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No-boundary solutions are robust to quantum gravity corrections
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The no-boundary proposal is a theory of the initial conditions of the universe formulated in semiclassical
gravity and relies on the existence of regular (complex) solutions of the equations of motion. We show by
explicit computation that regular no-boundary solutions are modified, but not destroyed, upon inclusion of
expected quantum gravity corrections that involve higher powers of the Riemann tensor as well as covariant
derivatives thereof. We illustrate our results with examples drawn from string theory. Our findings provide a
crucial self-consistency test of the no-boundary framework.
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I. INTRODUCTION

The Hartle-Hawking no-boundary proposal [1,2] pro-
vides a theory of the quantum state of the universe. As such
it is a theory of the initial conditions of the universe,
meaning that it provides (relative) probabilities for different
evolutions of the universe [3]. The proposal is formulated in
semiclassical gravity and relies on the existence of solutions
of the Einstein equations that replace the big bang singu-
larity with a smooth geometry. In the Lorentzian signature it
is, however, not possible to find a regular solution that starts
out at zero size. The insight of Hartle and Hawking was that
in the Euclidean signature regular solutions can exist, the
prototype being a four-sphere of constant positive curvature.
In the simplest case of a cosmological constant one may
then think of a no-boundary geometry as a gluing of a
Euclidean onto a Lorentzian solution. Once a scalar field is
added, the solutions are necessarily complex, and they
smoothly interpolate between the Euclidean and Lorentzian
signatures [4].

There are two crucial features of no-boundary solutions,
namely that they are compact and that they are regular (i.e.,
Euclidean) near the big bang. Both features are necessary in
order to obtain a consistent semiclassical description.
However, from a quantum point of view, these two features
do not commute: compactness requires specifying a van-
ishing initial size while regularity corresponds to specifying
an initial Euclidean expansion rate. Since size and expan-
sion rate are conjugate variables that must satisfy the
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uncertainty principle, both conditions cannot be imposed
simultaneously. Recent work has shown that fixing a zero
initial size leads to trouble [5], while one can obtain a
consistent path integral definition of the no-boundary
proposal when one specifies the initial expansion rate to
be Euclidean [6,7]. This construction is also supported by
the analogous calculation in anti—de Sitter space, where one
may use well-known results in black hole thermodynamics
as guidance [8]. Thus the latest understanding of the no-
boundary proposal is that it should not be thought of as a
sum over compact metrics, but rather as a sum over
geometries of all sizes that start out as purely spatial
(Euclidean) metrics. Then, as the universe grows, the
signature changes to Lorentzian—time is not present at
the “beginning,” where one only has space. The no-
boundary geometry, which is both Euclidean and compact,
then arises as the dominant (saddle point) contribution to
the path integral.

The regularity of no-boundary geometries is crucial to
the proposal since otherwise there is no chance that one
may trust the results of semiclassical gravity. After all,
gravity is nonrenormalizable, and one expects an eventual
full theory of quantum gravity to have an effective
description as general relativity augmented by a series of
quantum corrections of higher order in the Riemann tensor.
A singularity in the solution would imply an infinite
sensitivity to such curvature corrections. But then one
must wonder whether a solution with the required charac-
teristics (regularity, finite action) still exists in the presence
of the expected quantum gravity corrections. This is the
topic of the present paper.

If we were looking for solutions with constant four-
curvature, the answer would be almost trivial since terms of
higher order in the Riemann tensor (even with covariant
derivatives included) would have a simple structure and
such corrections would be suppressed with powers of the
four-curvature (assumed to be well below the Planck scale).
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But realistic no-boundary solutions have varying curvatures
and can be quite different from the toy model
(half-sphere + de Sitter) geometry. Moreover, there exist
ekpyrotic no-boundary solutions which have a geometrical
shape that is very different from that of inflationary
instantons [9,10]. Technically, the problem may be for-
mulated as follows: in a universe with scale factor a(r), the
Riemann tensor contains terms of the form

. 1 a
Rlem~? R 2 (1)

and thus it is not at all clear that there will be a smooth
solution when @ — 0. In fact, it seems that the problem will
get worse when considering higher powers of the Riemann
tensor.' Nevertheless, as we will show in this paper, there
exist conspiracies between the various terms in the
Riemann tensor such that for a large class of theories,
including all the known corrections stemming from string
theory, smooth solutions continue to exist. Even when
covariant derivatives are included in the correction terms,
no-boundary solutions are robust to these corrections in the
sense that the solutions will be modified somewhat, but
their smoothness property is not endangered. This result
represents an important self-consistency check of the no-
boundary proposal, as it implies that the results obtained
using only the setting of semiclassical gravity will continue
to hold without drastic modification in more complete
theories of quantum gravity.

The plan of this article is as follows. We will begin in
Sec. II by reviewing the salient features of the no-boundary
proposal that we will require. In Sec. III we will consider all
actions composed solely of Riemann terms, i.e., terms that
are scalar contractions of Riemann tensors, for metrics of
closed Friedmann-Lemaitre-Robertson-Walker (FLRW)
form. Then in Sec. IV we will focus on specific extensions
of general relativity and quantum gravity corrections, and
see if they admit a consistent and regular no-boundary
solution. Section V will be devoted to the study of covariant
derivatives of the Riemann terms that appear in some
quantum gravity corrections. Our conclusions are in
Sec. VI. We employ the convention that the Riemann
tensor is defined as R}, = 9,4, — 0,4, + l“ﬁ,ll“'1 Fﬁal“ﬂy
and the Ricci tensor as R, = Rﬂﬂ

II. THE NO-BOUNDARY ANSATZ

The no-boundary wave function is a function of the
(e.g., current) spatlal metric of the universe /;; and matter
configuration ¢, defined as the path integral

'Very few works have looked into this question in the past; in
particular, see Hawking and Luttrell [11] and Vilenkin [12] on
quadratic gravity, and van Elst ef al. on including a cubic Ricci
scalar term [13].

~ hij.p i
V(. §) = / DpDg,, . 2)

1 " 1 N
S = e d*x\/— {——A—&— } 8G/dy\/_K

(3)

where in the action the dots stand for matter contributions ¢
and eventual additional curvature terms. The cosmological
constant is denoted by A. A Gibbons-Hawking-York sur-
face term (involving the trace of the extrinsic curvature K)
is added on the final boundary, allowing one to fix the
spatial metric there, but no such term is added at the
“no-boundary hypersurface” so as to allow for the impo-
sition of a momentum condition there, forcing metrics to be
Euclidean near the nucleation of the universe—for full
details see [7,8]. This path integral can then be evaluated in
the saddle point approximation, with a no-boundary geom-
etry providing the dominant contribution. In the present
work we will not consider the difficult problem of defining
the path integral in the presence of higher derivative terms
in the action, rather we will assume that the saddle point
approximation will remain valid. More to the point, we will
investigate whether suitable candidates for a no-boundary
saddle point geometry exist.

It is useful to first look at the case of a closed FLRW
metric in the presence of perfect fluid matter. The metric is
given by

ds? = =N(1)?ds* + a(1)?[dy? + sin® y(d6? + sin? 0d¢?)]

(4)
where y and 0 range from 0O to 7 and ¢ ranges from O to 27.
The lapse function N(¢) and the scale factor a() both only
depend on time. For the fluid, we will assume a stress tensor
of perfect fluid form T =p(t)g"+ (p(t)+ p(t))u*u”
where p(7) is the energy density, p(f) the pressure, and

u* the four-velocity. Then the constraint and equations of
motion for general relativity plus a perfect fluid are

Clz az
W-FI*?(A-}-SHG,O) (5)
2a a?
W'Fm‘l‘;—/\:—gﬂGp, (6)
ap +3a(p + p) =0. (7)

We are now looking for a solution that is regular as a(¢) — 0
(we will choose the origin of the time coordinate such that
this coincides with # — 0). From the equations above one
can see that this can be achieved only if
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a*(t—0)=-N?, d(t—>0)=0, (p+p)(t—0)=0.

(8)

This is precisely the no-boundary solution. The condition on
a immediately implies that the metric is Euclidean near
t = 0. Meanwhile, the condition on the energy density and
pressure implies that near t = 0 the only form of matter that
is allowed is one that has the equation of state of a
cosmological constant there. An example is a scalar field
that approaches a constant value at t = 0, i.e., for which

¢(t =0) =0. No other form of matter is allowed near
the “big bang” (also sometimes called the south pole of the
instanton), as this would destroy the regularity of the
solution. This means that for our purposes we can actually
ignore matter contributions and focus only on gravita-
tional terms.

Given that we need to focus on gravitational terms, do we
need to worry mainly about anisotropies near the south
pole? To see that this is not the case, consider a Bianchi IX
metric,

2
dsi = —N?di* + az [eP++V36- (sinyd — cos y sin Bdep)>

+ eP—V3p- (COS wdl + siny sin 9d¢>2
+ e+ (dy + cos 0dg)?], ©)

in (¢,,0, ¢) coordinates, with 8 € [0, z], ¢ € [0, 2x], and
w € [0,4x]. Neglecting matter, the constraint and equations
of motion for the Einstein-Hilbert action are

N2

342 3 . .
- BB - UL ) - =0, (10)

@ 4

a? 2d 3 . . 1
W+w+m(ﬁi+ﬁg)—gU(ﬂ+vﬂ—)—AZO,
(11)

where

U, p) = e 4 223~ | o2 42V3p-
—_ 262/3+ — 2€_ﬂ+_\/§/7', _ 2€_ﬁ++\/§ﬁf‘ (12)

Close to ¢ = 0 the no-boundary ansatz (8) again leads to a
solution, provided that in addition (% + f*)(r — 0) =0
and U(B,,p_)(t » 0) = =3. This implies that the anisot-
ropies . and f_ are necessarily going to zero when ¢ — 0.
Similar arguments apply to inhomogeneities. This means
that as long as a homogeneous and isotropic solution exists,
there can always be other solutions that develop inhomo-
geneities and anisotropies away from the south pole, while
approaching the most symmetric solution at the south pole.
This will remain true when we consider more involved
theories of gravity.

We conclude that close to the no-boundary point, we can
focus on the isotropic and homogeneous part of the metric,
i.e., on the scale factor. To determine the existence of
no-boundary solutions we will therefore make use of a
Taylor series ansatz of the form

{MQZQH%ﬁ+%ﬁ+%ﬁ+OM% (13)

a2 = —N2.

Our aim will be to see if such a series solution exists in the
presence of quantum gravity corrections. Before embarking
on this task, a few remarks:

(1) The regularity condition &*(0) = —N? leads to two
complex conjugated solutions, a(0) = a; = +iN.
These actually correspond to the Vilenkin [14] and
Hartle-Hawking [2] choices. Our present work will
not distinguish between the two, but for discussions
of the differences see, e.g., [5,15-18].

(2) The coefficient a; = +iN on its own just describes
flat space. Therefore, a(f) = a;t will always be
a solution of any action constructed purely from
Riemann tensors. However it is not clear whether
for arbitrary actions we can have nonvanishing
as, as, ..., coefficients that will define a no-boundary
solution regular in time.

(3) The coefficient a5 is related to how fast the universe
is expanding. This can be seen from the no-boundary
solution for general relativity in the presence of a
cosmological constant A = 3H?, which in Euclidean

time 7 = —iNt is given by
() = grsin(Ho) = e~ S22 4. (14
= —sin =7—— e
a\t H T T 6 T
We recover aj = —N?, independently of H, and

moreover we can see that as is proportional to H?.
Therefore, for generic theories that allow solutions
with different expansion rates, we should expect a;
to remain a free parameter, labeling the various
solutions. These solutions with different expansion
rates will have different actions, and thus obtain
different probabilities. In fact, it is in this sense
that the no-boundary proposal provides a quantum
theory of initial conditions.

III. RIEMANN TERMS

In this section we will investigate the impact of adding
terms of higher order in the Riemann tensor, without the
inclusion of covariant derivatives. As explained in the
previous section, we can reduce our investigation to that of
the scale factor in a closed FLRW universe, with metric (4).
In this spacetime, the only nonvanishing components of the
Riemann tensor R*,, are of the form R* ,;, and R*,,, with
a,b=0,...,3, a# b, and no summation on a and b
implied. Therefore all scalar contractions composed of n
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Riemann tensors R,,,, and 2n inverse metrics ¢** can in
this FLRW background be written as contractions of n
R ., or R*,, (where n can be any integer). Moreover,
these 24 nonzero components have simple expressions in
terms of the lapse and scale-factor functions: Vi,j=1, 2, 3
with i # j and no summation on the indices implied,

a?+N?

dN—aN
PN = AV

R
aN?

and ROiOi = Az. (15)

We define a Riemann term to be any scalar combination of
Riemann tensors and metric terms. As a consequence of
(15), any Riemann term can be written as a polynomial in
A; and A, on a closed FLRW background. Basic examples
are the Ricci scalar R = 6(A; + A,), the Ricci tensor
squared R*R,,=12(A1+A;A,+A3), and the Riemann

tensor squared R““P°R,, ., = 12(A} + A3).

A. General action and constraint

Since all Riemann terms are polynomials in A; and A,,
the most general action containing only such terms will
take the form

S = /d4x\/—g . f(RMy/)m gaﬂ)

=272 / dta®N Y ¢, AVAR (16)

p1.p2€N?

where ¢, , is a constant depending on the precise form of
f for each couple {p;, p»}.

In order to later find the equations of motions, we
slightly manipulate this action. The lapse N is a non-
dynamical variable whose equation of motion is a con-
straint on the system. Therefore, given that we will work in
a gauge where N is constant, any term containing more than
one power of N will later disappear at the level of the
equations of motion. Decomposing A%? with the Newton
formula,

a0 _aWP
aN?* aN3

2D G o

the relevant part is given by the terms [ = 0 and [ = 1, so
we replace

aN — a N\ a \ml/ a anN (8)
=o' e = Bt
aN? aN? aN? pa aN?

We also rewrite

) 2\ py 1 & -2j
» a-+ N P11\ a
A ( a*N? ) a*h Z (j )sz' (19)

The action (16) then reduces to

r1 1 52] ;P2
2 P1 ara
§=2n Z ZCP1-P2 Z()( J > /dt |:N2p2—1+2j a2p1+p2—3
P1-P2EN 7=
N a2itgra—l
T P20, apit s | (20)

We can now calculate the constraint equation by variat-
ing the general action (20) with respect to the lapse function
N(r). Using

N d 1 1 .
N2Pr2+2j - 5 _2p2 +2,]_ 1 .N21)2+2j—l ’ ( )

we can rewrite (20) as

P '2j =Dy
A2 P1 dr a~a
S=2r Zcm’pzz<j)/N2pz+2j—l |:a2[71+172—3

P1-p2 Jj=0

‘zj"pl

P> , a¥i
P2 Jpiapn
2p2+2j—1{( / )a2P1+1’2‘3

22j1 Gipa—2); 22j42 ;ipa1
a a a a a
(2= )5 — (@ +P2—3)WH

(22)

P
Cna P dz o
=2r § :cl’l-ﬁz § :< . ) /N2p2+2j—1 'ﬁﬁlvpz,j(a’a’a’a>‘

P1:P2 Jj=0 J
(23)
Varying with respect to the lapse then yields
oyS =21 cp
P1:P2
Pi :
D1 —(2p>,+2j—1)6N
x Z( ’ ) /dt< N2P2 2k Ly pais
=0\
(24)
so that the constraint equation of this system is
68
0=—
ON
Pi :
_ 50 P1\2p2+2j-1
=2z Zcpl,pzz< ] ) N2p2+2j "CpquzJ’ (25)
P1:P2 J=0
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68
S0=—
ON
2 Cpip Rk aaa® -2
— 2wy S S (M) e |- 00 - e = st = 0 o+ =98] 26)
P1-P2 Jj=0
Using Newton’s binomial formula,
P -2j -2 ,
(p_1) a_;] (a2 n 1) — 2PIAD
S (27)
D1 P1\ . ('12j Cl2 a p1—-1 d2 5 »
2 )i=ra(Gat) =mggena
=0
the constraint equation (26) reduces to
0= ) — 272 o) 1 APzAP1—1 1 3AP2 AP
_W_ ”p]zl;chl,pg pl(pZ_ )V +( _pZ)a 2 A
-2
aaa _ aa —
+p2(p2—1) zAfl —p2(2p1 + P2 - 3)FA§2 lAfl : (28)

We have verified that the equation of motion for the scale
factor, obtained by varying the action with respect to a, is
implied by the constraint equation in the sense that it can be
obtained by deriving the constraint with respect to time.
From now on we shall therefore work exclusively with the
constraint equation (28).

B. Order by order equations with the
no-boundary ansatz

Now we are ready to insert the no-boundary ansatz into
the Friedmann constraint equation (28) for the general
action (20). We will then analyze the resulting equations
order by order in ¢. This will provide conditions the action
must obey so as to admit a no-boundary solution.

We first make the observation that the constraint
equation (28) (hence also the equation of motion) and
the no-boundary conditions (8) are all invariant under the
transformation

{H_t’ = a(=1) =

a— —a,

—a(1), (29)

so the function a must be odd in . Thus all coefficients
of even powers of ¢ in the Taylor expansion are zero,
and the no-boundary ansatz (13) can, in fact, be
simplified to

{ a(t) = ajt + 21 + 350 + 0(1), (30)

a? = —N2.

The fact that a is an odd function of ¢ implies that for any
solution a(r), there will always exist a time-reversed
solution, but both will have the same signature as the
metric only depends on a(t)?. For this second solution, the
proper time runs in the opposite coordinate time direction f.
Since there is also always a complex conjugate solution for
each solution [see item (1)], this makes for four solutions
in total.

We start by plugging (30) into the expressions for A; and
A,, obtaining the expansions

A] — izZ(t)+N2 o as +( “—a1a5) t2 + (QSaS_aiaﬂ t4 + 0(t6),

a*(t)N? a’ 124}

360a

(1Oa3 13a;azas+3ala;) t4

A, = a()  _ o (a%—ala5)t2

611‘]L

The fact that these expansions start at order #° is nontrivial
since A; and A, both contain powers of a(f) in their
denominators, so they could in principle have been singular

6
360a; + O(1°).

|
as t — 0, but this is precisely what the no-boundary
solution prevents. The combination A, —A; only starts
at order 2.
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Then we plug the no-boundary ansatz (30) into the
Friedmann constraint equation (28) (see Appendix A). The
surprise is that even though we allow terms of arbitrary
order in the Riemann tensor, all coefficients of negative
powers of ¢ vanish automatically and the first nontrivial
condition arises at order t. In fact, at the two lowest
nontrivial orders (¢ and #3) we obtain two conditions on

the coefficients ¢, ,,:

c
Order t: Z ]’\’,'21[_.’,2 at=Pal='(p,— p1) =0, (32)
P1:P2
Order #*: C]’\”]z? a; a7 (a3 - Gs[py, po]
P1:P2
—I—a1a5 ‘Gs[pl,pz]) :0, (33)
where P = p; + p, and
L, 2
Gs[p1. pa] = 6(191 —15p; +6—4p; + 12p,);
1- 2p5(1 —
G [pl,pz] pl( . pl) p2( 3 pZ) (34)

One way of easily satisfying the first condition (32) is by
requiring that
|

2 Cpi.py 3—P P 2
as ZP1~F2 NZP @

V{plvp2}€N27 (35)

Cpipr = Cpopy-

This special case, in fact, covers most known examples:
(1) any term of the form R", Vn € N, satisfies (35)
since R = 6(A; + A,). In particular, this implies that
f(R) theory, and hence gravity plus a scalar field,
will admit a no-boundary solution.
(i) quadratic terms and all their powers since
R,.,cR*"” = 6(A7 +AJ) and R, R* = 12(A7+
AA; + A).
We then turn to the second condition (33). Provided the
expression factoring as is not zero, this condition, in fact,
determines the value of a5 in terms of a; and as:

cPl P2

as NP a1 ZGS[Pl’Pz]
P1:P2
a% Pl Pz -2
= _a_ G [Ph Pﬂ (36)
1 P1:P2

When we are in the special case where (35) is satisfied, we
can simplify (36) by symmetrizing the expressions G5 and
G5 in the exchange of p; and p,, and we find

[4—=pi(pr+1) = pa(pa +1)] _

P] P2
a4 prps NP 4

At higher orders in ¢ the additionally appearing coefficients
a,, ay, ..., will be fixed in terms of the lower ones. Thus all
theories of this form admit no-boundary solutions as
a — 0, with a; remaining a free parameter effectively
corresponding to solutions with different expansion rates.

The single exception to this statement is the case where
the left-hand side of (36) vanishes, with the consequence
that a5 is fixed in terms of a;. This corresponds to ordinary
general relativity in the presence of a cosmological con-
stant. Expanding (5) one straightforwardly finds

3 2 502
__alA __5a3_ 5 A_alA ¢
as = 73 N a5 = ——— arazin= 9 , €lcC.

a

(38)

For this theory the no-boundary solution corresponds to
complexified de Sitter space with a fixed expansion rate
determined by the cosmological constant.

What we have done so far is to find general conditions
that Riemann terms need to satisfy if they are to preserve
the existence of no-boundary solutions. In the next section
we will examine specific examples of extensions of general
relativity to see whether they fulfill these requirements.
But before doing so it may be helpful, for the sake of

aial =2 [pi(py = 1) + pa(pa — 1)

(37)

I

illustration, to see what goes wrong if the condition (32) is
not satisfied. Even though we do not have a covariant
expression for them, let us consider actions such as

/dta3NA,, or /dta3NA1A§, etc.  (39)

that are in violation of (32). The constraint equation for the
action [dra®NA, gives

(a3 = N?)t+aja3t’ + O(£) =0, (40)

so even in the presence of matter (only appearing at
order #*), this would imply a, = &N, corresponding to
Minkowski spacetime rather than Euclidean space near
a = 0. This is inconsistent with the no-boundary ansatz.
Here we see that it is not enough for an approximately flat
solution to exist near a = 0, it must be flat and Euclidean at
the same time. Even this is not enough, as the next example
will show: if we turn to [dta®NA,A3, for instance, the
constraint equation is

123539-6
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2

23’\;6"3 <4“31]‘\;36“5 - 2a?A) P +0(5)=0, (41)
where we have included a cosmological constant A and
assumed the no-boundary relation ai = —N?. At order ¢
one is forced to set as to zero, but then at the next order the
constraint cannot be satisfied. Hence this action does not
admit a no-boundary solution.

Having gained a better appreciation for the nontriviality
of the no-boundary regularity condition we now turn our
attention to specific examples of theories containing higher
orders of the Riemann tensor in the action.

IV. NO-BOUNDARY SOLUTIONS FOR
EXTENSIONS OF GENERAL RELATIVITY

A. Quadratic gravity

The most straightforward extension of Einstein gravity is
quadratic gravity, analyzed in this context in [11,12]. It has
the advantage of being a renormalizable theory of gravity
[19], but it suffers from the presence of a ghost. Lots of
efforts are being made in order to make sense of this ghost;
see, e.g., [20,21]. Quadratic gravity has many uses, such as
in Starobinsky’s inflation [22] and in asymptotic safety
[23-25], and it has interesting general implications near the
big bang, where it automatically enforces the suppression
of certain classes of anisotropies and inhomogeneities [26]
(even for a big bang that is not of no-boundary type and that
gives rise to a curvature singularity).

We will first consider pure quadratic gravity, where the
action only contains R? terms. This theory is scale invariant
and has the action

Spure quad = / d*x\/=g(aR® + PR,R™ + YR, pe R*7).
(42)
On a closed FLRW background, we recall that

R? = 36(A, —I—A2)2,
and R

R, R*™ =12(A7 + AjA;y + A7),
upeRP7 = 12(A7 + A3).

In four dimensions, the Gauss-Bonnet term f d*x, /=93 is
a topological invariant and does not contribute to the
dynamics. On a closed FLRW background,

G = RP"R g5 — 4RV Ry + R = 244142, (43)

and the associated constraint equation obtained by inserting
{p1 =1, p, = 1} in (28) is automatically null. To study the
dynamics the action can therefore effectively be reduced to

Spure qllad’reduced = 2]7;2 / dtClSNE(A% + A%)’ with

¢ = 36a + 126+ 127. (44)

This time even at order ! the constraint equation is
automatically satisfied because the action (44) is symmetric
in A; and A,, and therefore satisfies the condition (35). At
next order in ¢, the constraint equation yields

(aa3 — atas)
Tl' £+ 0(r) =0, (45)
solved by as = a3/a,. The coefficient a; is left undeter-
mined, as expected from the scale invariance of the theory.

Next we can consider coupling quadratic gravity to
ordinary general relativity,

R A W 1
Sqwa = | d*ry/=g L e ,
quad / VoI <167zG 82G 30" 20 +€g>

where we wrote the action in terms of the Weyl tensor C,
which vanishes for a FLRW metric:

Hvpo

1
CoupoCH” = R, pR*P° — 2R, R + 3 R =0, (46)

and the Gauss-Bonnet combination G, which does not
contribute to the dynamics as we just saw. Therefore the
relevant part of the quadratic action to compute the
dynamics on a FLRW background is

1
Squad.reduced = 27 / dta’N [% (3A; +34, = A)
12w }

+ — (A2 + A2) (47)

The constraint equation for this action is

2
(aa?/\ + aaif - C;S—Zﬂ + 3aa3> B+0(P)=0, (48)
1 1
where o = ﬁ and f = % The no-boundary solution is
2
as = 5.7 (@A + 3a3as), (49)
a p

valid when a ~  or @ << 8. Then aj is left undetermined.
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When a > f, the solution is instead

—3a;} + \/9a? —4LafA + 4572611615
az =

20/ a
@A
> -5 +0
a_)ﬂ 3 + (ﬂ/a) (50)
—3a1%+T+0(ﬂ/a).

The first branch corresponds to the Einstein-Hilbert sol-
ution, while the second branch is not physical as it gives a
solution with curvature a5 bigger than the Planck scale (a),
and a nonsmooth limit # — 0. The second branch arises due
to the presence of higher derivatives in the action and is
associated with the new scalar degree of freedom (for a
detailed discussion of the properties of the scalar, see,

e.g., [27]).

B. Heterotic string theory

The low-energy effective theory from heterotic string
theory is the Einstein-Maxwell-axion-dilaton gravity con-
taining a dilaton field ¢, gauge fields F (Maxwell), and a
three-form H (axion) (see, e.g., [28,29]). At first order in
the inverse string tension o/, an S-matrix calculation in
heterotic string theory leads to the effective Einstein frame
action [29]

Sheterotic 2% 2 /de\/_ <R A (84))

+§€_¢/2 <g+

where we have assumed that the compactification has led to
a potential V(¢) for the dilaton (in general we may expect
additional terms). Note that, as discussed in Sec. II, the
axion H and the gauge fields F have been consistently set
to zero. If additional scalar fields arise due to the com-
pactification, then these will behave analogously to the
dilaton, so that we may use the dilaton as a stand-in for all
of the scalars. In the gravitational sector, the first correction
in « is given by the Gauss-Bonnet combination. Because of
the dilaton dependent prefactor, it is not a topological
invariant this time, and we must include its effects. The
constraint reads

OO ) -v@) ). 6D

) i)
5N 5N (6a°N(A; +Ay))

4

(C heterotic ) =

o .
I LY S v
g T ()

o
+ 3(X/€_¢/2 W (G3NA1A2)

3a - aa?
_74, -2 2% 2 A, =0, (52)

where the second line follows from

(a3NA) _Ba(a3NA)
6N ON
forA=G and B=e?2. (53)

1
6N( @3NA(N,N,1)B(1)) =

Equation (52) is odd under the transformation ¢ — —t,
a — —a, and ¢ — ¢. We will also need the equation of
motion for the scalar ¢, which is given by

R (AR
FIVOIR - 00F) = V=0 (54

On a closed FLRW background and for a homogeneous
field ¢(¢) this translates into

. 3d 3., 3 .
¢ —_ Ee“ﬁ/z <8A1A2 + §¢2¢ - E¢4) - V¢ = O (55)

Equation (55) is even under the transformation t — —f,
a — —a, and ¢ — ¢.

Now we look for Taylor series solutions to Egs. (52) and
(55) around 7 = 0. From the transformation rules of the
equations of motion (52) and (55) under t - —t, a - —a,
and ¢ — ¢, we know that @ must be an odd function of
time, while ¢(¢) must be even:

{a:a1t+%t3+1‘§ot5+ (56)

P(t) =+ G2+ 5+

This is already enough to realize that ¢ will be constant at
first order in time close to the no-boundary point ¢t — 0.
When plugging (56) in the constraint equation (52) and
expanding in orders of ¢, the leading order gives

3a,e P2

SN (a3 +NH)pt+0(F) =0, (57)
which is solved by the usual no-boundary solution
a? = —N?. Then we turn to the equation of motion for
¢ (55) where at leading order we find

3a% ,
—_ B e P0/2
¢ ae

2 2a?

—V 4(do) +O(*) =0.  (58)
This equation fixes ¢, as a function of ¢y, a;, and as.
Implementing this solution for ¢,, the next order of the
constraint equation gives us a cubic equation for a5 in terms
of a; and ¢:
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9 3
—4—220/26“/’0 +6a; < et 2 (2 )) - a?V(qbo)] B
1 ajy
+0(r) =0. (59)

We conclude that the heterotic string action (51) pos-
sesses a family of no-boundary solutions, this time usefully
labeled by ¢, the dilaton value at the south pole.

C. General relativity as an effective field theory

We just saw that the leading correction stemming from
the heterotic string is a combination of quadratic terms in
the Riemann tensor. More generally, when considering an
effective field theory treatment of general relativity, in
addition to the pure gravitational terms we would also
expect the presence of new couplings between the gravi-
tational terms and matter terms [30]. Of greatest interest in
the present context is the coupling between gravity and
scalar fields. We will not be able to perform an exhaustive
treatment of such couplings, but the first nontrivial cou-
plings serve as an indication that no obstruction to the
existence of no-boundary solutions will come from such
terms. To see this, consider the effective theory of gravity
and a scalar field up to fourth order in derivatives,

1 1
_ 4 iy~ _ _ g —
Sett = /d X, /‘g[ 6o R=20 +50"0,00,¢ = V(9)
+ 1R 4 R, R™ + (d\R™ + dyRg™)D, D, b

+ d3RV () + - - ] , (60)

for arbitrary coefficients c;, ¢,, d;, d5, d;3. On our closed
FLRW background and for a homogeneous scalar field, up
to total derivatives this action reduces to

1 P
Setf = 2”2/dt03N [% (3A1 +3A, —A) —2—]\’2
= V() +12(3c; +¢2) (A2 +A)
e
—(3d1A2+6d2(A1+A2))2—A,2+6d3(A1+A2)v(¢) '

(61)

By variation we can calculate the equations of motion, the
scalar field equation being
3)
a .
+ -
aN? ¢>

a® .
+W¢)

+6d5(A, + AZ)NZV,(,,] =0, (62)

3 . .. .
% [Eﬁ +3Hp — N>V, + 6d, <A2(¢ +2H)

+12d, ((';S(Al +Ay) + Hp(A, + 4A,)

while that for N (the constraint equation) is

31341 - A P
a’
qrG N2

247 2aa®) i @ \?
— 12(36’1 +C2) <a2N2Al - a2N4 + <CZN2 - a2N2> )

v (4 (cham o) ~ et

aN N>

+6d3<A1V(¢) —N;Sv >] 0. (63)

These equations transform only by an overall sign under
t > —t,a - —a, and ¢ — ¢. Thus it is again appropriate to
use the ansatz Eq. (56), for which the equations of motion
reduce to

BoM for i 2! (a? 4 N)(4daghy + dsN2V. ()
+0(#) =0, (64)
EoM for N : —1724- (3ci +¢3)(3at +2a3N? — N*)
aN“t
(a%a;er\f)t. 3;3272 —18a%a3(3c; + ¢;)
—2a3(3¢; + ¢3)N? + 6a}dsN*V (o)
+0(P) =0, (65)
which are consistent with a3 = —N?. Higher orders in 7 fix

higher coefficients as, as, ¢,, ..., in terms of ¢, and a,. For
example, the next order of the ¢ equation gives

(4> (a3 — 6az(dy +4d,)) + aj(aj + 12a3d3)V 4(¢y))
+0() =0, (66)

3
N

which one can use to fix the value of ¢,. The crucial point is
that even in the presence of higher derivative couplings, the
scalar field does not diverge near the south pole, but
approaches a constant, just as for minimal coupling.
Hence, even though we cannot explicitly check all possible
higher derivative couplings, we may assume with some
confidence that such couplings do not yield any divergen-
ces. We will thus focus our attention on pure gravitational
terms.

We should also mention that an effective treatment of
general relativity leads to the appearance of nonlocal terms,
e.g., terms of the form f \/—_gRéR [30]. These terms may
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have interesting implications in cosmology; see, e.g.,
[31-33]. When expanding such terms around a specific
background, one obtains an infinite series with terms
containing more and more derivatives. Below we will
investigate some specific correction terms containing
derivatives (see Sec. V), but because of technical limita-
tions we cannot make any definite statement about large or
infinite numbers of derivatives. We must therefore leave
this interesting question for future work.

D. Type II string theory in D =10
spacetime dimensions

The low-energy effective action, obtained by looking at
quantum corrected amplitudes for four-graviton scattering
in type II string theory in D = 10 dimensions order by
order in , reads [35,36]

5= / PxV=G(R + (oEL) R + ()€ VRS

+()0E(g) VORY + ), (67)
|

tijklmnpq — _leijklmnpq

where G is the determinant of the metric in D dimensions,
while 58)@ are coefficient functions that depend on the

compactification. General compactifications imply the
presence of additional curvature terms (along the lines
discussed above) and scalars (discussed in Sec. VD) as
well as numerous gauge fields which we can set to zero
(cf. the discussion in Sec. II). Here we will focus on the o>
type II correction to Einstein gravity (67) which is given by
the R* term, a special combination of four Riemann tensors
defined as’

4 __ L ijklmnpq abcdefgh
R* =14 ty RijapRiicaRmnesR pggn-  (68)

tg is a special eight-rank tensor whose explicit expression
can be found in [37] (Chapter 9, Appendix A) to be

_5 [(511{5}1 _ 5115]1{)(5mp5nq _ 5mq5np) + (5km5ln _ 5kn5lm)(5p15q/ _ 5p15qz) + (5tm5/n _ 51n5/m)(5kp51q _ 5kq5lp)]

1. o _— .
5 [543 50 4 575 51059 4 575" 5746/ 4 45 more terms

obtained by antisymmetrizing on the pairs ij, k/, mn, and pq].

(69)

The quantity R* is therefore a Riemann term, so we can determine if it will admit a no-boundary solution by simply looking
at its structure in terms of A, and A, and seeing if it meets condition (32). We start by computing the explicit structure of R*

in terms of Riemann tensors with the XACT package [38]:

RY = 12(RupeaR™?)? + 6R“R T (4R M Ryt = RicM Rjara) = 12RupijReara R RVM

2

+ eijklmnquijuh 2Rklemene'prqab _

1
+2Rklemenabquef - ERklaeRmnbepqef + 2RklamenefR

1 ..
+ Z €1]klmnpq€efghabcdR_

zjabRklcdRefmnRghpq .

J

3 o 3 . :
+ _RabinaczdR/lckakdl + Z Rabina”dRcklebkjl

1 ef 1 fe
ERkl Rmnaequbf_kalaeRmn qubf

2

pgef ]

(70)

To obtain a more general action, one also has to consider five- and six-graviton scatterings in the action (see, e.g., [34]), where it is
shown that at the one-loop level, five-graviton scattering only matters at order ’°. Our aim, however, is not to be exhaustive so we will

keep to the four-graviton scattering here.

3Agajn this will be modified when considering five-graviton scattering by the addition of a egegR* term. As we will discuss on the
next page, this kind of term will not be relevant for our analysis and we can safely ignore it.
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We must be aware that these expressions are originally
valid only in ten dimensions (and an analogous structure is
also expected in 11-dimensional supergravity, since the
low-energy type II theories are related to 11-dimensional
supergravity via circle compactifications; see, e.g., [39]).
When going down to four dimensions, there will be new
fields (and different associated terms) appearing through
the compactification, when indices point in the internal
dimensions. These gauge fields and scalars will depend on
the details of the compactification. However, as discussed
in Sec. II, we expect gauge field to be zero and scalar fields
constant at the no-boundary point. Therefore the only part
of (70) that we are really interested in is the one where all
indices point in the (four) external spacetime dimensions.
But then all the terms containing an eight-rank tensor ¢ are
set to zero, and we are left with

R4|4d,truncated = 12(Rmzp6RWp0)2
+OR™ R, (4R R g — R™)R, )
- 12Rﬂy‘5’7R/"’,dR"”péR’d,,,7
3 1112 Eopn p Kk A
+§R :quyp R A KRl/ o
3
+ 1 wa’?R"” éngK"’lR”"n 2 (71)
where p, v, p, 0, &, 17, k, A are now spacetime indices running
from {0,...,3}. Expression (71) is now ready to be
expressed in terms of A; and A,. Using (15), we compute
that on this background all the terms of expression (71)

can be written in terms of two quantities that we denote R,
and R,:

12(R,,°R™ ,,)* =123 (A1 +241A3+ A3) = 12R,,  (72)
24R" R, "Rz R, = 8- 122 (A + A}) =24R,, (73)
—OR™ ) R, IR R, F = =122 (AT + A7) = =3R,.,  (74)

—12R,, %R R™ ,:R,,** = —122 - 4(A} + A2A? + A3)

3
ERﬂD&'IRﬂ/)go—Rnﬂ/)KRDKG/{ = 9(3‘4‘1‘ + 2A%A% + 3A§)
1 3
= — - ) 76
cRitR (76)

and finally

3 1

ZR/‘”&YRW&’RPKMRDKW'{ = 18(A] + 24345 + A3) = gRl-
(77)

Therefore expression (71) reads

163 123
R 4 truncated = T Ry + e R,

= 1467(A2 + A3)? +738(A} + A3).  (78)

The quantities R; and R, are both symmetric under the
exchange of A; and A,, so they satisfy the condition (35).
Therefore, the R* term satisfies the leading order condition
(32), and will admit a no-boundary solution.

It might look a bit astonishing that this very complicated
scalar combination of four Riemann tensors has such a
simple expression in terms of A; and A, that is moreover
symmetric in the exchange of A; and A,. This might lead us
to think that this could be a general property of any scalar
combination of Riemann tensors, but if we look at the two
following combinations:

R,/°R¥ R R™ ;= 48A1 4 36A3 + 48A,A3
+24A3A, + 60A%A3 (79)

and

R )R, SR Ry = 12(AY + AZAZ + AY)
+124,(A3 + A A +243), (80)

we see that they are both not symmetric under the exchange
of A; and A,. However, they still satisfy the leading order
condition (32), and therefore admit a no-boundary solution.

We may conclude that known Riemann terms stemming
from string theory have a structure that allows for no-
boundary solutions. What is more, all of the covariant
Riemann terms that we have investigated allow for no-
boundary solutions. It would, of course, be very interesting
if one could prove a general result in this direction. The
next orders in @ of the type II string theory (67) are not
Riemann terms anymore, but rather involve covariant
derivatives acting on Riemann tensors. Unfortunately, it
is not possible to treat covariant derivative terms as
systematically as we treated Riemann terms, because they
depend on higher and higher time derivatives of the scale
factor a. We will therefore study them on a case by case
basis, starting with the easiest expressions and ending with
the first string theory covariant derivative term, written
schematically as V4R* in (67).

V. COVARIANT DERIVATIVES
OF RIEMANN TERMS

When covariant derivatives enter the game, it is even less
trivial that their contributions to the constraint equation will
still admit consistent and regular solutions. Indeed, we have
seen that Riemann terms are linear combinations of A; and
A,, and these quantities only start at order 0. Therefore,
when acting on them with time derivatives, there is no risk
of ending up with negative powers of ¢ that could bring
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singularities. But the covariant derivative is also composed
of the Christoffel symbol part: V - ~9 - +T"-. The nonzero
Christoffel symbols are schematically

a

kiT0
gl ~—,
L aNZ

r;o~g, and T ~1 (81)
(by ~ we indicate only the time dependence, not the
angular dependence). The quantity a/a ~ t~! is singular,
and we can fear that covariant derivatives introduce
singularities into the constraint equations. Therefore we
need to check term by term the existence of regular
solutions in the covariant derivative terms that we need.
First consider again the transformation

{ SR (82)

a — —da.

On a closed FLRW background, if we consider the action
S = /dta3N£, (83)

then the constraint equation of this action will be

P 8(a3N£) d |:a(a3N£):| N (84)

(3 — _
v N == T w T aR

This constraint equation will be odd under the transformation
(82) only if £ is even under this same transformation. Now A
and A, are even under this transformation; hence such are all
Riemann terms. Because the FLRW metric does not contain
any mixed term gg;, time derivatives will always come in
pairs. The Christoffel symbols (81) with one 0 index are odd
under (82) and will also always come in pairs or with one
time derivative. Therefore all covariant derivatives of
Riemann terms will be even under this transformation,
and their constraint equation odd. Thus we may keep using
the reduced no-boundary ansatz (30) instead of the full
ansatz (13).

By studying terms with up to four covariant derivatives
acting on Riemann terms, we will encounter expressions
with up to four derivatives acting on a. To ease the
upcoming expressions, we therefore define

G aN (3N
a a a
Aa=——-——— | 5 +— |Ay, 85
3 (o)t 69
@ aN® 6N 6aN 3N* 4N
a a a

O (2 )

(86)

The calculations involving covariant derivatives are rather

lengthy, so we are not going to display them entirely here.
Rather, we will explicitly show the simplest example that

arises when two covariant derivatives act on one Riemann
tensor and relegate the results of lengthier calculations to
the Appendix. Our focus will be on terms of the form V4R*.

A. An explicit example: Two covariant derivatives
acting on one Riemann tensor

The following quantity is a scalar term where two
covariant derivatives act on one Riemann tensor:

A = VZR = —6 <A4 + 2—16\1/,143 + 2A2(A2 —A1)> . (87)

We can directly observe that A is a total derivative, so its
constraint equation will be null. We will, however, derive
this result explicitly for illustrative purposes.

To compute the constraint equation of A we need to
compute those of the terms A4 and ﬁA% or more precisely,
of the actions

SA4 :/dta3NA4 and SL.{A'; :/dta3NCIlVA3' (88)
2 a

In a closed FLRW background, the constraint equation for
the action Sy, is

0— 8(a3NA4) _ g 8(613NA4) d_2 8(G3NA4)
ON dt|  oN dr* |  ON
d3 8(613NA4)
S dA | oN®
o

We make the whole derivation explicitly for this first case®:

ata®  ad? 6a2a(3>N+ZaéliiN

a3NA4 - T B F B N4 N4

4a2a N a*aN®

- le - 7 (90)
N N

a(az)/[\\;m) _ _134 (aza(4) _ aa..z)’

i {a(a;%A4) =L (=6a2a™ +2a%d+2ad® —10aaa),
=
ir [a(a;%ﬂ =S (—4a2a¥) -8 d—8aa® —16aaal),
8|2 = e~ a2alt 12820 - 6ai® 8aaa).

©n

“In this paper, it is always implicitly understood that the
following expressions are evaluated at constant lapse N, so that
we can drop all terms containing more than one power of a
derivative of N.
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So using (89) we find that the constraint equation for the
action S, is

5 1
N [@’NA,| = N (2d%d — ad® + 2aaa®).  (92)

We use exactly the same procedure for all coming terms,
but only display the final results. For the action S;4,, we
find the constraint equation to be

5 ' 1
N [a3N%A3} = (=2aaa® + ad® - 24d).  (93)

The only missing piece to get the constraint equation
for V2R (87) is the A,(A, —A,) term. This one is
a simple Af'AP? term, so we read off its contribution
from (28):

5 1
N [APNAy (A, —A))] = N (2aaa® —ad®+24d).  (94)

The constraint equation for A4 is therefore

ON

— 4 3

5 5 a
= 6|2 [®NA] +32 [N LA
oy [ NA +355 {“ aN 3]

+ 2% @ NA (A, — Al)]}
=0, (95)

which is the expected result since this term is a total
derivative.

B. General recipe

Using the straightforward method presented in the
previous subsection, we can compute all possible covariant
derivatives terms. However, we can ease our life even more
by decomposing the calculations further. Assume we know
the constraint equations for the two actions

S, = / dta®NA and S, = / dta®NB,  (96)

where A and B are functions of a, N, and their time
derivatives. Then the constraint equation for the action

Syp = / dta’NA - B (97)

will be given by

oN  “dr\' oN a2\ “aNG

O 1NA - B] :A-%WNBHB-%WNA] C @A B—A- {M 24 (M) & (3(“3”))]

v d(a*NB) .4 d(a*NB) a0 d(a*NB)
ON dr\ oN® ON®)
;. d(a*NA) B 22 d(a*NA) d_2 d(a*NA)
ON dt\ oN d? \' oN®
_[0(a®’NA) _ d [(9(a’NA) (3 O(a’NA)
+B[ oN _3E< aN® )| 7 aNG) )

This assumes that the highest derivative of N on which A
and B depend is of third order, as it will be the case in this
work. It is, however, trivial to extend (98) to include higher
orders.

Using Eq. (98) enables us to build iteratively the
constraint equations of more and more involved expres-
sions of A, A,, A3, and A,. To illustrate this, suppose we
want to compute the constraint equations of the four
following covariant expressions:

B, = (vﬂRaﬂyé)(vﬂRaﬂy(S)’ B,= (vﬂRaﬂ)(vﬂRaﬂ)’
By=(V,R)(V'R). and By=(V,R:,)(V,R*P)  (99)

that are expressed in terms of the quantities A, A,, and
As as

8a?
B, = —12[A§+W(A2—A1)2 , (100)
2a 64>
Bz = —12|:A§ +W(A2 —AI)A3 +W(A2 —A1)2:| ,
(101)
4a 447
B3 = —36|:A% +E(A2 —AI)A3 +W(A2 _Al)2:| ,
(102)
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; 2
By-%{%@—AQi%+A4. (103)

Then we just need to compute the constraint equations for
the two actions

SA3_/dta3NA3 and Sd(A»—A1)_/dta3NiN(A2_Al)
- a
(104)

and then combine them using (98).5

The general recipe we apply to compute the constraint
equations of all covariant derivative terms is therefore

(1) Decompose the expression in terms of Ay, A,, Az,
and A4.6

(2) Find the basic blocks needed to build each terms in
this expression [e.g., (104) in the previous example],
and compute their constraint equation.

(3) Use the formula (98) (iteratively if needed) to combine
the basic blocks and get the complete constraint
equation for the initial covariant expression.

(4) Plug in the no-boundary ansatz (30). This step is
commutative with the previous one.

Using this method, we computed the constraint equa-
tions of all the I5 terms (99) as well as those of the following
terms where four covariant derivatives act on two Riemann
tensors (see Appendix B):

Ci=V2R,5,; VPRV Cy=V?R,zV?RY
C3 = szsz, C4 = V”VDRG/;},(;V”V”R”/}V‘S,

Cs=V,V,R;VFV'R? ~ Cc=V,V,RV*V'R. (105)
Remarkably, all the constraint equations of these expres-
sions only start at order #3, although we could expect them
to start at order +~!, and are therefore not singular. This
peculiar feature will continue to hold for the cases of four
derivatives acting on four Riemann tensors that we are now
going to address.

C. Four covariant derivatives acting
on four Riemann tensors

We are now ready to evaluate the contributions to the
constraint equation stemming from the V4R* terms (these
terms are discussed in more detail in [40]; see also [41]).
We once again consider the truncated part of R*, expressed
in terms of the two quantities R; and R,,

*Notice also that other terms such as R*(V?R,,) or R(V?R)
can be obtained from these B terms (99) by integrating by parts,
since two terms differing by a total derivative lead to the same
constraint equation.

This is only valid for terms where at most four covariant
derivatives are acting on Riemann tensors.

163 123

R* sdruncated = Te it 35 Re (106)

with

Rl = (Raﬁy[;Raﬁyﬁ)z and Rz = RaﬂyéRaﬂgéRggngRyéng.
(107)

There are three types of terms that one can write and that
are inequivalent using integration by parts when four
covariant derivatives act on four Riemann tensors':
(VR)*, (V2R)?R?>, and (V?R)(VR)*R. (108)
For these three types, we will construct all possible
independent terms where the four Riemann tensors are
either R or R,.
(a) Type I: (VR)* terms. These terms can all be written as
linear combinations of the four following terms:

Dy = (VR V¥ RY1%)2,

D, = (VR sV, RPIPVER g VYR,

D, = (9,10, VR, R,

Dy = (VuRY 5V, R VIRV Ryg) (109)

that can be expressed in terms of A, A,, and A3 (see
Appendix C). Computing their contributions to the
constraint equation requires the computation of the
following constraint equations:

5 32(a3—aas)?
— 3 41 3 145 3
A] =ﬁ[a NA3} _9a—%5t +0([5), (110)
1) a*
A2 Eﬁ [a3N—a4N4 (A2 A1)4:|
(alas—a3)3 3 5
-t o(r), 111
PO, ()
%Eiawj:@m—myzmﬂ,m@
ON a’N?
1) a’
A4 EW [a3NWA3(A2 —A1)3:|
(ajas —a3)? 3 5
=——=2 . 4+ 0(F). 113
o (r) (113)

Combining these, we get the contributions to the
constraint coming from the four D terms that are

"The R here does not refer to the Ricci scalar but is a schematic
way of writing the Riemann tensor without bothering about the
indices.
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displayed in Appendix C. Let us stress here that up to order #°, these four terms have the same structure involving the

combination a3 — a, as,

(a3 —aas)?
ay’

5Di = ai t3 + O(IS)

where a; are numerical factors.
(b) Type 2: (V2R)*R? terms. In this case we can construct eight different independent expressions:

81 = sza/)’yﬁ(szaﬁyé)ReCnéReéna’ 82 = vuvb (Ra/iyﬁ)vﬂvy(Raﬂyé)Reé’nﬂRegngv
E3 = ((VRups)RP1)?, E4= VY,V (Rapys) VFV* (Reyg) RPTPRE,

Es= VzR“ﬂ 5(V2R ¢ p )REC” RY? 10 E&=V,V (R"ﬂ )VﬂVD(RaﬂSC)R€§n9R75W,
&= VzR“ﬂ (V2R€§”‘9)Raﬂ€§RV‘sng, &=V,V (Raﬁ )V#V”(Regﬂg)RaﬂeCRY‘sna

These are expressed in terms of the quantities A, A,, A3, A, and are displayed in Appendix C.
(c) Type 3: (V2R)(VR)?R terms. The possible terms constructed from R, and R, are the following:

= (V2R 3,5) RP"°V R g V* R, Fr = (V,V,Rs,5) RPIONVHR g VP RO
(sza/)’yﬁ) e{nﬂvuRaﬂyévﬂRegnev j:4 = (v \Y% Raﬂyﬁ)Reé’nevﬂRaﬂyévyRegne
= (V2R 5)R,s“V ,R.["VFR" 4 Fo=V,V,(R? 5)R VIR V'R,

(VZR"’/%)R no V R ﬂ€§V”R75 Fg = V \Y (R"’ﬂyﬁ) eCWV"Raﬂ€§V”RV5,79

Again they can be expressed in terms of A, A,, A3, and A4; see Appendix C.

(114)

(115)

(116)

To compute the contribution to the constraint equation stemming from £ and F terms, we will need to compute those of

the following basic expressions:

= AJA3(A, — Ay)%, 72 = A3(Ay — A))2, 73 = AlA3(Ay — Ay)%,
V4 = A%Ai, V5 = A%Aﬁ, Y6 = AIA%(AZ - Al)A4,
a
r7 = AA%A,, vs = A1Ay(Ay — A))A3, Y9 = WA%AZ(Az —A))A;,

a a a
A3(A, — A))A;, =—AA%2(A, — A)A;, =—A%AA,,
2( 2 1) 3 711 aN 1 2( 2 1) 3 712 aN 344

710 = aN
a a a
Y13 = NA 142434y, Y14 = WA%A3A4, Y15 = WAV‘@
(1 3 C.lz 2 2 az 2 2
rie = nAAs ri :WAIAZ(A2_A1) . T8 :WAIAQ(A2_A1) ;
@ a a
Y19 = WAS(Az —-A))%, Y20 = 2N2A2A37 Y21 = azNzAlAZA%’
.2 -2 a2
=, —— AJA3, ™= s ——AT(Ay — A))Ay, You = WAlAz(Az —Aj)Ay,
& @ @
Y25 = —azNzAg(Az — Ap)Ay, Y26 = WA%<A2 —Ap)As, Yo = WAlAZ(AZ —ApAs,
.3 .4 .4
6 Ryl —5A3(A; — A))A3, Y20 = a4N4A2<A -Ay)?, Y30 = a4N4A 1A2(A2 — A2,
P
V31 = 4N4A2(A _A1)2'
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We denote I'; = [a’Ny;] the constraint contributions
from these basic expressions. All £ and F terms can be
expressed as linear combinations of the y terms, so their
constraint equations will be equal to the same linear
combination of the corresponding I" terms.

First, we compute the contributions from all the y terms
and plug in them the no-boundary ansatz (30). Then we
expand all I'’s to third order in ¢. Only nine out of these 31
terms actually start at order ~! (as we expected of terms
where four covariant derivatives act on Riemann terms).
They are, to leading order,8

2“%(“% —aas)

Iy =Ty =Is=-
3 5 Cl}3l

2d3(a3 — a,as)

Dyg =Ty =T =— 3al )

(117)

ag(“% —ayas)

and Iy =I5 =103 =- 3d01

(118)

In the £ and F terms, these nine terms appear in the 11
following combinations, which all give contributions that
start at least at order #:

1) a?

E W(Az —A1)3A4:| EF23 —2F24 +F25 = O(t3),
(119)

5 [ &2 2

sx |y Al (A2 =414y =Ty =Ty = 0(1).  (120)

5 [ a2 2

W WAz(Az—Al) Ay| =TTy = O(t)v (121)

o [ 6'13 3 3

N mA3(A2—z41) = Ay =Ty =20y + T =0(r"),
(122)

5[ & 2

ﬁ WA?’AI(AZ _Al) = l—‘27 _F26 = 00)? (123)

s [ & 2

N WA3A2<A2_A1) =T —Ty =0(1), (124)

s [ a
5N W(Az _Al)4:| = Ay =Ty — 230 + I3 = O(P),

(125)

¥Beware that these equalities are only valid at order 7.

1) at
SN {WAKAz —A1)3] =T3—T = 0(1), (126)
5 [ a X
SN WAz(Az —A) | =T =T5=0(), (127)
5[ & a
SN _WAKAz - Ay As —W(Az —A)

= F26 - 2F29 - O(t), (128)
5 [ a? a 44?
5N _WA%(Az —-Ay) <A4 N W(Az —A1)>]

= F23 - F26 - 4F29 - O(t)

(129)

In fact, astonishingly, the cancellations go even further
and the contribution at order ¢ also vanishes identically.
The full expressions, which start at order £, are listed in
Appendix C. Schematically, the order #* contribution of all
O0F terms can be written as

(d} — ajas)P

oF = (4 (a} — ayas)* + hayas(a3 — ayas)

15
a

+ Jayaz(asas — aya7)] + O(7), (130)

where 4, 1,, and 45 take different numerical values for each
combination of derivatives. As for the £ terms, their
contribution to the constraint is of the form

3

t
608 =5 [u1 (a3 — ayas)® + ppayas(a3 — ayas)?
ap

+ ayas(pzasas + pyaiaq) (a3 — ajas)
+ usatazas(asas — ayaz)

+usaiaz(ayag — azas)] + O(r), (131)

where y; are numerical factors varying for each case.

We are now in position to compute the type II string
theory constraint equation up to fifth order in @ and see
whether this action admits a no-boundary solution.

D. Constraint equation for type II string theory

When compactified down to four dimensions, the type 11
action is of the form

1
Spel =32 / d*x\/=g[R - (0¢)* =2V ()
+ (a/)3g<0‘0)724 + (a/)SS(l‘O)v4R4 +0(a®) + -],
(132)

where we included a single scalar field with a potential
V(¢), but where the ellipsis stands for many additional

123539-16



NO-BOUNDARY SOLUTIONS ARE ROBUST TO QUANTUM ...

PHYS. REV. D 102, 123539 (2020)

scalars and gauge fields, with the precise form of the action
depending on the details of the compactification. In looking
for no-boundary solutions we may once again neglect the
contribution due to the gauge fields. In the same vein, the
contributions in higher powers of ' should be thought of as
containing compactification dependent coefficient func-
tions @, &;, €;, and #;, in front of the specific combinations
D, &, F that we introduced in Sec. V C:

24
H(Rl 163 R2> and

ZéD +Zeé’ +Zn,

5(0,0)R4 ==
Eng VIR = (133)

Does this theory now admit no-boundary solutions? As
we demonstrated in the last section, the constraint equation,
which provides the litmus test for the existence of regular
solutions, does not receive o' corrections at order +~! nor at
order t when the no-boundary ansatz (30) is plugged in, due
to the specific form of the D, &, F terms. This rather
astonishing result may have an underlying explanation in
the fact that no-boundary solutions approach Euclidean flat
space smoothly near the south pole, and hence covariant
derivatives acting on the corresponding Riemann tensors
are suppressed. In fact, the first nontrivial contributions to
the constraint equation arise at order #°, where the con-
straint takes the form

a3 a2
= 6a;° =2V (do)air’ + (a')*Eo0) {2205 =3 (3aas — 4a3) — 2934 - =3 (243 — a,as)
aj ay
@ —a a3 — ayas)’ at—aa
+ (@) € {#1 'uﬁ +# % + [ - d3as + #y - ayazas) 2—— a141 5

asas(azas — a1a7)
+#s - 13 +#e - a3

Here we denoted ¢(0) = ¢y and the numerical coefficients
at order o by #;. In the absence of higher order corrections

we would have learned that a; = —%a%, i.e., that the
initial expansion rate depends on the location of the scalar
field on the potential. Once the higher order terms are
added, new families of solutions arise, and depending on
the coefficient functions, as, a;, and even aqg can enter the
constraint equation. At higher orders in #, higher order
terms in the series expansion for a will, of course, also
appear, and in this manner higher coefficients will continue
to be given in terms of the lower order ones. Also, for terms
with more derivatives, such as terms of the form VOR?, we
expect higher a Taylor series coefficients to appear, in
analogy with the results for C terms (see Appendix B). For
perturbative solutions, a self-consistency check will be that
the solutions should have a smooth limit as ' — 0, very
much like the limit f — 0 encountered in Sec. IVA on
quadratic gravity. What is clear, however, is that, given the
current knowledge about o corrections, perturbative no-
boundary solutions exist in type II string theory.

VI. CONCLUSIONS

The general expectation in cosmology is that as we
approach the big bang, quantum gravity corrections will
become more and more important, to the extent that we might
remain ignorant about the initial stages of the universe until
we will have fully uncovered quantum gravity. The no-
boundary proposal, which is arguably the best understood

a%(al% - a3a7)} -0

1 1

(134)

|

theory for the initial conditions of the universe, goes some-
what against the grain by being formulated merely in
semiclassical gravity. The question that concerned us in
the present paper was whether the no-boundary proposal
stands a chance of providing reliable answers given our
current, partial, knowledge of quantum gravity.

The very lack of a complete theory of quantum gravity
means that we are not able to answer this question fully, yet
the problem is still tractable to the extent that the general
structure of perturbative quantum gravity corrections is
known. Such corrections are expected to involve higher
powers of the Riemann tensor as well as covariant
derivatives acting on these tensors. The question thus
becomes whether no-boundary solutions continue to exist
in the presence of such correction terms. We have been able
to derive explicit conditions, in particular Eq. (32), that
terms composed solely of Riemann tensors have to satisfy
in order for no-boundary solutions to exist. This require-
ment is met for f(R) gravity, quadratic gravity, Gauss-
Bonnet gravity, heterotic string theory, as well as type 11
string theory including the first nontrivial order in «'.
What is more, by considering specific examples, we have
been able to show that terms involving covariant derivatives
acting on Riemann tensors may also coexist with no-
boundary solutions. Here we studied the specific example
provided by type II string theory up to order o”.
An interesting open question is whether the structure of
string theory is such that it allows for no-boundary
solutions in general.
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Our results provide an important consistency check of the
no-boundary proposal, as they show that for large classes of
theories the results obtained in semiclassical gravity are
robust. We should emphasize that our results apply both to
inflationary and to ekpyrotic no-boundary instantons, these
remaining the only classes of no-boundary instantons
currently known. Our results in no way preclude the
existence of qualitatively new solutions in full quantum
gravity, but they do imply that no-boundary solutions will
continue to exist in perturbative quantum gravity. Combined
with the recent progress in constructing a consistent path

integral implementation [6-8], our results put the no-
boundary proposal on a rather firm theoretical footing.
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APPENDIX A: CONSTRAINT EQUATION OF RIEMANN TERMS IN THE NO-BOUNDARY ANSATZ

We plug the no-boundary ansatz (30) into the Friedmann constraint equation (28) and expand it at lowest orders in 7.

as

From (31) we know that at lowest order A} = A, = AN

alt-a% as
0 =272 2 -1
4 Zcpl,pz[ Pl(pZ ) N2 <a1N2

P1.P2

at-a> [ ay P!
— p2(2p1 + Py —3)— ]( 3) ]+0(f3)7

N2 a1N2

Therefore we get

P-1 ait-ai-a ax \ P2
) + pa(pa—1) - 3( 3)

]\/v4 Cl]N2

where we defined P = p; + p, for simplicity. This leading order equation can be further simplified to

c
2”22 L2 4P aP=12p, — 2p]t + O(3) = 0.

N2P a
P1:P2

(A2)

Let us now look at the next order. Because a is an odd function of 7, and hence A, and A, are even functions of ¢ [see
(31)], the #* order of the Friedmann constraint will vanish. We directly consider the #* order of the Friedmann constraint:

27[226‘])1’]72 |:2p1(p2—1) N2

P1-P2

(a1t + %5 (ay + 552 [ ay
CllNz

+a§—ala5t2 =1/ a, +a%—ala5t2 P2
12N* a,N? 6N*

+pa(pa—1) N

(@t + ) (a1 + %) (a3 +%) (a3
a1N2

N a3 — aas P Pl ay N a3 —aas P P22
12N* a,N? 6N*

(2p, + 3) (alt—i—%) (ay —l—%’z)z as N a3 —aas P Pl as N a3 —aas P P21
P2=P1 7 P2 N2 o N2 12N® aN2 T 6N®
a P
+ (1= py)(at)? <r;]2> } +0(f) =0. (A3)
This can then be simplified to
C
22 ][\7,]2{;2 ay"a5 (a3 - Gs[p1, pa] + aas - Gs[py, po])* + O(F) = 0, (A4)
P1:P2
with
1 pil=p1) 2pa(l—p
Gulp1.pa] = £(pF = 15p) +6—4p} +12p2) and Gylpy, po) = P22 2PT2pD) )
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APPENDIX B: CONSTRAINT EQUATIONS FOR B AND C TERMS

Here we display the constraint equations of B terms where the no-boundary ansatz has been plugged in. Writing
oB =2 (a’NB), we find

=N
4 3 2 3 5
561 = —]2 W(ZSGB - 29611613615 + 4a1a7)t + O(I ), (Bl)
1
1
6B, = —12 [15a? (85a3 — 101aaszas + 16a%a7)t3} +0(P), (B2)
2 3 2 3 5
583 = —36 W(SSaé - 43611613(15 + 8(11617)t + O(t ), (BS)
1
OB, = 435343 8a2 3 3 B4
4 = _ﬁ( a3 —43a,a3as + 8aja;)r’ + O(P). (B4)

All those VZR? terms possess a no-boundary solution that specifies a; in terms of a;, a3, and as, but where the latter are not
specified by the V?R? terms alone.
We now look at the constraint equations for C terms. Their expressions in terms of A;, A,, A3, and A, are

2a° a 2 442 a 2
Cr=12|4|Ay(A; — A)) +W(A2 —Ay) +EA3 + A4 —W(Az —-Ay) +WA3 : (B5)
, 4a 742 ) ) 5 42
Cy = 1243 + —C sy + 35 A3+ 2400 (Ay — A1) + 443 (4 = A\ — 5 Ay — 4)

164* 842 10a 4¢3

AN (A —Ay)* + az—NzAz(Az - A+ WAsAz(Az -Ap)+ a3—N3A3(A2 —Al)] : (B6)
3a 2
C3 == 36 EA3 + 2A2(A2 _Al) +A4 N (B7)
4a 1942 16a 8043
Cy=12 [Azzx — A +WA% +WA3A2(A2 —Ay) - WAs(Az —-Ay)
160a* 4842
W(Az—Al)z—WAZ(AZ—A1)2+8A%(A2—A1)2:|, (B8)
2 a2 34 8a
Cs=12 [Ai — At WA% - W%(l“z —Ay) +EA3A2(A2 —A}) +2A4A5(Ar — Ay)
64> 1044* 3642
_WA4(A2 —Ay) TNt (A= Ay)* - WAZ(Az —A1)* +6A5(A; - Al)z] , (B9)
1242 244? 3a?
Co= 36| A4+ 245(s = AP = 1305 (42 = A1)y = s sl = 47+ 5 A
12a° 48a*
a3_N3(A2 —A))A; + AN (A= A)%|. (B10)
Writing 6C = 3 (a*NC), we find

5, — 83(3262a,a3as + 60ajag — 2135a% — a}(592a3a; + 595a2)) o), (B11)

35a]
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413(3528a,a3as — 5a*(161a% — 24a,a,) — 1995a% — 848a%asa,
3 1 5 3 1

602 = + O(IS),
35a]
48r°(133a,a%as — 15a3(7a3 — 2 70a% + 128a3a;N?
50, = (133a,a3as — 15a;(7as 9‘11a9)+ a; + 123asa; )+0(t5),
35a;
5, — 813(1008a,a3as + 12a3ag — 732;5a‘31 —19a3}(8asza; + 7a3)) o),
7Cl1N
263(13048a,a3as — 5a}(413a2 — 48a,a9) — 885543 — 236843 aza,) s
5= 9 + 0(t )7
35a;
12£3(2968a,a3as — 15a3 (4942 — 8a,ay) — 150543 — 848a%asza;)
5Ce = 3 l 3 3 +0(P).

35a]

(B12)

(B13)

(B14)

(B15)

(B16)

These six V#R? terms all admit a regular no-boundary solution, for which the coefficient aq is fixed in terms of a;, as, as,
and a; at order #* of the constraint. This ensures the existence of a solution if these V#R? terms are combined with Riemann

terms and V2R? terms, since ay is a new degree of freedom at order #°.

APPENDIX C: CONSTRAINT EQUATIONS FROM D, £, AND F TERMS

Expressions of D terms as functions of A, A,, and Ajs:

1642 64a*
Dl = 144 |:Ag +WA%(A2 _Al)2 + W (A2 _A1)4:| 5
. 248, , , o4a* 4
Dy = 48| 345+~ 5 A3 (Ay — A1) + —g (A — A1)
442 404*
D; =48 {Ag + azNzAg(Az —-A))? +W<A2 _A1)4] )

1643 20a*
D4 — 48 |:A§ +WA’;(A2 —A1)3 +W(A2 —A1)4:| .

Expressions of £ terms as functions of A;, A,, A3, and Ay:

NN 242 2 42 a \?
&1 = 144(A7 + A7) |4 W‘% +W(A2 —A) + Ay (A=A ) + | Ay +W(A] - Ay) +WA3 ;
4a 1942 16a 8043
E, = 144(A2 + A3) [Ag —WAA;A3 +WA§ JFWA@(A2 —A)) +WA3(A1 —A,)
160a* 4842
+8A3(A, —Ay)* + AN (A —Ay)* - WAz(Az —A1)2} .
a 442 AE
€3 = 144 | ApAy + - As (A 4 241) = 24145(A) = A2) = 5 (A = A2
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£y = 48[12A2A2(A, — A))? + 3A2A2 + 124,A%(A, — A))A,

16a* 12a

W(Az_Al) (A3 -5A A2+13A2)——A3A2( —A)(As +24,(A - A)))
1243 5
- WAs(Az —A1)(2(A —Ay)" —4A(Ay — A)) = 3A14,)
1242 ) ) 94> .,
~NE (Ay —A1)(3A1A,A, — A3(Ay — A)) + 6A7A2(Ar — Ay)) + mAsAz ,
5 2 2 5 a C‘l2 2
£5 = 48442 NA3+ S (A= A) + Ay = A+ A3 Ay Ay + s (A - 40)] .
ot a2
6 = 48 [16 i (Ao = A 2OA% +3A3) = 12 (s — 40)2(A3 + 343)

a? a3
+243(A;, — A})* (A +3A2) + WA%(%;A% + 11A32) + 16A; S (A; — A,)(2A3 + 3A7)

+ 4L ALAL(Ay — A)) (A2 + 3A2) + A2A% — 41A3A§A4] ,

aN aN
16a* 2/ 42 2 242 2 8a’ 2 2
& =48\ 47 —v7 (A2 — A)* (AT + A7) + 4A7A5(A; - Ay) —a3—N3A3<A2—A1>(A2_2A1)
@ (4A2 + AD)A2 + = 8a” A2AL(A) = Ay) + e 164" 9 A2A4(Ay — A,
2N2 2N2 4\ 2 2N2 2 1
2a 8a A2
—|——NA A A4 + A A2A3(A2 Al) +A2A4 — 55,
4at 2(2 42 2 8a’ 2 2
Eg = 48| s (A2 = AP(3A3 + 1840, + 194) = 7 A3(As = A1)(A3 + 6424, +347)
a2 2442

+ WA%(SAZA] + 7A} +4A3) - WAlAZ(AQ —A) A+ A))

8a 4
+ 20 ALA A5 (A2 — A2) — ]‘\l]

= A3AsA + 4A3A, (Ay — A 2 (Ay + A)) +A%Ai}

Expressions of F terms through A;, A,, A3, and A, quantities:

(C10)

(C11)

(C12)

(C14)

(C15)

82 42 '
F= 144 | (Ay = A)? + A2| | 2454, (Ay = A)) — oo (Ay — A))? + —= Ay (Ay + 241) + AyAy |, (C13)
a*N? aN aN
164* . 124° )
Fa= —W(Az—f\l) (A2+2A1)—WA3(A2—A1) (A, —24)
2442 1842 1242
+ﬁA1A2(A2 —A)’ + 2N ——5AJA (A — Ay) + 55 ArA4(Ay — Ay)?
N aN
6a
IR AY (AL = A2) + 6A3A A Ay = Ay) + 3AA3A, .
2a 4q 8a3
Fy = 144 {WAI(Az —A) +A2A3} LNAg o Ay = AL+ (s = A1) Ay,
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2% 4 62\ 24 ., 8
Fi=144 LTNAI(AZ —-4) +A2A3} {w (A —A)? <A2 - —) - AT+ A3(Ay —Ap) + A3A, |, (Cl6)

a’N? aN a*N?

84 . 243 ) o
Fs=48 —W(Az — A1) (Ay —34,) +WA3(A2 —A1)*(Ay +64)) —WAzAs(Az —Ap)

20 1242 R
+ a2N2A2A4(A —A)?+ 2N2A 142(Ay —Ay) +EA2A3 + ArA3A4 |, (C17)
2a* 6a’ 2a?
Fe= 48[ AN (Ay = A1)*(9A; + 134)) +WA1A3(A2 — A + az—NzAg(A% — A7)
1242 2a 2a
S A (A — A} + A (A — A1) - S +A2A§A4} : (C18)
8a* . 24 20 ,
F7 =48 W(Az —A) (A +A) + =53 N 743(A; — A1) (24, + 54,) +WA1A4(A2 —-Ay)
42 ) 44° 3 a 3 )
2—N2A2A3(A2 —A) +WA2(A2 — A1) (A +24)) + oy A2As T AAsAL (C19)
2 . 6i° , 124 .
Fy =48 W(Az — A1)’ (5A; - 274)) —3—N3As(A2 —A))*(24; - 34)) + N —5A1A (A — Ay)
442 24 2d
+ ZLNZAzAg (A, —A) + ]‘\’]A2A3 (Ay—A))? — —“AZA* + A2A2A4] (C20)

We display here the constraint equations obtained for all D, £, and F terms [using again the notation 6D = % (a*ND)
and similarly for £ and F1:

3
5D, = 144[A| + 16A; + 644A,] = £+ 0(P), (C21)

1408(a% — ajas)?

oD, = 12[64A2 + 12[A1 + 8A5; + 16A2]] EWE £+ 0(t5), (C22)
a
144(a3 — ajas)® s
a;
136(a3 — a,as)? N 5
6D, = 4[240A2 + 192A, + 12A1] =————"r +0(r), (C24)

15
a

41
6E, = 144 - [60a3a3(a a9 — azaq) + 532a3aszas(azas — aja;) — 3675(a3 — ajas)?

105a 15

- 3535(11a5(a3 —ayas)? — aya3(616asas + 924a,a7)(a3 — aas)] + O(F), (C25)

41 ) 3

6E, = 144 - 3a 15 [36ata3(a a9 — aza;) + 420atazas(azas — ajas) — 2793(a3 — a,as)
- 2765a1a5(a% —ajas)? — ayaz(1246asa; + 560a,a;) (a2 — aas)] + O(F°), (C26)
28 2.0 2 2 3

6E; = 144 - 315 15 [180atas(a,aq — aza;) + 588ajaszas(azas — ayja;) — 6860(a3 — ajas)

- 5915(11615(613 —ayas)? — ayaz(—4046asas + 2996a,a;)(a3 — a,as)] + O(¢°), (C27)

123539-22



NO-BOUNDARY SOLUTIONS ARE ROBUST TO QUANTUM ... PHYS. REV. D 102, 123539 (2020)

27
554 = 48 . W [54061%&%(01&9 - Cl3d7) + 3276&%613&5(03&5 - Clld7) - 23450((1% - a1a5)3
1
—22575a,a5(a3 — ayas)? — aja3(—4179asas + 7644a,a7) (a3 — ayas)] + O(F), (C28)
3
555 = 5E7 = 48 . W [36061%61%(0109 - (1307) + 319261%613615(0305 - (11617) - 29470(0% - 0105)3
1
—28000a,as(a3 — a,as)? — a;a3(2240asa; + 7000a,a;) (a3 — a,as)] + O(£), (C29)
A
0Es = 48 ‘31545 [360a2a%(aay — aza;) + 4200a2azas(azas — aja;) — 32795(a3 — ayas)?
1
—32305a,as(a3 — ajas)* — aja3(11396asas + 6664a,a;)(a3 — ayas)] + O(F), (C30)
A
6Eg = 48 ' 630a5 [720a2a%(aa9 — aza;) + 8400a2azas(azas — a;a;) — 65695(a3 — ajas)?
1
—64610a,as(a3 — aas)?* — a;a3(22792asas + 13328a,a7)(a3 — ayas)] + O(+), (C31)
2 2 _ t3
5F, = 144 % 235a2(a2 — ayas) — 64a,as(asas — aya;)] + O(F%), (C32)
1
2(a3 — ajas)r ) P 2 5
S6F, =48 - T E R [105a,as(a3 — ayas) + 12a,a3(azas — aja;) — 160(a3 — ayas)’] + O(r),  (C33)
1
4(a% - ajas)r
6F; =144 (345—a1155)[60ala5(a§ —ayas) — 18ajas3(azas — aya;) + 5(a3 — ayas)?| + O(P), (C34)
1
2 2 t3
5F, = 144 % [—155a,a5(a2 — a,as) + 32aya3(azas — a\a;) — 30(a2 — ajas)?] + O(F5),  (C35)
1
2 _ A
OFs =48 '%90+?5) [725a3(a% — a,as) — 128a,a3(azas — aya;)] + O(), (C36)
1
(@} — ayas)? ) 2 2 5
6F¢ =48 - R0an [—725a,as(a5 — ajas) + 128a,a3(azas — aya;) — 265(a3 — ayas)?] + O(r), (C37)
1
(a% - a1a5)t3 2 2 2 5
6F; = 48 50 [725aas(a5 — ayas) — 128aa3(azas — aja;) + 10(a5 — ayas)*] + O(r),  (C38)
1
(a3 — aya5)r° 2 2 2 5
5‘7:8 = 48 . W [—7250105(03 - alaS) + 128611613(0305 - 0107) - 275(03 - Cllaj) ] + 0(t ) (C39)
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