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The two-Higgs-doublet model (2HDM) with spontaneously broken Z2 symmetry predicts a production
of domain walls at the electroweak scale. We derive cosmological constraints on model parameters for both
type-I and type-II 2HDMs from the requirement that domain walls do not dominate the Universe by the
present day. For type-I 2HDMs, we deduce the lower bound on the key parameter tan β > 105 for a wide
range of Higgs-boson masses ∼100 GeV or greater, close to the Standard Model alignment limit. In
addition, we perform numerical simulations of the 2HDM with an approximate as well as an exact Z2

symmetry but biased initial conditions. In both cases, we find that domain wall networks are unstable and,
hence, do not survive at late times. The domain walls experience an exponential suppression of scaling in
these models, which can help ameliorate the stringent constraints found in the case of an exact discrete
symmetry. For a 2HDM with softly broken Z2 symmetry, we relate the size of this exponential suppression
to the soft-breaking bilinear parameter m12, allowing limits to be placed on this parameter of order μeV,
such that domain wall domination can be avoided. In particular, for type-II 2HDMs, we obtain a
corresponding lower limit on the CP-odd phase θ generated by QCD instantons, θ ≳ 10−11=ðsin β cos βÞ,
which is in some tension with the upper limit of θ ≲ 10−11–10−10, as derived from the nonobservation of a
nonzero neutron electric dipole moment. For a Z2-symmetric 2HDM with biased initial conditions, we are
able to relate the size of the exponential suppression to a biasing parameter ε so as to avoid domain wall
domination.

DOI: 10.1103/PhysRevD.102.123536

I. INTRODUCTION

Domain walls are topological defects that emerge from
the breaking of discrete symmetries [1], resulting in a
vacuum manifold containing topologically disconnected
points. These disconnected points correspond to degenerate
vacua. Phase transitions producing domain walls occur at a
finite rate, and as such, the field can select different vacua in
causally disconnected regions of space. This divides the
Universe into so-called domains; the interfaces between
which are domain walls [2]. Defects that emerge from the
breaking of a global symmetry are expected to enter a
regime of dynamical scaling such that the number of
defects is constant per Hubble horizon [3]. Domain walls
follow a power law scaling with an exponent close to 1 as
shown in simulations for the so-called Goldstone model
with a single real scalar field [1,4]. This is due to the fact

that the walls have a tension under which they collapse as
quickly as causality permits. This scaling feature results in
an undesirable fate for the Universe, where domain walls
can be present in nature, in stark contrast to all our
observations. The energy density of matter and radiation
both scale proportionally to ðtimeÞ−2 in their respective
epochs of domination. However, domain wall energy
density scales proportionally to ðtimeÞ−1 [5]. This means
that domain walls will come to dominate the Universe at
late times [6–8]. This is the so-called domain wall problem.
Therefore, if cosmic domain walls are to exist in nature,
constraints must be placed on domain wall-forming mod-
els, such that domain wall domination does not occur [5] or,
at least, occurs after present day. Domination could be
avoided by, for example, having an additional field couple
to the walls altering their scaling behavior [4,9,10].
Alternatively, one could have the domain walls decay
before they come to dominate the Universe by making
the discrete symmetry approximate. It is important to note
that these modifications require a change in the symmetries
of the model and must, therefore, be well-motivated given
the fundamental role of symmetries in physics.
The Higgs mechanism for electroweak symmetry break-

ing was verified by the measurement of a Higgs boson
[11,12] of a mass 125 GeVat the LHC [13]. The properties
of this scalar particle so far match those predicted for the
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SM Higgs scalar [14,15]. Nonetheless, current experimen-
tal measurements do not prohibit the existence of more
scalar particles. One minimal and theoretically well-
motivated extension, which can be made to the SM, is
to introduce a second complex Higgs doublet into the
theory. This is the so-called two-Higgs-doublet model
(2HDM) first suggested by T. D. Lee in 1973 [16].
A complete study of the general CP-violating 2HDM is
given in [17] (for a review, see [18]).
It is well known that the 2HDM predicts the emergence

of a variety of topological defects, such as domain walls,
vortices, and global monopoles, from the breaking of
accidental symmetries, which the model can posses under
certain parameter choices [19–22]. In the thermal history of
the Universe, theories of new physics, such as the 2HDM,
can predict a series of symmetry breaking phase transitions
as the Universe expanded and cooled [2]. These broken
symmetries are no longer observable but should be restored
in the early Universe when temperatures were far higher
than at present [1]. These phase transitions can leave relic
topological defects, which can serve as probes of high
energy physics in the early Universe [1,3,23].
In this article, we focus our attention on the 2HDM with

Z2 symmetry, whose spontaneous breaking predicts the
existence of domain wall solutions. In particular, we obtain
cosmological constraints on the theoretical parameters of
the 2HDM, which arise from the nonobservation of such
domain walls. By solving the relevant equations of motion
[1,4,9,24], we present a number of numerical simulations
of such topological defects that consolidate the cosmologi-
cal constraints derived in this paper.
The remainder of this article is structured as follows. In

Sec. II, we outline the scalar sector of the 2HDM with
softly broken Z2 symmetry, introduce the physical degrees
of freedom in the model, and provide a brief review of
experimental constraints on the 2HDM for models of type I
and II. In Sec. III, we present constraints on the 2HDM
from domain wall domination for cases, where the Z2

symmetry is exact and parameter regimes in which domain
wall domination could be avoided. In Secs. IV and V, we
present results of simulations of the 2HDM with both an
approximate Z2 symmetry and biased initial conditions for
a 2HDM, where the Z2 symmetry is exact. In both cases,
domain wall networks are unstable, and domain wall
domination can be avoided by requiring that these domain
wall networks be sufficiently short-lived. Finally, Sec. VI
summarizes the main results of our study.

II. THE TWO HIGGS DOUBLET MODEL WITH
SOFTLY BROKEN Z2 SYMMETRY

Under a Z2 transformation the complex scalar Higgs
doublets, Φ1 and Φ2, transform as

Φ1 → Φ1; Φ2 → −Φ2: ð1Þ

The 2HDM potential with softly broken Z2 symmetry can
be written as

V ¼ −μ21Φ
†
1Φ1 − μ22Φ

†
2Φ2 −m2

12ðΦ†
1Φ2 þΦ†

2Φ1Þ
þ λ1ðΦ†

1Φ1Þ2 þ λ2ðΦ†
2Φ2Þ2 þ λ3ðΦ†

1Φ1ÞðΦ†
2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ −
jλ5j
2

½ðΦ†
1Φ2Þ2 þ ðΦ†

2Φ1Þ2�; ð2Þ

with eight real parameters: μ21; μ
2
2; m

2
12; λ1; λ2; λ3; λ4, and λ5.

The field bilinear Φ†
1Φ2 violates the Z2 symmetry, and

hence, this model possesses an approximate Z2 symmetry
for small values of the coefficient m2

12. Moreover, in the
limit m2

12 ¼ 0, (2) possesses an exact Z2 symmetry.
The vacua are parametrized as

hΦ1i ¼
1ffiffiffi
2

p
�

0

v1

�
; hΦ2i ¼

1ffiffiffi
2

p
�

0

v2

�
: ð3Þ

This parametrization will be referred to as CP-preserving
vacua. The parameters v1 and v2 are referred to as the
vacuum manifold parameters. For the CP-preserving vacua
(3), the vacuum expectation values (VEVs) can be calcu-
lated in terms of the potential parameters,

v21 ¼
4λ2μ

2
1 − 2λ̃345μ

2
2

4λ1λ2 − λ̃2345
; v22 ¼

4λ1μ
2
2 − 2λ̃345μ

2
1

4λ1λ2 − λ̃2345
; ð4Þ

where we have defined λ̃345 ¼ λ3 þ λ4 − jλ5j.
The 2HDM has five physical scalar particles: two neutral

CP-even states, h and H, one CP-odd neutral state, A, and
two charged states, H�. The other three scalar degrees of
freedom correspond to would-be Goldstone bosons,G0 and
G�, which are absorbed into the longitudinal components of
the electroweak gauge bosons, W� and Z0. We identify h
with the Higgs particle measured at the LHC byATLAS and
CMS [11,12], fixing the parameter Mh at 125 GeV [13].
Furthermore, the SM VEV is fixed at vSM ¼ 246 GeV.
In order to investigate the evolution of domain walls in

the 2HDMwith approximate Z2 symmetry, we first obtain a
physical parametrization of the model with which to
perform our numerical simulations. Expressions for the
masses of the scalar Higgs particles, h, H, A, and H�, are
obtained as eigenvalues of the Hessian matrix of (2) using
the parametrization,

Φ1 ¼
� φþ

1

1ffiffi
2

p ðv1 þ φ1 þ ia1Þ
�
;

Φ2 ¼
� φþ

2

1ffiffi
2

p ðv2 þ φ2 þ ia2Þ
�
; ð5Þ

where φþ
i are complex scalar fields. The CP-even mass

matrix is derived to be
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M2
N ¼

�m2
12 tan β þ 2λ1c2βv

2
SM −m2

12 þ λ̃345v2SMsβcβ

−m2
12 þ λ̃345v2SMsβcβ m2

12 cot β þ 2λ2s2βv
2
SM

�
;

ð6Þ

while the CP-odd mass is

M2
A ¼ m2

12

sβcβ
þ jλ5jv2SM; ð7Þ

where we have introduced the short-hand notations sin x ¼
sx and cos x ¼ cx. The charged Higgs mass can then be
written as

M2
H� ¼ M2

A −
1

2
ðλ4 þ jλ5jÞv2SM: ð8Þ

The CP-even mass matrix is diagonalized by the mixing
angle, α,

M2
N ¼

�
cα −sα
sα cα

��
M2

h 0

0 M2
H

��
cα sα
−sα cα

�
: ð9Þ

Using the above expressions, one obtains the physical
parametrization of the scalar potential,

μ21 ¼ −m2
12 tan β þ

1

2
ðM2

hc
2
α þM2

Hs
2
αÞ

þ 1

2
ðM2

h −M2
HÞcαsα tan β;

μ22 ¼ −m2
12 cot β þ

1

2
ðM2

hs
2
α þM2

Hc
2
αÞ

þ 1

2
ðM2

h −M2
HÞcαsα cot β;

λ1 ¼
−m2

12 tan β þM2
hc

2
α þM2

Hs
2
α

2c2βv
2
SM

;

λ2 ¼
−m2

12 cot β þM2
hs

2
α þM2

Hc
2
α

2s2βv
2
SM

;

λ3 ¼
−m2

12 þ 2M2
H�cβsβ þ ðM2

h −M2
HÞcαsα

cβsβv2SM
;

λ4 ¼
m2

12 þ ðM2
A − 2M2

H�Þcβsβ
cβsβv2SM

;

jλ5j ¼
−m2

12 þM2
Acβsβ

cβsβv2SM
: ð10Þ

Rescaling for dimensionless energy per unit area,
Ê ¼ E=Mhv2SM, we can write (2) in a dimensionless form,

V̂ ¼ −
1

2
½−2m̂2 tan β þ c2α þ M̂ 2

Hs
2
α þ ð1 − M̂ 2

HÞcαsα tan β�Φ̂ †
1Φ̂1

−
1

2
½−2m̂2 cot β þ s2α þ M̂ 2

Hc
2
α þ ð1 − M̂ 2

HÞcαsα cot β�Φ̂ †
2Φ̂2 − m̂2ðΦ̂ †

1Φ̂2 þ Φ̂ †
2Φ̂1Þ

þ −m̂2 tan β þ c2α þ M̂ 2
Hs

2
α

2c2β
ðΦ̂ †

1Φ̂1Þ2 þ
−m̂2 cot β þ s2α þ M̂ 2

Hc
2
α

2s2β
ðΦ̂ †

2Φ̂2Þ2

þ ð1 − M̂ 2
HÞcαsα − m̂2 þ 2M̂ 2

H�cβsβ
cβsβ

ðΦ̂ †
1Φ̂1ÞðΦ̂ †

2Φ̂2Þ

þ m̂2 þ ðM̂ 2
A − 2M̂ 2

H�Þcβsβ
cβsβ

ðΦ̂ †
1Φ̂2ÞðΦ̂ †

2Φ̂1Þ þ
m̂2 − M̂ 2

Acβsβ
2cβsβ

½ðΦ̂ †
1Φ̂2Þ2 þ ðΦ̂ †

2Φ̂1Þ2�; ð11Þ

with six dimensionless parameters M̂H; M̂A; M̂H� ; α; β, and
m̂2. The dimensionless masses are scaled by the SM Higgs
mass; i.e., M̂i ≡Mi=Mh and m̂2 ≡m2

12=M
2
h, and α=β are

the CP-even/odd mixing angles which diagonalize the
scalar mass matrices. For details of this reparametrization
and rescaling procedure, see [10].
In order to have a phenomenologically acceptable model,

we must also consider that current measurements of signal
rates for the Higgs boson discovered at the LHC are close to
those predicted by the SM [14,15]. Therefore, we must
restrict our investigation to parameters in/near the so-called
SM alignment limit, where the couplings of the CP-even
scalar, h, match those predicted by the SM. Exact SM

alignment is obtained when the relation cos ðα − βÞ ¼ 1
holds. Constraints from experimental limits on the mixing
angles for varying values of the Higgs masses can be found
in [25–28]. Therefore, the physical parametrization we will
use in phenomenological discussions to follow will
be fMh;MH;MA;MH� ; v2SM; tan β; cos ðα − βÞg.
When choosing physical parameters and considering the

implications of our phenomenology in later sections, we
must also account for the effect of model type on current
experimental constraints on the 2HDM. The type of a
2HDM is determined by the form of its Yukawa sector.
In other words, constraints on the masses of the 2HDM
scalars from experimentally measured signal rates are type
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dependent due to differences in the Higgs-fermion inter-
actions of the models. The Yukawa Lagrangian can be
written in its most general form as

LY ¼ −
X2
i¼1

ðq̄Liσ2ΦiYu
i uR þ q̄LΦiYd

i dR

þ l̄LΦiYl
i eR þ H:c:Þ; ð12Þ

where qL and lL are SUð2ÞL doublets for left-handed
quarks and leptons, respectively; uR, dR, and lR are SUð2ÞL
singlets for right-handed up-type quarks, down-type quarks
and leptons, respectively. Note that all these objects are
three-vectors in flavor space, where flavor indices have
been suppressed, and Yu;d;l

i are 3 × 3 Yukawa matrices for
each Higgs doublet. However, the 2HDMYukawa sector as
given in (12) is too general, and restrictions on the Higgs-
fermion couplings are required to remove or limit tree-level
flavor-changing neutral currents (FCNC) [18]. The two
models we will consider are the so-called type I and type II
2HDMs [29]. In type I models, all fermions couple to only
one of the doublets (conventionally chosen to be Φ2) [18],
whereas in type II models, up-type quarks couple to one
doublet (Φ2 by convention) and down-type quarks and
leptons to the other [25]. The specific forms of the Higgs-
fermion couplings in each case can be found in Table 2 of
[18] in terms of the mixing angles, α and β.
For a 2HDM with a softly broken Z2 symmetry of type I

2HDM, flavor physics constraints place a limit of tan β > 1
for MH� ¼ 1 TeV with the constraint strengthening to
tan β > 3 for MH� ¼ 100 GeV [25,26]. As such, the entire
range of masses from 100 GeV upwards can be chosen
from MH� without contradicting flavor constraints pro-
vided sufficiently large values for tan β are chosen.
Constraints on the charged Higgs boson from direct and
indirect detection at the LHC increase the lower bound on
tan β forMH� < 300 GeV [25]. For a type II 2HDM, flavor
physics constraints place much stronger bounds on the
charged Higgs mass. Specifically, a lower bound ofMH� ≳
600 GeV exists for all tan β and MH� ≳ 650 GeV for
tan β < 1 independent of the other physical 2HDM param-
eters [25]. In both type I and type II 2HDMs, the combined
constraints of [26] require a strong alignment betweenMH�

and either MH or MA. This is attributed to the strong
constraint on the value of cosðα − βÞ from current Higgs
coupling measurements being close to SM alignment. As
with the charged Higgs constraints, the type II model is
more strongly constrained by current observations with the
entire parameter range of the neutral Higgs masses,
100 GeV ≤ MH;A ≤ 1000 GeV, considered in [26], ruled
out for their lower benchmark charged Higgs masses of
MH� ¼ 250 GeV and 500 GeV. Therefore, we choose
alignment of the charged Higgs mass with either the scalar
mass,MH, or the pseudoscalar mass,MA, motivated by the
combined constraints of [26].

III. EXACT Z2 SYMMETRY

In a Friedmann-Lemaître-Robertson-Walker (FRLW)
universe, the energy density of both matter and radiation
decrease proportionally to ðtimeÞ−2 in their respective
epochs of domination. However, domain wall energy
density decreases proportionally to ðtimeÞ−1. Therefore,
the energy density of domain walls will increase relative to
matter and radiation in their respective epochs and hence,
come to dominate the energy density of the Universe. The
time of this domination is determined by the energy per unit
area of the domain walls. It is clear that we do not live in a
domain wall dominated universe, and therefore, any model
that produces domain walls must not allow domination
before present day. It has been established that domain wall
networks in the Z2-symmetric 2HDM exhibit a deviation
from ∝ t−1 scaling [10]. Specifically, more domain walls
are predicted at late times in the 2HDM than one would
expect for ∝ t−1 scaling. This feature makes the domain
wall problem more restrictive. Here, we calculate the
domain wall density for the Z2-symmetric 2HDM, assum-
ing ∝ t−1 scaling, and require that domain wall domination
occurs after present day to obtain corresponding constraints
on the physical observables. Note that the assumption of
∝ t−1 scaling is made in order to obtain expressions, which
provide a conservative upper bound for constraints. As
such, this calculation provides a minimal constraint from
2HDM domain wall domination, while the actual constraint
accounting for deviation from scaling may be stronger.
In the Z2-symmetric 2HDM, the energy per unit area of

the domain walls is given by

E ¼
Z

∞

−∞
EðxÞdx; ð13Þ

where

EðxÞ ¼ 1

2

�
dv1
dx

�
2

þ 1

2

�
dv2
dx

�
2

−
1

2
μ21v

2
1 −

1

2
μ22v

2
2

þ 1

4
λ1v41 þ

1

4
λ2v42 þ

1

4
λ̃345v21v

2
2; ð14Þ

for CP-preserving vacua (3). The topologically nontrivial
solution which minimizes the energy per unit area can be
obtained via gradient flow (see, for example, [10,19]). It
should be noted that the SM VEV, vSM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
, also

changes in the vicinity of the kink as the solution
interpolates from one vacuum to another. The energy
density of a domain wall network can be approximated
by a self-scaling argument. The total energy within a
Hubble horizon of radius, r is proportional to Er2.
Therefore, the energy density, ρdw ∝ Er−1, and since the
horizon expands at the speed of light, ρdw ∝ Et−1. Hence,
we write
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ρdw ¼ AÊMhv2SMt
−1; ð15Þ

where A is a constant of proportionality, quantifying the
number of walls per horizon, and define a corresponding
domain wall density parameter in the usual manner,

Ωdw ¼ ρdw
ρcrit

; ð16Þ

with critical density at present day,

ρcritðt0Þ ¼
3H2

0M
2
pl

8π
; ð17Þ

where we have used H0 ¼ 72 km s−1Mpc−1 ¼ 1.54×
10−42 GeV in natural units. For Ωdw < 1 at present day,
we obtain the limit,

8πAÊMhv2SM
3H2

0t0M
2
pl

< 1: ð18Þ

Therefore, for t0 ≃ 6.6 × 1041 GeV−1 and Mpl≃
1.2 × 1019 GeV, we obtain the dimensionless inequality,

AÊ <
3H2

0t0M
2
pl

8πMhv2SM
≃ 3.6 × 10−12: ð19Þ

Note that there is some subtlety in the impact of the
parameter A on this limit. This is more than simply an
assumed number of domain walls per horizon as this value
will change between the matter and radiation eras through

which these domain walls scale. Nonetheless, this should
not affect the order of magnitude of the limit.
It should be noted that agreement with the limit (19) can

always be obtained for sufficiently large or small values of
tan β. It is always energetically favorable for the kink
to interpolate between the smaller of the two VEVs.
Since tan β determines the relative size of the VEVs, for
tan β > 1, the first doublet is Z2 odd, while for tan β < 1,
the second doublet is Z2 odd. This is illustrated in Fig. 1 for
some benchmark values of the CP-even scalar mass in the
SM alignment limit. We see in the left panel of Fig. 1 that
domain walls do indeed become ultralight in large and
small limits of tan β, where the VEVof the Z2 odd doublet
becomes vanishingly small. The parameter tan β is the
primary parameter in the variation of Ê. In the right-hand
panel of Fig. 1, we see that the alignment parameter
cosðα − βÞ only has a weak effect on the energy density.
Moreover, the impact of changing MH is also weak.
The variation of the dimensionless energy per unit area,

Ê, in SM alignment is given in Fig. 2. Assuming the
parameter A is of order unity, we find that for domain walls
of the type seen in the neutral vacuum minimum energy
kink solutions a domain wall problem can only be avoided
for experimentally viable Higgs masses at large values of
tan β (of the order 105 or more). In lower tan β regimes, one
cannot evade the constraints placed on the Z2-symmetric
2HDM by domain wall domination without unreasonably
low values of the scalar masses. The assumption that A is of
order unity provides a conservative constraint on tan β. It
can be seen by considering the limit (19) that a larger value
of A would require a smaller value of Ê to avoid domain
wall domination by present day. Correspondingly, one

FIG. 1. Variation of dimensionless energy per unit area of minimum energy kink solutions with tan β (left) and the SM alignment
parameter, cosðα − βÞ (right), for benchmark values of the CP-even scalar mass, MH . In all cases, the energy per unit area of kink
solutions goes to zero in the limit of large tan β.
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would obtain a stronger bound on tan β, such that the
domain walls are light enough to evade the constraint.
It should be made clear that these results only pertain to

scenarios where the 2HDM possess an exact discrete
symmetry and hence, a domain wall problem. These
stringent constraints suggest that in order to have cosmo-
logically viable 2HDM domain walls in experimentally
viable parameter regimes, a means of modifying the scaling
behavior of these domain walls will be required.

IV. APPROXIMATE Z2 SYMMETRY

So far, we have only considered the scenario in which the
2HDM possesses an exact Z2 symmetry. We have shown
that the domain wall problem present in this model places
highly restrictive limits on the parameters of the model such
that domination can be made to occur after present day. We
now turn our attention to means of eliminating the domain
wall problem altogether. For the 2HDM with softly broken
Z2 symmetry, (2), the degeneracy of the vacua is removed,
and the scalar potential contains so-called true and false
vacua. The true vacuum is the global minimum of the
potential, while the false vacuum is a local minimum with
higher energy. We anticipate that the energy difference
between these vacua produces a pressure on the domains of
false vacuum causing the domain walls to collapse when
this pressure becomes comparable to the surface tension of
the walls [7]. Therefore, the domain wall problem could be

eliminated in this scenario if domain wall networks are
sufficiently short-lived that they do not survive long enough
to dominate the energy density of the Universe. We earlier
made the self-scaling argument that domain wall energy
density can be expressed as ρdw ∝ Et−1. Let us add an
exponential suppression to this domain wall energy; we
have ρdw ∝ Et−1e−αt with the corresponding density
parameter,

Ωdw ∝
Et
M2

Pl

e−αt; ð20Þ

where the parameter α encodes the breaking of the
symmetry, and we will estimate this in the 2HDM.
Again, introducing a dimensionless proportionality con-
stant, A, specifying the number of domain walls per horizon
and recalling that in our dimensionless system the energy
per unit area, E ¼ Mhv2SMÊ; where Mh ¼ 125 GeV and
vSM ¼ 246 GeV, we can write

Ωdw ¼ 32π

3

AÊMhv2SM
M2

Pl

te−αt: ð21Þ

The time at which the exponential suppression dominates is
determined by the parameter α after which time the domain
wall density relative to critical begins to decrease. In other
words, the domain wall density is maximal at tmax ¼ 1=α.
Therefore, the maximum value is given by

FIG. 2. Variation of the dimensionless energy per unit area in the Z2-symmetric 2HDM with SM alignment limit as a function of the
CP-even scalar mass, MH , and CP-odd mixing angle, tan β ¼ v2=v1, for minimum energy kink solutions obtained via gradient flow.
Contour regions indicate the order of magnitude of the energy per unit area for a given set of physical parameters.
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Ωmax
dw ≡ΩdwðtmaxÞ ¼

32π

3

AÊMh

eα

�
vSM
MPl

�
2

: ð22Þ

To avoid confusion note that here, e is Euler’s constant not
the fundamental electric charge. The minimal theoretical
requirement is that Ωmax

dw < 1 such that the domain walls do
not dominate the energy density of the Universe by the end
of their scaling phase. Inserting numerical values into (21),
we obtain the lower bound,

α > αmin ≃
64π

3
AÊ × 10−32 GeV; ð23Þ

from which we find the time of maximum domain wall
density,

tmax ¼
3

64π

1032 GeV−1

AÊ
¼ 9.8 × 105 secs

AÊ
: ð24Þ

It has been established that kink solutions in the Z2-
symmetric 2HDM have dimensionless energy of order 1
for physically viable values of physical observables
[10]. Note that the time of radiation-matter equality,
teq ∼ 1012 sec. As such, it is apparent that even the smallest
acceptable exponential suppression, αmin, places the time of
maximum domain wall density well within the radiation
dominated epoch provided domain walls are not ultralight,
i.e., for large tan β, where Ê becomes small. It should also
be noted that the collapse of these domain walls could still
have undesirable effects on the cosmic microwave back-
ground (CMB) and big bang nucleosynthesis (BBN) [22],
conflicting with current cosmological constraints on these
processes. One may wish to consider constraints on domain
walls arising at these epochs; however, the domain wall
density (20) suggests that domain wall domination in the
2HDM would not have arisen by the BBN epoch.
Moreover, without choosing particular combinations of
physical parameters, e.g., ultralight domain walls, such
defects will have already come to dominate the Universe
prior to recombination.
We anticipate that limits on the suppression coefficient,

α, will allow constraints on the soft-breaking parameter
m̂2 to be obtained such that the domain walls can be
made cosmologically benign. We have performed (2þ 1)-
dimensional simulations for the global scalar field theory of
the 2HDM with approximate Z2 symmetry by evolving the
equations of motion of the global scalar field theory (11)
from normally distributed random initial conditions on a
regular grid of P2 points for P ¼ 4096 with Minkowski
metric (for details of the simulation procedure, see [10]).
Temporal derivatives are approximated to second order and
spatial derivatives to fourth order. Simulations are per-
formed in (2þ 1) dimensions for computational ease.
Nonetheless, these simulations are a good approximation
of the behavior in (3þ 1) dimensions, as shown in [10].

The evolution of a set of such simulation is presented in
Fig. 3 for various values of the soft breaking parameter, m̂2.
In these simulations, domain walls are short-lived with the
entire space coming to be dominated by a single vacuum at
late times. The time at which the field comes to occupy the
true vacuum throughout the space is determined by the size
of the symmetry breaking term, m̂2. This collapse has a
significant effect on the scaling behavior of domain walls in
the approximately Z2 symmetric 2HDM. The number of
domain walls as a function of time in (2þ 1) dimensions
are presented in Fig. 4 for various values of the dimension-
less soft-breaking parameter, m̂2. The time evolution of the
number of domain walls is obtained as an average over ten
realizations. Figure 4 shows that the number of domain
walls in the 2HDM with approximate Z2 symmetry
decreases much more rapidly than the t−1 scaling found
in models with exact discrete symmetries [1]. The number
of domain walls appears to follow an exponentially sup-
pressed power law, Ndw ∝ t−ne−αt. A nonlinear least
squares fitting to the number of domain walls for an
exponentially suppressed power law are also included in
Fig. 4 for both n ¼ 1 and n as a fitted parameter. The
exponential suppression parameter, α, exhibits the approxi-
mate relationship to the soft-breaking parameter,

α

Mh
≃ 0.5 m̂2 ¼ 0.5

�
m12

Mh

�
2

: ð25Þ

Hence, in order for the exponential suppression of domain
wall density to be sufficiently large to avoid domination, we
obtain the limit,

m2
12 >

64π

3

AÊ
e

�
vSMMh

MPl

�
2

≃ 1.6 × 10−28AÊ GeV2: ð26Þ

Assuming a small number of domain walls per horizon
such that A is of order unity, this limit suggests a small
value of m12 relative to the electroweak scale (around μeV
order) would sufficiently modify domain wall scaling to
avoid their domination.
In a Z2-symmetric type-II 2HDM, the origin of a small

effective m2
12 parameter may be attributed to anomalous

QCD instanton effects [30,31]. In the absence of a Peccei-
Quinn mechanism [32,33], we may nonetheless adapt their
results and conservatively, estimate the size of the anoma-
lous Z2-breaking parameter m2

12 from the would-be PQ
instanton potential as follows:

V inst ∼ Λ4
QCD

��
Φ†

1Φ2

v2SM

�
nG

−
�
Φ†

1Φ2eiθ

v2SM

�
nG
�
þ H:c:

≲ Λ4
QCD

v2SM
s2βc

2
βð1 − cosðnGθÞÞΦþ

1 Φ2 þ H:c:; ð27Þ
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whereΛQCD∼0.3GeV is the QCD confinement scale, nG¼3

is the number of the SM quark generations, and θ is the well-
known strong CP-odd phase generated by QCD instantons.
A nonzero value of θ would induce a nonzero electric dipole
moment (EDM) for the neutron [34]. Current experiments
place an upper limit on θ ≲ 10−10–10−11 [35]. On the other
hand, combining (27) with (26), we obtain a lower limit on θ,

θ ≳ 10−11

sβcβ
: ð28Þ

This suggests that the parameter tan β should lie in the narrow
interval: 0.3≲ tan β ≲ 3.

FIG. 3. Evolution of domain walls in a 2HDM with approximate Z2 symmetry in (2þ 1) dimensions for dimensionless soft-breaking
parameter, m̂2 ¼ 2 × 10−3, 4 × 10−3, 5 × 10−3, and 7 × 10−3 top-to-bottom. Remaining parameters are common to all sets of
simulations and were chosen as MH ¼ MA ¼ MH� ¼ 200 GeV, tan β ¼ 0.85, cosðα − βÞ ¼ 1.0. Simulations were run for time,
t ¼ 448 with temporal grid spacing,Δt ¼ 0.2 and spatial grid size, P ¼ 4096 with spacing, Δx ¼ 0.9. Each set of plots progress in time
left-to-right, and each plot is at double the time step of the previous. Each panel is a binary color map, indicating which of the two vacua
the field lies in throughout the space.
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V. BIASED INITIAL CONDITIONS

One can also avoid domain wall domination in models
with an exact discrete symmetry by biasing the initial
conditions, such that the degenerate vacua are selected with
unequal probability. In many studies of domain wall
dynamics, including our own simulations of 2HDM
domain walls [10], it is assumed that domain walls evolve
from initial conditions where each of the degenerate vacua
are selected with equal probability; i.e., that the scalar field
(s) are in thermal equilibrium before the phase transition
[36]. However, if the initial conditions in the early Universe

have some bias towards one of the vacua, smaller domains
of the disfavored vacuum should form surrounded by larger
regions where the field lies in the preferred vacuum [7].
These small domain walls should then collapse rapidly.
This has been demonstrated for the Goldstone model in
(2þ 1) and (3þ 1) dimensions [36]. Of course, these initial
conditions must be viable for the Higgs fields in the early
Universe if such biased 2HDM domain walls are to be of
interest for cosmology.
Assuming an exponential suppression of domain wall

scaling, the lower bound of (23) still holds in this case.
The aim now becomes to relate this to the bias parameter, ε.

FIG. 4. Evolution of the number of domain walls in 2D 2HDM simulations with approximate Z2 symmetry averaged over ten
realizations for various values of the dimensionless soft breaking parameter, m̂2. Remaining parameters chosen were
MH ¼ MA ¼ MH� ¼ 200 GeV, tan β ¼ 0.85, and cosðα − βÞ ¼ 1.0. Simulations were run for time, t ¼ 1260 with temporal grid
spacing, Δt ¼ 0.2 and spatial grid size, P ¼ 4096 with spacing, Δx ¼ 0.9. Error bars, which are the standard deviation amongst the
realizations, illustrate the numerical scatter. Also shown are nonlinear least squares fittings for an exponentially suppressed power law
for n ¼ 1 fixed (top) and allowing n to vary (bottom).
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We have performed (2þ 1)-dimensional simulations with
P ¼ 4096 for the global scalar field theory of the 2HDM
with exact Z2 symmetry with a Minkowski metric from
biased random initial conditions. Specifically, we produce
random initial conditions for the scalar fields normally
distributed around ε, such that one vacuum is selected with
greater probability. The evolution of a set of such a
simulation is presented in Fig. 5. We find that domain
walls are short-lived with the entire space coming to be

dominated by the preferred vacuum at late times. This
behavior is qualitatively similar to that found in the softly
broken Z2 case of Fig. 3. The number of domain walls as a
function of time in (2þ 1) dimensions for biased initial
conditions are presented in Fig. 6. The time evolution of the
number of domain walls is obtained as an average over ten
realizations. Figure 6 shows the number of domain walls
decreasing with a similar profile to that seen in the case of
approximate symmetry. The number of domain walls

FIG. 5. 2D simulations of the evolution of domain walls in a 2HDMwith Z2 symmetry from increasingly biased initial conditions top-
to-bottom. Parameters chosen were MH ¼ MA ¼ MH� ¼ 200 GeV, tan β ¼ 0.85, and cosðα − βÞ ¼ 1.0. Simulation was run for time,
t ¼ 448with temporal grid spacing,Δt ¼ 0.2, and spatial grid size, P ¼ 4096with spacing,Δx ¼ 0.9. Each set of plots progress in time
left-to-right and each plot is at double the time step of the previous.
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appears to follow an exponentially suppressed power law,
Ndw ∝ t−ne−αt. A nonlinear least squares fitting to the
number of domain walls for an exponentially suppressed
power law are also included in Fig. 6. The exponential
suppression parameter, α, shows an approximate linear
relationship to the biasing,

α

Mh
≃ 0.05

ε

vSM
: ð29Þ

Hence, in order for the exponential suppression of domain
wall density to be sufficiently large to avoid domination, we
obtain the limit,

ε >
640π

3

AÊ
e

�
v3=2SM

MPl

�2

≃ 2.5 × 10−29AÊ GeV: ð30Þ

Again, assuming a small number of domain walls per
horizon, such that A is of order unity, this limit suggests a
very small biasing of the initial conditions would be
sufficient to avoid domain wall domination.

VI. CONCLUSIONS

In this article, we have considered the phenomenological
implications of domain walls in 2HDMs with an exact or
approximate Z2 symmetry. We have obtained cosmological
constraints on the Higgs masses and mixing angles, such
that domain walls in these models do not dominate the
energy density of the Universe today. We find that domain
wall domination can always be avoided for sufficiently

large or small values of tan β, where domain walls become
ultralight; i.e., the energy of the neutral vacuum solution
tends to zero. Moreover, for type-I 2HDMs with a sponta-
neous breakdown of the Z2 symmetry, we find that domain
wall domination can only be avoided today for tan β > 105

for scalar masses larger than 100 GeV.
We have also demonstrated that domain wall networks in

(2þ 1)-dimensional simulations can be made to collapse
by rendering the discrete symmetry approximate via a small
symmetry breaking term. We find that the time evolution of
the number of such domain walls exhibits an exponential
suppression of the approximate power law scaling found
in [10]. The collapse rate of the domain walls is linearly
related to the soft-breaking parameter squared, m2

12. Con-
sequently, we find that a soft-breaking parameter m12 ∼
10−6 eV is sufficient to avoid domain wall domination by
the end the scaling phase of their evolution. For a 2HDM of
type II, this suggests a corresponding lower limit on the
CP-odd phase θ generated by QCD instantons, i.e.,
θ ≳ 10−11=sβcβ. This estimate is in some tension with an
upper limit on θ ≲ 10−10–10−11 coming from the non-
observation of a nonzero EDM for the neutron. Taking this
last constraint into account, we obtain an upper and lower
limit on the key parameter tan β, i.e., 0.3≲ tan β ≲ 3. We
anticipate similar exponential suppression of domain wall
scaling will be obtained in 2HDMs with approximate CP1
and CP2 symmetries, or in any alternative scenario that
breaks the Z2 symmetry.
Finally, we have demonstrated that domain walls

evolving from biased initial conditions can be similarly

FIG. 6. Evolution of the number of domain walls in 2D 2HDM simulations with Z2 symmetry from biased initial conditions
(i.e., normally distributed about ε) averaged over ten realizations. Also plotted is the standard power law scaling for a domain wall
network ∝ t−1. Parameters chosen were MH ¼ MA ¼ MH� ¼ 200 GeV, tan β ¼ 0.85, and cosðα − βÞ ¼ 1.0. Simulations were run for
time, t ¼ 448 with temporal grid spacing, Δt ¼ 0.2 and spatial grid size, P ¼ 4096 with spacing, Δx ¼ 0.9. Error bars, which are the
standard deviation amongst the realizations, illustrate the numerical scatter.
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short-lived with qualitatively similar behavior to the case of
an approximate symmetry. We find that domain walls in
our biased simulations also experience an exponential
suppression of their scaling. In particular, we have derived
in (30) a lower limit on the biasing parameter ε of initial
conditions, such that domain wall domination can be
avoided by the end of scaling. Results obtained for
approximate and biased discrete symmetries can both
provide means of avoiding the late-time scaling problems,
which domain walls ordinarily present, and hence, they

could be used to make 2HDMs with discrete symmetries
cosmologically safe.
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