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The no-boundary proposal is a theory of the initial conditions of the universe formulated in semiclassical
gravity and relies on the existence of regular (complex) solutions of the equations of motion. We show by
explicit computation that regular no-boundary solutions are modified, but not destroyed, upon inclusion of
expected quantum gravity corrections that involve higher powers of the Riemann tensor as well as covariant
derivatives thereof. We illustrate our results with examples drawn from string theory. Our findings provide a
crucial self-consistency test of the no-boundary framework.
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I. INTRODUCTION

The Hartle-Hawking no-boundary proposal [1,2] pro-
vides a theory of the quantum state of the universe. As such
it is a theory of the initial conditions of the universe,
meaning that it provides (relative) probabilities for different
evolutions of the universe [3]. The proposal is formulated in
semiclassical gravity and relies on the existence of solutions
of the Einstein equations that replace the big bang singu-
larity with a smooth geometry. In the Lorentzian signature it
is, however, not possible to find a regular solution that starts
out at zero size. The insight of Hartle and Hawking was that
in the Euclidean signature regular solutions can exist, the
prototype being a four-sphere of constant positive curvature.
In the simplest case of a cosmological constant one may
then think of a no-boundary geometry as a gluing of a
Euclidean onto a Lorentzian solution. Once a scalar field is
added, the solutions are necessarily complex, and they
smoothly interpolate between the Euclidean and Lorentzian
signatures [4].
There are two crucial features of no-boundary solutions,

namely that they are compact and that they are regular (i.e.,
Euclidean) near the big bang. Both features are necessary in
order to obtain a consistent semiclassical description.
However, from a quantum point of view, these two features
do not commute: compactness requires specifying a van-
ishing initial size while regularity corresponds to specifying
an initial Euclidean expansion rate. Since size and expan-
sion rate are conjugate variables that must satisfy the

uncertainty principle, both conditions cannot be imposed
simultaneously. Recent work has shown that fixing a zero
initial size leads to trouble [5], while one can obtain a
consistent path integral definition of the no-boundary
proposal when one specifies the initial expansion rate to
be Euclidean [6,7]. This construction is also supported by
the analogous calculation in anti–de Sitter space, where one
may use well-known results in black hole thermodynamics
as guidance [8]. Thus the latest understanding of the no-
boundary proposal is that it should not be thought of as a
sum over compact metrics, but rather as a sum over
geometries of all sizes that start out as purely spatial
(Euclidean) metrics. Then, as the universe grows, the
signature changes to Lorentzian—time is not present at
the “beginning,” where one only has space. The no-
boundary geometry, which is both Euclidean and compact,
then arises as the dominant (saddle point) contribution to
the path integral.
The regularity of no-boundary geometries is crucial to

the proposal since otherwise there is no chance that one
may trust the results of semiclassical gravity. After all,
gravity is nonrenormalizable, and one expects an eventual
full theory of quantum gravity to have an effective
description as general relativity augmented by a series of
quantum corrections of higher order in the Riemann tensor.
A singularity in the solution would imply an infinite
sensitivity to such curvature corrections. But then one
must wonder whether a solution with the required charac-
teristics (regularity, finite action) still exists in the presence
of the expected quantum gravity corrections. This is the
topic of the present paper.
If we were looking for solutions with constant four-

curvature, the answer would be almost trivial since terms of
higher order in the Riemann tensor (even with covariant
derivatives included) would have a simple structure and
such corrections would be suppressed with powers of the
four-curvature (assumed to be well below the Planck scale).
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But realistic no-boundary solutions have varying curvatures
and can be quite different from the toy model
(half-sphereþ de Sitter) geometry. Moreover, there exist
ekpyrotic no-boundary solutions which have a geometrical
shape that is very different from that of inflationary
instantons [9,10]. Technically, the problem may be for-
mulated as follows: in a universe with scale factor aðtÞ, the
Riemann tensor contains terms of the form

Riem ∼
1

a2
;
_a2

a2
;
ä
a
; ð1Þ

and thus it is not at all clear that there will be a smooth
solution when a → 0. In fact, it seems that the problem will
get worse when considering higher powers of the Riemann
tensor.1 Nevertheless, as we will show in this paper, there
exist conspiracies between the various terms in the
Riemann tensor such that for a large class of theories,
including all the known corrections stemming from string
theory, smooth solutions continue to exist. Even when
covariant derivatives are included in the correction terms,
no-boundary solutions are robust to these corrections in the
sense that the solutions will be modified somewhat, but
their smoothness property is not endangered. This result
represents an important self-consistency check of the no-
boundary proposal, as it implies that the results obtained
using only the setting of semiclassical gravity will continue
to hold without drastic modification in more complete
theories of quantum gravity.
The plan of this article is as follows. We will begin in

Sec. II by reviewing the salient features of the no-boundary
proposal that we will require. In Sec. III we will consider all
actions composed solely of Riemann terms, i.e., terms that
are scalar contractions of Riemann tensors, for metrics of
closed Friedmann-Lemaître-Robertson-Walker (FLRW)
form. Then in Sec. IV we will focus on specific extensions
of general relativity and quantum gravity corrections, and
see if they admit a consistent and regular no-boundary
solution. Section V will be devoted to the study of covariant
derivatives of the Riemann terms that appear in some
quantum gravity corrections. Our conclusions are in
Sec. VI. We employ the convention that the Riemann
tensor is defined as Rλ

μαν¼∂αΓλ
μν−∂νΓλ

μαþΓβ
μνΓλ

βα−Γβ
μαΓλ

βν

and the Ricci tensor as Rμν ¼ Rλ
μλν.

II. THE NO-BOUNDARY ANSATZ

The no-boundary wave function is a function of the
(e.g., current) spatial metric of the universe hij and matter
configuration ϕ̃, defined as the path integral

Ψðhij; ϕ̃Þ ¼
Z

hij;ϕ̃
DϕDgμνe

i
ℏS; ð2Þ

S ¼ 1

8πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
2
− Λþ � � �

�
þ 1

8πG

Z
hij

d3y
ffiffiffi
h

p
K;

ð3Þ

where in the action the dots stand for matter contributions ϕ
and eventual additional curvature terms. The cosmological
constant is denoted by Λ. A Gibbons-Hawking-York sur-
face term (involving the trace of the extrinsic curvature K)
is added on the final boundary, allowing one to fix the
spatial metric there, but no such term is added at the
“no-boundary hypersurface” so as to allow for the impo-
sition of a momentum condition there, forcing metrics to be
Euclidean near the nucleation of the universe—for full
details see [7,8]. This path integral can then be evaluated in
the saddle point approximation, with a no-boundary geom-
etry providing the dominant contribution. In the present
work we will not consider the difficult problem of defining
the path integral in the presence of higher derivative terms
in the action, rather we will assume that the saddle point
approximation will remain valid. More to the point, we will
investigate whether suitable candidates for a no-boundary
saddle point geometry exist.
It is useful to first look at the case of a closed FLRW

metric in the presence of perfect fluid matter. The metric is
given by

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2½dψ2 þ sin2 ψðdθ2 þ sin2 θdϕ2Þ�;
ð4Þ

where ψ and θ range from 0 to π and ϕ ranges from 0 to 2π.
The lapse function NðtÞ and the scale factor aðtÞ both only
depend on time. For the fluid, wewill assume a stress tensor
of perfect fluid form Tμν¼pðtÞgμνþðρðtÞþpðtÞÞuμuν
where ρðtÞ is the energy density, pðtÞ the pressure, and
uμ the four-velocity. Then the constraint and equations of
motion for general relativity plus a perfect fluid are

_a2

N2
þ 1 ¼ a2

3
ðΛþ 8πGρÞ; ð5Þ

2ä
aN2

þ _a2

a2N2
þ 1

a2
− Λ ¼ −8πGp; ð6Þ

a_ρþ 3_aðρþ pÞ ¼ 0: ð7Þ

We are now looking for a solution that is regular as aðtÞ → 0
(we will choose the origin of the time coordinate such that
this coincides with t → 0). From the equations above one
can see that this can be achieved only if

1Very few works have looked into this question in the past; in
particular, see Hawking and Luttrell [11] and Vilenkin [12] on
quadratic gravity, and van Elst et al. on including a cubic Ricci
scalar term [13].
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_a2ðt→ 0Þ ¼−N2; äðt→ 0Þ ¼ 0; ðρþpÞðt→ 0Þ ¼ 0:

ð8Þ

This is precisely the no-boundary solution. The condition on
_a immediately implies that the metric is Euclidean near
t ¼ 0. Meanwhile, the condition on the energy density and
pressure implies that near t ¼ 0 the only form of matter that
is allowed is one that has the equation of state of a
cosmological constant there. An example is a scalar field
that approaches a constant value at t ¼ 0, i.e., for which
_ϕðt ¼ 0Þ ¼ 0. No other form of matter is allowed near
the “big bang” (also sometimes called the south pole of the
instanton), as this would destroy the regularity of the
solution. This means that for our purposes we can actually
ignore matter contributions and focus only on gravita-
tional terms.
Given that we need to focus on gravitational terms, dowe

need to worry mainly about anisotropies near the south
pole? To see that this is not the case, consider a Bianchi IX
metric,

ds2IX ¼ −N2dt2 þ a2

4
½eβþþ

ffiffi
3

p
β−ðsinψdθ − cosψ sin θdϕÞ2

þ eβþ−
ffiffi
3

p
β−ðcosψdθ þ sinψ sin θdϕÞ2

þ e−2βþðdψ þ cos θdϕÞ2�; ð9Þ

in ðt;ψ ; θ;ϕÞ coordinates, with θ ∈ ½0; π�, ϕ ∈ ½0; 2π�, and
ψ ∈ ½0; 4π�. Neglecting matter, the constraint and equations
of motion for the Einstein-Hilbert action are

3_a2

a2
−
3

4
ð _β2þ þ _β2−Þ −

N2

a2
Uðβþ; β−Þ − N2Λ ¼ 0; ð10Þ

_a2

a2N2
þ 2ä
aN2

þ 3

4N2
ð _β2þ þ _β2−Þ −

1

3a2
Uðβþ; β−Þ − Λ ¼ 0;

ð11Þ

where

Uðβþ; β−Þ ¼ e−4βþ þ e2βþ−2
ffiffi
3

p
β− þ e2βþþ2

ffiffi
3

p
β−

− 2e2βþ − 2e−βþ−
ffiffi
3

p
β− − 2e−βþþ

ffiffi
3

p
β− : ð12Þ

Close to t ¼ 0 the no-boundary ansatz (8) again leads to a
solution, provided that in addition ð _β2þ þ _β2−Þðt → 0Þ ¼ 0
and Uðβþ; β−Þðt → 0Þ ¼ −3. This implies that the anisot-
ropies βþ and β− are necessarily going to zero when t → 0.
Similar arguments apply to inhomogeneities. This means
that as long as a homogeneous and isotropic solution exists,
there can always be other solutions that develop inhomo-
geneities and anisotropies away from the south pole, while
approaching the most symmetric solution at the south pole.
This will remain true when we consider more involved
theories of gravity.

We conclude that close to the no-boundary point, we can
focus on the isotropic and homogeneous part of the metric,
i.e., on the scale factor. To determine the existence of
no-boundary solutions we will therefore make use of a
Taylor series ansatz of the form

�
aðtÞ ¼ a1tþ a3

6
t3 þ a4

24
t4 þ a5

120
t5 þOðt6Þ;

a21 ¼ −N2:
ð13Þ

Our aim will be to see if such a series solution exists in the
presence of quantum gravity corrections. Before embarking
on this task, a few remarks:
(1) The regularity condition _a2ð0Þ ¼ −N2 leads to two

complex conjugated solutions, _að0Þ ¼ a1 ¼ �iN.
These actually correspond to the Vilenkin [14] and
Hartle-Hawking [2] choices. Our present work will
not distinguish between the two, but for discussions
of the differences see, e.g., [5,15–18].

(2) The coefficient a1 ¼ �iN on its own just describes
flat space. Therefore, aðtÞ ¼ a1t will always be
a solution of any action constructed purely from
Riemann tensors. However it is not clear whether
for arbitrary actions we can have nonvanishing
a3; a5;…, coefficients that will define a no-boundary
solution regular in time.

(3) The coefficient a3 is related to how fast the universe
is expanding. This can be seen from the no-boundary
solution for general relativity in the presence of a
cosmological constantΛ≡ 3H2, which in Euclidean
time τ ¼ −iNt is given by

aðτÞ ¼ 1

H
sinðHτÞ ¼ τ −

1

6
H2τ3 þ � � � : ð14Þ

We recover a21 ¼ −N2, independently of H, and
moreover we can see that a3 is proportional to H2.
Therefore, for generic theories that allow solutions
with different expansion rates, we should expect a3
to remain a free parameter, labeling the various
solutions. These solutions with different expansion
rates will have different actions, and thus obtain
different probabilities. In fact, it is in this sense
that the no-boundary proposal provides a quantum
theory of initial conditions.

III. RIEMANN TERMS

In this section we will investigate the impact of adding
terms of higher order in the Riemann tensor, without the
inclusion of covariant derivatives. As explained in the
previous section, we can reduce our investigation to that of
the scale factor in a closed FLRWuniverse, with metric (4).
In this spacetime, the only nonvanishing components of the
Riemann tensor Rμν

ρσ are of the form Rab
ab and Rab

ba with
a; b ¼ 0;…; 3, a ≠ b, and no summation on a and b
implied. Therefore all scalar contractions composed of n
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Riemann tensors Rμνρσ and 2n inverse metrics gμν can in
this FLRW background be written as contractions of n
Rab

ab or Rab
ba (where n can be any integer). Moreover,

these 24 nonzero components have simple expressions in
terms of the lapse and scale-factor functions: ∀i;j¼1, 2, 3
with i ≠ j and no summation on the indices implied,

Rij
ij¼

_a2þN2

a2N2
≡A1 and R0i

0i¼
äN− _a _N
aN3

≡A2: ð15Þ

We define a Riemann term to be any scalar combination of
Riemann tensors and metric terms. As a consequence of
(15), any Riemann term can be written as a polynomial in
A1 and A2 on a closed FLRW background. Basic examples
are the Ricci scalar R ¼ 6ðA1 þ A2Þ, the Ricci tensor
squared RμνRμν¼12ðA2

1þA1A2þA2
2Þ, and the Riemann

tensor squared RμνρσRμνρσ ¼ 12ðA2
1 þ A2

2Þ.

A. General action and constraint

Since all Riemann terms are polynomials in A1 and A2,
the most general action containing only such terms will
take the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
· fðRμνρσ; gαβÞ

¼ 2π2
Z

dt a3N
X

p1;p2∈N2

cp1;p2
Ap1

1 Ap2

2 ; ð16Þ

where cp1;p2
is a constant depending on the precise form of

f for each couple fp1; p2g.
In order to later find the equations of motions, we

slightly manipulate this action. The lapse N is a non-
dynamical variable whose equation of motion is a con-
straint on the system. Therefore, given that we will work in
a gauge whereN is constant, any term containing more than
one power of _N will later disappear at the level of the
equations of motion. Decomposing Ap2

2 with the Newton
formula,

Ap2

2 ¼
�

ä
aN2

−
_a _N
aN3

�p2

¼
Xp2

l¼0

�
p2

l

��
−

_a _N
aN3

�l� ä
aN2

�
p2−l

; ð17Þ

the relevant part is given by the terms l ¼ 0 and l ¼ 1, so
we replace

�
äN − _a _N

aN3

�p2

→

�
ä

aN2

�
p2−1

�
ä

aN2
− p2

_a _N
aN3

�
: ð18Þ

We also rewrite

Ap1

1 ¼
�
_a2 þ N2

a2N2

�
p1 ¼ 1

a2p1

Xp1

j¼0

�
p1

j

�
_a2j

N2j : ð19Þ

The action (16) then reduces to

S ¼ 2π2
X

p1;p2∈N2

cp1;p2

Xp1

j¼0

�
p1

j

�Z
dt

�
1

N2p2−1þ2j

_a2jäp2

a2p1þp2−3

− p2

_N
N2p2þ2j

_a2jþ1äp2−1

a2p1þp2−3

�
: ð20Þ

We can now calculate the constraint equation by variat-
ing the general action (20) with respect to the lapse function
NðtÞ. Using

_N
N2p2þ2j ¼

d
dt

�
−

1

2p2 þ 2j − 1
·

1

N2p2þ2j−1

�
; ð21Þ

we can rewrite (20) as

S¼ 2π2
X
p1;p2

cp1;p2

Xp1

j¼0

�
p1

j

�Z
dt

N2p2þ2j−1

�
_a2jäp2

a2p1þp2−3

−
p2

2p2 þ 2j− 1

�
ð2jþ 1Þ _a2jäp2

a2p1þp2−3

þ ðp2 − 1Þ _a
2jþ1äp2−2a

���

a2p1þp2−3
− ð2p1 þp2 − 3Þ _a

2jþ2äp2−1

a2p1þp2−2

��

ð22Þ

≡2π2
X
p1;p2

cp1;p2

Xp1

j¼0

�
p1

j

�Z
dt

N2p2þ2j−1 ·Lp1;p2;jða; _a;ä;a
���Þ:

ð23Þ

Varying with respect to the lapse then yields

δNS¼ 2π2
X
p1;p2

cp1;p2

×
Xp1

j¼0

�
p1

j

�Z
dt

�
−ð2p2þ2j−1ÞδN

N2p2þ2k

�
·Lp1;p2;j;

ð24Þ

so that the constraint equation of this system is

0¼ δS
δN

¼−2π2
X
p1;p2

cp1;p2

Xp1

j¼0

�
p1

j

�
2p2þ2j−1

N2p2þ2j ·Lp1;p2;j; ð25Þ

CAROLINE JONAS and JEAN-LUC LEHNERS PHYS. REV. D 102, 123539 (2020)

123539-4



⇔ 0 ¼ δS
δN

¼ −2π2
X
p1;p2

cp1;p2

N2p2

äp2−1

a2p1þp2−2

Xp1

j¼0

�
p1

j

�
_a2j

N2j

�
ð2j − 1Þð1 − p2Þaä − p2ðp2 − 1Þ a _aa

ð3Þ

ä
þ p2ð2p1 þ p2 − 3Þ _a2

�
: ð26Þ

Using Newton’s binomial formula,

8>>><
>>>:

Xp1

j¼0

	p1

j


 _a2j

N2j ¼
	 _a2

N2
þ 1


p1 ¼ a2p1Ap1

1 ;

Xp1

j¼0

	p1

j



j
_a2j

N2j ¼ p1

_a2

N2

	 _a2

N2
þ 1


p1−1
¼ p1

_a2

a2N2
a2p1Ap1

1 ;

ð27Þ

the constraint equation (26) reduces to

0 ¼ δS
δN

¼ 2π2
X
p1;p2

cp1;p2

�
2p1ðp2 − 1Þ a _a

2

N2
Ap2

2 Ap1−1
1 þ ð1 − p2Þa3Ap2

2 Ap1

1

þp2ðp2 − 1Þ a _aa
ð3Þ

N4
Ap2−2
2 Ap1

1 − p2ð2p1 þ p2 − 3Þ a _a
2

N2
Ap2−1
2 Ap1

1

�
: ð28Þ

We have verified that the equation of motion for the scale
factor, obtained by varying the action with respect to a, is
implied by the constraint equation in the sense that it can be
obtained by deriving the constraint with respect to time.
From now on we shall therefore work exclusively with the
constraint equation (28).

B. Order by order equations with the
no-boundary ansatz

Now we are ready to insert the no-boundary ansatz into
the Friedmann constraint equation (28) for the general
action (20). We will then analyze the resulting equations
order by order in t. This will provide conditions the action
must obey so as to admit a no-boundary solution.
We first make the observation that the constraint

equation (28) (hence also the equation of motion) and
the no-boundary conditions (8) are all invariant under the
transformation

�
t → −t;
a → −a;

⇒ að−tÞ ¼ −aðtÞ; ð29Þ

so the function a must be odd in t. Thus all coefficients
of even powers of t in the Taylor expansion are zero,
and the no-boundary ansatz (13) can, in fact, be
simplified to

�
aðtÞ ¼ a1tþ a3

6
t3 þ a5

120
t5 þOðt7Þ;

a21 ¼ −N2:
ð30Þ

The fact that a is an odd function of t implies that for any
solution aðtÞ, there will always exist a time-reversed
solution, but both will have the same signature as the
metric only depends on aðtÞ2. For this second solution, the
proper time runs in the opposite coordinate time direction t.
Since there is also always a complex conjugate solution for
each solution [see item (1)], this makes for four solutions
in total.
We start by plugging (30) into the expressions for A1 and

A2, obtaining the expansions

8<
:

A1 ¼ _a2ðtÞþN2

a2ðtÞN2 ¼ − a3
a3
1

þ ða2
3
−a1a5Þ
12a4

1

t2 þ ða3a5−a1a7Þ
360a4

1

t4 þOðt6Þ;

A2 ¼ äðtÞ
aðtÞN2 ¼ − a3

a3
1

þ ða2
3
−a1a5Þ
6a4

1

t2 − ð10a3
3
−13a1a3a5þ3a2

1
a7Þ

360a5
1

t4 þOðt6Þ:
ð31Þ

The fact that these expansions start at order t0 is nontrivial
since A1 and A2 both contain powers of aðtÞ in their
denominators, so they could in principle have been singular

as t → 0, but this is precisely what the no-boundary
solution prevents. The combination A2 − A1 only starts
at order t2.
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Then we plug the no-boundary ansatz (30) into the
Friedmann constraint equation (28) (see Appendix A). The
surprise is that even though we allow terms of arbitrary
order in the Riemann tensor, all coefficients of negative
powers of t vanish automatically and the first nontrivial
condition arises at order t. In fact, at the two lowest
nontrivial orders (t and t3) we obtain two conditions on
the coefficients cp1;p2

:

Order t∶
X
p1;p2

cp1;p2

N2P a4−P1 aP−13 ðp2 − p1Þ ¼ 0; ð32Þ

Order t3∶
X
p1;p2

cp1;p2

N2P a3−P1 aP−23 ða23 · G3½p1; p2�

þ a1a5 · G5½p1; p2�Þ ¼ 0; ð33Þ

where P≡ p1 þ p2 and

G3½p1; p2� ¼
1

6
ðp2

1 − 15p1 þ 6 − 4p2
2 þ 12p2Þ;

G5½p1; p2� ¼
p1ð1 − p1Þ

6
−
2p2ð1 − p2Þ

3
: ð34Þ

One way of easily satisfying the first condition (32) is by
requiring that

∀ fp1; p2g ∈ N2; cp1;p2
¼ cp2;p1

: ð35Þ

This special case, in fact, covers most known examples:
(i) any term of the form Rn; ∀ n ∈ N, satisfies (35)

since R ¼ 6ðA1 þ A2Þ. In particular, this implies that
fðRÞ theory, and hence gravity plus a scalar field,
will admit a no-boundary solution.

(ii) quadratic terms and all their powers since
RμνρσRμνρσ ¼ 6ðA2

1 þ A2
2Þ and RμνRμν ¼ 12ðA2

1 þ
A1A2 þ A2

2Þ.
We then turn to the second condition (33). Provided the

expression factoring a5 is not zero, this condition, in fact,
determines the value of a5 in terms of a1 and a3:

a5 ·
X
p1;p2

cp1;p2

N2P a3−P1 aP−23 G5½p1; p2�

¼ −
a23
a1

·
X
p1;p2

cp1;p2

N2P a3−P1 aP−23 G3½p1; p2�: ð36Þ

When we are in the special case where (35) is satisfied, we
can simplify (36) by symmetrizing the expressions G3 and
G5 in the exchange of p1 and p2, and we find

a5 ¼ −
a23
a1

·

P
p1;p2

cp1 ;p2
N2P a3−P1 aP−23 ½4 − p1ðp1 þ 1Þ − p2ðp2 þ 1Þ�P

p1;p2

cp1 ;p2
N2P a3−P1 aP−23 ½p1ðp1 − 1Þ þ p2ðp2 − 1Þ� : ð37Þ

At higher orders in t the additionally appearing coefficients
a7; a9;…, will be fixed in terms of the lower ones. Thus all
theories of this form admit no-boundary solutions as
a → 0, with a3 remaining a free parameter effectively
corresponding to solutions with different expansion rates.
The single exception to this statement is the case where

the left-hand side of (36) vanishes, with the consequence
that a3 is fixed in terms of a1. This corresponds to ordinary
general relativity in the presence of a cosmological con-
stant. Expanding (5) one straightforwardly finds

a3¼−
a31Λ
3

; a5 ¼−
5a23
a1

−2a21a3Λ¼ a51Λ2

9
; etc: ð38Þ

For this theory the no-boundary solution corresponds to
complexified de Sitter space with a fixed expansion rate
determined by the cosmological constant.
What we have done so far is to find general conditions

that Riemann terms need to satisfy if they are to preserve
the existence of no-boundary solutions. In the next section
we will examine specific examples of extensions of general
relativity to see whether they fulfill these requirements.
But before doing so it may be helpful, for the sake of

illustration, to see what goes wrong if the condition (32) is
not satisfied. Even though we do not have a covariant
expression for them, let us consider actions such as

Z
dta3NA1; or

Z
dta3NA1A2

2; etc: ð39Þ

that are in violation of (32). The constraint equation for the
action

R
dta3NA1 gives

ða21 − N2Þtþ a1a3t3 þOðt5Þ ¼ 0; ð40Þ

so even in the presence of matter (only appearing at
order t3), this would imply a1 ¼ �N, corresponding to
Minkowski spacetime rather than Euclidean space near
a ¼ 0. This is inconsistent with the no-boundary ansatz.
Here we see that it is not enough for an approximately flat
solution to exist near a ¼ 0, it must be flat and Euclidean at
the same time. Even this is not enough, as the next example
will show: if we turn to

R
dta3NA1A2

2, for instance, the
constraint equation is
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2a1a23
N6

tþ
�
4a1a3a5
3N6

− 2a31Λ
�
t3 þOðt5Þ ¼ 0; ð41Þ

where we have included a cosmological constant Λ and
assumed the no-boundary relation a21 ¼ −N2. At order t
one is forced to set a3 to zero, but then at the next order the
constraint cannot be satisfied. Hence this action does not
admit a no-boundary solution.
Having gained a better appreciation for the nontriviality

of the no-boundary regularity condition we now turn our
attention to specific examples of theories containing higher
orders of the Riemann tensor in the action.

IV. NO-BOUNDARY SOLUTIONS FOR
EXTENSIONS OF GENERAL RELATIVITY

A. Quadratic gravity

The most straightforward extension of Einstein gravity is
quadratic gravity, analyzed in this context in [11,12]. It has
the advantage of being a renormalizable theory of gravity
[19], but it suffers from the presence of a ghost. Lots of
efforts are being made in order to make sense of this ghost;
see, e.g., [20,21]. Quadratic gravity has many uses, such as
in Starobinsky’s inflation [22] and in asymptotic safety
[23–25], and it has interesting general implications near the
big bang, where it automatically enforces the suppression
of certain classes of anisotropies and inhomogeneities [26]
(even for a big bang that is not of no-boundary type and that
gives rise to a curvature singularity).
We will first consider pure quadratic gravity, where the

action only contains R2 terms. This theory is scale invariant
and has the action

Spure quad ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðαR2 þ βRμνRμν þ γRμνρσRμνρσÞ:

ð42Þ

On a closed FLRW background, we recall that

R2 ¼ 36ðA1 þ A2Þ2; RμνRμν ¼ 12ðA2
1 þ A1A2 þ A2

2Þ;
and RμνρσRμνρσ ¼ 12ðA2

1 þ A2
2Þ:

In four dimensions, the Gauss-Bonnet term
R
d4x

ffiffiffiffiffiffi−gp
G is

a topological invariant and does not contribute to the
dynamics. On a closed FLRW background,

G≡ RαβγδRαβγδ − 4RαβRαβ þ R2 ¼ 24A1A2; ð43Þ

and the associated constraint equation obtained by inserting
fp1 ¼ 1; p2 ¼ 1g in (28) is automatically null. To study the
dynamics the action can therefore effectively be reduced to

Spure quadjreduced ¼ 2π2
Z

dta3NϵðA2
1 þ A2

2Þ; with

ϵ ¼ 36αþ 12β þ 12γ: ð44Þ

This time even at order t1 the constraint equation is
automatically satisfied because the action (44) is symmetric
in A1 and A2, and therefore satisfies the condition (35). At
next order in t, the constraint equation yields

ða1a23 − a21a5Þ
N4

· t3 þOðt5Þ ¼ 0; ð45Þ

solved by a5 ¼ a23=a1. The coefficient a3 is left undeter-
mined, as expected from the scale invariance of the theory.
Next we can consider coupling quadratic gravity to

ordinary general relativity,

Squad¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−

Λ
8πG

þ ω

3σ
R2−

1

2σ
C2þ ϵG

�
;

where we wrote the action in terms of the Weyl tensor C,
which vanishes for a FLRW metric:

CμνρσCμνρσ ¼ RμνρσRμνρσ − 2RμνRμν þ 1

3
R2 ¼ 0; ð46Þ

and the Gauss-Bonnet combination G, which does not
contribute to the dynamics as we just saw. Therefore the
relevant part of the quadratic action to compute the
dynamics on a FLRW background is

Squad;reduced ¼ 2π2
Z

dta3N

�
1

8πG
ð3A1 þ 3A2 − ΛÞ

þ 12ω

σ
ðA2

1 þ A2
2Þ
�
: ð47Þ

The constraint equation for this action is

�
αa31Λþ a23β

a31
−
a5β
a21

þ 3αa3

�
· t3 þOðt5Þ ¼ 0; ð48Þ

where α ¼ 1
8πG and β ¼ 12ω

σ . The no-boundary solution is

a5 ¼
a23
a1

þ α

β
ða51Λþ 3a21a3Þ; ð49Þ

valid when α ∼ β or α ≪ β. Then a3 is left undetermined.
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When α ≫ β, the solution is instead

a3 ¼
−3a31 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a61 − 4 β

α a
6
1Λþ 4 β2

α2
a1a5

q
2β=α

→
α≫β

8<
:

− a3
1
Λ
3
þOðβ=αÞ;

−3a31 α
β þ

a3
1
Λ
3
þOðβ=αÞ:

ð50Þ

The first branch corresponds to the Einstein-Hilbert sol-
ution, while the second branch is not physical as it gives a
solution with curvature a3 bigger than the Planck scale (α),
and a nonsmooth limit β → 0. The second branch arises due
to the presence of higher derivatives in the action and is
associated with the new scalar degree of freedom (for a
detailed discussion of the properties of the scalar, see,
e.g., [27]).

B. Heterotic string theory

The low-energy effective theory from heterotic string
theory is the Einstein-Maxwell-axion-dilaton gravity con-
taining a dilaton field ϕ, gauge fields F (Maxwell), and a
three-form H (axion) (see, e.g., [28,29]). At first order in
the inverse string tension α0, an S-matrix calculation in
heterotic string theory leads to the effective Einstein frame
action [29]

Sheterotic ¼
1

2κ2D

Z
dDx

ffiffiffiffiffiffi
−g

p �
R−

1

2
ð∂ϕÞ2

þα0

8
e−ϕ=2

�
Gþ 3

16
ð∂ϕÞ4

�
−VðϕÞþ �� �

�
; ð51Þ

where we have assumed that the compactification has led to
a potential VðϕÞ for the dilaton (in general we may expect
additional terms). Note that, as discussed in Sec. II, the
axion H and the gauge fields F have been consistently set
to zero. If additional scalar fields arise due to the com-
pactification, then these will behave analogously to the
dilaton, so that we may use the dilaton as a stand-in for all
of the scalars. In the gravitational sector, the first correction
in α0 is given by the Gauss-Bonnet combination. Because of
the dilaton dependent prefactor, it is not a topological
invariant this time, and we must include its effects. The
constraint reads

δ

δN
ðLheteroticÞ ¼

δ

δN
ð6a3NðA1 þ A2ÞÞ

− a3
�
_ϕ2

2
−

α0

128
e−ϕ=2 _ϕ4 þ VðϕÞ

�

þ 3α0e−ϕ=2
δ

δN
ða3NA1A2Þ

−
3α0

2
_ϕe−ϕ=2

_aa2

N2
A1 ¼ 0; ð52Þ

where the second line follows from

δ

δN
ða3NAðN; _N;tÞBðtÞÞ¼B

δða3NAÞ
δN

− _B
∂ða3NAÞ

∂ _N
for A≡G and B≡e−ϕ=2: ð53Þ

Equation (52) is odd under the transformation t → −t,
a → −a, and ϕ → ϕ. We will also need the equation of
motion for the scalar ϕ, which is given by

∇2ϕ −
α0

16
e−ϕ=2

�
Gþ 3ð∇μϕÞð∇νϕÞð∇μ∇νϕÞ

þ 3

2
∇2ϕð∂ϕÞ2 − 9

16
ð∂ϕÞ4

�
− V;ϕ ¼ 0: ð54Þ

On a closed FLRW background and for a homogeneous
field ϕðtÞ this translates into

ϕ̈ −
3α0

16
e−ϕ=2

�
8A1A2 þ

3

2
_ϕ2ϕ̈ −

3

16
_ϕ4

�
− V;ϕ ¼ 0: ð55Þ

Equation (55) is even under the transformation t → −t,
a → −a, and ϕ → ϕ.
Now we look for Taylor series solutions to Eqs. (52) and

(55) around t ¼ 0. From the transformation rules of the
equations of motion (52) and (55) under t → −t, a → −a,
and ϕ → ϕ, we know that a must be an odd function of
time, while ϕðtÞ must be even:

� a ¼ a1tþ a3
6
t3 þ a5

120
t5 þ � � �

ϕðtÞ ¼ ϕ0 þ ϕ2

2
t2 þ ϕ4

24
t4 þ � � � :

ð56Þ

This is already enough to realize that ϕ will be constant at
first order in time close to the no-boundary point t → 0.
When plugging (56) in the constraint equation (52) and
expanding in orders of t, the leading order gives

−
3a1e−ϕ0=2α0

2N4
ða21 þ N2Þϕ2tþOðt3Þ ¼ 0; ð57Þ

which is solved by the usual no-boundary solution
a21 ¼ −N2. Then we turn to the equation of motion for
ϕ (55) where at leading order we find

ϕ2 −
3a23
2a61

α0e−ϕ0=2 − V;ϕðϕ0Þ þOðt2Þ ¼ 0: ð58Þ

This equation fixes ϕ2 as a function of ϕ0, a1, and a3.
Implementing this solution for ϕ2, the next order of the
constraint equation gives us a cubic equation for a3 in terms
of a1 and ϕ0:
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�
−
9a33
4a81

α02e−ϕ0 þ 6a3

�
1− e−ϕ0=2

α0V;ϕðϕ0Þ
4a21

�
−a31Vðϕ0Þ

�
t3

þOðt5Þ ¼ 0: ð59Þ

We conclude that the heterotic string action (51) pos-
sesses a family of no-boundary solutions, this time usefully
labeled by ϕ0, the dilaton value at the south pole.

C. General relativity as an effective field theory

We just saw that the leading correction stemming from
the heterotic string is a combination of quadratic terms in
the Riemann tensor. More generally, when considering an
effective field theory treatment of general relativity, in
addition to the pure gravitational terms we would also
expect the presence of new couplings between the gravi-
tational terms and matter terms [30]. Of greatest interest in
the present context is the coupling between gravity and
scalar fields. We will not be able to perform an exhaustive
treatment of such couplings, but the first nontrivial cou-
plings serve as an indication that no obstruction to the
existence of no-boundary solutions will come from such
terms. To see this, consider the effective theory of gravity
and a scalar field up to fourth order in derivatives,

Seff ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
ðR − 2ΛÞ þ 1

2
gμν∂μϕ∂νϕ − VðϕÞ

þ c1R2 þ c2RμνRμν þ ðd1Rμν þ d2RgμνÞ∂μϕ∂νϕ

þ d3RVðϕÞ þ � � �
�
; ð60Þ

for arbitrary coefficients c1, c2, d1, d2, d3. On our closed
FLRW background and for a homogeneous scalar field, up
to total derivatives this action reduces to

Seff ¼ 2π2
Z

dta3N

�
1

8πG
ð3A1þ3A2−ΛÞ−

_ϕ2

2N2

−VðϕÞþ12ð3c1þc2ÞðA2
1þA2

2Þ

− ð3d1A2þ6d2ðA1þA2ÞÞ
_ϕ2

2N2
þ6d3ðA1þA2ÞVðϕÞ

�
:

ð61Þ

By variation we can calculate the equations of motion, the
scalar field equation being

a3

N

�
ϕ̈þ 3H _ϕ − N2V;ϕ þ 6d1

�
A2ðϕ̈þ 2H _ϕÞ þ að3Þ

aN2
_ϕ

�

þ 12d2

�
ϕ̈ðA1 þ A2Þ þH _ϕðA1 þ 4A2Þ þ

að3Þ

aN2
_ϕ

�

þ 6d3ðA1 þ A2ÞN2V;ϕ

�
¼ 0; ð62Þ

while that for N (the constraint equation) is

a3
�
3A1 −Λ
8πG

þ
_ϕ2

2N2
−VðϕÞ

− 12ð3c1 þ c2Þ
�

2_a2

a2N2
A1 −

2_aað3Þ

a2N4
þ
�

ä
aN2

−
_a2

a2N2

�
2
�

þ 6d1

�
_ϕ2

N2

�
ä

aN2
−

_a2

a2N2

�
−

_a
aN

_ϕ ϕ̈

N3

�

þ 6d2

�
_ϕ2

N2
A1 þ

2ä
aN2

_a2

N2
−
2_a
aN

_ϕ ϕ̈

N3

�

þ 6d3

�
A1VðϕÞ þ

_a
aN

_ϕ

N
V;ϕ

��
¼ 0: ð63Þ

These equations transform only by an overall sign under
t → −t, a → −a, and ϕ → ϕ. Thus it is again appropriate to
use the ansatz Eq. (56), for which the equations of motion
reduce to

EoM for ϕ∶
6a1t
N3

ða21 þ N2Þð4d2ϕ2 þ d3N2V;ϕðϕ0ÞÞ
þOðt3Þ ¼ 0; ð64Þ

EoM for N : −
12

a1N4t
· ð3c1 þ c2Þð3a41 þ 2a21N

2 −N4Þ

þ ða21 þN2Þt
a21N

4
·

�
3a31N

2

8πG
− 18a21a3ð3c1 þ c2Þ

− 2a3ð3c1 þ c2ÞN2 þ 6a31d3N
2Vðϕ0Þ

�

þOðt3Þ ¼ 0; ð65Þ

which are consistent with a21 ¼ −N2. Higher orders in t fix
higher coefficients a3, a5, ϕ2;…, in terms of ϕ0 and a1. For
example, the next order of the ϕ equation gives

t3

N
· ð4ϕ2ða31 − 6a3ðd1 þ 4d2ÞÞ þ a21ða31 þ 12a3d3ÞV;ϕðϕ0ÞÞ
þOðt5Þ ¼ 0; ð66Þ

which one can use to fix the value of ϕ2. The crucial point is
that even in the presence of higher derivative couplings, the
scalar field does not diverge near the south pole, but
approaches a constant, just as for minimal coupling.
Hence, even though we cannot explicitly check all possible
higher derivative couplings, we may assume with some
confidence that such couplings do not yield any divergen-
ces. We will thus focus our attention on pure gravitational
terms.
We should also mention that an effective treatment of

general relativity leads to the appearance of nonlocal terms,
e.g., terms of the form

R ffiffiffiffiffiffi−gp
R 1

□
R [30]. These terms may

NO-BOUNDARY SOLUTIONS ARE ROBUST TO QUANTUM … PHYS. REV. D 102, 123539 (2020)

123539-9



have interesting implications in cosmology; see, e.g.,
[31–33]. When expanding such terms around a specific
background, one obtains an infinite series with terms
containing more and more derivatives. Below we will
investigate some specific correction terms containing
derivatives (see Sec. V), but because of technical limita-
tions we cannot make any definite statement about large or
infinite numbers of derivatives. We must therefore leave
this interesting question for future work.

D. Type II string theory in D= 10
spacetime dimensions

The low-energy effective action, obtained by looking at
quantum corrected amplitudes for four-graviton scattering2

in type II string theory in D ¼ 10 dimensions order by
order in α0, reads [35,36]

S ¼
Z

dDx
ffiffiffiffiffiffiffi
−G

p
ðRþ ðα0Þ3EðDÞ

ð0;0ÞR
4 þ ðα0Þ5EðDÞ

ð1;0Þ∇4R4

þ ðα0Þ6EðDÞ
ð0;1Þ∇6R4 þ � � �Þ; ð67Þ

where G is the determinant of the metric in D dimensions,

while EðDÞ
ðp;qÞ are coefficient functions that depend on the

compactification. General compactifications imply the
presence of additional curvature terms (along the lines
discussed above) and scalars (discussed in Sec. V D) as
well as numerous gauge fields which we can set to zero
(cf. the discussion in Sec. II). Here we will focus on the α03
type II correction to Einstein gravity (67) which is given by
theR4 term, a special combination of four Riemann tensors
defined as3

R4 ¼ tijklmnpq
8 tabcdefgh8 RijabRklcdRmnefRpqgh: ð68Þ

t8 is a special eight-rank tensor whose explicit expression
can be found in [37] (Chapter 9, Appendix A) to be

tijklmnpq ¼ −
1

2
ϵijklmnpq

−
1

2
½ðδikδjl − δilδjkÞðδmpδnq − δmqδnpÞ þ ðδkmδln − δknδlmÞðδpiδqj − δpjδqiÞ þ ðδimδjn − δinδjmÞðδkpδlq − δkqδlpÞ�

þ 1

2
½δjkδlmδnpδqi þ δjmδnkδlpδqi þ δjmδnpδqkδli þ 45 more terms

obtained by antisymmetrizing on the pairs ij; kl;mn; and pq�: ð69Þ

The quantityR4 is therefore a Riemann term, so we can determine if it will admit a no-boundary solution by simply looking
at its structure in terms of A1 and A2 and seeing if it meets condition (32). We start by computing the explicit structure ofR4

in terms of Riemann tensors with the XACT package [38]:

R4 ¼ 12ðRabcdRabcdÞ2 þ 6RabcdRab
ijð4Rij

klRcdkl − Ric
klRjdklÞ − 12RabijRcdklRabciRdjkl

þ 3

2
RabijRacidRjl

ckRbk
dl þ

3

4
RabijRacidRckdlRbkjl

þ ϵijklmnpqRij
ab

�
2RklefRmn

efRpqab −
1

2
Rkl

efRmnaeRpqbf −
1

2
RklaeRmn

feRpqbf

þ2Rkl
efRmnabRpqef −

1

2
RklaeRmnbfRpq

ef þ 2RklabRmn
efRpqef�

þ 1

4
ϵijklmnpqϵefghabcdRijabRklcdRefmnRghpq: ð70Þ

2To obtain a more general action, one also has to consider five- and six-graviton scatterings in the action (see, e.g., [34]), where it is
shown that at the one-loop level, five-graviton scattering only matters at order α06. Our aim, however, is not to be exhaustive so we will
keep to the four-graviton scattering here.

3Again this will be modified when considering five-graviton scattering by the addition of a ϵ8ϵ8R4 term. As we will discuss on the
next page, this kind of term will not be relevant for our analysis and we can safely ignore it.
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We must be aware that these expressions are originally
valid only in ten dimensions (and an analogous structure is
also expected in 11-dimensional supergravity, since the
low-energy type II theories are related to 11-dimensional
supergravity via circle compactifications; see, e.g., [39]).
When going down to four dimensions, there will be new
fields (and different associated terms) appearing through
the compactification, when indices point in the internal
dimensions. These gauge fields and scalars will depend on
the details of the compactification. However, as discussed
in Sec. II, we expect gauge field to be zero and scalar fields
constant at the no-boundary point. Therefore the only part
of (70) that we are really interested in is the one where all
indices point in the (four) external spacetime dimensions.
But then all the terms containing an eight-rank tensor ϵ are
set to zero, and we are left with

R4j4d;truncated ¼ 12ðRμν
ρσRμν

ρσÞ2
þ 6Rμν

ρσRμν
ξηð4Rξη

κλRρσ
κλ − Rξ

ρκ
λRη

σ
κ
λÞ

− 12Rμν
ξηRρσ

κλRμν
ρξRκλ

ση

þ 3

2
Rμν

ξηRμρ
ξσRη

λ
ρ
κRν

κ
σ
λ

þ 3

4
Rμν

ξηRμρ
ξσRρκ

σλRνκ
ηλ; ð71Þ

where μ; ν; ρ; σ; ξ; η; κ; λ are now spacetime indices running
from f0;…; 3g. Expression (71) is now ready to be
expressed in terms of A1 and A2. Using (15), we compute
that on this background all the terms of expression (71)
can be written in terms of two quantities that we denoteR1

and R2:

12ðRμν
ρσRμν

ρσÞ2¼ 123ðA4
1þ2A2

1A
2
2þA4

2Þ≡12R1; ð72Þ

24Rμν
ρσRμν

ξηRξη
κλRρσ

κλ ¼ 8 ·122ðA4
1þA4

2Þ≡24R2; ð73Þ

−6Rμν
ρσRμν

ξηRξ
ρκ

λRη
σ
κ
λ ¼−122ðA4

1þA4
2Þ¼−3R2; ð74Þ

−12Rμν
ξηRρσ

κλRμν
ρξRση

κλ ¼ −122 · 4ðA4
1 þ A2

1A
2
1 þ A4

2Þ
¼ −2R1 − 6R2; ð75Þ

3

2
Rμν

ξηRμρ
ξσRη

λ
ρ
κRν

κ
σ
λ ¼ 9ð3A4

1 þ 2A2
1A

2
2 þ 3A4

2Þ

¼ 1

16
R1 þ

3

8
R2; ð76Þ

and finally

3

4
Rμν

ξηRμρ
ξσRρκ

σλRνκ
ηλ ¼ 18ðA4

1 þ 2A2
1A

2
2 þ A4

2Þ ¼
1

8
R1:

ð77Þ

Therefore expression (71) reads

R4j4d;truncated ¼
163

16
R1 þ

123

8
R2

¼ 1467ðA2
1 þ A2

2Þ2 þ 738ðA4
1 þ A4

2Þ: ð78Þ

The quantities R1 and R2 are both symmetric under the
exchange of A1 and A2, so they satisfy the condition (35).
Therefore, theR4 term satisfies the leading order condition
(32), and will admit a no-boundary solution.
It might look a bit astonishing that this very complicated

scalar combination of four Riemann tensors has such a
simple expression in terms of A1 and A2 that is moreover
symmetric in the exchange of A1 and A2. This might lead us
to think that this could be a general property of any scalar
combination of Riemann tensors, but if we look at the two
following combinations:

Rμν
ρσRμξ

ρσRξκ
νλRακ

αλ ¼ 48A4
1 þ 36A4

2 þ 48A1A3
2

þ 24A3
1A2 þ 60A2

1A
2
2 ð79Þ

and

Rμν
ξηRμρ

ξσRρκ
νλRσκ

ηλ ¼ 12ðA4
1 þ A2

1A
2
2 þ A4

2Þ
þ 12A1ðA3

1 þ A1A2
2 þ 2A3

2Þ; ð80Þ

we see that they are both not symmetric under the exchange
of A1 and A2. However, they still satisfy the leading order
condition (32), and therefore admit a no-boundary solution.
We may conclude that known Riemann terms stemming

from string theory have a structure that allows for no-
boundary solutions. What is more, all of the covariant
Riemann terms that we have investigated allow for no-
boundary solutions. It would, of course, be very interesting
if one could prove a general result in this direction. The
next orders in α0 of the type II string theory (67) are not
Riemann terms anymore, but rather involve covariant
derivatives acting on Riemann tensors. Unfortunately, it
is not possible to treat covariant derivative terms as
systematically as we treated Riemann terms, because they
depend on higher and higher time derivatives of the scale
factor a. We will therefore study them on a case by case
basis, starting with the easiest expressions and ending with
the first string theory covariant derivative term, written
schematically as ∇4R4 in (67).

V. COVARIANT DERIVATIVES
OF RIEMANN TERMS

When covariant derivatives enter the game, it is even less
trivial that their contributions to the constraint equation will
still admit consistent and regular solutions. Indeed, we have
seen that Riemann terms are linear combinations of A1 and
A2, and these quantities only start at order t0. Therefore,
when acting on them with time derivatives, there is no risk
of ending up with negative powers of t that could bring
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singularities. But the covariant derivative is also composed
of the Christoffel symbol part: ∇ · ∼∂ ·þΓ·. The nonzero
Christoffel symbols are schematically

gkiΓ0
ij ∼

_a
aN2

; Γi
j0 ∼

_a
a
; and Γi

jk ∼ 1 ð81Þ

(by ∼ we indicate only the time dependence, not the
angular dependence). The quantity _a=a ∼ t−1 is singular,
and we can fear that covariant derivatives introduce
singularities into the constraint equations. Therefore we
need to check term by term the existence of regular
solutions in the covariant derivative terms that we need.
First consider again the transformation

�
t → −t;
a → −a:

ð82Þ

On a closed FLRW background, if we consider the action

S ¼
Z

dta3NL; ð83Þ

then the constraint equation of this action will be

δ

δN
ða3NLÞ≡∂ða3NLÞ

∂N −
d
dt

�∂ða3NLÞ
∂ _N

�
þ��� ¼ 0: ð84Þ

This constraint equationwill be odd under the transformation
(82) only ifL is evenunder this same transformation.NowA1

and A2 are even under this transformation; hence such are all
Riemann terms. Because the FLRWmetric does not contain
any mixed term g0i, time derivatives will always come in
pairs. The Christoffel symbols (81) with one 0 index are odd
under (82) and will also always come in pairs or with one
time derivative. Therefore all covariant derivatives of
Riemann terms will be even under this transformation,
and their constraint equation odd. Thus we may keep using
the reduced no-boundary ansatz (30) instead of the full
ansatz (13).
By studying terms with up to four covariant derivatives

acting on Riemann terms, we will encounter expressions
with up to four derivatives acting on a. To ease the
upcoming expressions, we therefore define

A3 ≡ að3Þ

aN3
−

_a N̈
aN4

−
�
3 _N
N2

þ _a
aN

�
A2; ð85Þ

A4≡ að4Þ

aN4
−
_aNð3Þ

aN5
−
6 _N
N2

A3−
�
6_a _N
aN3

þ 3 _N2

N4
þ 4N̈
N3

�
A2−A2

2:

ð86Þ

The calculations involving covariant derivatives are rather
lengthy, so we are not going to display them entirely here.
Rather, we will explicitly show the simplest example that

arises when two covariant derivatives act on one Riemann
tensor and relegate the results of lengthier calculations to
the Appendix. Our focus will be on terms of the form∇4R4.

A. An explicit example: Two covariant derivatives
acting on one Riemann tensor

The following quantity is a scalar term where two
covariant derivatives act on one Riemann tensor:

A≡∇2R ¼ −6
�
A4 þ

3_a
aN

A3 þ 2A2ðA2 − A1Þ
�
: ð87Þ

We can directly observe that A is a total derivative, so its
constraint equation will be null. We will, however, derive
this result explicitly for illustrative purposes.
To compute the constraint equation of A we need to

compute those of the terms A4 and
_a
aN A3, or more precisely,

of the actions

SA4
¼

Z
dta3NA4 and S _aA3

¼
Z

dta3N
_a
aN

A3: ð88Þ

In a closed FLRW background, the constraint equation for
the action SA4

is

0 ¼ ∂ða3NA4Þ
∂N −

d
dt

�∂ða3NA4Þ
∂ _N

�
þ d2

dt2

�∂ða3NA4Þ
∂N̈

�

−
d3

dt3

�∂ða3NA4Þ
∂Nð3Þ

�

≡ δ

δN
½a3NA4�: ð89Þ

We make the whole derivation explicitly for this first case4:

a3NA4 ¼
a2að4Þ

N3
−
aä2

N3
−
6a2að3Þ _N

N4
þ 2a _a ä _N

N4

−
4a2ä N̈
N4

−
a2 _aNð3Þ

N4
; ð90Þ

⇒

8>>>>>>>><
>>>>>>>>:

∂ða3NA4Þ∂N ¼− 3
N4 ða2að4Þ−aä2Þ;

d
dt

h∂ða3NA4Þ
∂ _N

i
¼ 1

N4ð−6a2að4Þþ2_a2äþ2aä2−10a _aað3ÞÞ;
d2

dt2

h∂ða3NA4Þ
∂N̈

i
¼ 1

N4ð−4a2að4Þ−8_a2ä−8aä2−16a _aað3ÞÞ;
d3

dt3

h∂ða3NA4Þ
∂Nð3Þ

i
¼ 1

N4ð−a2að4Þ−12_a2ä−6aä2−8a _aað3ÞÞ:
ð91Þ

4In this paper, it is always implicitly understood that the
following expressions are evaluated at constant lapse N, so that
we can drop all terms containing more than one power of a
derivative of N.
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So using (89) we find that the constraint equation for the
action SA4

is

δ

δN
½a3NA4� ¼

1

N4
ð2_a2ä − aä2 þ 2a _aað3ÞÞ: ð92Þ

We use exactly the same procedure for all coming terms,
but only display the final results. For the action S _aA3

, we
find the constraint equation to be

δ

δN

�
a3N

_a
aN

A3

�
¼ 1

N4
ð−2a _aað3Þ þ aä2 − 2_a2äÞ: ð93Þ

The only missing piece to get the constraint equation
for ∇2R (87) is the A2ðA2 − A1Þ term. This one is
a simple Ap1

1 Ap2

2 term, so we read off its contribution
from (28):

δ

δN
½a3NA2ðA2−A1Þ� ¼

1

N4
ð2a _aað3Þ−aä2þ2_a2äÞ: ð94Þ

The constraint equation for A is therefore

δA≡ δ

δN
½a3NA�

¼ −6
�
δ

δN
½a3NA4� þ 3

δ

δN

�
a3N

_a
aN

A3

�

þ 2
δ

δN
½a3NA2ðA2 − A1Þ�

�

¼ 0; ð95Þ
which is the expected result since this term is a total
derivative.

B. General recipe

Using the straightforward method presented in the
previous subsection, we can compute all possible covariant
derivatives terms. However, we can ease our life even more
by decomposing the calculations further. Assume we know
the constraint equations for the two actions

SA ¼
Z

dta3NA and SB ¼
Z

dta3NB; ð96Þ

where A and B are functions of a, N, and their time
derivatives. Then the constraint equation for the action

SA·B ¼
Z

dta3NA · B ð97Þ

will be given by

δ

δN
½a3NA · B� ¼ A ·

δ

δN
½a3NB� þ B ·

δ

δN
½a3NA� − a3A · B − _A ·

�∂ða3NBÞ
∂ _N

− 2
d
dt

�∂ða3NBÞ
∂N̈

�
þ 3

d2

dt2

�∂ða3NBÞ
∂Nð3Þ

��

þ Ä

�∂ða3NBÞ
∂N̈ − 3

d
dt

�∂ða3NBÞ
∂Nð3Þ

��
− Að3Þ ∂ða3NBÞ

∂Nð3Þ

− _B ·

�∂ða3NAÞ
∂ _N

− 2
d
dt

�∂ða3NAÞ
∂N̈

�
þ 3

d2

dt2

�∂ða3NAÞ
∂Nð3Þ

��

þ B̈

�∂ða3NAÞ
∂N̈ − 3

d
dt

�∂ða3NAÞ
∂Nð3Þ

��
− Bð3Þ ∂ða3NAÞ

∂Nð3Þ : ð98Þ

This assumes that the highest derivative of N on which A
and B depend is of third order, as it will be the case in this
work. It is, however, trivial to extend (98) to include higher
orders.
Using Eq. (98) enables us to build iteratively the

constraint equations of more and more involved expres-
sions of A1, A2, A3, and A4. To illustrate this, suppose we
want to compute the constraint equations of the four
following covariant expressions:

B1≡ ð∇μRαβγδÞð∇μRαβγδÞ; B2≡ ð∇μRαβÞð∇μRαβÞ;
B3≡ ð∇μRÞð∇μRÞ; and B4≡ ð∇μR

μ
αβγÞð∇νRναβγÞ ð99Þ

that are expressed in terms of the quantities A1, A2, and
A3 as

B1 ¼ −12
�
A2
3 þ

8_a2

a2N2
ðA2 − A1Þ2

�
; ð100Þ

B2 ¼ −12
�
A2
3 þ

2_a
aN

ðA2 − A1ÞA3 þ
6_a2

a2N2
ðA2 − A1Þ2

�
;

ð101Þ

B3 ¼ −36
�
A2
3 þ

4_a
aN

ðA2 − A1ÞA3 þ
4_a2

a2N2
ðA2 − A1Þ2

�
;

ð102Þ
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B4 ¼ −6
�
2ðA2 − A1Þ

_a
aN

þ A3

�
2

: ð103Þ

Then we just need to compute the constraint equations for
the two actions

SA3
¼
Z

dta3NA3 and S _aðA2−A1Þ ¼
Z

dta3N
_a
aN

ðA2−A1Þ

ð104Þ

and then combine them using (98).5

The general recipe we apply to compute the constraint
equations of all covariant derivative terms is therefore
(1) Decompose the expression in terms of A1, A2, A3,

and A4.
6

(2) Find the basic blocks needed to build each terms in
this expression [e.g., (104) in the previous example],
and compute their constraint equation.

(3) Use the formula (98) (iteratively if needed) to combine
the basic blocks and get the complete constraint
equation for the initial covariant expression.

(4) Plug in the no-boundary ansatz (30). This step is
commutative with the previous one.

Using this method, we computed the constraint equa-
tions of all the B terms (99) as well as those of the following
terms where four covariant derivatives act on two Riemann
tensors (see Appendix B):

C1≡∇2Rαβγδ∇2Rαβγδ; C2≡∇2Rαβ∇2Rαβ;

C3≡∇2R∇2R; C4≡∇μ∇νRαβγδ∇μ∇νRαβγδ;

C5≡∇μ∇νRαβ∇μ∇νRαβ; C6≡∇μ∇νR∇μ∇νR: ð105Þ

Remarkably, all the constraint equations of these expres-
sions only start at order t3, although we could expect them
to start at order t−1, and are therefore not singular. This
peculiar feature will continue to hold for the cases of four
derivatives acting on four Riemann tensors that we are now
going to address.

C. Four covariant derivatives acting
on four Riemann tensors

We are now ready to evaluate the contributions to the
constraint equation stemming from the ∇4R4 terms (these
terms are discussed in more detail in [40]; see also [41]).
We once again consider the truncated part ofR4, expressed
in terms of the two quantities R1 and R2,

R4j4d;truncated ¼
163

16
R1 þ

123

8
R2 ð106Þ

with

R1 ¼ ðRαβγδRαβγδÞ2 and R2 ¼ Rαβ
γδRαβ

ϵζRϵζ
ηθRγδ

ηθ:

ð107Þ

There are three types of terms that one can write and that
are inequivalent using integration by parts when four
covariant derivatives act on four Riemann tensors7:

ð∇RÞ4; ð∇2RÞ2R2; and ð∇2RÞð∇RÞ2R: ð108Þ

For these three types, we will construct all possible
independent terms where the four Riemann tensors are
either R1 or R2.
(a) Type 1: ð∇RÞ4 terms. These terms can all be written as

linear combinations of the four following terms:

D1 ≡ ð∇μRαβγδ∇μRαβγδÞ2;
D2 ≡ ð∇μRαβγδ∇νRαβγδ∇μRϵζηθ∇νRϵζηθÞ;
D3 ≡ ð∇μRαβ

γδ∇μRϵζ
αβ∇νRϵζ

ηθ∇νRηθ
γδÞ

D4 ≡ ð∇μRαβ
γδ∇νRαβ

ϵζ∇μRϵζ
ηθ∇νRηθ

γδÞ ð109Þ

that can be expressed in terms of A1, A2, and A3 (see
Appendix C). Computing their contributions to the
constraint equation requires the computation of the
following constraint equations:

Δ1≡ δ

δN
½a3NA4

3� ¼
32ða23−a1a5Þ3

9a151
t3þOðt5Þ; ð110Þ

Δ2 ≡ δ

δN

�
a3N

_a4

a4N4
ðA2 − A1Þ4

�

¼ ða1a5 − a23Þ3
72a151

· t3 þOðt5Þ; ð111Þ

Δ3 ≡ δ

δN

�
a3N

_a2

a2N2
A2
3ðA2 − A1Þ2

�
¼ Oðt5Þ; ð112Þ

Δ4 ≡ δ

δN

�
a3N

_a3

a3N3
A3ðA2 − A1Þ3

�

¼ ða1a5 − a23Þ3
36a151

· t3 þOðt5Þ: ð113Þ

Combining these, we get the contributions to the
constraint coming from the four D terms that are

5Notice also that other terms such as Rμνð∇2RμνÞ or Rð∇2RÞ
can be obtained from these B terms (99) by integrating by parts,
since two terms differing by a total derivative lead to the same
constraint equation.

6This is only valid for terms where at most four covariant
derivatives are acting on Riemann tensors.

7The R here does not refer to the Ricci scalar but is a schematic
way of writing the Riemann tensor without bothering about the
indices.
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displayed in Appendix C. Let us stress here that up to order t3, these four terms have the same structure involving the
combination a23 − a1a5,

δDi ¼ αi
ða23 − a1a5Þ3

a151
t3 þOðt5Þ; ð114Þ

where αi are numerical factors.
(b) Type 2: ð∇2RÞ2R2 terms. In this case we can construct eight different independent expressions:

E1 ≡∇2Rαβγδð∇2RαβγδÞRϵζηθRϵζηθ; E2 ≡∇μ∇νðRαβγδÞ∇μ∇νðRαβγδÞRϵζηθRϵζηθ;

E3 ≡ ðð∇2RαβγδÞRαβγδÞ2; E4 ≡∇μ∇νðRαβγδÞ∇μ∇νðRϵζηθÞRαβγδRϵζηθ;

E5 ≡∇2Rαβ
γδð∇2Rαβ

ϵζÞRϵζ
ηθRγδ

ηθ; E6 ≡∇μ∇νðRαβ
γδÞ∇μ∇νðRαβ

ϵζÞRϵζ
ηθRγδ

ηθ;

E7 ≡∇2Rαβ
γδð∇2Rϵζ

ηθÞRαβ
ϵζRγδ

ηθ; E8 ≡∇μ∇νðRαβ
γδÞ∇μ∇νðRϵζ

ηθÞRαβ
ϵζRγδ

ηθ: ð115Þ

These are expressed in terms of the quantities A1, A2, A3, A4 and are displayed in Appendix C.
(c) Type 3: ð∇2RÞð∇RÞ2R terms. The possible terms constructed from R1 and R2 are the following:

F 1 ≡ ð∇2RαβγδÞRαβγδ∇μRϵζηθ∇μRϵζηθ; F 2 ≡ ð∇μ∇νRαβγδÞRαβγδ∇μRϵζηθ∇νRϵζηθ;

F 3 ≡ ð∇2RαβγδÞRϵζηθ∇μRαβγδ∇μRϵζηθ; F 4 ≡ ð∇μ∇νRαβγδÞRϵζηθ∇μRαβγδ∇νRϵζηθ;

F 5 ≡ ð∇2Rαβ
γδÞRαβ

ϵζ∇μRϵζ
ηθ∇μRγδ

ηθ; F 6 ≡∇μ∇νðRαβ
γδÞRαβ

ϵζ∇μRϵζ
ηθ∇νRγδ

ηθ;

F 7 ≡ ð∇2Rαβ
γδÞRϵζ

ηθ∇μRαβ
ϵζ∇μRγδ

ηθ; F 8 ≡∇μ∇νðRαβ
γδÞRϵζ

ηθ∇μRαβ
ϵζ∇νRγδ

ηθ: ð116Þ

Again they can be expressed in terms of A1, A2, A3, and A4; see Appendix C.
To compute the contribution to the constraint equation stemming from E and F terms, we will need to compute those of

the following basic expressions:

γ1 ¼ A2
1A

2
2ðA2 − A1Þ2; γ2 ¼ A4

2ðA2 − A1Þ2; γ3 ¼ A1A3
2ðA2 − A1Þ2;

γ4 ¼ A2
1A

2
4; γ5 ¼ A2

2A
2
4; γ6 ¼ A1A2

2ðA2 − A1ÞA4;

γ7 ¼ A2A2
3A4; γ8 ¼ A1A2ðA2 − A1ÞA2

3; γ9 ¼
_a
aN

A2
1A2ðA2 − A1ÞA3;

γ10 ¼
_a
aN

A3
2ðA2 − A1ÞA3; γ11 ¼

_a
aN

A1A2
2ðA2 − A1ÞA3; γ12 ¼

_a
aN

A2
1A3A4;

γ13 ¼
_a
aN

A1A2A3A4; γ14 ¼
_a
aN

A2
2A3A4; γ15 ¼

_a
aN

A1A3
3;

γ16 ¼
_a
aN

A2A3
3; γ17 ¼

_a2

a2N2
A2
1A2ðA2 − A1Þ2; γ18 ¼

_a2

a2N2
A1A2

2ðA2 − A1Þ2;

γ19 ¼
_a2

a2N2
A3
2ðA2 − A1Þ2; γ20 ¼

_a2

a2N2
A2
1A

2
3; γ21 ¼

_a2

a2N2
A1A2A2

3;

γ22 ¼
_a2

a2N2
A2
2A

2
3; γ23 ¼

_a2

a2N2
A2
1ðA2 − A1ÞA4; γ24 ¼

_a2

a2N2
A1A2ðA2 − A1ÞA4;

γ25 ¼
_a2

a2N2
A2
2ðA2 − A1ÞA4; γ26 ¼

_a3

a3N3
A2
1ðA2 − A1ÞA3; γ27 ¼

_a3

a3N3
A1A2ðA2 − A1ÞA3;

γ28 ¼
_a3

a3N3
A2
2ðA2 − A1ÞA3; γ29 ¼

_a4

a4N4
A2
1ðA2 − A1Þ2; γ30 ¼

_a4

a4N4
A1A2ðA2 − A1Þ2;

γ31 ¼
_a4

a4N4
A2
2ðA2 − A1Þ2:
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We denote Γi ≡ δ
δN ½a3Nγi� the constraint contributions

from these basic expressions. All E and F terms can be
expressed as linear combinations of the γ terms, so their
constraint equations will be equal to the same linear
combination of the corresponding Γ terms.
First, we compute the contributions from all the γ terms

and plug in them the no-boundary ansatz (30). Then we
expand all Γ’s to third order in t. Only nine out of these 31
terms actually start at order t−1 (as we expected of terms
where four covariant derivatives act on Riemann terms).
They are, to leading order,8

Γ23 ¼ Γ24 ¼ Γ25 ¼ −
2a23ða23 − a1a5Þ

a131 t
;

Γ26 ¼ Γ27 ¼ Γ28 ¼ −
2a23ða23 − a1a5Þ

3a131 t
; ð117Þ

and Γ29 ¼ Γ30 ¼ Γ31 ¼ −
a23ða23 − a1a5Þ

3a131 t
: ð118Þ

In the E and F terms, these nine terms appear in the 11
following combinations, which all give contributions that
start at least at order t:

δ

δN

�
_a2

a2N2
ðA2 − A1Þ3A4

�
≡ Γ23 − 2Γ24 þ Γ25 ¼ Oðt3Þ;

ð119Þ

δ

δN

�
_a2

a2N2
A1ðA2 − A1Þ2A4

�
≡ Γ24 − Γ23 ¼ OðtÞ; ð120Þ

δ

δN

�
_a2

a2N2
A2ðA2 − A1Þ2A4

�
≡ Γ25 − Γ24 ¼ OðtÞ; ð121Þ

δ

δN

�
_a3

a3N3
A3ðA2−A1Þ3

�
¼Δ4≡Γ26−2Γ27þΓ28¼Oðt3Þ;

ð122Þ

δ

δN

�
_a3

a3N3
A3A1ðA2 − A1Þ2

�
≡ Γ27 − Γ26 ¼ OðtÞ; ð123Þ

δ

δN

�
_a3

a3N3
A3A2ðA2 − A1Þ2

�
≡ Γ28 − Γ27 ¼ OðtÞ; ð124Þ

δ

δN

�
_a4

a4N4
ðA2 − A1Þ4

�
¼ Δ2 ≡ Γ29 − 2Γ30 þ Γ31 ¼ Oðt3Þ;

ð125Þ

δ

δN

�
_a4

a4N4
A1ðA2 − A1Þ3

�
≡ Γ30 − Γ29 ¼ OðtÞ; ð126Þ

δ

δN

�
_a4

a4N4
A2ðA2 − A1Þ3

�
≡ Γ31 − Γ30 ¼ OðtÞ; ð127Þ

δ

δN

�
_a3

a3N3
A2
1ðA2 − A1Þ

�
A3 −

_a
aN

ðA2 − A1Þ
��

≡ Γ26 − 2Γ29 ¼ OðtÞ; ð128Þ

δ

δN

�
_a2

a2N2
A2
1ðA2 − A1Þ

�
A4 −

_a
aN

A3 −
4_a2

a2N2
ðA2 − A1Þ

��

≡ Γ23 − Γ26 − 4Γ29 ¼ OðtÞ: ð129Þ

In fact, astonishingly, the cancellations go even further
and the contribution at order t also vanishes identically.
The full expressions, which start at order t3, are listed in
Appendix C. Schematically, the order t3 contribution of all
δF terms can be written as

δF ¼ ða23 − a1a5Þt3
a151

½λ1ða23 − a1a5Þ2 þ λ2a1a5ða23 − a1a5Þ

þ λ3a1a3ða3a5 − a1a7Þ� þOðt5Þ; ð130Þ

where λ1, λ2, and λ3 take different numerical values for each
combination of derivatives. As for the E terms, their
contribution to the constraint is of the form

δE ¼ t3

a151
½μ1ða23 − a1a5Þ3 þ μ2a1a5ða23 − a1a5Þ2

þ a1a3ðμ3a5a3 þ μ4a1a7Þða23 − a1a5Þ
þ μ5a21a3a5ða3a5 − a1a7Þ
þ μ6a21a

2
3ða1a9 − a3a7Þ� þOðt5Þ; ð131Þ

where μi are numerical factors varying for each case.
We are now in position to compute the type II string

theory constraint equation up to fifth order in α0 and see
whether this action admits a no-boundary solution.

D. Constraint equation for type II string theory

When compactified down to four dimensions, the type II
action is of the form

S4dtype II ¼
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R− ð∂ϕÞ2−2VðϕÞ

þ ðα0Þ3Eð0;0ÞR4þðα0Þ5Eð1;0Þ∇4R4þOðα06Þþ � � ��;
ð132Þ

where we included a single scalar field with a potential
VðϕÞ, but where the ellipsis stands for many additional8Beware that these equalities are only valid at order t−1.
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scalars and gauge fields, with the precise form of the action
depending on the details of the compactification. In looking
for no-boundary solutions we may once again neglect the
contribution due to the gauge fields. In the same vein, the
contributions in higher powers of α0 should be thought of as
containing compactification dependent coefficient func-
tions θ, δi, ϵi, and ηi, in front of the specific combinations
D; E;F that we introduced in Sec. V C:

Eð0;0ÞR4 ¼ θ

�
R1 þ

246

163
R2

�
and

Eð1;0Þ∇4R4 ¼
X4
i¼1

δiDi þ
X8
i¼1

ϵiEi þ
X8
i¼1

ηiF i: ð133Þ

Does this theory now admit no-boundary solutions? As
we demonstrated in the last section, the constraint equation,
which provides the litmus test for the existence of regular
solutions, does not receive α0 corrections at order t−1 nor at
order twhen the no-boundary ansatz (30) is plugged in, due
to the specific form of the D; E;F terms. This rather
astonishing result may have an underlying explanation in
the fact that no-boundary solutions approach Euclidean flat
space smoothly near the south pole, and hence covariant
derivatives acting on the corresponding Riemann tensors
are suppressed. In fact, the first nontrivial contributions to
the constraint equation arise at order t3, where the con-
straint takes the form

− 6a3t3 − 2Vðϕ0Þa31t3 þ ðα0Þ3Eð0;0Þ

�
2205 ·

2a23
a91

ð3a1a5 − 4a23Þt3 − 2934 ·
a23
a91

ð2a23 − a1a5Þt3
�

þ ðα0Þ5Eð0;1Þ

�
#1 ·

ða23 − a1a5Þ3
a151

t3 þ #2 ·
a5ða23 − a1a5Þ2

a141
þ ½#3 · a23a5 þ #4 · a1a3a7�

a23 − a1a5
a141

þ #5 ·
a3a5ða3a5 − a1a7Þ

a131
þ #6 ·

a23ða1a9 − a3a7Þ
a131

�
¼ 0: ð134Þ

Here we denoted ϕð0Þ ¼ ϕ0 and the numerical coefficients
at order α05 by #i. In the absence of higher order corrections
we would have learned that a3 ¼ − Vðϕ0Þ

3
a31, i.e., that the

initial expansion rate depends on the location of the scalar
field on the potential. Once the higher order terms are
added, new families of solutions arise, and depending on
the coefficient functions, a5, a7, and even a9 can enter the
constraint equation. At higher orders in t, higher order
terms in the series expansion for a will, of course, also
appear, and in this manner higher coefficients will continue
to be given in terms of the lower order ones. Also, for terms
with more derivatives, such as terms of the form ∇6R4, we
expect higher a Taylor series coefficients to appear, in
analogy with the results for C terms (see Appendix B). For
perturbative solutions, a self-consistency check will be that
the solutions should have a smooth limit as α0 → 0, very
much like the limit β → 0 encountered in Sec. IVA on
quadratic gravity. What is clear, however, is that, given the
current knowledge about α0 corrections, perturbative no-
boundary solutions exist in type II string theory.

VI. CONCLUSIONS

The general expectation in cosmology is that as we
approach the big bang, quantum gravity corrections will
becomemore andmore important, to the extent thatwemight
remain ignorant about the initial stages of the universe until
we will have fully uncovered quantum gravity. The no-
boundary proposal, which is arguably the best understood

theory for the initial conditions of the universe, goes some-
what against the grain by being formulated merely in
semiclassical gravity. The question that concerned us in
the present paper was whether the no-boundary proposal
stands a chance of providing reliable answers given our
current, partial, knowledge of quantum gravity.
The very lack of a complete theory of quantum gravity

means that we are not able to answer this question fully, yet
the problem is still tractable to the extent that the general
structure of perturbative quantum gravity corrections is
known. Such corrections are expected to involve higher
powers of the Riemann tensor as well as covariant
derivatives acting on these tensors. The question thus
becomes whether no-boundary solutions continue to exist
in the presence of such correction terms. We have been able
to derive explicit conditions, in particular Eq. (32), that
terms composed solely of Riemann tensors have to satisfy
in order for no-boundary solutions to exist. This require-
ment is met for fðRÞ gravity, quadratic gravity, Gauss-
Bonnet gravity, heterotic string theory, as well as type II
string theory including the first nontrivial order in α0.
What is more, by considering specific examples, we have
been able to show that terms involving covariant derivatives
acting on Riemann tensors may also coexist with no-
boundary solutions. Here we studied the specific example
provided by type II string theory up to order α05.
An interesting open question is whether the structure of
string theory is such that it allows for no-boundary
solutions in general.
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Our results provide an important consistency check of the
no-boundary proposal, as they show that for large classes of
theories the results obtained in semiclassical gravity are
robust. We should emphasize that our results apply both to
inflationary and to ekpyrotic no-boundary instantons, these
remaining the only classes of no-boundary instantons
currently known. Our results in no way preclude the
existence of qualitatively new solutions in full quantum
gravity, but they do imply that no-boundary solutions will
continue to exist in perturbative quantum gravity. Combined
with the recent progress in constructing a consistent path

integral implementation [6–8], our results put the no-
boundary proposal on a rather firm theoretical footing.
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APPENDIX A: CONSTRAINT EQUATION OF RIEMANN TERMS IN THE NO-BOUNDARY ANSATZ

We plug the no-boundary ansatz (30) into the Friedmann constraint equation (28) and expand it at lowest orders in t.
From (31) we know that at lowest order A1 ¼ A2 ¼ a3

a1N2. Therefore we get

0 ¼ 2π2
X
p1;p2

cp1;p2

�
2p1ðp2 − 1Þ a1t · a

2
1

N2

�
a3

a1N2

�
P−1

þ p2ðp2 − 1Þ a1t · a1 · a3
N4

�
a3

a1N2

�
P−2

− p2ð2p1 þ p2 − 3Þ a1t · a
2
1

N2

�
a3

a1N2

�
P−1

�
þOðt3Þ; ðA1Þ

where we defined P ¼ p1 þ p2 for simplicity. This leading order equation can be further simplified to

2π2
X
p1;p2

cp1;p2

N2P a4−P1 aP−13 ½2p2 − 2p1�tþOðt3Þ ¼ 0: ðA2Þ

Let us now look at the next order. Because a is an odd function of t, and hence A1 and A2 are even functions of t [see
(31)], the t2 order of the Friedmann constraint will vanish. We directly consider the t3 order of the Friedmann constraint:

2π2
X
p1;p2

cp1;p2

�
2p1ðp2 − 1Þ ða1tþ

a3t3

6
Þða1 þ a3t2

2
Þ2

N2

�
a3

a1N2
þ a23 − a1a5

12N4
t2
�

p1−1
�

a3
a1N2

þ a23 − a1a5
6N4

t2
�

p2

þ p2ðp2 − 1Þ ða1tþ
a3t3

6
Þða1 þ a3t2

2
Þða3 þ a5t2

2
Þ

N4

�
a3

a1N2
þ a23 − a1a5

12N4
t2
�

p1

�
a3

a1N2
þ a23 − a1a5

6N4
t2
�

p2−2

− p2ð2p1 þ p2 − 3Þ ða1tþ
a3t3

6
Þ · ða1 þ a3t2

2
Þ2

N2

�
a3

a1N2
þ a23 − a1a5

12N4
t2
�

p1

�
a3

a1N2
þ a23 − a1a5

6N4
t2
�

p2−1

þ ð1 − p2Þða1tÞ3
�

a3
a1N2

�
P
�
þOðt5Þ ¼ 0: ðA3Þ

This can then be simplified to

2π2
X
p1;p2

cp1;p2

N2P a3−P1 aP−23 ða23 ·G3½p1; p2� þ a1a5 · G5½p1; p2�Þt3 þOðt5Þ ¼ 0; ðA4Þ

with

G3½p1; p2� ¼
1

6
ðp2

1 − 15p1 þ 6 − 4p2
2 þ 12p2Þ and G5½p1; p2� ¼

p1ð1 − p1Þ
6

−
2p2ð1 − p2Þ

3
: ðA5Þ
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APPENDIX B: CONSTRAINT EQUATIONS FOR B AND C TERMS

Here we display the constraint equations of B terms where the no-boundary ansatz has been plugged in. Writing
δB≡ δ

δN ða3NBÞ, we find

δB1 ¼ −12
�

4

15a61
ð25a33 − 29a1a3a5 þ 4a21a7Þt3

�
þOðt5Þ; ðB1Þ

δB2 ¼ −12
�

1

15a61
ð85a33 − 101a1a3a5 þ 16a21a7Þt3

�
þOðt5Þ; ðB2Þ

δB3 ¼ −36
�

2

15a61
ð35a33 − 43a1a3a5 þ 8a21a7Þt3

�
þOðt5Þ; ðB3Þ

δB4 ¼ −
4

5a61
ð35a33 − 43a1a3a5 þ 8a21a7Þt3 þOðt5Þ: ðB4Þ

All those∇2R2 terms possess a no-boundary solution that specifies a7 in terms of a1, a3, and a5, but where the latter are not
specified by the ∇2R2 terms alone.
We now look at the constraint equations for C terms. Their expressions in terms of A1, A2, A3, and A4 are

C1 ¼ 12

�
4

�
A2ðA2 − A1Þ þ

2_a2

a2N2
ðA2 − A1Þ þ

_a
aN

A3

�
2

þ
�
A4 −

4_a2

a2N2
ðA2 − A1Þ þ

_a
aN

A3

�
2
�
; ðB5Þ

C2 ¼ 12

�
A2
4 þ

4_a
aN

A3A4 þ
7_a2

a2N2
A2
3 þ 2A4A2ðA2 − A1Þ þ 4A2

2ðA2 − A1Þ2 −
4_a2

a2N2
A4ðA2 − A1Þ

þ 16_a4

a4N4
ðA2 − A1Þ2 þ

8_a2

a2N2
A2ðA2 − A1Þ2 þ

10_a
aN

A3A2ðA2 − A1Þ þ
4_a3

a3N3
A3ðA2 − A1Þ

�
; ðB6Þ

C3 ¼ 36

�
3_a
aN

A3 þ 2A2ðA2 − A1Þ þ A4

�
2

; ðB7Þ

C4 ¼ 12

�
A2
4 −

4_a
aN

A3A4 þ
19_a2

a2N2
A2
3 þ

16_a
aN

A3A2ðA2 − A1Þ −
80_a3

a3N3
A3ðA2 − A1Þ

þ 160_a4

a4N4
ðA2 − A1Þ2 −

48_a2

a2N2
A2ðA2 − A1Þ2 þ 8A2

2ðA2 − A1Þ2
�
; ðB8Þ

C5 ¼ 12

�
A2
4 −

2_a
aN

A3A4 þ
11_a2

a2N2
A2
3 −

34_a3

a3N3
A3ðA2 − A1Þ þ

8_a
aN

A3A2ðA2 − A1Þ þ 2A4A2ðA2 − A1Þ

−
6_a2

a2N2
A4ðA2 − A1Þ þ

104_a4

a4N4
ðA2 − A1Þ2 −

36_a2

a2N2
A2ðA2 − A1Þ2 þ 6A2

2ðA2 − A1Þ2
�
; ðB9Þ

C6 ¼ 36

�
½A4 þ 2A2ðA2 − A1Þ�2 −

12_a2

a2N2
ðA2 − A1ÞA4 −

24_a2

a2N2
A2ðA2 − A1Þ2 þ

3_a2

a2N2
A2
3

þ 12_a3

a3N3
ðA2 − A1ÞA3 þ

48_a4

a4N4
ðA2 − A1Þ2

�
: ðB10Þ

Writing δC≡ δ
δN ða3NCÞ, we find

δC1 ¼
8t3ð3262a1a23a5 þ 60a31a9 − 2135a43 − a21ð592a3a7 þ 595a25ÞÞ

35a91
þOðt5Þ; ðB11Þ
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δC2 ¼
4t3ð3528a1a23a5 − 5a21ð161a25 − 24a1a9Þ − 1995a43 − 848a21a3a7Þ

35a91
þOðt5Þ; ðB12Þ

δC3 ¼
48t3ð133a1a23a5 − 15a21ð7a25 − 2a1a9Þ þ 70a43 þ 128a3a7N2Þ

35a91
þOðt5Þ; ðB13Þ

δC4 ¼
8t3ð1008a1a23a5 þ 12a31a9 − 735a43 − 19a21ð8a3a7 þ 7a25ÞÞ

7a1N8
þOðt5Þ; ðB14Þ

δC5 ¼
2t3ð13048a1a23a5 − 5a21ð413a25 − 48a1a9Þ − 8855a43 − 2368a21a3a7Þ

35a91
þOðt5Þ; ðB15Þ

δC6 ¼
12t3ð2968a1a23a5 − 15a21ð49a25 − 8a1a9Þ − 1505a43 − 848a21a3a7Þ

35a91
þOðt5Þ: ðB16Þ

These six∇4R2 terms all admit a regular no-boundary solution, for which the coefficient a9 is fixed in terms of a1, a3, a5,
and a7 at order t3 of the constraint. This ensures the existence of a solution if these∇4R2 terms are combined with Riemann
terms and ∇2R2 terms, since a9 is a new degree of freedom at order t3.

APPENDIX C: CONSTRAINT EQUATIONS FROM D, E, AND F TERMS

Expressions of D terms as functions of A1, A2, and A3:

D1 ¼ 144

�
A4
3 þ

16_a2

a2N2
A2
3ðA2 − A1Þ2 þ

64_a4

a4N4
ðA2 − A1Þ4

�
; ðC1Þ

D2 ¼ 48

�
3A4

3 þ
24_a2

a2N2
A2
3ðA2 − A1Þ2 þ

64_a4

a4N4
ðA2 − A1Þ4

�
; ðC2Þ

D3 ¼ 48

�
A4
3 þ

4_a2

a2N2
A2
3ðA2 − A1Þ2 þ

40_a4

a4N4
ðA2 − A1Þ4

�
; ðC3Þ

D4 ¼ 48

�
A4
3 þ

16_a3

a3N3
A3ðA2 − A1Þ3 þ

20_a4

a4N4
ðA2 − A1Þ4

�
: ðC4Þ

Expressions of E terms as functions of A1, A2, A3, and A4:

E1 ¼ 144ðA2
1 þ A2

2Þ
�
4

�
_a
aN

A3 þ
2_a2

a2N2
ðA2 − A1Þ þ A2ðA2 − A1Þ

�
2

þ
�
A4 þ

4_a2

a2N2
ðA1 − A2Þ þ

_a
aN

A3

�
2
�
; ðC5Þ

E2 ¼ 144ðA2
1 þ A2

2Þ
�
A2
4 −

4_a
aN

A4A3 þ
19_a2

a2N2
A2
3 þ

16_a
aN

A3A2ðA2 − A1Þ þ
80_a3

a3N3
A3ðA1 − A2Þ

þ 8A2
2ðA2 − A1Þ2 þ

160_a4

a4N4
ðA2 − A1Þ2 −

48_a2

a2N2
A2ðA2 − A1Þ2

�
; ðC6Þ

E3 ¼ 144

�
A2A4 þ

_a
aN

A3ðA2 þ 2A1Þ − 2A1A2ðA1 − A2Þ −
4_a2

a2N2
ðA1 − A2Þ2

�
2

; ðC7Þ
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E4 ¼ 48

�
12A2

1A
2
2ðA2 − A1Þ2 þ 3A2

2A
2
4 þ 12A1A2

2ðA2 − A1ÞA4

þ 16_a4

a4N4
ðA2 − A1Þ2ðA2

2 − 5A1A2 þ 13A2
1Þ −

12_a
aN

A3A2ðA2 − A1ÞðA4 þ 2A1ðA2 − A1ÞÞ

−
12_a3

a3N3
A3ðA2 − A1Þð2ðA2 − A1Þ2 − 4A1ðA2 − A1Þ − 3A1A2Þ

−
12_a2

a2N2
ðA2 − A1Þð3A1A2A4 − A2

3ðA2 − A1Þ þ 6A2
1A2ðA2 − A1ÞÞ þ

9_a2

a2N2
A2
3A

2
2

�
; ðC8Þ

E5 ¼ 48

�
4A2

1

�
_a
aN

A3 þ
2_a2

a2N2
ðA2 − A1Þ þ A2ðA2 − A1Þ

�
2

þ A2
2

�
A4 þ

_a
aN

A3 þ
4_a2

a2N2
ðA1 − A2Þ

�
2
�
; ðC9Þ

E6 ¼ 48

�
16

_a4

a4N4
ðA2 − A1Þ2ð7A2

1 þ 3A2
2Þ − 12

_a2

a2N2
A2ðA2 − A1Þ2ðA2

2 þ 3A2
1Þ

þ 2A2
2ðA2 − A1Þ2ðA2

2 þ 3A2
1Þ þ

_a2

a2N2
A2
3ð8A2

1 þ 11A2
2Þ þ 16A3

_a3

a3N3
ðA1 − A2Þð2A2

2 þ 3A2
1Þ

þ 4
_a
aN

A3A2ðA2 − A1ÞðA2
2 þ 3A2

1Þ þ A2
2A

2
4 − 4

_a
aN

A3A2
2A4

�
; ðC10Þ

E7 ¼ 48

�
16_a4

a4N4
ðA2 − A1Þ2ðA2

1 þ A2
2Þ þ 4A2

1A
2
2ðA2 − A1Þ2 −

8_a3

a3N3
A3ðA2 − A1ÞðA2

2 − 2A2
1Þ

þ _a2

a2N2
ð4A2

1 þ A2
2ÞA2

3 þ
8_a2

a2N2
A2
2A4ðA1 − A2Þ þ

16_a2

a2N2
A2
1A2ðA2 − A1Þ2

þ 2_a
aN

A2
2A3A4 þ

8_a
aN

A2
1A2A3ðA2 − A1Þ þ A2

2A
2
4

�
¼ E5; ðC11Þ

E8 ¼ 48

�
4_a4

a4N4
ðA2 − A1Þ2ð3A2

2 þ 18A2A1 þ 19A2
1Þ −

8_a3

a3N3
A3ðA2 − A1ÞðA2

2 þ 6A2A1 þ 3A2
1Þ

þ _a2

a2N2
A2
3ð8A2A1 þ 7A2

2 þ 4A2
1Þ −

24_a2

a2N2
A1A2ðA2 − A1Þ2ðA2 þ A1Þ

þ 8_a
aN

A2A1A3ðA2
2 − A2

1Þ −
4_a
aN

A2
2A3A4 þ 4A2

2A1ðA2 − A1Þ2ðA2 þ A1Þ þ A2
2A

2
4

�
: ðC12Þ

Expressions of F terms through A1, A2, A3, and A4 quantities:

F 1 ¼ 144

�
8_a2

a2N2
ðA2 − A1Þ2 þ A2

3

��
2A2A1ðA2 − A1Þ −

4_a2

a2N2
ðA2 − A1Þ2 þ

_a
aN

A3ðA2 þ 2A1Þ þ A2A4

�
; ðC13Þ

F 2 ¼ 48

�
−
16_a4

a4N4
ðA2 − A1Þ3ðA2 þ 2A1Þ −

12_a3

a3N3
A3ðA2 − A1Þ2ðA2 − 2A1Þ

þ 24_a2

a2N2
A1A2ðA2 − A1Þ3 þ

18_a2

a2N2
A2
3A1ðA1 − A2Þ þ

12_a2

a2N2
A2A4ðA2 − A1Þ2

þ 6_a
aN

A3
3ðA1 − A2Þ þ 6A2

3A1A2ðA2 − A1Þ þ 3A2A2
3A4

�
; ðC14Þ

F 3 ¼ 144

�
2_a
aN

A1ðA2 − A1Þ þ A2A3

��
_a
aN

A2
3 þ

4_a
aN

A2ðA2 − A1Þ2 þ
8_a3

a3N3
ðA2 − A1Þ2 þ A3A4

�
; ðC15Þ
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F 4 ¼ 144

�
2_a
aN

A1ðA2 − A1Þ þ A2A3

��
4_a
aN

ðA2 − A1Þ2
�
A2 −

6_a2

a2N2

�
−

2_a
aN

A2
3 þ

8_a2

a2N2
A3ðA2 − A1Þ þ A3A4

�
; ðC16Þ

F 5 ¼ 48

�
−

8_a4

a4N4
ðA2 − A1Þ3ðA2 − 3A1Þ þ

2_a3

a3N3
A3ðA2 − A1Þ2ðA2 þ 6A1Þ −

4_a2

a2N2
A2A2

3ðA2 − A1Þ

þ 2_a2

a2N2
A2A4ðA2 − A1Þ2 þ

12_a2

a2N2
A1A2ðA2 − A1Þ3 þ

_a
aN

A2A3
3 þ A2A2

3A4

�
; ðC17Þ

F 6 ¼ 48

�
−

2_a4

a4N4
ðA2 − A1Þ3ð9A2 þ 13A1Þ þ

6_a3

a3N3
A1A3ðA2 − A1Þ2 þ

2_a2

a2N2
A2
3ðA2

2 − A2
1Þ

þ 12_a2

a2N2
A1A2ðA2 − A1Þ3 þ

2_a
aN

A2
2A3ðA2 − A1Þ2 −

2_a
aN

A2A3
3 þ A2A2

3A4

�
; ðC18Þ

F 7 ¼ 48

�
8_a4

a4N4
ðA2 − A1Þ3ðA2 þ A1Þ þ

2_a3

a3N3
A3ðA2 − A1Þ2ð2A2 þ 5A1Þ þ

2_a2

a2N2
A1A4ðA2 − A1Þ2

−
4_a2

a2N2
A2A2

3ðA2 − A1Þ þ
4_a2

a2N2
A2ðA2 − A1Þ3ðA2 þ 2A1Þ þ

_a
aN

A2A3
3 þ A2A2

3A4

�
; ðC19Þ

F 8 ¼ 48

�
2_a4

a4N4
ðA2 − A1Þ3ð5A2 − 27A1Þ −

6_a3

a3N3
A3ðA2 − A1Þ2ð2A2 − 3A1Þ þ

12_a2

a2N2
A1A2ðA2 − A1Þ3

þ 4_a2

a2N2
A2A2

3ðA2 − A1Þ þ
2_a
aN

A2
2A3ðA2 − A1Þ2 −

2_a
aN

A2A3
3 þ A2A2

3A4

�
: ðC20Þ

We display here the constraint equations obtained for all D, E, and F terms [using again the notation δD≡ δ
δN ða3NDÞ

and similarly for E and F ]:

δD1 ¼ 144½Δ1 þ 16Δ3 þ 64Δ2� ¼
384ða23 − a1a5Þ3

a151
t3 þOðt5Þ; ðC21Þ

δD2 ¼ 12½64Δ2 þ 12½Δ1 þ 8Δ3 þ 16Δ2�� ¼
1408ða23 − a1a5Þ3

3a151
t3 þOðt5Þ; ðC22Þ

δD3 ¼ 2½864Δ2 þ 24½Δ1 þ 4Δ3 þ 4Δ2�� ¼
144ða23 − a1a5Þ3

a151
t3 þOðt5Þ; ðC23Þ

δD4 ¼ 4½240Δ2 þ 192Δ4 þ 12Δ1� ¼
136ða23 − a1a5Þ3

a151
t3 þOðt5Þ; ðC24Þ

δE1 ¼ 144 ·
4t3

105a151
½60a21a23ða1a9 − a3a7Þ þ 532a21a3a5ða3a5 − a1a7Þ − 3675ða23 − a1a5Þ3

− 3535a1a5ða23 − a1a5Þ2 − a1a3ð616a5a3 þ 924a1a7Þða23 − a1a5Þ� þOðt5Þ; ðC25Þ

δE2 ¼ 144 ·
4t3

63a151
½36a21a23ða1a9 − a3a7Þ þ 420a21a3a5ða3a5 − a1a7Þ − 2793ða23 − a1a5Þ3

− 2765a1a5ða23 − a1a5Þ2 − a1a3ð1246a5a3 þ 560a1a7Þða23 − a1a5Þ� þOðt5Þ; ðC26Þ

δE3 ¼ 144 ·
2t3

315a151
½180a21a23ða1a9 − a3a7Þ þ 588a21a3a5ða3a5 − a1a7Þ − 6860ða23 − a1a5Þ3

− 5915a1a5ða23 − a1a5Þ2 − a1a3ð−4046a5a3 þ 2996a1a7Þða23 − a1a5Þ� þOðt5Þ; ðC27Þ
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δE4 ¼ 48 ·
2t3

315a151
½540a21a23ða1a9 − a3a7Þ þ 3276a21a3a5ða3a5 − a1a7Þ − 23450ða23 − a1a5Þ3

− 22575a1a5ða23 − a1a5Þ2 − a1a3ð−4179a5a3 þ 7644a1a7Þða23 − a1a5Þ� þOðt5Þ; ðC28Þ

δE5 ¼ δE7 ¼ 48 ·
t3

315a151
½360a21a23ða1a9 − a3a7Þ þ 3192a21a3a5ða3a5 − a1a7Þ − 29470ða23 − a1a5Þ3

− 28000a1a5ða23 − a1a5Þ2 − a1a3ð2240a5a3 þ 7000a1a7Þða23 − a1a5Þ� þOðt5Þ; ðC29Þ

δE6 ¼ 48 ·
t3

315a151
½360a21a23ða1a9 − a3a7Þ þ 4200a21a3a5ða3a5 − a1a7Þ − 32795ða23 − a1a5Þ3

− 32305a1a5ða23 − a1a5Þ2 − a1a3ð11396a5a3 þ 6664a1a7Þða23 − a1a5Þ� þOðt5Þ; ðC30Þ

δE8 ¼ 48 ·
t3

630a151
½720a21a23ða1a9 − a3a7Þ þ 8400a21a3a5ða3a5 − a1a7Þ − 65695ða23 − a1a5Þ3

− 64610a1a5ða23 − a1a5Þ2 − a1a3ð22792a5a3 þ 13328a1a7Þða23 − a1a5Þ� þOðt5Þ; ðC31Þ

δF 1 ¼ 144 ·
2ða23 − a1a5Þt3

45a151
½235a23ða23 − a1a5Þ − 64a1a3ða3a5 − a1a7Þ� þOðt5Þ; ðC32Þ

δF 2 ¼ 48 ·
2ða23 − a1a5Þt3

45a151
½105a1a5ða23 − a1a5Þ þ 12a1a3ða3a5 − a1a7Þ − 160ða23 − a1a5Þ2� þOðt5Þ; ðC33Þ

δF 3 ¼ 144 ·
4ða23 − a1a5Þt3

45a151
½60a1a5ða23 − a1a5Þ − 18a1a3ða3a5 − a1a7Þ þ 5ða23 − a1a5Þ2� þOðt5Þ; ðC34Þ

δF 4 ¼ 144 ·
2ða23 − a1a5Þt3

45a151
½−155a1a5ða23 − a1a5Þ þ 32a1a3ða3a5 − a1a7Þ − 30ða23 − a1a5Þ2� þOðt5Þ; ðC35Þ

δF 5 ¼ 48 ·
ða23 − a1a5Þt3

90a151
½725a23ða23 − a1a5Þ − 128a1a3ða3a5 − a1a7Þ� þOðt5Þ; ðC36Þ

δF 6 ¼ 48 ·
ða23 − a1a5Þt3

180a151
½−725a1a5ða23 − a1a5Þ þ 128a1a3ða3a5 − a1a7Þ − 265ða23 − a1a5Þ2� þOðt5Þ; ðC37Þ

δF 7 ¼ 48 ·
ða23 − a1a5Þt3

90a151
½725a1a5ða23 − a1a5Þ − 128a1a3ða3a5 − a1a7Þ þ 10ða23 − a1a5Þ2� þOðt5Þ; ðC38Þ

δF 8 ¼ 48 ·
ða23 − a1a5Þt3

180a151
½−725a1a5ða23 − a1a5Þ þ 128a1a3ða3a5 − a1a7Þ − 275ða23 − a1a5Þ2� þOðt5Þ: ðC39Þ
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