing uncertainty into the
large-scale analysis. A practical reason for doing such a
split analysis instead of simply jointly estimating » from the
entire CMB data set might be that large-scale foregrounds
and systematics are easier to deal with outside of the
Bayesian framework.

We leave further development of any of these ideas to
future work. Regardless of how these samples may be used,
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chain iteration lag

Left column: Blackwell-Rao posteriors from each of ten chains on different simulated data for three different true values of the

tensor-to-scalar ratio indicated in each row. The gray band is the product of the posteriors for each case, with the prior on » importance
sampled to be uniform (and with arbitrary normalization constant so as to fit on these axes). We expect that the gray band covers the
fiducial value of r to within its own width, as is indeed the case. This is a test of the coverage of our P(r|d) posteriors and hence, a test of
the correctness of our procedure. Right column: The chain autocorrelation function for each of the chains in the left panel. The integrated

autocorrelation time for these chains ranges from 5-33.

the key point is that they are a useful way to capture the
entire information content in the CMB data that generate
them, and they fully represent the uncertainty in the
reconstruction due to noise, modeled systematics, and
incomplete knowledge of the cosmological parameters,
which were free parameters in the posterior.

C. Convergence diagnostics

Having described some of the results from the chains, we
now turn to more quantitatively assessing chain conver-
gence. We begin using a final set of chains with data
simulated from configuration MANY. These chains only
sample r and have been reduced to 256 x 256 pixels;
however, we run ten chains on different simulated data
for each of three fiducial values, r = {0, 0.02,0.04}.

The posteriors from each of these chains are shown in
Fig. 7. It is worth noting the scatter in the mean and width
of the different data realizations (here, o, can vary by
almost a factor of 2) as a reminder that any one experiment
can be lucky or unlucky depending on the particular patch
of sky observed. It would be interesting to determine
how much of the contribution to this scatter comes from

the non-Gaussian uncertainty in the lensing reconstruction
as opposed to Gaussian sample variance, although that is
beyond our scope here.

One way to check the correctness and convergence of
these chains is to multiply the ten posteriors together. We
expect that the resulting distribution should tighten around
the true of r, with scatter such that roughly ~68% of the
time the truth will be covered by the 1o contours. This is
indeed what we see in Fig. 7 for all values of r. Formally,
with only ten chains, we can only check for the presence of

biases in our posteriors at the ¢/v/10~30%c level;
however in the absence of a coding error, there is no
reason to believe these contours would not continue to
shrink further around the truth.

Another way to check the convergence of our chains is
by computing the integrated autocorrelation time and the
accompanying effective sample size [69]. The right-hand
panel of Fig. 7 shows the autocorrelation function for the r
samples from each of these chains. In all cases, it takes
about ~40 iterations of our sampler before the autocorre-
lation drops to near-zero, and we obtain an independent
sample. More exactly, the integrated autocorrelation time is
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FIG. 8. Left column: In blue, we overlay the power spectra
of chain samples of ¢ and of two quantities derived from f.
The black dashed line gives the power spectrum of the truth,
and the green line is the power spectrum of the posterior
mean map. The three rows correspond to ¢, unlensed B, and
E-lensed-into-B. The posterior mean maps exhibit Wiener-filter
like suppression, as expected, while the samples scatter around
the true spectrum and quantify uncertainty. Right column: The
same power spectra that are overlayed on the left but picking
some specific multipoles and plotting the trace of their value
throughout the chain. Visually one can see the acceptable
correlation length of the power spectrum samples, as well as
that they cluster around the input truth, confirmation that the
likelihood is dominating over the prior that would otherwise pull
these quantities towards zero. This is the same chain in con-
figuration 2PARAM (see Table II) used in Figs. 3 and 4.

in the range of 5-33, corresponding to an effective sample
size of 150-1000 given the 5000 total iterations in each
chain (autocorrelation lengths for all configurations are
listed in Table II). In turn, this means we should expect a
Monte Carlo error on the posterior mean of r on the order of
3%—10% of o,.

This is consistent with another estimate of the error
which we can get by splitting our chains into multiple
pieces or running multiple chains, and computing the mean
from each. We have performed this test for the chain in
configuration 2PARAM by splitting the 10000 samples into
two halves and checking the difference in the resulting
posterior mean for both A and for . We find that the mean
agrees to within 5% of o, , and 8% of o,, respectively.

The posterior distribution of any quantity derived
from (f,¢,0) can be explored by postprocessing the
Monte Carlo chain, and its convergence can be tested.
Bandpowers are one such quantity, and these have a very
direct relation to the convergence of r and A. In particular,
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FIG. 9. Chain samples of the real part of the ten largest-scale
and ten smallest-scale Fourier modes of the posterior ¢, B, and
E-lensed-into-B maps. Each set of samples is normalized to unit
variance, but the relative distance to the truth (shown in the black
dashed line) is preserved. This chain uses configuration 2 PARAM
(see Table II). Visually, we achieve great convergence even at the
individual mode level. Out of the ~200,000 modes which are
sampled, the only exceptions are perhaps the two largest scale ¢
modes, which could benefit from a slightly longer chain.
However, these two modes are not informative for Ad)’ which
remains very well converged (Fig. 3).

only the bandpowers of f and ¢ enter the P(r,Ay|f. ¢.d)
conditional distribution. In Fig. 8, we show the trace of
various bandpowers of ¢, B, and E-lensed-into-B. Visually,
we see these samples are still consistent with being drawn
from a stationary distribution.

Delving deeper into the ~200, 000 parameters, which are
sampled in this configuration, we plot in Fig. 9 the trace
of the real part of individual Fourier modes of ¢, B, and
E-lensed-into-B. The choice of plotting the real part is
arbitrary as it has identical statistical properties to the
imaginary part under the assumption of isotropy (never-
theless, we have checked that the imaginary part does
behave similarly). Even here, we mostly see very good
convergence of the samples. For an internal CMB analysis,
the convergence of these individual modes is not particu-
larly important, since, as previously stated, what really
matters is the convergence of the 6 parameters. However,
for a cross-correlation analysis such as the ones described
in the previous subsection, the individual modes (and
hence, the full maps themselves) must be adequately
converged. Figure 9 is evidence that this is indeed the case.

We do note that ¢» modes at the largest scales converge
slightly slower than others, as can be seen in Figs. 8 and 9.
We believe this is related to the mean field, which also
arises in both quadratic or MAP estimation [34]. At these

123542-15



MILLEA, ANDERES, and WANDELT

PHYS. REV. D 102, 123542 (2020)

large scales where the mean field is very big, frequentist
analyses require a large number of Monte Carlo simulations
to estimate the mean field precisely enough so that the error
on the mean-field determination is subdominant to sample
variance. In our Bayesian analysis, this challenge is not
solved “for free”, rather it manifests as a need for longer
chains to overcome the larger correlation length at these
same scales. Evidence that this is the case comes from the
fact that removing the mask and hence, reducing the mean-
field yields more rapid relative convergence at these large
scales. We do stress, however, that because the majority of
information on A, is not sourced by these handful of largest
scale modes, their slower convergence does not signifi-
cantly impact the very good convergence of A, that we see
in Fig. 3.

The results in this section demonstrate that the @, the
bandpowers, and even individual Fourier modes are well
converged in these chains. However, it is not implausible
that one could find pathological combinations of para-
meters for which this is not the case. We caution users of
these chains to first verify convergence of arbitrary derived
quantities that they may need. This can be done using tests
similar to the ones described in this section.

D. Fisher information on r and S4 forecasting

The chains give us the ability to check existing forecasts
for, e.g., CMB-S4, South Pole Observatory, or Simons
Observatory to a precision which has not been possible
before. We will refer to these as CMB-S4-like forecasts
since the methodology we are testing is the same between
all of them. The approach is to use chains on simulated data
to compute exactly (up to Monte Carlo errors) the Fisher
information on r contained in lensed CMB data. This can
be done even in the presence of real instrumental complex-
ities such as the pixel masking we apply here. We will use
chains in configuration MANY for this test. Although this is
a smaller patch of sky than the planned CMB-S4 obser-
vations, the noise levels are similar, and this lets us validate
the forecasting procedure itself.

To begin, consider the Fisher information,

Tfid >d~£(drﬁd)

It is an average over data, d, of the Hessian of the log-
likelihood of r for each of these data, evaluated at r = rgy,
and where the data are themselves simulated given r = rgg.
If we run our chains with a uniform prior on r (or
importance sample it to be uniform after the fact), then
we have L(d|r) = P(r|d). Thus, we can take the log of the
posterior P(r|d) estimated from the chains, numerically
compute the second derivative, and explicitly perform the
average in Eq. (34) over several chains with different
simulated data. Alternatively, we can swap the order of the

d2
frr(rﬁd) = _<_

02 log L(d|r)

(34)

250 T T T T T : :
] Geometric mean of chain posteriors
1 —— Exact Fisher information via chains
200} '.‘ --- CMB-S4-like forecasting methodology -
1 . .
1
l|
150 i
1
= \
& '.
100 1
l‘
1
1
1
50 |
1
\
\
0 i \ “ 2
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

r

FIG. 10. A comparison of different methods for forecasting
constraints on r, assuming configuration MANY (see Table II).
Three different possible true values of r are explored, indicated by
vertical dotted lines. The dashed lines show expected Gaussian
constraints forecasted with a method very similar to that used for
CMB-S4. In solid lines, we show Gaussian distributions with
standard deviation computed from the Fisher information on r.
This work is the first time the Fisher information on r from lensed
CMB data has been calculated without approximation. In filled
contours, we show the geometric mean of the posteriors from
several chains. The excellent agreement between all of these is an
important validation of the CMB-S4 r forecasting methodology

even in the presence of instrumental effects and masking, as is
considered here.

derivative and expectation value in Eq. (34) and take the
geometric mean of the chain posteriors first. The second
derivative of the log of this function at ry is then again the
Fisher information, but instead of looking just at one value,
we can simply plot the entire function. Loosely speaking,
this maps out something like the “typical posterior” that
one might expect given possible data, which is also a
useful forecasting quantity, particularly for r;y = 0, where
Monte Carlo noise prevents us from computing a stable
numerical derivative. For configuration MANY, these func-
tions, as well as Gaussians with standard deviations given
by 1/+/F,, are shown in Fig. 10.

We would like to compare against CMB-S4-like fore-
casts. These types of forecasts are broken up into two
steps: 1) first, a postdelensing residual lensed B power is
computed, then 2) this is treated as Gaussian noise in a
second step to estimate r. For the forecasts in [39], the first
step has been based on the method given in Smith et al.
[27]. This method follows the heuristic idea that to perform
optimal delensing, one iterates computing the EB quadratic
estimate for ¢, delenses the data by this ¢, then recomputes
the ¢ estimate, which should now be lower variance
because part of the contribution to the error of this estimate,
namely the lensed B modes, have been reduced. We note
that this computation works only to first order in ¢, ignores
£-to-¢ correlations and non-Gaussianities in both the ¢
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noise and the residual lensed B modes, and ignores pixel
masking. So that information is not double counted, only
modes at £ 2 150 are used in step (1), and only modes at
¢ <150 are used in step (2). Although conceptually the
procedure is very reasonable, Smith er al. [27] do not
explicitly check these simplifications, but rather validate
the entire approximation by comparing their residual lensed
B amplitude against a more exact computation given for
several configurations in Table I of Seljak and Hirata [26]
and finding agreement at the ~10% level. The numbers
computed in Seljak and Hirata [26] in turn come from
computing an approximate marginal MAP estimate of ¢
and using this for delensing, with error bars on the delensed
B power computed via Monte Carlo. Carron and Lewis [34]
further sharpen up this result by performing the same test
with their exact maximization procedure rather than an
approximate one, finding good agreement. Once the
residual lensed B mode power spectrum is computed,
the residual modes are approximated as isotropic and
Gaussian, and a traditional power spectrum Fisher forecast
is computed for r [27], or a more sophisticated simulated
power spectrum analysis is performed [39].

Our procedure allows us to validate the CMB-S4 fore-
casting procedure in a much more direct and straightforward
way than the long chain of validation steps above, by simply
comparing against the Fisher information on r that we
derive. This also tests a few remaining assumptions in the
CMB-S4-like method, mainly that the residual B modes are
Gaussian, that minimal information is lost by the # < 150
filter, and that the impact of masking is only a reduction in
the number of modes which can be captured by an fgy
factor. This latter assumption has never been checked but is
particularly worrisome, since masking couples modes across
¢ and will leak E into B, mimicking lensing.

For configuration MANY, we have computed forecasts
using the CMB-S4-like procedure described above,
accounting for all experimental details listed in Table II,
except for the mask, which is instead treated with an f,
factor. Our results are summarized in Fig. 10. One can see
the excellent visual agreement between the results from our
chains and those from the CMB-S4-like forecast for all
values of rgq tested. For rgq = [0.02,0.04], where we
can compute accurate numerical derivatives, our exact
Fisher calculation gives o, = 1//F,, = [0.0067,0.0106]
as compared to the CMB-S4-like forecasts which give
o, =1//F, =1[0.0072,0.0111], or a difference of only
4% and 8%, respectively. This excellent agreement is
further proof of the fidelity of existing r forecasts for
CMB-S4 [39] and of other current and future forecasts
using this same method. We note, though, that this does not
necessarily imply that implementing a real analysis pipeline
following the heuristic CMB-S4-like treatment would yield
an unbiased estimate of r, only that this gives very accurate
error bars as a forecasting procedure. Our chains, however,
could be used to check this in the future.

VI. CONCLUDING REMARKS
A. The CMBLensing.jl package

Throughout the development of our sampling algorithm,
we have used two branches of code in parallel. The first
code was initially used to produce the chains presented in
the previous sections. The second code, CMBLensing.jl, was
developed for wider-spread use and is now faster and is
what we recommend for anyone wishing to use, reproduce,
or extend our results. The two have been checked for
agreement.

The design of CMBLensing.jl was motivated by the desire
for: 1) the ability to transparently run the code on CPUs
or GPUs, 2) access to automatic differentiation so that
gradients of our posterior or of any future modifications do
not need to be hand coded, and 3) no sacrifice on
performance. To our knowledge, only two truly practical
avenues exist to achieve this: either describing the posterior
as a neural networklike graph in a machine learning library
such as TensorFlow or writing our code in JULIA [70]. We have
chosen the latter as it allows writing normal high-level code
and avoids the additional complexity involved in trans-
lating our algorithm into the language of computational
graphs.

As a simple example of the ease of this approach,
consider the first order Taylor series expansion for lensing,
ie., f(x+ V@)~ f+ V¢ -Vf. This can be written suc-
cinctly and true to the underlying mathematical expression
in CMBLensingjl as

lense(f,$) = f + Diagonal. (Map(V*¢)) (V*T)
and the resulting function is no slower than having written
out the necessary FFTs and array multiplications by hand.
The arguments of this function are CMBLensingjl field
objects, which are just thin wrappers around arrays storing
the maps or Fourier coefficients for the fields. Depending
on a user setting, these arrays can reside on CPU or
NVIDIA GPU, and the above code works transparently in
either case. JULIA GPU integration is such that only 30 lines
of GPU-specific code are needed in the entire codebase.
Figure 11 summarizes the timing for each step in our Gibbs
sampler and compares the CPU and GPU performance. We
reach improvements in performance of factors of several
when running on GPUs," and, encouragingly, the relative
improvement grows as we go to larger maps. Additionally,
the GPU code is not particularly optimized yet so we expect
room for significant improvement, despite it already out-
performing the highly optimized CPU code.

Once a function like 1ense is defined, source-to-source
reverse-mode automatic differentiation can be used to

*There is a large dependence on GPU hardware; for example,
our experience is that laptop-grade GPUs offer little to no
improvement, in contrast to the more performant GPU used in
Fig. 11.
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FIG. 11. The wall time in seconds for each Gibbs pass, for each

configuration (see Table II), and for running on CPU vs GPU.
The CPU benchmarks utilize a full NERSC Cori Haswell node
(Intel Xeon Processor E5-2698 v3), and the GPU benchmarks a
single NVIDIA GTX 1080Ti GPU. Although our CPU code is
highly optimized, our GPU code likely has room for significant
improvement, despite already being faster.

compute gradients for most functions on R” — R! m,
which use lense anywhere within their evaluation [71].
Here is a very simple example which takes a gradient with
respect to ¢, evaluated at ¢p = 0,

gradient(¢ -> norm(lense(f,9)), 0¢)

Both above code snippets are unmodified from what could
be run in a real JULIA session. The flexibility afforded by
this system is invaluable to the type of quick exploration
which was necessary in arriving at the results in this paper
and which will be necessary for applying these methods
to increasingly complex data sets moving forward. This
package should serve as a useful tool for the CMB lensing
community in the future, or as a “black-box” target function
(and gradient) for a broader audience wishing to try other
inference methods on the CMB lensing problem.

B. Brief summary of main results

In this work, we have developed a method for joint
inference of cosmological parameters, unlensed CMB
fields, and the gravitational lensing potential, from CMB
temperature and polarization data. By working with the
Bayesian posterior, we are guaranteed to have extracted all
available information from the data; hence, our procedure is
“optimal” in some sense and (very) loosely corresponds to
what is sometimes referred to as “iterative delensing.”
Although several methods exist which can produce point
estimates of the lensing potential which are lower-variance
than the current state-of-the-art quadratic estimate (see
Sec. 1), our method is unique in making it completely
straightforward how to actually extract cosmological

information including uncertainty estimates from the lens-
ing potential or from the delensed fields. Specifically, any
methods based on a power spectrum point estimate need to
quantify cosmology-depend biases and covariances, some-
thing which has yet to be demonstrated is feasible in
general for lensing except in the quadratic estimate case.
Conversely, the Bayesian approach fully extracts all lensing
information while implicitly and without approximation
handling the impact of such biases and covariances.

We have demonstrated this ability by jointly estimating r
and A, from simulated data. The analysis hinges on
three key pieces, and without any one of them our results
would not be possible. These are 1) reparametrizing the
posterior to a new set of variables whose posterior
distribution is more Gaussian and less degenerate 2) tuning
our Monte Carlo sampler, in particular making use of HMC
to sample the very high dimensional posterior which
remains mildly non-Gaussian even after reparametrizing
and 3) numerically implementing the lensing operation
with LenseFlow, which gives us the needed gradients through
the inverse lensing operation and allows to us to avoid an
otherwise prohibitive determinant calculation.

We have used this method to arrive at two useful
scientific results. First, we have explicitly demonstrated
that the correlation between r and A(/, is small (p = 0.10),
showing that r inference is not strongly limited by knowl-
edge of the true lensing power spectrum amplitude. Second,
we have given the first-ever exact computation of the Fisher
information on r in the context of delensing, even including
several real instrumental effects, notably pixel masking.
Using this, we have validated the r forecasting proce-
dure used for experiments such as CMB-S4, which has
never been checked in the presence of pixel masking.
Encouragingly, we find that the standard procedure yields
results very close (within 8% in terms of the uncertainty on
r) to our exact Fisher calculation, giving further evidence
that CMB-S4 delensing will work as expected.

C. Future work and new possibilities

The algorithm presented in this work is ready to be applied
to current generation CMB data targeting deep observations
over patches of sky of several hundreds of square degrees.
There is ongoing work to apply these methods to South Pole
Telescope data, and, as mentioned previously, they could
also be applied to POLARBEAR data, where it would be
expected that the delensing effeciency achieved in Adachi
et al. [35] could be even further improved.

The Bayesian sampling solution still has some chal-
lenges that need to be overcome before analyzing a data set
of the complexity expected from CMB-S4. One main future
challenge is simply scaling up the number of pixels and
moving beyond the flat-sky approximation to deal with
sky curvature. Conceptually, it is completely straightfor-
ward to include sky curvature in our method. In terms of
performance, the chains presented here run in 24-48 hours
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on one GPU, and scaling up to nearly full-sky observations
will likely require improving this by a few factors of 10.
Part of this can be trivially gained by running more chains
in parallel, which we have not done here but should work
well given that we do not find very significant chain burn-
in time is necessary. It seems very possible that the
remaining improvements could come from some combi-
nation of optimizing the GPU code, discovering even better
reparametrizations, accelerating Wiener filtering, and
going beyond the very basic HMC sampling algorithm
we have used.

Another challenge which must be tackled is the inclusion
of foregrounds. A simple solution which may work well is
simply to run our procedure on component separated maps.
A more ambitious approach would be to compute a full
forward model for the foregrounds and jointly infer them.
This sounds difficult, but at least in the medium to small
scale regime in polarization (which will be almost solely
responsible for lensing reconstruction in the future),
expected foregrounds are surprisingly small and simple.
The only component expected to be significantly present is
shot noise from radio galaxies [72], which may be quite
simple to forward model. We note that forward modeling
the foregrounds may put an even bigger requirement on us
to work with the joint posterior, because the analytic
marginalization in Eq. (12) is likely impossible in the
presence of other non-Gaussian components.

One interesting extension to this work is to infer other
cosmological parameters besides r or Ay, or even the
theoretical spectra themselves. In our work, the shape of all
theory spectra has been assumed perfectly known, only the
amplitudes r or A, are uncertain quantities to be inferred.
Given this model, we gave the first explicit confirmation
that the estimate of r is largely uncorrelated with A4, but it
would be interesting to also confirm that uncertainties in the
exact shape of the relevant theory spectra do not impact r
inference (something which we would expect to be the case
since the leading order effect is simply the total B-mode

foreground power generated by lensing but which has never
been shown explicitly). For example, it would be straight-
forward to swap A for something like the sum of neutrino
masses, xm,, which affects the shape of the lensing
potential. We expect the reparametrizations discussed in
this work to be sufficiently general to handle this case as
well without modification.

Finally, we note that sampling is not the unique way to
explore a Bayesian posterior, and many other methods exist
which could potentially be accurate enough while being
cheaper computationally. Some examples (but by no means
an exhaustive list) include “variational inference” methods
[73-75], Laplace or higher-order approximations [76], or
fall under the category of “likelihood-free inference.”
[77,78] Many or all of these methods, however, rely on
approximations that are extremely difficult to check in the
context of the very high dimensional and non-Gaussian
CMB lensing problem. By having explored and built
intuition about the lensing posterior, and by having
developed a sampling method which can be used to
compute an approximation-free answer for a realistic-sized
and nontrivial data model, these other methods can, for the
first time, be explicitly validated for lensing. If they prove
to be sufficiently accurate, then perhaps they offer an
advantageous way to perform this analysis in the future.
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