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We derive a Higgs inflationary model in the context of holographic cosmology, where we consider a
universe filled with a Higgs field nonminimally coupled to gravity in a slow-roll regime. The amplitude of
density (scalar) perturbations is calculated. In this regard, we show that the background and perturbative
parameters characterizing the inflationary era are related to the standard one through corrections terms.
We found that for the e-fold number N ∼ 58, the spectral index, nr, and the tensor-to-scalar ratio, r, values
are 0.965 and 0.021, respectively, which are in agreement with 2018 Planck observational data. However,
as soon as we move from N ∼ 58, the model is ruled out by the current data.
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I. INTRODUCTION

Inflation, which is a phase of accelerated expansion in
the early Universe, is originally aimed to solve some of the
hot big bang shortcomings such as the flatness, the horizon
and the primordial monopole problems [1–3]. The infla-
tionary scenario is not only appealing for solving these
problems, but also provides solutions to the primordial
density fluctuations which are necessary for the formation
of the large scale structure observed in the present Universe
[4]. Indeed, the inhomogeneities originated from the
quantum vacuum fluctuations of the inflaton field are
stretched on large scales, through the accelerated expan-
sion, and become classical to give rise to the structures we
observe nowadays. The theory of cosmological perturba-
tions is the key to study the inflationary scenario and it
provides also a good framework to determine the cosmic
microwave background (CMB) prediction as well as to
compute the power spectrum in order to make connection
with the observational data [5].
Despite its great successes, the inflationary paradigm

suffers from some problems especially at high enough
energies [6–8], where general relativity (GR) should be
modified. Within this spirit modification of gravity has
been the base of several models that have attracted so much
attention in the recent years, such as the braneworld
scenario [9–11] and models with a nonminimally coupled
(NMC) inflaton field [12–15].

In the braneworld scenario, matter is confined on the
3-brane, while gravity can propagate in the five-
dimensional bulk. One of the most interesting braneworld
models was proposed by Randall and Sundrum (RS2) [16],
where our Universe corresponds to a four-dimensional
single brane embedded in a bulk corresponding to pieces of
a five-dimensional anti–de Sitter space-time (AdS5). This
model provides also a good framework for exploring
holographic ideas that have emerged in M-theory. The
AdS=CFT correspondence has been thoroughly studied in
the RS2 model and, in particular, the cosmology of a
homogeneous and isotropic brane whithin this framework
[17,18]. On its original formulation, the AdS=CFT corre-
spondence suggests that the five-dimensional gravitational
dynamics may be determined from the (quantum) dynamics
of the fields on a lower-dimensional boundary.
Among the many models of inflation, the simplest

realization comprises the introduction of a scalar field
(the inflaton). This hypothetical particle may appear in
different extensions of the standard model of elementary
particles. However, the only scalar field that has been
detected so far is the Higgs boson, whose existence was
confirmed in 2013 at the LHC [19,20]. The idea that the
Higgs field plays the role of the inflaton field has been
already discussed, for example in [21–26]. This is an
excellent way to connect inflationary models with known
particle physics and benefit from observational constraints
of both particle physics and cosmology, this way the model
will be more predictive. For a recent review on this topic,
please see Ref. [27].
Nevertheless, the major problem with Higgs inflation is

that the energy scale of the Higgs field is too small
to generate enough e-folds required to solve the
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aforementioned problems of the big bang cosmology
[28]. Indeed, the Higgs self-coupling value leading to
successful inflation, λ ∼ 10−13, is not compatible with the
required value suggested by the standard model from the
measured Higgs bosons massm ¼ 125 GeV, λ ∼ 0.13. By
postulating a NMC between the Higgs field and the Ricci
scalar we ensure an excellent agreement with observa-
tional data [5]. Early ideas to consider a NMC with the
Higgs field were formulated, for example in [22].
The assumption of considering a NMC inflaton field to

gravity was already introduced quite some years ago
[12,13], where the motivation arises at the quantum level
when quantum corrections to the scalar field theory are
considered. Recently, this identification of a NMC term has
became again popular [29–40], supported by CMB mea-
surements as provided by the Planck satellite [5] as well as
by the discovery of the Higgs boson [19,20]. Several
studies in this field with some constraints on the value
of the NMC constant are being carried out in order to have a
theoretically consistent picture of the inflationary model
[29–36,41–44]. In the case of NMC Higgs inflation, it is
necessary to assume a large coupling constant to improve
the situation with the Higgs self-coupling value. For
the NMC Higgs inflation model [22,45–50] the NMC
constant, α0, is of the order of ∼104, while an upper bound
required to be of the order of α0 ≪ 2.6 × 1015 was derived
in [51].
Furthermore, holographic cosmology seems a good

framework to study constraints on inflationary parameters.
Indeed, it was found that the AdS=CFT duality may
describe the inflationary era and provide good agreement
with observational constraints for a universe filled with a
scalar field [52] or a tachyon field [53] or even an induced
gravity model for both kinds of fields [54].
The purpose of this paper is to analyze the effect of the

AdS=CFT holographic duality on the dynamics of the
NMC Higgs field which plays the inflaton role. Indeed, we
will consider constraints from current Planck data under the
assumption of a NMC Higgs inflaton with a quartic Higgs-
like potential in the slow-roll approximation. Within this
framework, we will study the cosmological perturbations to
obtain the spectral index and the tensor-to-scalar ratio.
We will constrain the model using current observational
data [5]. In fact, current constraints from Planck data [5]
suggest an upper limit of the tensor-to-scalar ratio r < 0.1
(Planck alone) at 95% confidence level (C.L.) and
a value of the spectral index ns ¼ 0.9649� 0.0042 quoted
to 68% C.L.
This paper is organized as follows. In Sec. II, we describe

the basic setup of NMC to gravity. In Sec. III, we present
the scalar perturbations from a holographic point of
view. In Sec. IV, a Higgs inflation model is considered
taking into account observational constraints to check the
viability of the model. Finally, we present our conclusions
in Sec. V.

II. NONMINIMAL COUPLING TO
GRAVITY AND INFLATION

We consider a generalized Randall Sundrum model with
a NMC scalar field localized on the brane whose action
reads [37,55,56]

S¼
Z
bulk

d5x
ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

q �
1

2κ25
R5−Λ5

�

þ
Z
brane

d4x
ffiffiffiffiffiffi−gp �

fðϕÞR−
1

2
gμν∇μϕ∇υϕ−VðϕÞ−Λ4

�
;

ð2:1Þ

where κ25, R5 and Λ5 are the 5D gravitational constant, the
Ricci scalar of the five-dimensional metric gð5Þ and the bulk
cosmological constant, respectively. In the brane action, R
is the Ricci scalar of the induced metric g, fðϕÞ is the NMC
of the scalar field ϕ to induced gravity on the brane, VðϕÞ is
the scalar field potential and Λ4 is the brane tension.
The gravitational equations on the brane, for a

vanishing cosmological constant, can be obtained from
Eq. (2.1) as [56]

Gð4Þ
μν ¼ κ24T̃μν þ κ45Πμν − Eμν; ð2:2Þ

where κ24 is related to the gravitational constant on the
brane, the total energy-momentum tensor T̃μν is given by

T̃μν ¼ Tμν − 2fðϕÞGð4Þ
μν ; ð2:3Þ

Tμν ¼ ∇μϕ∇νϕ −
1

2
gμνð∇ϕÞ2 − gμνVðϕÞ

þ 2∇μ∇νf − 2□fgμν; ð2:4Þ

the quadratic energy momentum tensor Πμν reads

Πμν¼−
1

4
T̃λ
μT̃λνþ

1

12
T̃T̃μνþ

1

8
gμν

�
T̃αβT̃αβ−

1

3
T̃2

�
; ð2:5Þ

and Eμν is the projected Weyl tensor on the brane which
represents the effect of the bulk geometry.
The total energy-momentum tensor is conserved on the

brane as [56]

∇μT̃ν
μ ¼ 0: ð2:6Þ

The equation of motion takes the following form [56]:

ϕ̈þ 3H _ϕþ V;ϕ − f;ϕR ¼ 0; ð2:7Þ

where the dot corresponds to a derivative with respect to the
cosmic time and the subscript ( ;ϕ) denotes a derivative with
respect to the scalar field ϕ and R ¼ 6ð _H þ 2H2Þ.
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On the other hand, the gravitational field equations of the
brane, for a vanishing cosmological constant, within the
holographic scope can be written as [37,52,57]

Gð4Þ
μν ¼ κ24ðT̃μν þ TCFT

μν Þ; ð2:8Þ
where T̃μν is the total energy-momentum tensor given in
Eq. (2.3), and TCFT

μν denotes the energy-momentum tensor
of the cutoff version of conformal field theory (see [52] for
further details). We highlight that Eq. (2.8) can be rewritten
as Eq. (2.2) (see Ref. [57]). We will use this fact when
calculating the perturbations.
The modified Friedmann equation in the context of the

holographic view point for a homogeneous and isotropic
universe with a vanishing spatial curvature and in absence
of a cosmological constant reads [37]

H2 ¼ 1

4cκ2eff

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

ρmax

r �
; ð2:9Þ

where c is the conformal anomaly coefficient, κ2eff ¼
κ24=ð1þ 2κ24fðϕÞÞ, ρ is the energy density of the brane,
ρmax ¼ 3=8cκ4eff and the sign (�) shows the existence of two
branches of solutions. We recover the standard form of the
Friedmann equation at low-energy limit ρ ≪ ρmax and for the
limit f → 0, but only on the negative branch. On what
follows, we will focus our analysis on this branch. From
Eq. (2.4), the energy density and pressure can be defined as

ρ ¼ 1

2
_ϕ2 þ V − 6_fH; ð2:10Þ

p ¼ 1

2
_ϕ2 − V þ 2ðf̈ þ 2H _fÞ: ð2:11Þ

During the inflationary epoch and assuming a slow-roll
expansion [58], i.e., _ϕ2≪V, ϕ̈≪3H _ϕ and f̈≪H _f≪H2f
the Friedmann equation (2.9) reduces to

H2 ≃
1

4cκ2eff
½1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −U

p
�; ð2:12Þ

where the dimensionless parameter U is given by

U ≡ V
Vmax

¼ 8cκ4effV
3

: ð2:13Þ

Also, the equation of motion (2.7) reduces to

_ϕ ≃ −
V;ϕ − f;ϕR

3H
: ð2:14Þ

III. SCALAR PERTURBATIONS FROM
HOLOGRAPHIC COSMOLOGY

In this section, we analyze the generation of the
cosmological perturbations from the seeds corresponding
to the quantum fluctuations taking place during inflation.
Scalar perturbations of a Friedmann-Lematre-Robertson-
Walker (FLRW) background in the conformal Newtonian
gauge are given by [59,60]

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ðtÞð1 − 2ΨÞδijdxidxj; ð3:1Þ

where aðtÞ is the scale factor, Φðt; xÞ and Ψðt; xÞ are the
scalar perturbations. Our starting point is the perturbed
Einstein equations [61]

δGð4Þμ
ν ¼ κ24δT̃

μ
ν þ κ45δΠ

μ
ν − δEμ

ν : ð3:2Þ

For the above perturbed metric, one can obtain the
individual components of Eq. (3.2) as follows [61]:

6Hð _ΨþHΦÞ − 2
∇2

a2
Ψ ¼ κ24δT̃

0
0 þ κ45δΠ0

0 − δE0
0; ð3:3aÞ

−2ð _ΨþHΦÞ;i ¼ κ24δT̃
0
i þ κ45δΠ0

i − δE0
i ; ð3:3bÞ

6Ψ̈þ 6ð3H2 þ 2 _HÞΦþ 6Hð _Φþ 3 _ΨÞ þ 4
∇2

a2
ðΦ −ΨÞ

¼ κ24δT̃
i
i þ κ45δΠi

i − δEi
i; ð3:3cÞ

1

a2
ðΨ −ΦÞ;i;j ¼ κ24δT̃

i
j þ κ45δΠi

j − δEi
j; i ≠ j: ð3:3dÞ

The right-hand side of Eq. (3.2) is the sum of the
perturbed energy momentum tensor δT̃μ

ν given by [61]

δT̃μ
ν ¼

� −δρ̃ aδq̃;i
−a−1δq̃;i δp̃δij þ δπ̃ij

�
; ð3:4Þ

where δρ̃ is the perturbed total energy density, δq̃ is the
perturbed total momentum, δp̃ is the perturbed total
pressure and the total anisotropic stress tensor is δπ̃ij ¼
ðΔi

j − 1
3
δijΔÞδπ̃ with Δi

j ¼ δik∂k∂j so that one has Δ ¼ Δi
i.

The second part of Eq. (3.2) is the perturbed quadratic
energy momentum tensor δΠμ

ν which can be written as [61]

δΠμ
ν ¼

� − 1
6
ρ̃δρ̃ 1

6
aρ̃δq̃;i

− 1
6
a−1ρ̃δq̃;i 1

6
½ðρ̃þ p̃Þδρ̃þ ρ̃δp̃�δij − 1

12
ðρ̃þ 3p̃Þδπ̃ij

�
; ð3:5Þ
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and the projected Weyl tensor δEμ
ν. As stated before this

tensor is determined by the effect of the bulk geometry, i.e.,
it cannot be written in the local covariant form. Hence the
set of equations (3.3) is not closed. We may parametrize the
scalar perturbations of Eμν as an effective fluid as [62,63]

δEμ
ν ¼ −κ24

� −δρE aδqE;i

−a−1δq;iE 1
3
δρEδ

i
j þ δπiEj

�
; ð3:6Þ

with δρE is the density perturbation, 1
3
δρE is the isotropic

pressure perturbation, δπE is the anisotropic stress pertur-
bation and δqE is the energy flux perturbation (see
Refs. [62,63]). As we have already mentioned, brane
parameters cannot be determined freely since they are
influenced by the bulk through the boundary conditions
[64]. Here, we use the quasistatic approximation which is
useful for structure formation. Therefore, we neglect time-
derivative terms relative to gradient terms. It can be shown
that δqE ¼ 0 (see the Appendix for details and justification
of this assumption).
We apply a Fourier transformation to the scalar pertur-

bations in order to study the evolution of the linear
perturbations, thus we decompose the function ψðt; xÞ into
its Fourier components ψkðtÞ as follows:

ψðt; xÞ ¼ 1

ð2πÞ3=2
Z

e−ikxψkðtÞd3k; ð3:7Þ

where k represents the wave number k. The perturbed
equations (3.3) read

Hð _ΨþHΦÞþ k2

3a2
Ψ¼−

κ24
6

�
δρ̃

�
1þ ρ̃

σ

�
þδρE

�
; ð3:8aÞ

ð _ΨþHΦÞ ¼ −
κ24
2

�
1þ ρ̃

σ

�
aδq̃; ð3:8bÞ

Ψ̈þ ð3H2 þ 2 _HÞΦþHð _Φþ 3 _ΨÞ − 2k2

3a2
ðΦ −ΨÞ

¼ κ24
2

�
δp̃

�
1þ ρ̃

σ

�
þ δρ̃

�
ρ̃þ p̃
σ

�
þ 2

3
k2δπE

�
; ð3:8cÞ

ðΨ −ΦÞ ¼ −κ24a2
�
δπ̃

�
1 −

ρ̃þ 3p̃
2σ

�
þ δπE

�
; ð3:8dÞ

where σ ≡ 6κ2
4

κ4
5

¼ ρmax
ð1þ2κ2

4
fÞ2 and we can split the perturbed

effective density, the energy flux, the pressure and the
anisotropic stress perturbation, respectively, as follows:

δρ̃ ¼ δρ − 6H2δf þ 12f

�
Hð _ΨþHΦÞ þ k2

3a2
Ψ
�
; ð3:9aÞ

aδq̃ ¼ aδqþ 4fð _ΨþHΦÞ; ð3:9bÞ

δp̃¼δpþ2ð3H2þ2 _HÞδf

−4f

�
Ψ̈þð3H2þ2 _HÞΦþHð _Φþ3 _ΨÞ− k2

3a2
ðΦ−ΨÞ

�
;

ð3:9cÞ

δπ̃ij ¼ δπij þ 2f
ðΨ −ΦÞij

a2
: ð3:9dÞ

Then the perturbation equations (3.8) reduce to

Hð _ΨþHΦÞþ k2

3a2
Ψ¼−

κ̃2eff
6

�
δρþ 1

ð1þ ρ̃
σÞ
δρE

�
; ð3:10aÞ

ð _ΨþHΦÞ ¼ −
κ̃2eff
2

aδq; ð3:10bÞ

Ψ̈þ ð3H2 þ 2 _HÞΦþHð _Φþ 3 _ΨÞ − 2k2

3a2
ðΦ −ΨÞ

¼ κ̃2eff
2

�
δpþ κ̃2effðρ̃þp̃

σ Þ
ð1þ ρ̃

σÞ2
δρ

þ 2k2

ð1þ ρ̃
σÞ

�
1

3
−
2κ̃2effκ

2
4fðρ̃þp̃

σ Þ
ð1þ ρ̃

σÞ

�
δπE

�
; ð3:10cÞ

ðΨ −ΦÞ ¼ −a2
κ̃2eff ½1þ 2κ24fð1þ ρ̃

σÞ�
ð1þ ρ̃

σÞ½1þ 2κ24fð1 − ρ̃þp̃
2σ Þ�

ðδπ þ δπEÞ;

ð3:10dÞ

where κ̃2eff ¼ κ2
4
ð1þρ̃

σÞ
½1þ2κ2

4
fð1þρ̃

σÞ�
and

δρ ¼ ½− _ϕ2 þ 12H _f�Φþ V;ϕδϕþ _ϕ _δϕ−6H _δf

þ 2

a2
Δδf þ 6_f _Ψ; ð3:11aÞ

aδq ¼ − _ϕδϕþ 2Hδf − 2 _δf þ 2_fΦ; ð3:11bÞ

δp ¼ ½− _ϕ2 − 8_fH − 4f̈�Φ − V;ϕδϕþ _ϕ _δϕþ4H _δf þ 2δ̈f

−
4

3a2
Δδf − 2_fð _Φþ 2 _ΨÞ; ð3:11cÞ

δπij ¼
2

a2
δfij: ð3:11dÞ

The perturbed equation of motion for the scalar field is
given by [55]
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δ̈ϕþ 3H _δϕþ
�
V;ϕϕ þ

k2

a2
− Rf;ϕϕ

�
δϕ

¼ _ϕð3 _Ψþ _ΦÞ þ ð2f;ϕR − 2V;ϕÞΦ

þ 2f;ϕ

��
k2

a2
− 3 _H

�
Φ − 2

k2

a2
Ψ

− 3ðΨ̈þ 4H _ΨþH _Φþ _HΦþ 4H2ΦÞ
�
: ð3:12Þ

This equation can be strongly simplified within the slow-
roll approximation at large scales, k ≪ aH. This is so, as
the scales of cosmological interest have spent most of their
time far outside the Hubble radius and have reentered only
relatively recently in the Universe. Therefore, large scales
k ≪ aH is an acceptable assumption. When this condition
is satisfied _Φ, _Ψ, Φ̈ and Ψ̈ can be neglected [65,66]. Then,
Eq. (3.12) reduces to

δ̈ϕþ 3H _δϕþ ðV;ϕϕ − 12H2f;ϕϕÞδϕ ¼ −2V;ϕΦ: ð3:13Þ

By following a similar reasoning, using Eqs. (3.8b), (3.9b)
and (3.11b), we can therefore relate the scalar perturbation
Φ to the fluctuation of the scalar field δϕ as

Φ ¼ κ̃2effð _ϕ − 2Hf;ϕÞ
2H

δϕ: ð3:14Þ

Here, we define one of the most commonly used gauge
invariant combinations in terms of matter and metric
perturbations which is the comoving curvature perturbation
given by [67]

R≡ Ψ −
H

ρ̃þ P̃
δq̃: ð3:15Þ

From Eqs. (2.10), (2.11) and (3.8b) by adopting the slow-
roll regime and the large scale condition, we find

R ¼ Ψþ H
_ϕ½1þ 2κ24fð1þ ρ̃

σÞ�
δϕ: ð3:16Þ

In our analysis, we use the gauge invariant variable in the
spatially flat gaugewhereΨ ¼ 0. This variable is defined as

δϕΨ ≡ δϕþ
_ϕ

H

�
1þ 2κ24f

�
1þ ρ̃

σ

��
Ψ: ð3:17Þ

Using Eqs. (3.8b), (2.14) and (3.14) to eliminate the
remaining metric perturbations. In this gauge Eqto elimi-
nate the remaining metric perturbations, in this gauge,
Eq. (3.13) can be written as

̈δϕψ þ 3H _δϕψ

þ
�
V;ϕϕ− 12H2f;ϕϕ− κ̃2eff

V;ϕðV;ϕ − 6H2f;ϕÞ
3H2

�
δϕψ ¼ 0:

ð3:18Þ

Introducing a new variable v ¼ aδϕΨ which is called
the Mukhanov-Sasaki variable, the perturbed equation of
motion Eq. (3.18) can be rewritten as

v00 −
1

τ2

�
ν2 −

1

4

�
v ¼ 0; ð3:19Þ

where the prime denotes the derivative with respect to the
conformal time τ and the term ν, to a first order, is given by

ν ≃
3

2
þ ϵ − ηþ ζ

3
þ 2χ; ð3:20Þ

where the slow-roll parameters are defined as follows:

ϵ≡ −
_H
H2

≃
1

2κ24

�
Vϕ

V

�
2

CðaÞ
f;c; ð3:21Þ

η≡ V;ϕϕ

3H2
≃

1

κ24

�
V;ϕϕ

V

�
CðbÞ
f;c; ð3:22Þ

ζ ≡ 12f;ϕϕ; ð3:23Þ

χ ≡ κ̃2effV;ϕðV;ϕ − 6f;ϕH2Þ
18H4

≃
2κ24ð1 − f;ϕF1Þ½1þ ð1þ 2κ24fÞF2�
F2
1½1þ ð1þ 2κ24fÞð1þ 2κ24fF2Þ�

; ð3:24Þ

where we have introduced corrections terms (respect to the
standard 4D case) defined as

CðaÞ
f;c ¼

ð1þ 2κ24fÞð1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−U

p Þ2
4
ffiffiffiffiffiffiffiffiffiffiffiffi
1−U

p ð1− 2f;ϕF1Þð1− f;ϕF1Þ;

ð3:25Þ

CðbÞ
f;c ¼

ð1þ 2κ24fÞð1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −U

p Þ
2

; ð3:26Þ

F1 ¼
4κ2effV

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1 − U

p ÞV;ϕ

; ð3:27Þ

F2 ¼ ð1þ 2κ24fÞ½U − 4fκ2effð1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −U

p
Þ�: ð3:28Þ

These corrections terms depend on both the effect of the
holographic cosmology (through U terms) as well as the
NMC (through f terms). One can notice that at the low
energy limit (V ≪ Vmax) and for f → 0, the corrections
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terms reduce to one and the standard expressions of the
slow roll parameters are recovered. These corrections terms
can reproduce exactly the same form obtained for constant
f in [54].
Finally we obtain the solution for (3.19) as [7]

v ¼ aHffiffiffiffiffiffiffi
2k3

p
�

k
aH

�3
2
−ν
: ð3:29Þ

The power spectrum for the scalar field perturbations is
given by [67]

Pδϕ ≡ 4πk3

ð2πÞ3
���� va
����2: ð3:30Þ

We are now ready to calculate the spectral index of the
power spectrum given by [67]

nr − 1≡
�
d lnPδϕ

d ln k

�
k¼aH

¼ 3 − 2ν: ð3:31Þ

In terms of slow-roll parameters and to a first order, the
spectral index reads

nr ≃ 1 − 2ϵþ 2η − 4χ: ð3:32Þ
The power spectrum of the curvature perturbations in our

model is given by [67]

A2
s ≡ 4

25
PR ¼ 4

25

4πk3

ð2πÞ3 jRj2 ð3:33Þ

¼
�

2H

5 _ϕ½1þ 2κ24fð1þ ρ̃
σÞ�

�
2

Pδϕ; ð3:34Þ

and can be rewritten in the slow-roll approximation as

A2
s ¼

4

25ð2πÞ2
H4

_ϕ2½1þ 2fκ24ð1þ ρ̃
σÞ�2

≃
κ64V

3

75π2V2
ϕ

Gf;c; ð3:35Þ

where the correction to the standard four-dimensions
expression is given by

Gf;c ¼ ðCðbÞ
f;cÞ−3½ð1 − 2f;ϕF1Þð1þ 2κ24fÞð1þ 2κ24fF2Þ�−2:

ð3:36Þ
This correction term depends on the NMC and on the
holographic cosmology effect. It reduces to one at the low
energy limit, i.e., U ≪ 1 and for f → 0.

IV. HIGGS INFLATION MODEL

In this section, we formulate a Higgs inflationary
model from a holographic cosmology perspective as we
have developed in the previous section. We will take into

account observational constraints in order to check the
viability of the model. In the Higgs inflationary model, the
quadratic form of the NMC and the Higgs potential are
respectively [68]

fðϕÞ ¼ 1

2κ24
þ α0ϕ

2

2
; ð4:1Þ

VðϕÞ ¼ λ

4
ϕ4; ð4:2Þ

where α0 is a coupling constant and λ is the Higgs self-
coupling. Both quantities are dimensionless.
The inflationary regime refers to large values of the field.

Inflation takes place when α0κ
2
4ϕ

2 ≫ 1. Thus, the dimen-
sionless parameter U, defined in Eq. (2.13), is too small,
i.e., U ≪ 1. Therefore, we can determine the range of
values for the lower bound on the coupling constant by
using the expression of the dimensionless parameter U. In
this limit, we find

α0 ≫
ffiffiffiffiffiffiffi
2cλ
3

r
∼ 2 × 103; ð4:3Þ

for c ¼ 4 × 107 and λ ¼ 0.13. Those values are given in
[53,54,68], respectively. On the other hand, successful
Higgs inflation is possible only if the Higgs field has a
large NMC which allows to align the spectrum of primor-
dial perturbations with observational constraints [22].
Furthermore, while this large value of the NMC is in
agreement with our result, it induces a unitarity violation at
tree level. Before concluding this section, we will come
back to this issue.
Figure 1(a) shows the variation of the dimensionless

parameter U versus the conformal anomaly coefficient c
and the scalar field ϕ for different values of the NMC
constant α0. Figure 1(b) shows the variation of the
dimensionless parameter U versus the NMC constant α0
and the scalar field ϕ for different values of the conformal
anomaly coefficient c. We conclude from these figures that
a noticeable effect of the holographic cosmology and the
NMC is usually at large values of the scalar field as we are
looking for a small value of U but still different from zero.
The number of e-folds during inflation is given by

N ¼
Z

tf

ti

Hdt; ð4:4Þ

which in the slow-roll approximation can be written as

N≃−
Z

ϕf

ϕi

2κ2effð1−
ffiffiffiffiffiffiffiffiffiffiffi
1−U

p Þ
U;ϕþ4f;ϕκ2effð−2þUþ2

ffiffiffiffiffiffiffiffiffiffiffi
1−U

p Þdϕ; ð4:5Þ

where ϕi being the value of the field at the crossing horizon
and ϕf its value at the end of inflation.
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In the large-field limit, using Eqs. (4.1) and (4.2) the
number of e-folds (4.4) reads

N ¼ ðcλ − 3α20Þ
4α0cλ

log

�
ϕf

ϕi

�
: ð4:6Þ

Inflation stops at ϵ ¼ 1 and Eq. (3.21) together with
Eqs. (4.1) and (4.2) implies

ϵ ¼ 8ð2þ α0κ
2
4ϕ

2Þ
κ24ϕ

2

�
1 −

2α0κ
2
4ϕ

2

ð2þ α0κ
2
4ϕ

2Þð2 − U
2
þ U2

4
Þ

�

×

�
1 −

α0κ
2
4ϕ

2

ð2þ α0κ
2
4ϕ

2Þð2 − U
2
þ U2

4
Þ

�
: ð4:7Þ

Figure 2 shows the evolution of the number of e-folds N
against the Higgs field for a Higgs self-coupling λ ¼ 0.13.
We plot in Fig. 2(a) the evolution of N against the Higgs
field for different values of the NMC α0 while we fix the
conformal anomaly coefficient to c ¼ 2 × 107. In Fig. 2(b)
we plot the evolution of N against the Higgs field for
different values of the conformal anomaly coefficient c
while we fix the NMC to α0 ¼ 108. We conclude from
these figures that we can find a range for the Higgs field for
which the number of e-folds is in the appropriate
range 50 < N < 70.
We can as well derive the scalar perturbation, given

Eq. (3.35), and the scalar spectral index, see Eq. (3.31), at
the horizon crossing. They read

A2
s ¼

λκ64ϕ
6

4800π2
ð1þ ð1þ α0κ

2
4ϕ

2Þ½ð2þ α0κ
2
4ϕ

2ÞU − 2ð1þ α0κ
2
4ϕ

2ÞðU
2
− U2

4
Þ�Þ−2

ð2þ α0κ
2
4ϕ

2Þ5ð1 − 3U
4
þ 3U2

8
Þ

�
1 −

2α0κ
2
4ϕ

2

ð2þ α0κ
2
4ϕ

2Þð2 − U
2
þ U2

4
Þ

�−2
;

nr ¼ 1 −
4ð2þ α0κ

2
4ϕ

2Þ
κ24ϕ

2

�
4

�
1 −

2α0κ
2
4ϕ

2

ð2þ α0κ
2
4ϕ

2Þð2 − U
2
þ U2

4
Þ

��
1 −

α0κ
2
4ϕ

2

ð2þ α0κ
2
4ϕ

2Þð2 − U
2
þ U2

4
Þ

�
þ 3

�
2 −

U
2
þU2

4

��

− 24α0 ð4:8Þ

FIG. 2. Evolution of N, the number of e-fold, versus the scalar field ϕ for λ ¼ 0.13.

FIG. 1. Evolution of the dimensionless parameter U versus the conformal anomaly coefficient c and the scalar field ϕ, for λ ¼ 0.13.
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−
16ð2þ α0κ

2
4ϕ

2Þð2 − U
2
þ U2

4
Þ½ð2þ α0κ

2
4ϕ

2ÞU − 2ð1þ α0κ
2
4ϕ

2ÞðU
2
− U2

4
Þ�

κ24ϕ
2ð1þ ð1þ α0κ

2
4ϕ

2Þ½ð2þ α0κ
2
4ϕ

2ÞU − 2ð1þ α0κ
2
4ϕ

2ÞðU
2
− U2

4
Þ�Þ

�
1 −

α0κ
2
4ϕ

2

ð2þ α0κ
2
4ϕ

2Þð2 − U
2
þ U2

4
Þ

�
; ð4:9Þ

respectively.
We show in Fig. 3 the evolution of nr for λ ¼ 0.13 and

c ¼ 2 × 107, together with the bound on nr from Planck
data [5]. In Figs. 3(a) and 3(b) we plot nr versus the Higgs
field ϕ and nr versus the number of e-folds N, respectively.
Both plots are made for different values of the NMC α0.
We notice that the predictions of nr are consistent with
Planck data.
We next evaluate the tensor-to-scalar ratio to further check

the viability of our model. Using Eqs. (4.1), (4.7) and (4.6),
we plot in Fig. 4 the variation of the NMC function fðϕÞ
against the number of e-folds in the range 50<N<70 for
λ ¼ 0.13, α0 ¼ 108 and c ¼ 4 × 107. This figure shows that
fðϕÞ does not change much. In this case, we can use the
expression of tensor perturbations for a constant induced
gravity correction at the Hubble crossing which reads [69]

A2
T ¼ 2κ24

25

�
H2

2π

�
2

F2

�
H
μ

�
; ð4:10Þ

where μ ¼ κ24=κ
2
5ð1 − γÞ, γ is the induced gravity constant

and the function FðxÞ is given by

F−2ðxÞ ¼ γ þ ð1 − γÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

− x2 arcsin h
1

x

�
: ð4:11Þ

In our model and within the slow-roll approximation,
we find

A2
T ≃

λκ44ϕ
4

300π2ð1þ α0κ
2
4ϕ

2Þ

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α0κ

2
4ϕ

2

�
U
2
−
U2

4

�s

þ 4ð2þ α0κ
2
4ϕ

2Þ
�
U
2
−
U2

4

�

× arc sinh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð2þ α0κ

2
4ϕ

2Þ
�
U
2
−
U2

4

�s !−1#−1
:

ð4:12Þ

Finally, the ratio between the amplitudes of tensor and
scalar perturbations is given by

r≡ A2
T

A2
S
: ð4:13Þ

In Fig. 5, we plot the evolution of r versus the number of
e-folds N for λ ¼ 0.13 and c ¼ 2 × 107. It is important to
notice that the tensor-to-scalar ratio lies within the bound
imposed by Planck data in an extremely small range of N
which is around ∼58.48.
Finally, to compare the consistency between our theo-

retical predictions for a NMC Higgs field and observations

FIG. 3. Evolution of nr versus the number of e-folds N for λ ¼ 0.13 and c ¼ 2 × 107. Also, we show the 1σ bound on nr from Planck
data [5] with the gray horizontal region.

FIG. 4. Evolution of fðϕÞ versus the number of e-folds N for
λ ¼ 0.13, α0 ¼ 108 and c ¼ 4 × 107.
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we plot the (nr; r) plane in Fig. 6, where we show
constraints from the Planck TT, TE, EEþ lowEþ
lensing data (gray contour) and Planck TT, TE, EEþ
lowEþ lensingþ BK14 data (red contour). We can see
that our predicted parameters lie inside the 95% C.L. of the
Planck data for the two values of the selected number of
e-folds for α0 ¼ 108, λ ¼ 0.13 and c ¼ 2 × 107.
The large NMC to gravity, which ensures successful

Higgs inflation, violates at tree-level unitarity at a scale
corresponding to inflation [70–76]. This means that the
theory as it stands is incomplete. The unitarity cutoff scale
of the theory has been extensively studied in several works
due to the importance of Higgs inflation, see for example
[77] for some proposed solutions to this problem.
Let us check the tree-level unitarity violation of the

effective field theory for the model under study in the large
field regime. Since the Higgs field is NMC to the Ricci
scalar of the induced metric, the standard 4D result is
expected to remain true for our model also i.e., the effective
field theory holds only at energy scales not higher than

ϕ ∼
1

κ4α0
: ð4:14Þ

In standard inflation, the inflationary phase exits at
(ϵ ¼ 1) i.e.,

ϕf ∼
1

κ4
ffiffiffiffiffi
α0

p : ð4:15Þ

This means that the tree-level analysis is invalid due to
unitarity violation at the scale (1=κ4α0). Due to the
complexity of the expression of ϵ in our model
[Eq. (4.7)], we plot in Fig. 7 the Higgs field values at
the end of inflation with respect to the conformal anomaly
coefficient c for different values of the NMC constant α0
and for λ ¼ 0.13, together with the upper bound of unitarity
given by κ4ϕf ¼ 1=α0. We see from this figure that κ4ϕf is
significantly larger than the upper bound which we
present by horizontal regions for different values of the
NMC constant. We notice that for c < 108, κ4ϕf are almost
constant whatever the value of α0. On the other hand, we
can see from Fig. 1 that the holographic duality (through
the anomaly coefficient c) has a noticeable effect on the
standard cosmology dynamic only for large values of the
anomaly coefficient (c ∼ 107). This justifies the choice of
the large values of the c-parameter in the paper for which
the imprints of holographic cosmology appear clearly. This
range is also appropriate for the inflationary parameters in
the context of the holographic duality [52–54]. For
c > 108, the behavior of κ4ϕf changes but is still well
above the unitarity bound for all values of the NMC
constant. The minimum in this figure shows the maximal
value of the conformal anomaly coefficient corresponding
to U ¼ 1 for example for α0 ¼ 106, cmax ∼ 1013.
Unfortunately, a typical inflation scale will be higher

than our unitarity bound. So, the scale of the tree-level
unitarity is violated. This result is not influenced by the
values of the conformal anomaly coefficient. However, as

FIG. 6. Plot of the tensor-to-scalar ratio r against the scalar
spectral index ns for α0 ¼ 108, λ ¼ 0.13 and c ¼ 2 × 107. The
marginalized joint 68% and 95% confidence level contours
ðnr; rÞ using Planck alone and in combination with BK14 data.

FIG. 7. Evolution of ϕf versus the conformal anomaly coef-
ficient c for λ ¼ 0.13. We show the unitarity bounds with the
horizontal regions for different values of the NMC constant.

FIG. 5. Evolution of r versus the number of e-folds N for
λ ¼ 0.13 and c ¼ 2 × 107. We show also a subplot where we
have zoomed the wanted range for which our predictions lies in
the bound imposed by Planck data. The horizontal red line
indicates the upper bound for the tensor-to-scalar ratio imposed
by Planck data.
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mentioned in [48,78], this result does not necessarily spoil
the self-consistency of the Higgs inflationary scenario.

V. CONCLUSIONS

In this paper, we have studied an inflationary scenario
where the field is NMC with gravity in the framework of
holographic cosmology from a braneworld point of view in
the Jordan frame. We carried our analysis with a slow-roll
approach.
Furthermore, we have analyzed the model from a

background and a perturbative analysis obtaining the
representative parameters as shown in Secs. II and III.
The holographic nature of the setup together with the
effect of the NMC is manifest through the existence of
corrections terms for the standard background and pertur-
bative parameters.
As an application of the model we have developed a

Higgs inflationary model, where we have assumed a Higgs
field NMC to Ricci scalar. In a large field limit, a quartic
potential with a self-coupling λ ¼ 0.13, as fixed by
observations [68], and a NMC α0 ¼ 108 with a conformal
anomaly coefficient c ¼ 2 × 107 lies extremely well with
observations made by Planck 2018 for a number of
e-folds N ∼ 58.48, where the value of the scalar spectral
index and the tensor-to-scalar ratio turned out to be
nr ¼ 0.965 and r ¼ 0.021, respectively. However, as soon
as we move from N ∼ 58.48, the model is ruled out by the
current data.
As we have already mentioned, the Higgs field is the

unique scalar field in the standard model of particle
physics, i.e., it is the most economical model when
Higgs itself can drive inflation. In this paper, we deal with
an inflationary model driven by the Higgs confined on a
brane which could be seen as one of the economical models
and also it is in good agreement with observations as
noticed in the previous section (see Fig. 6). A comple-
mentary study of the unitarity violation at tree level is
needed to determine the validity of our analysis. We will
leave this question for future work.
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APPENDIX: WEYL TENSOR FOR A
BRANEWORLD MODEL WITH A GENERAL

INDUCED GRAVITY TERM

In Sec. III, we showed that the trace-free projection of the
five-dimensions Weyl tensor, Eν

μ, cannot be neglected at the
perturbative level since it encodes the effects of the bulk
gravitational field on the brane. In this Appendix, we show
that instead of neglecting δEν

μ, we parametrize this tensor as
an effective fluid [see Eq. (3.6)] and then we find a relation-
ship between its components. Our objective in this Appendix
is to check if a similar result, as the one in [63] for the Dvali-
Gabadadze-Porrati (DGP) model, can be obtained for a
braneworld model with a general induced gravity term.
Our starting point is the Bianchi identity,

∇μGν
μ ¼ 0; ðA1Þ

and the equation of conservation of the energy-momentum
tensor, Eq. (2.6). From Eq. (2.2), one obtains [63]

∇μEν
μ ¼ κ45∇μΠν

μ: ðA2Þ

The ðt; tÞ and the ð0; iÞ components of the perturbed four-
dimensions field equations Eq. (A2) are given, respectively,
by [63]

δ _ρE þ 4HδρE þ ΔδqE ¼ 0; ðA3Þ

δ _qE þ 4HδqE þ 1

3
ðδρE þ 2ΔδπEÞ ¼ −

ðρ̃þ p̃Þ
σ

ρ̃Δ; ðA4Þ

where ρ̃Δ ¼ ðδρ̃ − 3Hδq̃Þ. Using the quasistatic approxi-
mation, we can neglect time-derivative terms relative to
gradient ones; we get from Eq. (A3)

δqE ¼ 0: ðA5Þ
Furthermore the Bianchi identity suggests that there exists a
family of solutions characterized by [63]

δρE ¼ Cðσρ̃ p̃Þk2δπE: ðA6Þ
In order to obtain the correct form of the function Cðσρ̃ p̃Þ
some global five-dimensional perturbation analysis of the
Weyl fluid for a RSII with induced gravity model will be
necessary to solve this issue.
In this paper, the result (A5) is enough to continue our

investigation. Thus, we have checked this result for a
braneworld model with a general induced gravity term
which has an anti–de-Sitter space-time bulk geometry.
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