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We study cosmological perturbation theory in the cosmology associated with conformal gravity,
establish the validity of the decomposition theorem for it, and then use the theorem to provide an exact
solution to the theory in the recombination era. Central to our approach is the use of a fully gauge invariant
formulation of the cosmological fluctuation equations. In the recombination era, not only is perturbation
theory applicable, because of its specific structure in the conformal case, the fluctuation equations are found
to greatly simplify. Using a master equation for scalar, vector, and tensor fluctuation modes, we show that
the radial equations for the three-dimensional vector and tensor modes are, respectively, the same as those
of scalar modes in five and seven spatial dimensions. This enables us to construct normalization conditions

for the three-dimensional modes.
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I. INTRODUCTION
A. Motivation

Since the discovery of the cosmic microwave back-
ground (CMB), a central focus of cosmological research
has been the study of fluctuations around that background
(see, e.g., [1-6]). With the background itself being homo-
geneous and isotropic, these fluctuations are associated
with anisotropies and inhomogeneities in the background.
While such fluctuations eventually grow nonperturbatively
into the galaxies that we see today, at the time of
recombination of electrons and baryons into atoms (typical
temperatures of order 1eV or 10*°K), these fluctuations
were very small and could thus be explored perturbatively.
The actual behavior of the perturbations depends on the
dynamics of the particular gravitational theory under
consideration, with the standard treatment of these fluctua-
tions being based on the Newton-Einstein gravitational
theory, viz. the standard cosmological model. However, use
of this model requires the inclusion of unobserved dark
matter particles, of a not as of yet understood, highly fine-
tuned dark energy or cosmological constant component,
and a presumption that the classical treatment of the model
that is made would not be destroyed by quantum radiative
corrections even though these corrections are known to lead
to uncontrollable infinities [7]. In response to these con-
cerns, some candidate alternative proposals have been
advanced in the literature and in this paper we consider
one specific alternative, namely, conformal gravity.
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As shown in [8-12] and references therein, conformal
gravity eliminates the need for galactic dark matter by
providing fits to a wide class of galactic rotation curves
without any need for dark matter. Moreover, conformal
gravity has a local conformal symmetry [invariance under
G (x) = e2av) gy (x)] that controls the cosmological con-
stant without fine-tuning. And with the conformal sym-
metry requiring the gravitational coupling constant, a,, to
be dimensionless, the conformal theory is renormalizable.
With conformal gravity also being quantum-mechanically
ghost free and unitary [13—16], conformal gravity provides
a consistent quantum gravity theory in four spacetime
dimensions. (The gravitational coupling constant associ-
ated with the conformal gravity action Iy that is given
below is only dimensionless in four spacetime dimensions.)
The view of conformal gravity is that the dark matter, dark
energy, and quantum gravity problems are not three
separate problems, but that since they all have the same
common origin, namely, the extrapolation of Newton-
Einstein gravity beyond its solar system origins, they
can have a common solution, with conformal gravity
endeavoring to provide such a solution through a different
extrapolation of solar system wisdom. However, in order
for the conformal theory to be viable, it needs to address the
other regime in which the standard model needs dark
matter, namely, cosmology. And even though the con-
formal theory has successfully done this for the homo-
geneous and isotropic background by providing [10-12,17]
a horizon-free background cosmology with no flatness
problem [18], while providing a very good, non-fine-tuned,
dark matter free fit to the accelerating universe supernovae
data of [19,20], it still needs to do so for the fluctuations
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around that background. The development of the cosmo-
logical perturbation theory that is required for this has been
presented in general in [21-24], and in this paper we take a
further step by providing a new exact solution to the
conformal cosmological fluctuation equations in the recom-
bination era. In regard to conformal gravity, we note also that
various other studies of conformal gravity and of higher-
derivative gravity theories in general can be found in [25-38].

In order to be able to derive solutions to the conformal
gravity cosmological fluctuation equations, we first need to
derive the equations themselves, and in so doing we actually
obtain conformal gravity fluctuation equations that hold in
any cosmological epoch, and not just at recombination.
Moreover, even though negative spatial three-curvature is
preferred for conformal gravity itself [10—12], something we
elaborate in Secs. I and II, the equations that we obtain [viz.
(2.31)—(2.33)] are generic to conformal gravity in the sense
that they hold for general background matter sources and for
any general Robertson-Walker background with arbitrary
expansion radius a(7) and arbitrary spatial three-curvature k.
To actually study the gravitational fluctuation equations,
we shall use the scalar, vector, tensor expansion of the
fluctuation metric that was first introduced in [39,40] and
then widely applied in perturbative cosmological studies
(see, e.g., [41-48] and [1-6]). This expansion is based on
quantities that transform as three-dimensional scalars, vec-
tors, and tensors, and as such it is particularly well suited to
Robertson-Walker geometries because such geometries
have a spatial sector that is maximally three-symmetric.
While not manifestly covariant, the scalar, vector, tensor
expansion is covariant as it leads to equations that involve
appropriate combinations of the scalars, vectors, and tensors
that are fully four-dimensionally gauge invariant; this being
all that one needs for covariance [49]. To be as general as
possible, we shall both derive and solve the fluctuation
equations in a procedure in which this full gauge invariance
is maintained at each stage of the process and shall make no
restriction to any particularly convenient gauge that might
facilitate finding a solution.

Since the appropriate gauge invariant combinations of the
scalar, vector, and tensor components of the fluctuation
metric are coupled in the fluctuation equations, our strategy
is to first manipulate these equations so that we obtain
equations in Sec. III in which these various components are
decoupled. Since this decoupling is only achievable at a
higher-derivative level, it is these higher-derivative equa-
tions that we will need to integrate. And to be able to do so,
we will need to introduce spatial boundary conditions, with
it turning out that we will need boundary conditions not just
at r = oo but also at r = 0. Asymptotic boundedness is not
actually a new dynamical assumption, since, as noted in
[22,23], it is actually needed in order to be able to make
the scalar, vector, tensor expansion in the first place. For
the typical case, e.g., of the decomposition of a three-
dimensional Cartesian vector A; into its transverse and

longitudinal components, one wants to be able to set A; =
0;V + V,; where &'V, = 0. On applying &' to A;, we obtain

(1.1)

On introducing the Green’s function D) (x — y) that obeys

(9iAi - alalv

9,0 D) (x —y) = & (x —y), (1.2)

V is given by

V(x) = / PyDO (x —Y)IAY).  (13)

with V; then being given by

Vi(x) = A;(x) — 0; / dyDB) (x — Y)OA;(y). (1.4)

Thus, in order to be able to decompose a vector into its
transverse and longitudinal components in the first place,
one requires A; to be well enough behaved at spatial infinity
so that the integral in (1.3) actually exists. In [22,23], we
have carried out an analogous analysis for the full scalar,
vector, tensor expansion and discuss it further in Sec. VII B.
In the literature, it is standard practice not to decouple the
fluctuation equations at some higher-derivative level but to
treat the various components as evolving independently at
the level of the fluctuation equations themselves, the so-
called decomposition theorem. The basic idea behind the
decomposition theorem is that in an equation such as
Bi‘l'aiB: C,-—l—@l-C, (15)
where B and C are three-scalars and B; and C; are
transverse three-vectors that obey 0'B; = 0, 9'C; = 0 the
solutions are taken to obey
B:C, Bi:Ci? (16)
with the scalar and vector sectors of (1.5) solving (1.5)
separately. However, if we apply ', we obtain
9'0;(B—-C) =0, (1.7)
an equation that can admit of solutions other than B = C. In
fact, in general, we can obtain B — C = ¢ + c'x;, where ¢
and ¢’ are constants. To exclude such an outcome, we
impose boundary conditions that the solutions vanish at
spatial infinity. This then sets B — C = 0, and then from the
initial B; + 0;B = C; + 9,C we infer that B, — C; = 0 too.
With asymptotic boundary conditions, we thus establish the
validity of the decomposition theorem [that the only
allowed solution to (1.5) is (1.6)] in this particular case.
In this simple example we see that the asymptotic boundary
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condition needed to decompose a vector into its separate
longitudinal and transverse components in the first place is
the same as the one needed to establish the validity of the
decomposition theorem. It is thus only through the use of
boundary conditions that we can obligate the separate
scalar, vector, and tensor sectors to propagate independ-
ently. For fluctuations in the standard cosmological theory,
it was shown [23] that, as augmented by conditions at the
origin of coordinates, this analysis generalizes to the full
scalar, vector, tensor cosmological expansion, to thus
establish the validity of the decomposition theorem in
the standard case. In the present paper, we show in Secs. [V
and V that the decomposition theorem also generalizes to
the conformal case, again in any cosmological epoch.
Armed with this theorem, we can then proceed in
Secs. VI-VIII and four Appendices to solve the conformal
gravity fluctuation equations. And we find that in the
conformal gravity case the fluctuation equations simplify
so much in the recombination era that one is able to find
exact analytic solutions.

As well as impose boundary conditions on the fluc-
tuation modes, in Sec. [V D, we present a master equation
for scalar, vector, and tensor fluctuation modes and show
that the radial equations for the three-dimensional vector
and tensor modes are, respectively, the same as those of
scalar modes in five and seven spatial dimensions. This
enables us to construct normalization conditions for the
three-dimensional vector and tensor modes (construction of
normalization conditions for the three-dimensional scalar
modes can be achieved with three-dimensional information
alone). To ensure that these modes are normalizable, we
will again require spatially asymptotic boundary condi-
tions, conditions that will turn out to be more stringent than
just having the modes vanish at infinity as minimally as
possible. Specifically, for the negative spatial curvature
Robertson-Walker cosmology that we study in detail in this
paper, this being the one of relevance to conformal gravity,
we find that in terms of the radial coordinate r = sinhy
normalizability requires that the scalar, vector, and tensor
modes, respectively, behave as e, e™%, e as y — oo.

B. The background conformal gravity
cosmology—gravity sector

Conformal gravity is a pure metric theory of gravity that
possesses all of the general coordinate invariance and
equivalence principle structure of standard gravity while
augmenting it with an additional symmetry, local con-
formal invariance, in which the action is left invariant under
local conformal transformations on the metric of the form
gu(x) = €*Wg, (x) with arbitrary local phase a(x).
Under such a symmetry, a gravitational action that is to
be a polynomial function of the Riemann tensor is uniquely
prescribed, and with use of the Gauss-Bonnet theorem it is
given by (see, e.g., [10])

IW = _ag/d“x(_g)l/QCjﬂchlva
1
E—zag/d4 (—g)'/? [R R”"—g(R" 2. (1.8)

Here a, is a dimensionless gravitational coupling constant,
and

1
Cl/lwc = R/l;wk - E (glwac - glKR/w - g/wR/IK + g/uchl/)
1
+ gRaa(gMguK - gﬂkg;u/) (l 9)

is the conformal Weyl tensor.

The conformal Weyl tensor has two features that are not
possessed by the Einstein tensor G,, = R, — % GuwR% e
namely, that C* L Vanishes in geometries that are conformal
to flat (this precisely being the case for the Robertson-
Walker and de Sitter geometries that are of relevance to
cosmology), and that for any arbitrary metric CAWC trans-
forms as C*,,,, — C*,, under g, (x) > 2" g, (x), with all
derivatives of a(x) dropping out. With all of these deriva-
tives dropping out, Iy is locally conformal invariant [50].

With the Weyl action Iy given in (1.8) being a fourth-
order derivative function of the metric, functional variation
with respect to the metric g,,(x) generates fourth-order
derivative gravitational equations of motion of the form [10]

2 Sy
g, ~ e = 40,2V, V,CHv% — R, CHx|
v 1 v v
= 4%{”72) 73 ”’(1)] =T (1.10)

where the functions W’(‘ f ) and W’(% [respectively, associated
with the (R%,)? and R, R* terms in (1.8)] are given by

1
W =2¢"V;V/R*, —2V"V¥R" —2R*,R" +§g””(R“a)2,
W) fg””VﬁVﬂR” +V VPR —N ;N RH —N ;VH R

—2R”ﬁR'“ﬁ —l—ig"”RaﬂR“ﬁ, (1.11)
and where T* is the conformal invariant energy-momentum

tensor associated with a conformal matter source. Since
W = W3 — (1/3)W(}), known as the Bach tensor [51], is

obtained from an action that is both general coordinate
invariant and conformal invariant, in consequence, and
without needing to impose any equation of motion or
stationarity condition, W* is automatically covariantly
conserved and covariantly traceless and obeys V, W# =0,
9w WH = 0 on every variational path used for the functional
variation of Iy,. While this is not necessarily the case for the
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arbitrary matter field, it is the case for massless gauge fields
since, as noted in [50], they have a conformal structure
analogous to that of the gravitational field of a conformal
theory. However, for nongauge fields, we note that in a
conformal invariant theory the relevant 7', is still conformal
invariant. Then, with W, being both conserved and trace-
less, in solutions to the gravitational equations of motion the
conformal invariant 7* is covariantly conserved and cova-
riantly traceless too. Without the imposition of the gravi-
tational equations of motion, a nongauge matter field 7,
would still be covariantly conserved and covariantly trace-
less in solutions to matter field equations of motion as long
as they are conformal invariant.

C. The background conformal gravity
cosmology—matter sector

As well as being covariantly conserved and covariantly
traceless in any geometry, because a general Robertson-
Walker geometry is conformal to flat, in such a geometry
the Weyl tensor vanishes identically, and thus from (1.10) it
follows that W, vanishes identically too. Thus, given the
conformal gravity field equation 4a,W,, = T,,, it follows
that in a background Robertson-Walker conformal cosmol-
ogy the matter sector T, also vanishes. While this would
seem to imply that the matter source is trivial, this is not in
fact necessarily the case. Specifically, in the literature, two
ways in which a background 7', could vanish nontrivially
have been identified, one involving a conformally coupled
elementary scalar field [52] and the other involving a
conformal perfect fluid [53]. We describe both of the cases
now since even though they both were developed for the
background; we shall have occasion to discuss aspects of
both of them when we study fluctuations below.

For a conformally coupled scalar field S(x), the matter
action is

1 1
Is=-— / d*x(—g)'/? {5 V,SVHS — ES2R"# + /134]

1., 1 .= 1
= [ d*x(—g)V/?|— 8% — = (VS)? + — S2R#, — 84|,
/ *(=9) {28 5 (V8) 5 SR

(1.12)

where 4 is a dimensionless coupling constant. (Since we
use the convention given in [54] where gy is taken to have
negative signature, and where the proper time is written as
ds®> = —Gudx*dx”, (1.12) thus corresponds to a scalar field
with a normal positive signatured kinetic energy.) As such,
the /g action is the most general curved space polynomial
matter action for the S(x) field that is invariant under both
general coordinate transformations and local conformal
transformations of the form S(x) — e~*™S(x), g, (x) -
e’ g, (x). Variation of the g action with respect to S(x)
yields the scalar field equation of motion

1
V, VIS + 2SR, — 415> =0, (1.13)

while variation with respect to the metric yields a matter
field energy-momentum tensor

2 1 1
TS =S VISVES — gV, SVS — 2 SVVES

1 1 1
— SV Vas — — 2 RHY — _ gHV R@
+3g/‘S « V%S 6S< Zg" a)

— g™ ASh. (1.14)
Use of the matter field equation of motion then confirms
that this energy-momentum tensor obeys the tracelessness
condition g, T's" = 0, just as it should do in a conformal
invariant theory.

In the presence of a spontaneously broken, scale-setting,
nonzero constant vacuum expectation value S, for the
scalar field, the scalar field wave equation and the energy-
momentum tensor are then found to simplify to

R®, = 2453,
1

T —
S 6

1
2 (R"” -3 g"”R"’a> —gwist. (1.15)

With the Ricci scalar being nonzero in this solution, we see
immediately that once S, is nonzero the geometry is
necessarily nontrivial [55]. Moreover, if we take the
geometry to be a de Sitter geometry in which
R/I/my — K[g/,mg/hz _ g;wgﬂr;]’ RH — _3Kg;w’ Raa — _12[(’
G, =R, —39.,R", = 3Kg,,, then since W* will vanish
identically in such a de Sitter geometry, it follows that T
must vanish identically too. And with K = —24S3 it can
readily be checked that it in fact does. Thus, even though
WH and T* both vanish identically, as noted in [52], the
conformal cosmology governed by 4a,W** = T** admits
of a nontrivial de Sitter geometry solution, with a non-
vanishing four-curvature K = —21S3.

A second way in which T# can vanish nontrivially was
given in [53]. If we drop the 1-dependent term in /g, then in
a generic Robertson-Walker geometry with metric

dr?

1 — kr?
= c2di* — a*(1)ydx'dx,

+ r2d#* + r’sin’d¢?

ds?* = c*dr* — a*(t) [
(1.16)
solutions to the scalar field wave equation (1.13) obey [56]

71207 2710,9(r.0.0)]

(1.17)

b [sz

@ |2zt (T)] =3

(r.0.9)
==,
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where 7 = [dt/a(t), S = f(2)g(r.0,¢)/a(r), 7/ is the
metric of the spatial part of the Robertson-Walker metric,
and £? is a separation constant. From (1.17), we see that f(7)
is harmonic with frequencies that obey w?/c* = ¢? + k,
while we can set g(r. 0, $) = g%(r)Y7 (6. ¢), where gZ(r)
obeys

P (2-3k) 0 £(E+1)

2 - _
(1 kr)aﬂ r or 2

+ &2 gg(r) =0.
(1.18)

To form a perfect fluid energy-momentum tensor, in 7%’
we make an incoherent averaging over all allowed spatial
modes associated with a given @ (this is equivalent to
calculating statistical averages using a density matrix that is
proportional to the unit matrix and normalized to one). And
on doing the sum over all modes, for each @ we obtain [56]
the automatically traceless

ot (¢" +4UMUY) (E+k)* (g™ +4U DY)

T =
S 6ctn’a* (1) 6r%a’(t) '

(1.19)

where U* is a unit timelike vector. This 7% vanishes if
w? =0, and with @?/c* =¢* +k, we can thus satisfy
T = 0 nontrivially if and only if k is negative. In doing
the incoherent averaging when @ = 0, for T% for instance
we obtain

1 .
Tg“o ~6 [Z 7”|ai(g{—k)‘/2Y?(9’ 9)I
‘m Li
(1.20)

when k is negative, with it being shown in [53] that the sum
in (1.20) vanishes identically. Essentially what happens is
that a positive contribution to 7 by the scalar field modes
is canceled by a negative contribution from the gravita-
tional field due to its negative spatial three-curvature. With
negative k, solutions to (1.18) are associated Legendre
functions, and even though we have now fixed 52 to —k,
(1.18) still possesses an infinite number of solutions labeled
by ¢ and m. An incoherent averaging over all of these
solutions then causes 7 to vanish nontrivially. Thus as we
see, it is negative k that is selected.

D. Phenomenological justification for negative
spatial three-curvature

In applications of conformal gravity to astrophysical
and cosmological data, it has been found that phenomeno-
logically k actually should be negative. In conformal
cosmology, very good non-fine-tuned, negative k fits to
the accelerating universe Hubble plot data have been

presented in [10-12] and will be described below.
Similarly, very good negative k conformal gravity fits to
the rotation curves of 138 galaxies have been presented in
[57-59]. That galactic rotation curves would even be
sensitive to cosmology is initially somewhat puzzling since
this is not the case in standard Newton-Einstein gravity, and
so we clarify the point. Without needing to impose any
gravitational equation of motion, in conformal gravity,
the metric associated with a static, spherically symmetric
system can be brought to the form ds*> = B(r)c*dt* —
dr?/B(r) — r?d6* — r’sin*0dg¢? via a sequence of general
coordinate and conformal transformations [8], with the
relation 4q,W,, =T, taking the exact form [9]

V4B(r) = 3

- 4(XgB(I”) (TOO - Trr) :f(r)

(1.21)

in such a geometry without approximation, with (1.21)
serving to define f(r). The solution to (1.21) can be written
as [9]

(1.22)

In (1.22), we recognize two potential terms coming from
matter localized to a finite region and one potential term
coming from global matter that is distributed all the way to
r = o0. For localized matter, the potential of a star of radius
R* is given by V*(r> R*) = —p*c*/r+y*c*r/2 [8],
where [9]

R* 1 [k
y*:——/ dar'r?f(r), 2,8*:—/ dr'rtf(r). (1.23)
2 Jo 6.Jo

While the global curvature of the Universe plays no role
in dark matter fits to galactic rotation curves (for a 1/r
potential one only needs to consider sources within
individual galaxies), in the conformal gravity (1.22), there
are contributions coming from material not just outside of a
given star of interest but from the global sources in the
entire rest of the Universe. (If the potential of a given source
is growing with distance, then the potentials of sources
very distant from the given source are also growing with
distance, to thus impact the given source.) These global
sources provide two forms of contributions that are
associated with conformal cosmology, namely, the contri-
bution of the Hubble flow and the contribution of inho-
mogeneities in it. Since galactic motions are determined in
the rest frames of galaxies, one has to transform the
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comoving Hubble flow to each local galactic rest frame. On
doing this, one finds [8] that a negative three-curvature (and
only a negative three-curvature) background Robertson-
Walker cosmology generates a universal linear potential
yoc?/r where y, = (—4k)'/?. Similarly, inhomogeneities in
the Hubble flow are found [57] to generate a universal
quadratic potential —kc?r? [the last term in B(r) in (1.22)].

For a spiral disk galaxy with surface brightness
Y(R) = Xye~®/Ro, where R is the radial distance in the
plane of the disk and R, is the disk scale length, the rotation
velocity is given by [10]

vR) = N*g;;RZ[ <2R0> <2R0>
*<st)2 <2R0>}
T (2'20) 169

]/OCZR 2
— kc°R~=,
2

(1.24)

where N* is the number of stars in the galaxy in solar mass
units, #* is the Schwarzschild radius of the sun, and /), I, Ky,
and K| are modified Bessel functions. Very good fitting to the
rotation curves of the 138 galaxies is obtained in [57-59]
with fixed, universal (i.e., galaxy-independent) parameters

£*=1.48%10° cm,
Yo=3.06x10"%cm™!,

y =542x10"*cm™!,

k=9.54x10*cm™2, (1.25)

and with there being no need to introduce any dark matter.
Since current dark matter fits require two free parameters per
galactic halo, the galaxy-dependent 276 free dark matter halo
parameters that are needed for the 138 galaxy sample are
replaced by just the three universal parameters: y*, ¥, and k.
[The luminous Newtonian N*f*-dependent contribution in
(1.24) is common to both dark matter and conformal gravity
fits and is included in both cases.] With y, being of order the
inverse of the Hubble radius and with x being of order a
typical cluster of galaxies scale, the values for y* and « that
are obtained show that they are indeed of the cosmological
scales associated with the homogeneous Hubble flow and the
inhomogeneities in it. We can thus use stars in galaxies to
serve as test particles that measure the global geometry of the
Universe. From the perspective of a local 1/r Newtonian
potential, the fact that the measured velocities exceed the
luminous Newtonian expectation is described as the missing
mass problem, with undetected or dark matter within the
galaxies themselves being needed in order to be able to
account for the shortfall [60]. From the perspective of
conformal gravity, the shortfall is explained by the rest of
the visible mass in the Universe. The missing mass is thus not

missing at all, it is the rest of the visible universe and it has
been hiding in plain sight all along.

Now, in the standard gravity, inflationary universe model
[61] fits to accelerating universe data, to properties of
clusters of galaxies, and to the anisotropy of the CMB lead
[62-64] to a spatially flat three-geometry. It is thus para-
mount to determine the conformal gravity expectations for
the anisotropy to see if the data could support a k < 0
universe, and the objective of this paper is to prepare some
of the needed groundwork by studying an exact solution to
fluctuations around a k < 0 conformal cosmology. While
beyond the scope of the present paper, this groundwork will
also enable us to analyze baryon acoustic oscillations in the
CMB and analyze the galaxy correlation function, and for
the moment we note only that both are associated with a
150 Mpc scale, viz. an inhomogeneity scale that is of the
same order as the scale associated with the inhomogeneity-
generated « (x~'/2 ~ 100 Mpc) that is measured in con-
formal gravity fits to galactic rotation curves.

E. The background cosmological model

To construct a background cosmological model, we
combine the scalar field and perfect fluid models described
above, but now look for a vanishing of the total 7, by an
interplay between them. We thus take the total background
matter sector energy-momentum tensor to be of the form

1 1 1
™ __[(pm +pm)U”UD+pmglw] _S2 <Ruu_§gm/Ra )

— g AS3, (1.26)
where the suffix m denotes matter. On taking the back-
ground geometry to be the comoving Robertson-Walker
metric given in (1.16), the background W, thus vanishes,
so that the background T,, = W,,/4a, then vanishes too.
We can rewrite the equation 7, = 0 in the instructive form

1, 1 1
ESO R”D_E.gnyaa :E[(pzn+pm)UﬂUy+pmgﬂy]

— " ASE. (1.27)
We thus recognize the conformal cosmological evolution
equation given in (1.27) as being of the form of none other
than the cosmological evolution equation of the standard
theory, viz. (on setting A = 153)

C3

1 1
—— | R — — g R% — U+UY v
e < 59" a) - [(Pm + Pm) + Png"]

— g"A, (1.28)

save only for the fact that the standard G has been replaced
by an effective, dynamically induced one given by
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33

Gefp = ——— , 1.29
= s (129)

viz. by an effective gravitational constant that, as had been
noted in [17], is expressly negative. Conformal cosmology
is thus controlled by an effective gravitational coupling
constant that is repulsive rather than attractive, and which
becomes smaller the larger S, might be.

In the conformal theory, local nonrelativistic solar
system gravity is controlled by the parameter S* that
appears in (1.23). With the conformal coupling constant
@, not participating in homogeneous geometries such as the
cosmological one in which the Weyl tensor is zero, while
participating in the inhomogeneous (1.21) where the Weyl
tensor is nonzero (static, spherically symmetric geometries
not being conformal to flat), G is completely decoupled
from a,, and thus completely decoupled from the local

Newtonian G = *c*/M* associated with a source of mass
M*. Thus, in the conformal gravity theory, the sign of the
local §* is related to the sign of a, while the sign of G is
not. Consequently, a negative effective global cosmological
G, 1s not in conflict with the existence of a positive local
G. The fact that the dynamically induced G is negative in
the conformal theory had been thought of as being a
disadvantage since it seemed to imply that the local G
would be given by the same negative Gy, to then be
repulsive too. (This even prompted many authors to flip the
overall sign of /g even though that would then make the
kinetic energy ghostlike.) However, as we see, a repulsive
global cosmological G4 and an attractive local G can
coexist in one and the same theory, an aspect of the theory
which can now actually be regarded as a plus since a
repulsive component to gravity causes cosmic acceleration
rather than deceleration.

To see how central the negative sign of G is to cosmic
acceleration, we define

_ 87Gepa(D) _ 87GgA
ol ==ty - 0 =3y
CZ
Q1) = _ézkz—(t)’ (1.30)

where H = a/a. And on introducing the deceleration
parameter ¢ = —ad/a?, from (1.27), we obtain

a2 (1) + ke? = a2(0)(Qu (1) + Qa (1)),
Qu(1) + Qu(1) + (1) = 1,

1

q(t) :—(1 +%>QM(Q —Q,(1), (1.31)

2 m

as the evolution equations of conformal cosmology. To
solve (1.31), we need to specify an equation of state for the
matter field, and since we will momentarily find that it will

not matter whether we use a massless or a massive field
equation of state, we set p,, = 3p,, = A/a*(t) = aT*, and
with k < 0 obtain [10]

KB—1) kpsinh(a2cr)
2a a ’

a(f) = - (1.32)

where

o = —2)53 — MG (1

16A1\ 1/2
= . (1.33
3¢ p ) ( )

T K

Since A represents the free energy that is released in the
phase transition that generated S, in the first place, A is
necessarily negative. Then with G also being negative the
quantity Q, (¢) is positive, i.e., the conformal theory needs
a negative G in order to obtain a positive Q, (7). (In
contrast, the standard model rationale for positive Q, =
87GA/3c*H? is that since the Newtonian G is positive A
has to be taken to be positive too.) While the standard
model cannot accommodate a large A, the conformal theory
can since G can be much smaller than G. In fact, as S,
gets bigger, A gets bigger too but G gets smaller, with
Q, (1) self-quenching. To see by how much we note that if
we set A = —aTy,/c (V denotes vacuum) where Ty is the
large temperature at which the S, generating phase tran-
sition occurs, then with Q,,(7) being of order aT*/c, in the
current era, the ratio Qy;()/Q, (1) = T*/T} is completely
negligible. Moreover, since the temperature at recombina-
tion is only of order 1 eV, at recombination Qy,(1)/Q, (¢) is
negligible too. Thus, we have to go into the very early
universe to obtain a temperature at which Q,,(7)/Qa (1) =
T*/T}, would not be negligible. In the very early universe,
we can use p,, = 3p,, as the equation of state, and while
massive matter would be nonrelativistic at recombination, it
would be irrelevant as to what equation of state we were to
use for it since Q,,(¢)/Q, (1) is negligible at recombination.
With the matter contribution being negligible at recombi-
nation, for all temperatures from recombination until the
current era (1.31) reduces to

Qp(1) + Q1) = 1, q(t) = —Q,(1).

(1.34)
With k being negative, the quantity € (¢) must be positive.
Thus, with Q, (¢) also being positive, other than in the early
universe, it must lie in the interval 0 < QA(z‘) < 1, and thus
it is indeed self-quenched sufficiently. Similarly, Q,(¢)
must lie in the range 0 < Qk(t) < 1. Moreover, from
recombination onward, the deceleration parameter must
lie in the interval —1 < ¢(¢) < 0, to not only be accelerating
but to be so without any need for fine-tuning.

For evolution in the region from recombination until the
current time £, the matter density plays no role and so we
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we can approximate f = 1 in this region, with a(z) then
being given by

(=k)!/? sinh(a'/?ct)

1) = 1.35
a(t) o (139)
With such an a(r), we obtain
Q. (t) = tanh?(a'/?ct), Q, (1) = sech?(a'/?ct),

q(t) = —tanh?(a'/?ct) (1.36)

and a luminosity distance redshift relation of the form [10]

where g, = ¢(t) is the current era value of the deceleration
parameter and H (f;) is the current era value of the Hubble
parameter.

Fitting the type 1A supernovae accelerating universe
data with (1.37) gives a fit [10-12] that is comparable in
quality with that of the standard model €, = 0.3, Q, =
0.7 dark matter dark energy paradigm. In the conformal
gravity fit, g, is fitted to the value —0.37, i.e., quite
nontrivially found to be right in the allowed —1<¢y,<0
range. Since Q,, is negligible, no dark matter is needed, and
since g, and Q, = —q, fall right in the allowed region, no
fine-tuning is needed either.

With tanh? (a'/?ct,)) = 0.37, we determine tanh (a'/?ct,) =
0.61, sinh(a'/?cty) =0.77, a'?cty=0.71, H(ty)=
a'?c/tanh(a'?cty)=1.16/t,. With H,=72km/sec/Mpc,
we obtain 7, = 4.83 x 10'7 sec, a perfectly acceptable value
for the age of the Universe. Similarly, we obtain a'/?c =
0.15 x 1077 sec™!, a'/? = 0.50 x 1072 cm~'. Recalling
that (=k)'/?=y,/2=1.53x10"cm™!, we obtain a(ty) =
2.36 x 1072, so the current era expansion radius itself is
also small.

If we extrapolate back to the recombination time 7z, we
obtain a(tg)/a(ty) = Ty/Tr = O(107*). Consequently,
with sinh(a'/?cty) = 0.77, we obtain sinh(a'/?ctg) =
0.77 x 107*. Thus, we can approximate sinh(a'/?ctg) by
a'/?cty itself at recombination. Finally then, to one part in
10* for both Q,(tz) and Q,(tg), we have

(l(tR):(—k)l/ZCtR, QA<ZR)NO, Qk(l‘R>N1 (138)
at recombination, with a dropping out of a(tz), and with
the numerical value of a(tz) being 2.36 x 1076, As we see,
at recombination, the conformal universe is curvature
dominated. We thus recognize three epochs for conformal
cosmology: radiation dominated early universe, curvature
dominated recombination universe, cosmological constant
dominated late universe. While there will always be

a trace of Q(¢) in any nonearly universe epoch, and

while nonearly universe propagating matter fields will
respond to a geometry that they are not affecting in any
substantial way, at recombination we see that a(ty) as given
in (1.38) is independent not just of Q(tgx) but even of
Q,(tg) as well.

Now a geometry in which k is negative and a() is linear
in ¢ can formally actually be brought to a locally four-flat
form (though not globally four-flat since the negative three-
curvature global topology does not change under a coor-
dinate transformation). Specifically, under # = (1+r%)"/21,
7 = rt, we obtain

dr® 2002 L 2202
m—f—}’d@ —+ r°sin €d¢

= di? = dr? — P2d6* — sin20d .

drr — 12
(1.39)

However, since #'>—r’2 =12, only the region with #*>—72>0
is mapped this way, with the region that would map into the
unobservable spacelike #> — 7> < 0 region being associ-
ated with a Euclidean ¢ region [65]. We described this
transformation as being formal since the  — 0 limit of
(1.35) is quite delicate. As noted in [55], the Ricci scalar is
given by R%, = —6(ad + a* + k)/a? and evaluating it for
a = sinht, k = —1 yields R*, = —12. Now under a coor-
dinate transformation R”, cannot change, and thus it cannot
be brought to a flat form in which R*, = 0. To see what is
happening, we work to order > and set ad = sinh’t — 2,
a*> =cosh’t — 1+ 12, with the Ricci scalar thus limiting to

. F+1+r-1 1-1 7247 0
R%, — —6 > =6 =6 =512
(1.40)

Thus, because of the > factor in the denominator of R%,,, we
must work to order #2 in the numerator. Without including
this term, we would be lead to the erroneous conclusion that
R?, is zero. In other words, if we simply set a(t) =1, k=—1
in R*, = —6(ai + a* + k)/a*, we would indeed get zero.
However, we are working in a geometry in which a()
limits to ¢, not in one in which it is identically equal to ¢, and
in the limit we need to carry the order > term. Moreover,
regardless of this concern, we note that in the > — r’> > 0
region, the only region that is observable, the cosmological
recombination era geometry is anyway not exactly locally
four-flat, but we can approximate it as such to one part in
10*. And even so, current era observers are looking at
anisotropies in the CMB through a geometry in which a(¢) is
given by the nonflat (1.35). Given the negative signs for G
and k and given the form for a(z), we can now proceed to
study conformal cosmological fluctuations around the
Robertson-Walker metric given in (1.16) at recombination.

However, before doing so, we note that conformal
models in which the scalar field is not an elementary field
but actually a vacuum expectation value (Q[py|Q) of a
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fermion bilinear have also been considered [11,12]. In these
models, it is possible for the matter sources to make a more
substantial contribution to cosmic expansion at recombi-
nation than in the elementary scalar field case. These
dynamical models are not as straightforward to handle
as the elementary scalar field model and will be considered
elsewhere. Nonetheless, in these models, the gauge invari-
ant evolution equations given in Sec. II and the decom-
position theorem structure that we derive in Sec. V also
hold just as exactly (these equations being generic to any
conformal cosmology). It is just that the form of the
background a(tz) at recombination is not as straightfor-
ward to deal with as in the elementary scalar field model.
And indeed, it is the simplicity of a(tz) = (—=k)'/?ctg in
the elementary scalar field model at recombination that
enables us to solve the model completely analytically at
recombination, just as we now do.

II. THE FLUCTUATIONS

A. Converting the background to conformal time

While the above phenomenological discussion was devel-
oped for a specific background conformal cosmology with
k < 0, we now discuss the fluctuation equations for arbitrary
a(t), arbitrary k, and arbitrary background matter sources.
Rather than work in comoving time, we have found it more
convenient to work in conformal time. Thus, on defining

dt
= [ — Q(r) = a(t), 2.1
[ em=an. @
we replace the background (1.16) by
2 2 272 dr® 2 m _ 2020 710
ds* = Q*(7) | c*dr 1 k2—rd¢9 — rsin“0dg
—kr
= Q*(7)[c*de® — 7;;dx dx], (2.2)

with 7;; being the metric of the spatial sector, and with
(i,j, k) = (r,0,¢). In conformal time, the background
Einstein tensor is given by

3

Gy = —3k—5Q*Q%, Gy =0,
C
1. 2 .
Gij — ?lj |:k ——2929_2 —|——29Q_l:| ’
C C

6 1.
R, = [k + —299‘1] , (2.3)
C

o

where the dot now denotes the derivative with respect to z. In
conformal time, a generic background perfect matter fluid is
described by

1
T;Z/ = [(pm +pm)U/4 U,+ pmgﬂl/]’

c
U'=Q7'(z), Uy=-Q(z),

¢ UU, =1,

Ui=0, U,=0, (2.4)

with covariant conservation condition

, Q

Q
For a conformal time radiation fluid with 3p,, = p,,, we
obtain p,, = A/Q*, and for a nonrelativistic fluid with p,, =
0 we obtain p,, = B/Q3, viz. the same relations as obtained
in comoving time. The background evolution equations are
of the form

1
—-— 852G

1
da, W, = G w

E [(pm + pm)U/AUu + pmg/w]

- gﬂuﬂsg' (2'6)

In a conformal to flat background geometry in which

W,, = 0, the background evolution equations take the form

1 . P
2 (12 202 m o2 2A
2c2S"<kC +Q°Q) + CQ +Q°A=0,

1 . )
—@Sg(k&—gm-%zgg-l)+p7’”92—92/\:0. (2.7)

For p,, = A/Q*, we obtain

S sz[gz+k53 (1@53 A)l/z}

262A aa T \16a2 " Ac
ks2 k2S4 A 1/2
Q2 420 _ 0o_ 2 (2
x { T aA (16A2 Ac> } (28)

While integrating (2.8) gives a somewhat intractable elliptic
integral, in the nonearly conformal gravity universe we can
ignore radiation and set A = 0, and with k and A both being
negative then obtain

_ So(k/2M)12
Q) = Gah(= (=) Per)”

(2.9)

To relate the conformal 7 and the comoving ¢, from a(z) =
(=k/a)'/? sinh(a'/?ct) as given in (1.35), we set

& ! 1/2
T:/(—k/a)'/zsinha'/%z:(_kCZ)l/zlogtanh(a/ ct/2),

ekt —anh (a2t )2), (2.10)
as normalized so that 7 = —oco when r = 0 and 7 = 0 when
t = oo. [With the range of 7 being negative, as given in (2.9)
Q(z) is positive everywhere within the range.] With
Q(7)=a(t), from (2.10) and a(t) = (—k/a)"/*sinh(a'/*ct)
(2.9) then follows since a = —2A/ S% [66]. Finally, since
at small comoving ¢ the conformal time 7p goes to
minus infinity, at recombination we can set Q(zz) =
280 (k/2A)V? exp[(=k)' % ctg).
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B. The scalar, vector, tensor basis for fluctuations

In analyzing cosmological perturbations, it is very
convenient to use the scalar, vector, tensor basis for the
fluctuations as developed in [39,40]. In this basis, the
fluctuations are characterized according to how they trans-
form under three-dimensional rotations, and in this form
the basis has been applied extensively in cosmological
perturbation theory (see, e.g., [41-48] and [I-6]) since
the background Robertson-Walker geometry itself has an
underlying maximal spatial symmetry. With the back-
ground metric being written with an overall conformal
factor Q?(z) in (2.2), we shall take the fluctuation metric to
also have an overall conformal factor, with the full metric
thus being of the form [67]

ds? = =(gu + hy ) dxtdx?

dr?

=Q*(7) |d7* - 2 r2d6* — r’sin*0d¢?
r

+ Q2(7)[2¢pde* — 2(V;B + B;)drdx
(2.11)
In (2.11), V; = 9/9x" and V' = 7YV, (with Latin indices)

are defined with respect to the background three-space
metric 7;;, and (1,2,3) = (r,0,¢). And with

T/"jvjV,' = ]7ij[ajvi - l:ﬁ'vk] (2'12)

for any three-vector V; in a three-space with three-space

connection ffj, the elements of (2.11) are required to obey

77V;B; =0,
PEVE; =0,

7IV,E =0, E

j = Eji:
(2.13)

With the three-space sector of the background geometry
being maximally three-symmetric, it is described by a
Riemann tensor of the form

Rijie = k7 ja¥ic = 7 je]- (2.14)

As written, (2.11) contains ten elements, whose trans-
formations are defined with respect to the background
spatial sector as four three-dimensional scalars (¢, B, , E)
each with 1 degree of freedom, two transverse three-
dimensional vectors (B;, E;) each with 2 independent
degrees of freedom, and one symmetric three-dimensional
transverse-traceless tensor (E;;) with 2 degrees of freedom.
The great utility of this basis is that since the cosmological
fluctuation equations are gauge invariant, only gauge
invariant scalar, vector, or tensor combinations of the
components of the scalar, vector, tensor basis can appear
in the fluctuation equations. In [22], it was shown that for
the fluctuations associated with the metric given in (2.11)
and with Q(z) being an arbitrary function of z, the gauge
invariant metric combinations are

a=¢p+y+B-E  y=-Q'Qu+B-E

B;—E., E (2.15)

ij

for a total of 6 degrees of freedom, just as required since one
can make four coordinate transformations on the initial ten
fluctuation components. As we shall see below, the fluc-
tuation equations will explicitly depend on these specific
combinations.

Given the fluctuation basis, we evaluate the fluctuation
Einstein tensor, and obtain [23]

5Goy = —6k¢p — 6ky + 6y QQ~! +2QQ~'V VB — 2QQ0~'V VE — 2V, Vy,
8Go; = 3kV;B — Q*Q2V.B + 2QQ'V,B — 2kV,E — 2V 4y — 2QQ~ 'V, + 2kB; — kE;

) ) le = le o .
- B,Q*Q2 4+ 2B,Q07! + EVaV“Bl- - 5vaV‘*E,-,

8Gy = =27 + 2Q0°7,;,0Q72 + 2077, Q7 — 26 Q7 Q7 — 4 Q7 Q7! — 4G7,Q!
— 407, wQ™" = 2Q7,Q7'V, VB -7,V VB + 7,V ,V'E + 2Q7,Q7'V, V' E
=7V VD + 7,V VY +2QQ7IV VB + V,V,B -V V,E - 2007V, V,E

L. ) . . s = .- .- ) . 1~ .

| — N =

2

—2E,;,0Q7" +4QE; Q7' + V,V°E,,

~ . . ~ . ~ . ~ . ~ . ~ 1~ .
V.E, —QQ7'V,E; + kV.E; - Q7 2V,E; + 2QQ7'V,E; + QQ7'V,B; + 5 ViBi

V,E - QQ7'V,E; + kV,E; - Q*QV,E,; + 2QQ7'V,E, — E;; - 20°E,;Q>
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§¥8G,, = 6Q7pQ™ + 6QM Q™ — 64 Q Q3 — 18 QQ > — 1204Q 73 — 120y Q> — 6jQ 2 + 6kpQ >
+ 6ky Q2 — 6QQ3V, VB - 2Q72V VB + 2Q72V V°E + 6QQ3V VE

—2Q02Q4V VUE + 4QQ3V VE + 2kQ2V, VE - 2Q72V V¢ + 4Q72V Vy.

For fluctuations in the matter field 77", we obtain

Hv
o
6T =~ [(6pm + 6pm) U Uy + 6p,nGp

With ¢*U,U, = —1, we obtain

65U U, +2¢™°U,6U, = 0, (2.18)
which entails that
1
oUy = ) (9°)" 1 (=g"9%8g00) Uy = —Q(7) . (2.19)

with 6U,, thus not being an independent degree of freedom.
With oU; being a three-vector, we shall decompose it into
its transverse and longitudinal parts as 6U; =V, + VA
where now 97"fvjV,- =79[0,V; —T{Vi] =0. As con-
structed, in general, we have 11 fluctuation variables, 6
from the metric together with dp,,, p,, and 3 6U,;. But we
only have ten fluctuation equations. Thus, to solve the
theory when there is both a dp,, and a dp,,, we will need
some constraint between §p,, and dp,,. However, while this
would be required if we want to obtain the general solution,
as we had noted above, at recombination both ép,, and ép,,
are suppressed in the conformal case, so no constraint
between p,, and p, is needed for our purposes here.
Finally, we note that the fluctuation in the cosmological
constant term is just —ASgh,,.

The fluctuation 6W,, in the Bach tensor W, is of the
form [23]

2 = e S
5W00 == —@ (Vav ‘|‘ 3k)vbvba,
2 & e e .
6W0i = —@Vl(vav + 3k)a
¥ g (D9 = 38~ 20)(9,9° 4 20)(B, - ),
1 SV
Wiy =3 7, VoV (V,V + 2k — 02)ax

+ 57 ViV 9" 2k = ) (B; - )
+ ﬁj(vava -2k — 32)(31 - Ez)]
I

+Q2

[(V,V? — 92 — 2k)? + 4kOZ|E,. (2.20)

(2.16)

|
The structure of 6W ,, is noteworthy in two regards: first 6W,,,,
is built out of gauge invariant quantities alone, even though
this is not the case for 6G,,, and second it obeys the
tracelessness condition ¢**6W,,, = 0. Neither of these two
features is generic for any 6W,,, but they do hold for
fluctuations around a background in which W, is zero.
Specifically, when W, is zero, any general background 7',
must be zero too. Now while we had noted above that 7,
could vanish nontrivially, it could of course also vanish
trivially if there are no matter sources. The structure of
oW, is not sensitive to how the background 7, vanishes,
and it would have the same form in either case. However,
4a,6W,, — 6T, is always gauge invariant, and thus it would
be gauge invariantif 7', vanishes trivially and there isno 67,
at all. Thus, for fluctuations around any background in which
W, vanishes, sW,, will always be gauge invariant on its own.

Now, regardless of whether or not the background W,,
vanishes, because of the underlying conformal invariance
of the theory, it will still obey the tracelessness condition
¢*W,, = 0. Thus, one will always have §[¢*W,,] =0,
ie., ¢*6W,, — W, = 0. Then if the background is such
that W, = 0 one would have ¢*6W,,, = 0. This then is the
case for fluctuations around any Robertson-Walker back-
ground, and thus g#*6W,,, = 0 does hold for the W, given
in (2.20). Since ¢#*6W,, does vanish, the tensor W, can
only have nine independent components. With four coor-
dinate invariances, 6W,, can only depend on 5 gauge
invariant degrees of freedom, and as we see, they are a,
B; — E,», and E;;.

From (2.6), we obtain background and fluctuation
equations of the form

1 1
4agWyu = E [(pm + pm) Uﬂ Uy + pmgﬂl/] - ES%GMV - gprv
1
4“95W/w = E [(5pm + 5pm) Uﬂ UI/ + 5pmg/w
+ (P + Pw)(0U,U, + U,8U,) + ppuhy]
1
~ 536G = A (2.21)
It is convenient to define
24a, 6(pm+cA)
l’[: - S - ’ p: _Tv
0 0
6(pm_CA) 65pm 65pm
p=——tt 2 Sp=——1" Sp=——1p". (2.22)
S5 S5 St
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The background and fluctuation equations then take the i/ A= 6Q2Q—2(a -7) = 600! (a—7)— 12001 (a—7)
form - - .
+3Q%5p — 2V, V4 (a +2QQ7y), (2.28)

_ 1 _ A0 ) :
MWy = G +— (0 + P)UU, + pgu] = Bw'. (2.23) 97D, = 36p — 6p — 120Q73(a — 7) — 6QQ3 (& — 7)

—2Q72V Vi (a+3QQ71y), (2.29)
néw,, = 6G,, +— [(5,0 +6p)U,U, + 6pg,,

where
+(p+ p>(5UMUU + Uﬂ(SUu) + phﬂl/]

= A, (224)  Qp=3k+3Q°Q72,  Qp=—k+Q°Q2-2007",

with (2.23) and (2.24) serving to define A{ and A,,. With pe3ptp@t =0 a=¢+y+B-L
use of Al = 0 (which follows here since W, = 0), and y=-Q'Qy+B-E  V=vV-0Qly
with 6G,, being given in (2.16), the components of A,, 8p = 8p — 12Q% Q4 + 6Qy Q3 — 6ky Q>

have been given in [23] and are of the form 1.
=8p+Q pyQ =dp=3(p+ ply,

Agy = 6Q2Q 2 (a —7) + 6pQ* +2QQ7'V Vi,  (2.25) 5p = 8p — 42 + 8OWQ + 2y Q2

D - - 2007w Q™2 = 5p + Q7' pyQ. 2.30

Ay = =200V (a— 7) + 2kV,y v Py (2.30)
+ (_4929—3 +20072 — 2/(9—1)6117 [The first three expressions in (2.30) hold for the back-
. _ ground and follow from Al =0.] With 76W,, — A,

+k(B; — E;) + Evav (Bi — E;) being gauge invariant and with 6W,, being gauge invariant

on its own, it follows that A, is gauge invariant too, and
thus its dependence on the metric sector fluctuations must
be solely on the metric combinations «, y, B; — E,, and E;;,

+ (—4Q%Q73 + 20072 - 2kQ )V, (2.26)

A;; = 7,290 (a—7) - 2QQ7 (a — 7) — 40Q 7 (a7
Y y”[ ~( B 7) . (@=7) (a=7) just as we see. Then since the metric sector a, y, B; — E,,
+Q%6p -V, Vi (a+2QQ7"y)] and E;; are gauge invariant, from the gauge invariance of
+ @i@j (a+ 200! v)+ QO-'V.(B i(B; Ej) A, it follows that 5p, 5p, V,and V; are gauge invariant too
o [68]. We thus have expressed the fluctuation equations
V;(B; - E;)  entirely in terms of gauge invariant combinations without

1~ . .. . ~ .
+=Vi(B;—E;)+QQ7'V,(B,—E;) +
2 needing to specify any particular gauge [69]. Given (2.20)

- Eij —2kE 2E QQ '+V vaEz o (2.27) and (2.25)—(2.27), the fluctuation equations take the form
|
2 o~ o~ S . . -
n6Wo = —é (V, V4 36)V,VPa = Ay = 6Q°Q72(a — 1) + 5pQ2 4 2QQ~'V, Vy, (2.31)
Wi = 3;272 ViV Y 30+ ol (vbvb 02 = 2k)(V.V° + 2k)(B; — E)
= Ay = —2QQ7 'V, (a—7) + 2kv,-y + (—4Q2Q73 + 20072 — 2kQ )V, V
+ k(B; — E;) + %@ﬁ“ (B; — E;) + (—4Q°Q3 + 20072 — 2kQ 1)V, (2.32)
now,; = —392 7, VoV (Vy V" + 2k = 2)a = V,V,(V,V* = 302)d]
t5as (Vi(V 9 = 2k = ) (B, — ) + V(9,9 = 2k = 2)(B; = E))] + 25 [(V,V" = 02 = 202 + 4k2E

= A = 7,i2Q°Q 2 (a - 7) = 2QQ7 (@ - 7) — 40Q 7 (a — 7) + Q25p — V,V(a + 20Q7"y)]
~ ~ . ~ . 1~ . . . ~ . 1~ . ..
+V.Vj(a+ 200! ) +QQ7'V,(B; - E)) +§Vi(3j - E;) +QQ7'V,(B, - E;) +§vj(B,- - E)
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In the conformal gravity theory, these cosmological fluc-
tuation equations are completely general and hold for any
possible matter source and any possible a(z) and k.

We had noted above that the only difference between the
conformal gravity (1.27) and the standard Einstein gravity
(1.28) was in the replacement of the Newtonian G by the
conformal gravity G given in (1.29). We can thus treat
both A’&; and A" as being generic to both theories.

Consequently, Einstein gravity fluctuation theory can be
recognized as the # =0 limit of the conformal gravity
nWwH — A’(’g) =0, pd6W* — A* = 0 in which A’(‘g> =0and
A" = 0. As we will see in Secs. III and IV, some of the
analysis obtained in the Einstein gravity study given in [23]
will thus carry over to our present conformal gravity study.
We should also add that the parameter «, is actually
known to be negative [15,70]. The parameter 5 =
—24a,/ S(z) is thus positive. This will prove to be a key
feature of the development below as it will lead us to
solutions to the fluctuation equations that oscillate in time
rather than grow or decay exponentially. To actually find
the solutions, we need first to manipulate the fluctuation
equations so as to find equations for the individual gauge
invariant combinations (this will be done by taking the
same judicious choice of derivatives of the fluctuation
equations as was done in [23]), and to then solve the
equations that are obtained by such a technique.

III. SEPARATING THE
FLUCTUATION EQUATIONS

A. The scalar sector

With the V ; derivatives acting in a maximally symmetric
three-space with three-curvature equal to &, the following
relations hold for any three-scalar S [23]:

Vv, VeV,s = V.V VS + 2kV;S,
V., V'V VS = V,V,V, VS + 6kV,V,S - 2k7,,V,V°S,
V.V, V.V;s = V

ViV,V, V.S +2k7,, Vi VS = 2k7;,V,V,S
+ )/a]vbv S - k}/blv V S. (31)

Similarly, for any three-vector A;, we have [23]

ViV, VYA; =V, V*VA; = 2k7;,V,A® = 2k(V,A; + VA,
ViV, VA :(vavuzk)VJAj,
VIVA; =V, VA, +2kA,, (3.2)

with (3.2) stating that if A; is transverse then so is ?N“A i
For a general symmetric rank two tensor in a (more general)

maximally symmetric D-dimensional space with curvature
K, we have [21]

vPvaNAPM = [VNVN +K<D+ 1)]VPAPM _ZKVMAPP

(3.3)

Thus, for D =3, we see that if A;;
traceless, then so is vaﬁ“AU.

We shall now use this information to obtain equations
that do not mix scalars, vectors, and tensors. For the scalar

sector, we already have two such relations already,
1n6Woy = A and also g**A,,, = 0 since g**6W,, = 0, viz.

1s transverse and

noWoo =Moo = =37 T (VY 430V, Ve a— 6020 (a—7)
—5pQ2—2Q07'V Viy =0, (3.4)
¢ (W, — A,,) = =38P + 6p + 120Q73 (a - 7)
+6QQ73 (& — )
+2Q72V, V4 (a + 3QQ71y)
=0. (3.5)

From the (0, i) sector, we have V! (5W0, - AO,) =0, and

with V'V V“(B E) (V V“+2k)V (B;—E;)=
thus obtain

0, we

VinsWy; — Agi) = _%w(wa +3k)a
+2QQ7'V'V, (a—7) —2kV'Vyy
— (—4Q2Q7% + 20072 - 2%kQ V'V, V
=0. (3.6)
With V'V/(VA; +V,A;) =2(V,V; +2k)V/A; and
Wﬁfﬁﬁjs = (@’vi + 2k)v/ij, in the (i,j) sector,
we obtain
VIVI(nsW,; — Ayj)
2’7 vAviTAvA v/
—FVZV (Vav + 3k)8$a
—VV2QPQ 2 (a —7) - 2QQ7 (@ - 7)
—4QQ7 (a — 7) + Q26D + 2k(a 4 2QQ71y)]
=0, (3.7)

7 (ndW ;5 — Ay))
27] vAvIAvA v
_—?vlv (Vav +3k)a

- [6’Q(a~7)
+3Q2%5p -2V, V(a4 2QQ1y)] = 0.

—6QQ 7 (a—7) - 120Q (a—7)
(3.8)
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To separate out the various combinations, we evaluate

3@@(7]5WU — A,‘j) - vgva}?ij(ﬂ(svvij - Aij)
2 & &ig @i VAL

— 2V, VIV, V/ + 3k)(a +2QQ7y) =0, (3.9)

VIVI (W — Ay) + k7 (ndW; — A;;)
2 ~ ~: o~ o~
- _3_£’272viv1(vava +3k) (k + 02)ax

— [V V4 3k][2QQ 2 (a — 7) — 2QQ (& — 7)
—40Q (a—7) + Q25p] = 0. (3.10)

Thus, for the five scalar functions a, y, 6p, 6p, and \7, we
initially appear to have obtained what would be a requisite
five equations for them, viz. (3.4), (3.5), (3.6), (3.9), and
(3.10), with one of them, viz. (3.9), not depending on
any of the matter sources. However, the trace condition
given in (3.5) is not independent of the other conditions.
Specifically, we already have g””A,(g) = 0 since the back-
ground matter sector is conformal. Now, in general, in any

background that does obey g””A,(,(,),) = (0, we can set

0=68lgA] = g*A,, — Al (3.11)

and so in general ¢**A,, will not be zero. However, if we
now impose the background equations of motion nW,, =

A,(f,),) given in (2.23), then since the background W, is zero

(the background being conformal to flat), it follows that the

background A,S?,) is zero too, and thus the fluctuation trace

g"A,, is automatically zero in solutions to the background
equations of motion. With the form of the fluctuation A,

given in (2.25)—(2.29) having been derived under the

imposition of A,(,(,),) =0, (3.5) is automatically obeyed for

the Q(z) that obeys the background (2.7). Thus, in the
scalar sector, we only have four independent fluctuation
equations [(3.4), (3.6), (3.9), and (3.10)], but we have five
dynamical variables in the sector: a, y, 6p, 6P, and V. Thus,
without further information, we cannot solve completely.
This is a common feature of all fluctuation studies, and the
additional information that is ordinarily assumed in fluc-
tuation theory is a relation between dp and dp of the form
8p/dp = v>/c* where v is a matter fluid fluctuation
velocity. (While this relation is ordinarily imposed in
k = 0 backgrounds, as noted in [23] in the k < O case
of interest to us here, this relation would need to be
generalized using fluids built out of incoherent averages
of modes that obey (1.18) and the analogs of it that we
encounter below.)

While we do need more information to solve the scalar
sector completely, this is not the case for either the vector or

the tensor sectors as there we have just the right number of
degrees of freedom [four in the vector sector (B; — E ; and
V;) and two in the tensor sector (E;;)]. In fact, since we have
the ten fluctuation equations given in (2.31)—(2.33) and 11
dynamical degrees of freedom, we only have a shortfall of
1 degree of freedom, and thus no more than one of the
scalar, vector, or tensor sectors can be affected by this
concern. However, since we could not have just a single
extraneous degree of freedom in either the vector or the
tensor sectors (we would need an even number since
B; — E,-, V; and E;; each have two components), the
shortfall would have to be in the scalar sector, just as
we have found. Thus, whatever goes on in the vector and
tensor sectors could not be sensitive to this shortfall, and
thus these two sectors can always be solved without
needing to specify any relation between dp and dp.

B. The vector sector
For the vector sector, the gauge invariant combination
B; — E; appears in the (0, i) and (i, j) sectors. For the (0, i)
sector first, we note that, given (2.32), we see that noW,; —
Aq; can be written symbolically as the derivative of a scalar

plus a transverse vector, viz. as n6Wy, — Ay, = @X + X,
where V'X; = 0. Thus, V(W — Ay;) = V,V'X = 0.
Then given the relation V,V,V“S = (V,V“ — 2k)V;,S that
holds for any three-scalar in the background associated
with (2.14), we can set

(ﬁkvk —2k)(n6Wo; — Ag;) = (Q‘vi - Zk)(vix +X;)
V.V VX + (V.V' = 2k)X,

= (V,VI=2k)X; =0. (3.12)
Thus, we directly obtain
(vkvk = 2k)(néWo; — Ao;)
YRVL YR
x (V.V€ +2k)(B; - E))
— (V, V¥ = 2k) | k(B; — E;) + % V. V4B, - E;)
+ (—4Q2Q73 + 20072 - 2kQYV;| =0,  (3.13)

a relation that only involves vectors, with no scalars being
present.

A second relation that we can obtain is given by noting
that ¥V, (V,X + X;) = "'V, X;. Thus, we obtain

123535-14



EXACT SOLUTION TO PERTURBATIVE CONFORMAL ...

PHYS. REV. D 102, 123535 (2020)

k/tv n

(9,9

— 82 = 2k)(V.V° +26)](B; - E;)

— MV k(B - E}) + = VV“(B )

+ (—4Q2Q73 + 20072 — 2kQ~")V, | = 0. (3.14)
We thus have (V,V* = 2k)X; = 0 and V'V X, = 0, rela-
tions that can lead to X; =0 or to X; = ﬁi)( where y is a

scalar that obeys V'X; = V'V, = 0 since X; is transverse.
(A transverse vector can be equal to the gradient of a scalar

x without being longitudinal if Wix =0.) The V'V,y =
0 condition is consistent with (V,V* —2k)X; = 0 when
X, =V since (V,V¥-2k)X; = (V, V¥ —2k)Vy =
V,V, V¥ = 0. Consequently, (3.13) and (3.14) are not

A= 20007 (@ - 7) - 2007 (a - 7) - 40Q 7 (a = 7)
+Q25p,
C=a+20Q7""y,
P= —L?N“(ﬁ;ﬁ” + 2k — 8?)a,
a_ 392
0= 392 (V,V* —382)a,
SWi; = 7P +ViV,;0 + Xy,
A =7(A=V,VC) + V,V,C + F,. (3.15)

where X;; and F;; are everything other than the scalar part.
With A, C P, and Q all being scalars, we can set

Vi[7,(A =V, VC) + V,V,C] = V,(A + 2kC),

independent, and we thus need more information in order to - o 2 o e e
be able to solve for the vector sector. V(7P +V.V;0) = _@vj(vbv + 3k)a (3.16)
This extra information comes from the (i, j) sector. To
discuss the (i, j) sector, it is convenient to define and thus obtain
(V,V* = 2k)(V,V* + k)Vi(7,P + V.V;0) = 3—6 NV VYV, VP +3k)(V,V’ + 3k)i,
(V,V* = 2k)(V,V* + k)V'[7,(A = V,V°C) + V,V,C] = V,V,V*(V, V" + 3k)(A + 2kC). (3.17)
Then with (3.7) and (3.16) giving
o M e om o -
V'V (n6W,; — Ayj) —3—”2VIV’(V&V“ +3k)a — V,V'(A + 2kC) =0,

(vava - Zk)vj[”(yijp + v Q) yl](

through use of (3.2), we obtain

—2k)(V, V2 + )V (W, — A;;) = (V,V*
T,

(¥,

a relation that only involves B; — E;. From (3.19), we can
determine the two components of the transverse B; — E,-,
and then use (3.13) to determine the two components of the
transverse V;. In the vector sector then, we have just the
right number of equations needed to fix all of the vector
sector degrees of freedom.

L2k (VT 4+ k) (VL 4 2k) %(B,. -

—30 1 (V,V" +3k)i — (A + 2kC)]

V, VP 4 3k)ia— (A + 2kC)]

(3.18)

—2k)(V, V2 + )V (nX;; — F;)
—2k)(V,V? + k)(V, V¢ + 2k)(V,V*

-2k - 0%)(B, - E;)
E)+QQ (B, - E;)

(3.19)

C. The tensor sector

For the tensor sector, the gauge invariant E;; appears in the
(i, j) sector. In the tensor sector, it is convement to define

7,P+V.V,0, D;=7;(A-V,V'C)+V,V,C.
(3.20)

Rij -
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We next introduce

S5 = Ry =377 R = (9.9, = 37,9.9° ) 0.
Ajj = Dyj =77 Dy = (ﬁﬁ, —éy,ﬁﬁ‘l) C. (3.21)
Then with
Wi =7,P+VNV,0+ X,  A;=7,(A-V,VC)+VV,C+F;,  7/X;=0, 7/F;=0, (3.22)
we can set
W, —%7,-j7abawab = (v,v, %716 Ve )Q + X =S+ Xy
Ay —%ma‘mab = (? v, %W v >C+ Fij= Ay + Fy,
noW;; — Ay —%ma”(néwuh —Ay) = (ﬁ v érﬁ ve )(nQ C) +nX;; - Fy. (3.23)
With repeated use of the second relation in (3.1), we obtain
(9,9 =305, = (9.9, 37,9.9°) (9.9 + 300,
(9,5 = 304, — (w,. AL ><v 4 3k)C,
(9,9 = 68) (9, 9" = 30)S,; (vivj - %ﬂﬁﬁ“) ,9°(9.9 + 36)0
(9,9 = 6k)(T,9" = 30)4,, = (v,v, - %my) 9,9 (V.9 + 36)C. (3.24)

Through use of (3.24), we obtain
(V. V= 6k)(V, V" = 3k) (’75Wij — A - %7ij77ab<’75Wab - Aab))
_ <v,vj _ %yijvava>v T 43000 - ) + (V.9 - 6K) (T, = 30)(nXy; = Fy). (325)
On rewriting (3.9) as
3VIVI oW, — Ayj) = Vo V7T (W, — Ayj) = 2V, VP (V. V + 3k)(nQ - C) =0, (3.26)
it then follows that the scalar sector drops out of (3.25), to leave us with
(V V4 =6Kk)(V, V" = 3k) <’I5Wij — A4y —%7’77“1’ (nOW 4 — Aab)) = (V, V= 6k)(V, V" =3k)(nX;;— F;;) =0, (3.27)

with the right-hand side of (3.27) only involving the vector and tensor sectors.

To eliminate the vector sector, we now note that for any vector A; that obeys ViA ; = 0, through repeated use of the first
relation in (3.2), we obtain
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On using the first relation in (3.2) again, it follows that

(3.28)

(V.VE = 2k)(V,V* = 6k)(V, V" = 3k)(V,A; + V,A;)

= Vi(V.VE 4 2k)(V, V= 2k)(V, VP + K)A; + V (V. VE +2k)(V, V4 = 2k)(V, VP + k)A,.

(3.29)

On recognizing that the vector sectors of X;; and F;; are precisely of the form VA i+ Y A, using (3.19) we can eliminate

the dependence on the vector sector by applying V V¢ =2k to (3.27). Then, finally from (3.27), we obtain

- o~ ~ o~ .~ 1_..
(9.9° = 20(9,9° = 60)(9,9" = 38) (10W,; = &y = 37700V~ M) )

= (V.V° = 2k)(V, V" - 6k)(V,V - 3k) [& (V, VP = 02 — 2k)? + 4kOZ)E;; + Eij + 2kE,; + 2QQ7'E;; — V,VE,;

=0.

We thus obtain a relation that only involves E;;. Since there
is no tensor part to the matter fluctuation, (3.30) is all we
need for the two degree of freedom tensor sector. Having
now decoupled the scalar, vector, and tensor sectors from
each other in a set of gauge invariant equations that are
completely exact, that hold for arbitrary a(t), arbitrary k
and arbitrary background matter sources, we can now
proceed to solve them. For solutions, we shall focus on
the k < 0 cosmology that is phenomenologically preferred
in the conformal case, though a similar analysis could
be made for k =0 or k > 0 conformal cosmologies if
desired.

IV. SOLVING THE FLUCTUATION EQUATIONS

In all, there are ten independent fluctuation equations,
four for the scalars [(3.4), (3.6), (3.9), (3.10)], two for the
vectors [(3.13), (3.19)] and one for the tensor [(3.30)].
All of these equations have in common the appearance of
the spatial derivative operator v,v". If we, e.g., consider
(3.30), we could satisfy it by (V.V°—2k)T,; =0, by
(V,V* = 6k)T;; = 0, by (V,V? = 3k)T;; = 0, or by hav-
ing the term in brackets vanish. [Here T';; represents the
entire E;;-dependent term that appears in the term in
brackets in (3.30).] Ignoring the possibility that 7';; itself
vanishes for the moment (the only possibility that involves
both spatial and temporal derivatives), we would have to
solve the generic (?NMAT)T,-J- =0 where Ay is an
appropriate separation constant. Analogously, there will be
separation constants Ag and Ay in the scalar and vector
cases. (While for the moment Ag, Ay, and Ay are just
appropriate constants, we designate them as separation

(3.30)

constants since in Sec. VI they will serve as such for wave
equations that contain a time dependence.) Having such a
class of solutions in which 7';; and its scalar and vector
analogs do not vanish would not be even remotely desirable
for fluctuation theory since only the spatial behavior of the
fluctuations would be specified and nothing would then fix

the time behavior. However, by solving these (vﬁd +
A7)T;; = 0 type equations and finding the eigenmodes of

the vﬁd operator, it was shown in [23] in the analog
Einstein gravity fluctuation case that the way that the
various scalar, vector, and tensor components would need
to interplay with each other in the fluctuation equations is
actually excluded, as the requisite interplay is not compat-
ible with the boundary conditions at y = oo and y = 0.
Thus, in the Einstein gravity case, we have to solve the
fluctuation equations by having the # = 0 limit of the term
in brackets in (3.30) and its scalar and vector analogs
vanish, and then we are able to fix the time dependence of
the fluctuations. Moreover, this also enabled us to show in
[23] that the so-called decomposition theorem (viz. that the
scalar, vector, and tensor components separately solve the
A,, = 0 fluctuation equations) holds for standard Einstein
cosmological fluctuation theory.

We now apply this same analysis to conformal gravity.
This will enable us to show that the decomposition theorem
also holds in the conformal gravity case, and we discuss
this point below. Moreover, even if we solve equations such
(3.30) by having the term in brackets vanish, we would still
need to have to find the eigenmodes of the VdVd operator
as it appears in the bracketed term. Thus, we proceed first to

a study of the AV operator, and we follow the technique
developed for it in [23].
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A. Scalar fluctuations

To study the eigenmodes of the ﬁdﬁd operator in the
k <0 case of interest to us here, we have found it
convenient to set k = —1/L?, r/L = sinhy, p = t/L, so
that the background metric takes the form

ds* = L*Q?(p)|dp* — dy* — sinh?yd6” — sinh?ysin’0d¢?].
(4.1)

In all allowable solutions, we will require the fluctuations to
be well behaved and not diverge anywhere. We shall thus
require the fluctuations to go to zero at y = oo and to a
finite value at y = 0.

For the scalar case, we need to solve

VA v AS
<VaV +Lz>S:O

for a generic scalar function S. On setting S(y,60,¢) =
S,(0)Y7 (0, ¢), (4.2) reduces to

(4.2)

coshy d £(£+1)
dy* " sinhydy  sinh%y

1 [
L?

+ AS} S, =0. (4.3)
In the y - oo and y — O limits, we take the solution to

behave as e# (times an irrelevant polynomial in y), and as
x", to thus obtain

P +21+As=0,
nn—=1)4+2n-¢(£+1) =0,

A=—1%(1-Ag)"2,
n==¢,—¢—1. (44)

Asymptotic convergence will thus depend on Ag, while
finiteness at y = 0 will depend on . With there being two
possible values for 4, there will be two families of solutions,

which we will label S’)(fl) and 3’9 in the following.

Exact solutions to (4.3) exist in the literature (see, e.g.,
[23,56,71]). They are known as associated Legendre
functions and are of the form

S inh”, L )™ 4.5
c=siny( o) . @
where f(y) obeys
& +2 2 fx)=0 2=Ag—1, (46)
— v — =0, v =Ag—1, .
dy? dy s

with f(y) thus obeying

f(?=—p? <0) = coshpy.
(4.7)

f(*>0)=cosvy,
f?=0)=r.p".

sinvy,

sinh uy,

Both v and p are continuous variables, with the class of all
v > 0 and the class of all # > 0 both being complete. For
each f(y), (4.7) would lead to solutions of the form

. 1 d . dS . d[ §
Sy =— l, § =2, § =sinhy— |——|,
sinhy dy dy dy |sinhy
. dl §
Sy = sinh2y— |—2|, ... 4.8
3 = s )(d)( [sinhzx] (4-8)

However, on evaluating these expressions, it can happen
that some of these solutions vanish. Thus, for Ag = 0, e.g.,
where f(y) = (sinhy, coshy), the two solutions with
¢ =0 are cosh y/sinh y and 1. However, this would lead
to the two solutions with # = 1 being 1/ sinh? y and 0. To
address this point, we note that suppose we have obtained
some nonzero solution S‘f. Then, a second solution of the

form f,(x)S,(y) may be found by inserting f,(y)S,(x)
into (4.3) to yield

o &f, . coshydf dS, df
5,000 g cohdle  dSedle oy g
dy sinhy dy dy dy
which integrates to
df, 1 " e / dy
dy  sinh%y§?% JeSe =5 sinh?y §2 (4.10)

Thus, for £ =1, from the nontrivial Ag =0 solution
3’1 = 1/sinh? , we obtain a second solution of the form
f+8, = coshy/ sinh y — y/sinh%y. However, once we have
this second solution, we can then return to (4.8) and use it to
obtain the subsequent solutions associated with higher #
values, since use of the chain in (4.8) only requires that at
any point the elements in it are solutions regardless of how
they may or may not have been found.

B. Vector fluctuations

In the vector sector, the components of V; obey the
transverseness condition

A .Vz c.osﬁ2 2V1. cosh y 9V, + 82_1/22
sin @sinh=y sinh y sinh“y
AE
sin?@sinh?y
=0. (4.11)

On implementing this condition, the (y,6,¢) = (1,2,3)
components of V,V“V' take the form
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& 2 4cosh)(81 V] COS 982V1 8282‘/1 838';V1
V.Vivi = v, (2 0,0,V : ,
“ 1( + sinhZ)() T inh X TaGVit sin@sinh’y ~ sinh?y  sin’@sinh?y
AR 24 - 1. S 22 4V1.cos.6’cc3)sh;( 2.0056.’812/1 8].812‘/2
sinh®y ~ sin“@sinh”y  sinh“y sin @sinh’y sin@sinh“y ~ sinh®y
2 Cosh)(82V1 3cos 962‘/2 8282‘/2 6383 V2
sinh®y sin@sinh*y  sinh*y = sin’@sinh*y’
= a3 2V3 8181‘/3 COS 932‘/3 8282‘/3 2005h){33V1
vavvz_.z.z .2.2_.3.4 2ol 213
sin“fsinh“y  sin“@sinh“y  sin’fsinh”y  sin“fsinh*y  sin“@sinh’y
2 cos 963 V2 6383 V3
o o (4.12)
sin°@sinh™y  sin"@sinh™y
|
To explore the structure of the k = —1/L? vector sector, ~ Asymptotic convergence will thus depend on Ay, while
we seek solutions to finiteness at y =0 will depend on #. However, the
conditions differ from the scalar ones, a point that will
= =, Ay prove crucial below in establishing the conformal gravity
ViV +ﬁ Vi=0 (4.13) decomposition theorem. With there being two possible

for a generic V;. Conveniently, we find that the equation for
V| involves no mixing with V, or V5 and can thus be
solved directly. On setting V(r,0.¢) = g1.,(x)Y} (0, ¢),
the equation for V; reduces to

1 [a& COShXi+2+A N 2 £(€+1)
L? |dy? sinhy dy V' Usinh®  sinh%y g1z
— 0. (4.14)

The y — o0 and y — 0 limits give

R 44A+2+A,=0, A==2+(2-Ay)"2,
nn—1)+4n+2-¢(¢+1)=0, n=¢-1,-¢-2. (4.15)

Ty T3

P, = Ty + =
7l " " sinh?y ' sin?6sinhZy

’

values for A, there will be two families of solutions, which

we will label V1" and V' in the following.

To solve (4.14), we set g, , = a,/sinhy and find that
(4.14) takes the form

d2

1 [d  coshyd £(£+1)
L? |dy?

sinhydy sinh?y

+Ay—1|a,=0. (4.16)

We recognize (4.16) as being in the form given in (4.3),
which we discussed above, with 1> = A}, — 2.

C. Tensor fluctuations

For k = —1/L?, the transverse-traceless tensor sector
modes need to satisfy

o 1 COSh){TzZ COSh){T33 COS 6T12 2 COSh}{Tu 82T12 63 T13
sinh’y sin“@sinh’y  sin @sinh“y sinh y sinh“y  sin“@sinh“y
v T“2 B Ccos 0T33 COS 9T22 2 COSh}{le 81 T12 82T22 83 T23 _
“° " sin’@sinh*y  sin@sinhy sinh?y sinh’y  sinh*y = sin?@sinh*y
~ a3 COS 9T23 2 COSh}(TB 81T13 82T23 83T33 B
sin°@sinh®y  sin“@sinh’y  sin“@sinh“y  sin“fsinh®y  sin*fsinh*y

Under these conditions, the components of V,VeTii evaluate to

123535-19



PHILIP D. MANNHEIM

PHYS. REV. D 102, 123535 (2020)

S 6 6 coshy0,T 00,T 0,0,T 030;T
v Vet =7, (64— 4 COS.)( 1 “+818,T”+C,OS 727 11 2% 1 939%7Tu
a 2 2 2 2 2
sinh”y sinh y sin@sinh”y  sinh“y  sin“fsinhy
= a0 4T22 4T22 4T11 2T22 2T11 2T11 2COSh){alT22
vav T = . 6 - . 2 6 + . 4 . 4. o 4 . PV N 3
sinh®y sin“#sinh®y  sinh®y sinh®y  sin“@sinh®y  sinh“y sinh’y
31 81 T22 4 COSh}(az T12 COS 932T22 8282 T22 4 cos 983 T23 63 83 T22
sinh*y sinh®y sin@sinh®  sinh®  sin®@sinh®y  sin’@sinh®y’
-~ 2T 2 2 4 cosfcoshyT
VaV“T33: ind -33 6 (1—sinh21)+T” in40cinh4 PGy IR - CO.S3C(?S ?5( =
sin“@sinh®y sin"@sinh®y  sin“@sinh”y sin”@sinh”y
4 cos 981T12 2COSh)(81T33 8181T33 4 cos 982T11 COS 682T33
sin*@sinh*y  sin*@sinh’y  sin*@sinh*y  sin®@sinh*y  sin’@sinh®y
8262T33 4COSh)(83T13 8383T33
sin*@sinh® ~ sin*@sinh’y  sin®@sinh®y’
= a2 1 2 2C0$h)(81T12 6181T12 2COSh)(82T11
Vav T = T12 I 2 N 4 I P N 3 . 2 . 3
sin“@sinh®y  sinh“y sinh’y sinh“y sinh’y
COS 982T12 (9282T12 2 cos 983T13 8383T12
sin@sinh*y = sinh*y  sin’@sinh*y  sin’@sinh*y’
v ﬁaT]:& - 2T13 2COSh){alT13 8181T13 COS 982T13 8282T13
“ ~ sin®@sinh®y  sin?@sinh®y  sin2@sinh?y  sin*@sinh*y  sin?@sinh?y
2C0$h}(83T11 2 cos 983T12 8383T13
sinsinh®y  sin’@sinh*y  sin*@sinh*y’
S San3 2(1 — Sinhz)() 1 2 cos 981T13 2COSh)(81T23 3181 T23
VaVT :T23 - 216 - Adn.:16 +.3.4_.2.5 14
sin“fsinh®y  sin“fsinh®y sin’@sinh™y sin“fsinh’y  sin“@sinh*y
2 Cosh)(82T13 COS 982 T23 8282 T23 2 COSh}{83 T12 2 cos 983 T22
sin@sinh’y  sin*@sinh%  sin’fsinh®y  sin’@sinh’y  sin®@sinh®y
030;T
: 2 3._236 ) (4.18)
sin*@sinh®y

Following our analysis of the vector sector, in the

k = —1/L? tensor sector, we seek solutions to
7 a AT
v,V +? T,;=0 (4.19)

for a generic tensor T;;. Conveniently, we find that the
equation for 7; involves no mixing with any other
components of T;; and can thus be solved directly. On
setting 7'y (v, 6.¢) = hy1..(x)Y7(6.¢), the equation for
T;; reduces to

1 [d*  coshyd 6 £(€+1)

s <16 - Ar|h

L? |dy?> ~ sinhydy sinh’y  sinh%y * T] e
—0. (4.20)

To determine the y — oo and y — 0 limits, we take the
solutions to behave as e* (times an irrelevant polynomial
in y) and " in these two limits. For (4.20), the limits give

P+6A+6+Ar=0, A1=-3+(3-A;)"2
nn—1)+6n+6-2(+1)=0, n=¢-2,-¢-3.
(4.21)

Asymptotic convergence will thus depend on Ay, while
finiteness at y =0 will depend on ¢#. However, the
conditions differ from both the scalar and vector ones, a
point that will prove crucial below in establishing the
conformal gravity decomposition theorem. With there

being two possible values for 4, there will be two families
of solutions, which we will label 71" and 77
following.

To solve (4.20), we set hyy , =,/ sinh? y to obtain

in the

coshy d £(£+1)
sinhy dy

1 [d?
Il i 24 Ap|y,=0. (422
L2 [d;ﬁ sinhzy, - AT|Te (422)

We recognize (4.22) as being (4.3) where 1> = A; — 3.
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D. Master formalism for scalar, vector, and tensor F=51>+2=A,, f=¢—1. Comparison with (4.20)

modes and their normalization shows that for the tensor we have F =7, 1” +3 = Ay,

In [71], a scalar field master equation of the form p = ¢ —2. The radial equations for scalar modes in five

and seven spatial dimensions thus, respectively, correspond

&2 coshy d p(B+F-2) , (F—1\2 to the re}dial gquations for vectors and tensors in three
W +(F-1) sinhy @ - sinh%y <2> } spatial dimensions.

For the case in which the f(v) of (4.7) is given by

xZ,5(x)=0 (4.23)  f(u) = cosuy, this being the case that will prove to be
relevant in Secs. VI-VIII, the modes are normalized

was presented that holds for the radial modes of a scalar according to [71]

field propagating in F spatial dimensions with angular

momentum ¢ = f + (F — 3)/2. However, we can also use

this master equation to describe the propagation of scalar, Z,s0) =AW.B, F )sinh/y <

vector, and tensor radial modes in three spatial dimensions.

Specifically, we see that comparison with (4.3) shows that (4.24)

for the scalar we have F =3, 12+ 1 =Ag, p=7¢.

Comparison with (4.14) shows that for the vector we have where

1 d > (F=1)/248
cos vy,

sinh y @

21/2
[m? (L2 +12)(* +2%)...... (V> + (F=3)/2+p)))/*

A, B.F) = (4.25)

With the integration measure for dy? + sinh?yd6? + sinh?ysin’0d¢? being sinh? y sin @ as needed for the normalization of
Z,5(x)Y? (0. ), for Z,, 4(x) itself the integration measure is sinh? y. And with this normalization the modes obey the Dirac
delta function orthonormality condition [71]

A dysinhZysinhF=3)/2y 7, o (7)sinh =32y Zx ) () = 85, 5,61 — 12). (4.26)

The extra sinh(*=3)/2 y factors that have been introduced here take the values 1, sinhy, sinh’y for F = 3, 5, 7. While not
relevant for the scalar case, for the vector and the tensor modes these are precisely the factors needed to go from (4.14) to
(4.16) and to go from (4.20) to (4.22) [72].

To understand the emergence of the §(v; — v,) term, we directly evaluate the scalar mode case with F = 3, ¢, = ¢, = 0,

p1 = pr =0, viz. the scalar field 3‘0 given in (4.8). And with both v and v, positive, we obtain

e d)((eivl)( _ e—iul)()(eivy( _ e—iuz)()
(Se]

oo i i 21 1
A(11,0.3)A(1,0,3) / dysinh2y 2L PIXV2 S /
0 _

sinhZy T 72(2i)?
=6(v1 —1a) = 0(v1 +12) = 8(v1 — 12). (4.27)

For the vector mode case with FF =5, ¢y =¢, =1, /i =, =0, and with both v; and v, again positive, we obtain

w d i d i
A(11,0,5)A (1,0, 5) / dysinhZy = {— M] {— M]
0

dy sinhy |dy sinh y
0 h h
= A(v1,0,5)A(v5,0,5)v,05 A dy [—1/] cosvy + Z?r?hj(( sin 1/14 {—1/2 cosvyy + Z?nshj({ sin 1/2;(]

= A(yl,O,S)A(vz,O,S)%/ dy {vlyz COSU 1y COSLyy + Sinvyy sinv,y

sinvyy sinv,y  cosh

) coshy .
Uy sinvyy cos vy — vy sinvyy cosvyy

sinh?y sinh y sinh y
0 d (si i h
=A(v1,0,5)A(1,,0, S)M/ dy |vivy cosvy cosvay + sinvyysinvyy — — it %4 SI,HUMCOS Zal (4.28)
2 Jw dy sinh y
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With the surface term oscillating away (when integrated with a good test function), it follows that

2

d | visinvy| d | vysinvyy
dysinhZy JATIIAN TN 222 Sy — usy), 4.29
v (V3 4+ 1)1 20, (V3 + 12)1/2/ zsin d;( { sinhy |dy sinh y (b1 —v2) (4.29)

just as required. Because of the relation between (4.14) and (4.16), this calculation is identical to that of the normalization of
the # = 1 scalar mode A(v, 1,3)S, introduced in (4.8).

A similar analysis holds for tensor modes with F = 7,7, = ¢, = 2, /; = }, = 0 and positive v; and v,. If as in [71], we
define

1 d\r
— sinh? ANt ). 430
) =sinhe (o ) 1) (430

where as before f(v,y) = cosvy, then we obtain

d 2coshy
avy) =5 -

dy  sinhy

d 2coshy )
)rh(w(), ( 2 " sinhy )qg(w() @ +2%) g2 (v, x),

d coshy d coshy s df(v,y)
)=\ 5 —= X)s —+— X)) =— 1 X)s ) = . (431
) = (5 - (54D =04 D). o) =ToR @

Following some integrations by parts, we obtain

0 0 d 2coshy
/0 dZQ3(V1’Z)Q3(V2aZ):A dy (@‘ - )Q2(V17)()C]3(V2,)()

sinh y
d 2coshy
=- d X - ;
[) g2 (v )<d)(+ sinh y )43(’/2 X)

= (V%‘f’zz)A dyqr(v1,0)q2 (V2. x)

0 d coshy
_(U%+22)/0 d)((__ . >q1(yl?1)QZ(U2J()

dy sinhy
d coshy
(V2+22)/ dyqi(vi.x )(d)(Jrsmhz)CIz(VM)

= (13 +2%)(3 + 12)% dyq,(v1.x)q1(v2. x)

=15 +2°)(13 + 12)/ dy sinvy sinvyy
0

- g”lvz(vi +2%)(13 + 17)8(v1 —1a). (4.32)
From (4.32), it follows that
2
v (3 + 12)12(02 + 22120, (13 + 12) V2 (1, + 22)1/2
x A dysinh*y (Z{ [Slnlh)(c;j( <— %)] % [sinlh)(% <— lfzii’;{z)()] =6(v1 —1y), (4.33)

just as required. Because of the relation between (4.20) and (4.22), this calculation is identical to that of the normalization of
the £ = 2 scalar mode A(v, 2, 3)3‘2 introduced in (4.8) [73].
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Comparing with (4.4), (4.15), and (4.21), we see that
the scalar, vector, and tensor modes behave asymptoti-
cally as e where, respectively, 1 = —1 £ (1 — Ag)!/2 =
~1+iv, A=-2+2-4A)?=-2+iy, i=-3+
(3—A7)"/?=—-3+iv. For real v, these modes are all
suppressed at y = oo, with the scalar, vector, and tensor
modes, respectively, converging as e, e, and e ¥.
However, that does not make them normalizable since the
sinh? y, sinh*y and sinh®y factors in the respective
integration measures for bilinear products of the modes
diverge as e, %, ¢%. Thus, just like plane waves (the
modes appropriate to k = 0), the scalar, vector, and
tensor modes have to be Dirac delta function normalized
[74]. Thus, in general, we have to distinguish between
asymptotic boundedness and normalizability, with our
boundedness criterion having to be that modes have to
fall off at least as fast as needed to match the growth in
the relevant integration measure [75]. Since we will settle
on Ag > 1, Ay > 2, Ay > 3 below, all modes will meet
this normalizability criterion and be delta function
normalized.

Having now set up a second-order derivative formalism
given in (4.3), (4.14), and (4.20) and shown its compat-
ibility with the master equation approach in the respective
scalar, vector, and tensor sectors, we need to use the
formalism to solve the higher-derivative equations, four
for the scalars [(3.4), (3.6), (3.9), (3.10)], two for the
vectors [(3.13), (3.19)], and one for the tensors [(3.30)]. We
leave the details to the Appendices, and in Secs. [V E and V
we show how this will enable us to obtain a conformal
gravity decomposition theorem.

E. Impossibility of reconciling the scalar,
vector, and tensor solutions

While equations such as (3.30) contain the spatial
derivative operator (V.V°—2k)(V,V*=6k)(V,V’=3k),
this derivative operator does not appear in the second-
order derivative fluctuation equation néW;; —A;; =0
itself. In Appendix D, we show that there are y-
dependent solutions to (V.V¢ —2k)(V,V“ - 6k)(V,V’ -
3k)T;; =0 that can meet boundary conditions at y = co
and y = 0 without requiring 7';; itself to vanish. [Here 7';;
represents the entire E;;-dependent term that appears in
the term in brackets in (3.30).] A similar situation also
holds in the vector sector. In the solutions in which T';
does not itself vanish, the dependence on y is fixed but
not the dependence on 7. (To fix the dependence on 7z, we
would need T;; and its scalar and vector analogs to
vanish, just as we discuss in Sec. VI.) Now we note that
since (4.3), (4.14), and (4.20) are different equations, the
various scalar, vector, and tensor modes would have
differing behaviors in y. In the event that we do realize

(3.30) and its analogs by not having T;; and its analogs
vanish, the only way for the modes to then be able to
satisty néW,, —A,, =0 is by mutual cancellation of
their respective spatial dependencies. We now show that
this cannot be the case, with W, — A, =0, thus
having to split into separate scalar, vector, and tensor
sectors, to thus give a conformal gravity decomposition
theorem.

To this end, we note that since some scalar mode terms
appear with two V, derivatives in the A;; sector, the
vector sector terms appear with one V, derivative and
some of the tensor sector terms appear with none, we
need to compare derivatives of scalars with vectors and
derivatives of vectors with tensors. To see how it would
be possible to obtain such a needed common y behavior,
we differentiate the scalar field (4.3) with respect to y
and obtain

d? coshy d 2 £(€+1) T A ds,
dy* ' sinhydy ' sinh?y  sinh%y 51 dy
cosh y
24 S, =0. 4.34
oA Ginhy, 7 (4.34)

Comparing with the vector (4.14), we see that up to an
overall normalization we can identify dS,/dy with the
vector g; , for modes that obey Ag =0 and Ay =2, so
that these particular scalar and vector modes can
interface.

Similarly, if we differentiate the vector field (4.14) with
respect to y, we obtain

d’ coshy d 6 £¢+1)]d
Lo AT Y L A o] L T
dy sinh y dy sinhy  sinh“y | dy
coshy
22+ A =0. 4.35
+2(2+Ay) Sinh)(gl.f (4.35)

Comparing with the tensor (4.20), we see that up to an
overall normalization we can identify dg, ,/dy with the
tensor A, , for modes that obey Ay = —2 and A7 = 2, so
that these particular vector and tensor modes can interface.
Thus, while we can interface Ag =0 and Ay =2, we
cannot interface Ay = 2 with any of the tensor modes.
Rather, we must interface the Ay, = —2 vector modes with
the Ay = 2 tensor modes [76].

Now, for scalar modes with Ag = 0 solutions, we have
v = i, and the relevant f(?) given in (4.7) are cosh y and
sinh y. Similarly, for the vector modes with Ay, =2, we
have v = 0 and f(1?) = y, y*. Consequently, the first few

§W. i =1, 2 solutions to (V,V* + Ag)S = 0 with Ag = 0
and the first few \7(2, i =1, 2 solutions to (@a@“ +
Ay)V; =0 with A, = 2 are of the form [23]
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~(1 cosh y a2

s =0 =g SPs=0) =1,

(D) 1 &(2) cosh y X

S Ac=0)= —— s S Ag=0) = . - . )

1 (A5 =0) sinh%y 1 (As=0) sinhy sinh%y
N h o 3 3 h
3 As=0) =L ZD(Ug=0) = 1 45— A
sinh’y sinh“y  sinh’y
(D) 4 5 &) 2coshy 15coshy 12y 15y
Sy (Ag=0) = _—, S (Ag =0) = — - —— —— . 4.36
3/ (A5 =0) sinh2;5+sinh4;( 3 (45 =0) sinhy sinh®y  sinh?y sinh*y (4.36)
(1) 1 0(2) b4
v, =2) = L Py =2 =—~%_
o (Av =2) Sinh% o (Ay=2) Sinh%
N cosh y A2 1 ycoshy
Vg)(Asz):ﬁ’ V(l)(AV: =— =,
sinh’y sinh“y  sinh’y
~ (1) 2 3 ~(2) 3coshy 2y 3y
ViAy=2)=—4+—F, V7 (Ay =2) = — —— - )
2 (Av =2) sinh2)5+ sinh*y 2 (Av=2) sinh®y  sinh’y sinh*y
A 2 cosh 5 cosh A 11 15 6 h 15 h
DA, =) = SOSX 28X g, gy =y DKSOTA DXEOTIL (g 37)
sinh’y sinh’y sinh“y ~ sinh®y  sinh’y sinh’y

viz. two solutions for each # value, with £ being the lower index. From this pattern, we see that the Vﬁf) (Ay = 2) solutions

with £ > 1 are bounded at y = oo and well behaved at y = 0. However, the S‘(f') solutions that are bounded at y = oo are
badly behaved at y = 0, while the solutions that are well behaved at y = 0 are unbounded at y = oo. Thus, all of these
Ag = 0 solutions are excluded by a requirement that solutions be bounded at y = co and be well behaved at y = 0. Hence,
we cannot interface the scalar Ag = 0 solutions with the vector Ay = 2 solutions or make (4.4) and (4.15) be compatible,
and so an interface between Ag = 0 and Ay = 2 is excluded.

For the other possible interface, viz. that between the ‘7;2) (Ay = =2) @* = —4, f(v) = cosh 2y, sinh 2y) vector modes
and the T(Kz) (A7 =2) 0 = -1, f(v) = coshy, sinhy) tensor modes, the first few relevant mode solutions are [23]
(1) coshy ~(2) 1
V A = —2 = . V A - _2 - B )
o (Av ) sinh o (Av ) Sinh%
~ (1) ~(2) coshy coshy
Vi'(Ay ==2) =1, Vi7(Ay = =2) =2— -—=,
1 (Ay ) Ay ) sinhy sinh’y
~(1) coshy 3coshy 3y ~(2) 1
Vi (Ay =-2)=2 - , V7 (Ay = =2) = — ,
2 (Av ) sinhy  sinh®y  sinh*y 2 (A ) sinh*y
N 5 15 15 h N h
Py =—2) =2 -2 AR gy, = gy = 0L (4.38)
sinh“y  sinhy sinh”y sinh”y
A (1) COSh)( ~(2) 1
T (Ar =2) = . Pu,=)=——
0 (Ar =2) sinh3y 0 (Ar sinh%y
A (1) 1 ~(2) coshy X
T, =2)=——, Pu,=2="A X
1 (Ar=2) sinh*y v (Ar sinh®y  sinh*y
N cosh y A 1 3 3y coshy
WAr=2=—2. 1P =2 =+ " -F L,
sinh”y sinh“y  sinh*y  sinh’y
N 4 5 A 2coshy 15coshy 12y 15y
Tgl) (AT == 2) == —4 +—6’ T;z)(AT == 2) == ; 3 N 35 - I - 6" (439)
sinh®y ~ sinh® sinh’y sinh’y  sinh®y sinh®

A7 = 2) solutions are bounded at y = oo and all 7 Ay = 2) solutions with
¢

¢ > 2 are well behaved at y = 0. However, none of the ‘A/(fl) (Ay = —2) vanish at y = oo, and while the \75,2) (Ay = =2) with
¢ > 2isbounded at y = oo they diverge at y = 0. Hence, we cannot interface the Ay, 2 vector solutions with the Ay = 2

tensor solutions or make (4.15) and (4.21) be compatible, and so an interface between Ay, = —2 and Ay = 2 is excluded.

From this pattern, we see that all of the T;Z)
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Consequently, we can only satisfy equations such as (3.30) by having the E;;-dependent term in brackets vanish. The
vanishing of this particular term and its scalar and vector analogs will then fix the dependence of the fluctuations on the
conformal time 7.

V. THE CONFORMAL GRAVITY DECOMPOSITION THEOREM

For a decomposition theorem for n6W,, = A,, to hold, the ten n6W,, = A, conditions must break up into separate
scalar, vector, and tensor sectors of the form

~302 T (V0% +36)V,Vea = 602072 (a — 7) + 6pQ° + 20071V, V4, (5.1)

392 1.V, + 3k)a = =200V, (a — 7) + 2V 7 + (=49Q2Q3 + 20072 — 2kQ 1)V, 7, (5.2)

(9, VP = 82— 20) (V4 2K) (B, — E;) = k(B; — E;) +

o V., VY(B; - E;) 4 (-4Q*Q73 42002 - 2kQ")V,,  (5.3)

l\)l'—‘

—F[mvav (VuV? + 2k = 02)a—V,V,(V,V* =30%)a]
=7,2Q°Q 72 (a—7) = 2QQ 7 (& —7) —40Q~ (a — ) + Q*5p — V, V' (a +2QQ7 1) + V,V,(a +2QQ7y),  (5.4)
VAV =2k = 02)(B; — ;) + V;(V,V = 2k — 02)(B; — E)]

~ . . . ~ . 1~ . .

T (V,VP = 02 — 2k)? + 4KOXE,; = —E;, — 2kE,; — 26,0071 + V,VE,;. (5.6)
However, even if such a decomposition were to occur in this form, initially this is not enough information as there are only
nine pieces of information. The vector sector has four equations and 4 degrees of freedom (the two-component B; — E; and
the two-component V;), and the tensor sector has 2 degrees of freedom (the two-component E;;). However, in the scalar
sector, there are only three equations [(5.1),(5.2), and (5.4)], with there thus only being a total of nine pieces of information.
However, since 7;; and v, V transform differently under three-dimensional rotations (5.4) actually breaks up into two
sectors according to

3;72 V. VYV, VP 2k —32)a=2Q>Q 2 (a—7) —2QQ (a—7) —4QQ  (a—7) + Q26p -V, V (a+2QQ7y)  (5.7)

and

392 (V, V" =30)a = a+ 20077, (5.8)

and now we do have ten pieces of information.
In addition, we note that the nontrivial solution to (5.2) is given by

— 2 (V. V 4+ 3k)a = —2QQ7 (a — 1) + 2ky 4 (—4Q7Q3 + 20072 — 2kQ 1)V, (5.9)

while (5.5) yields

(V, V4 =2k — 32)(B; - E;) :Qg—l(B,.—E,.Hl(Bi—Ei). (5.10)

292 2

If the decomposition theorem is to be valid, then the scalar (5.1), (5.7)—(5.9), the vector (5.3), (5.10), and the tensor (5.6) all
need to hold, with (5.1) being automatic since #6Wy, — Agg only contains scalars to begin with.
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Since the y — o0, ¥y = 0 boundary conditions for the
separated fluctuation equations given in Sec. III exclude
the vanishing of expressions such as (V,.V¢ — 2k)(V,V“ —
6k)(V, V" — 3k)E;; other than by having E;; itself vanish,
we must instead set the bracketed term in (3.30) and its
analogs to zero. When this is done, we find that because of
the boundary conditions (5.8), (5.9), (5.3), (5.10), and (5.6),
respectively, follow from (3.9), (3.6), (3.13), (3.19), and
(3.30). However, (5.7) does not follow this way. To derive
(5.7), we note that with the boundary conditions every
sector of n6W;; — A;; other than the 7;; sector then does
obey the decomposition theorem. However, since the
relation n6W;; = A;; does hold, it follows that the y;;
sector must obey the decomposition theorem too.

We thus extend the decomposition theorem to conformal
gravity, and note that the ten-component decomposition
theorem equations (5.1), (5.7), (5.8), (5.9), (5.3), (5.10),
and (5.6) are both gauge invariant and exact without
approximation. With Q(z) having to obey (2.7), once we
specify a form for p,,/p,, and thus a form for 6p/5p, which
according to (2.22) is equal to ép,,/dp,, We can in
principle then solve the theory completely in any cosmo-
logical epoch.

VI. SOLUTION IN THE RECOMBINATION ERA

As noted above, at recombination, we can set Q(zz) =
280(k/2A) /2 exp[(—k)' 2], Q(zx)/Q(7g) = (=k)'/%, as
expressed in conformal time. Thus, at recombination, (5.1),
(5.3), and (5.6)—(5.10) reduce to
L (V,V+

3k)V,VPa=—6k(a—7)+2(=k)'/>V, VY,

302
(6.1)

~ o~ o = . 1 .
(VaV 4 2K) |55 (V9" = 02 = 24) (B — 1) =5 (B, ~ Ey)

=0, (6.2)

}1 ~ ~
o (V, VP — 0% — 2k)? + 4kO2IE;;

= -E,. —2kE

i —2E;(=k)'2 +V,VE;, (6.3)

ij

sz V4V, VP +2k - )

3
=2k(a—7) = 2(=k)"/2 (&= 7) = V,V*(a+2(=k) /),
(6.4)
3'7@ (V V=300 = a+2(-k)%,  (6.5)
T (VY +3k)a = —2(=k) (@ = 7) + 2ky,  (6.6)

3!22

U vAA v
207 VeV

= (—k)'*(B; - E;) + % (B, — Ey).

— 2k - 0%)(B, - E))
(6.7)

Just as anticipated above, at recombination, the matter
fields and A contributions automatically drop out leaving
us with just the gravitational contributions. (The contribu-
tions of 6p and 6p are suppressed by factors of order Q2 ~
exp[2(—k)'/?zg] as g — —oo, while combinations such as
—4Q2 Q3 4 20072 — 2kQ~! vanish identically at 7 = 75.)

A. The scalar sector

For the scalar sector, we only have two independent
degrees of freedom at recombination, « and y, but we have
four equations, (6.1), (6.4), (6.5), and (6.6). There must

thus be two relations between them. With Q/Q = (—k)'/2,
they are

%(3(—@‘/2(6.6) +(6.1))
=V, V?(6.6) + (—k)'/2(6.1)

—2(=k)'2[3(=k)/?(6.6) + (6.

(;’;H( )1/2> (6.6) = (V,V? +2k)(6.5) + (6.4). (6.8)

1) = (V,V? 4+-3k)(6.5))],

For the two remaining relations, we note first that

3(—k)12(6.6) + (6.1) — (V,V° + 3k)(6.5)

= (V,V’ + 3k) {é (& —2(=k)'2a -V, Vla) +
=0 (6.9)
and can thus set [77]

nli —2(=k)2a =V, Vla] = -Q%a.  (6.10)
From (6.10), we can fix @, and then from (6.5), we can

determine y according to

1

37 g (V¥ - 30)a—a

y=——-7> (6.11)

With k=-1 (e, L?=1), we now look at

separable solutions to (6.10) of the dimensionless form
(V,V' + Ag)a = 0 just as in (4.2) and obtain

(@ — 26+ Asa) + a = 0.

a (6.12)

As introduced, at this stage, the Ag separation constant is
arbitrary. We will fix its value below. To solve (6.12), it is
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simplest to convert to comoving time by setting d/dr =
a(t)d/dt, where a(t) =Q(r). And with Q(7) = €7,
a(t) = t, we obtain

1 A
[n<8?—;a,+t—§) +1}(x:0,

{n<a%+%at+ASt—2_l) + 1] (%) = 0.

The solution to the second equation in (6.13) is a Bessel
function, and on excluding the irregular Bessel function
since it is badly behaved at r = 0, at recombination the
solution to (6.13) is given in comoving time and conformal
time by

(6.13)

a = t‘]ﬂ(t/rll/z),
p==%(1-A5)"2

a=eJ,(e/n'?),
(6.14)

With these solutions behaving as #(z/5'/?)* near t = 0, we
see that we get oscillating solutions if Ag > 1. Also, we
note that if # had been negative (i.e., if the gravitational
coupling constant @, had been positive), the Ag > 1
solutions would have been modified Bessel functions with
a totally different behavior as a function of .

Since we introduced an overall factor of Q?(z) in the
definition of the fluctuations in (2.11), the full scalar sector
fluctuations are given by Qa and Q2y. Thus, at recombi-

nation, we see that /2a behaves as r=(174s)"*+3 in comoving
time, while according to (6.11), the leading behavior of 2y
is also r(1=45)"”+3 With the dependence on the spatial
coordinate y as y — oo being given in (4.4) as e” where
A=—14(1-Ag)"/?, we see exactly the same +(1 — Ag)'/?
dependence as in the behavior in 7. Moreover, if Ag is real
and obeys Ag > 1, then in the scalar sector the solutions
would behave as e times an oscillating function, and thus
be well behaved and delta function normalizable as y — oo.
Since according to (4.4) scalar sector solutions with £ > 0
are well behaved at y = 0, for real Ag > 1 all £ > 0 scalar
sector solutions are well behaved at both y = 0 and y = co.

B. The vector sector

As discussed in Appendix C, for the B; — Ei sector, we
can factor out the ﬁa V¢ + 2k factor in (6.2) and thus obtain

n(V,V? = 0% —2k)(B; - E;) = Q*(B; — E;).  (6.15)
On taking the 7 derivative, we obtain
W(vbvb - 8% - 2") (Bi - Ez)
= QX(B; - E;) + 2QQ(B; - E))
= Q*(B; — E;) +2Q*(—=k)'/*(B; — E;).  (6.16)

Comparing with (6.7), we obtain

B —E;+2(—k)"/*(B; - E;)

=2(-k)"*(B; = E;) + B, —E;.  (6.17)

We thus establish that (6.2) and (6.7) are consistent, with
(6.15) being a first integral of (6.7).

On setting k = —1, we look at separable solutions to
(6.15) of the dimensionless form (V,V”+A,)(B;—E;)=0
just as in (4.13). As with the scalar sector, at this stage
the Ay separation constant is arbitrary. We will fix its
value below. With this separation constant, (6.15) takes the
form

{;7 (AV + 5—,22 - 2) + 92} (B;—0,E)=0. (6.18)

To solve (6.18), we rewrite it in comoving coordinates, and
at recombination we obtain

o T

Ay—2 O 10
Oz or?

) + 1} (B; — t9,E;) =0, (6.19)

with solution in comoving time and conformal time of the
form

B; — t0,E; = €in(¢/’11/2),
p=t2- A",

B, —0.E;, = €in(eT/’71/2),
(6.20)

where ¢€; is a transverse polarization vector.

Since we introduced an overall factor of Q%(z) in the
definition of the fluctuations in (2.11), the full vector
sector fluctuation is given by *(B; —t0,E;). Thus, at
recombination, the solutions behave in comoving time as
2(B; — 1,E;) ~ =(2=4v)'""+2 With the dependence on the
spatial coordinate y as y — oo being given in (4.15) as ¥
where 4= —24 (2—-Ay)'"/2, we see exactly the same
+(2—-A)"/? dependence as in the behavior in t.
Moreover, if Ay is real and obeys Ay > 2, then in the
vector sector the solutions would behave as e~ times an
oscillating function, and thus be well behaved and delta
function normalizable as y — oo. Since according to (4.15)
vector sector solutions with £ > 1 are well behaved at
x =0, forreal Ay > 2 all # > 1 vector sector solutions are
well behaved at both y =0 and y = .

C. The tensor sector

Because we are able to set QQ~! = (—k)"/2 in (5.6), the
resulting (6.3) turns out to be factorizable, and it takes the
form
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é (V, V@ =2k = 02 +2(=k)'/20,) — 1| [V, V" = 2k — 02 — 2(=k)'/?0,]E,; = 0.

(6.21)

With k = —1, we look for separable solutions of the dimensionless form (ﬁav"a +Ar)E;; =0 just as in (4.19). As
with Ag and Ay, at this stage the Ay separation constant is arbitrary. We will fix its value below, but first we look for

solutions to

[&(a& —20, -2+ Ar) + 1] (02 +20, — 2+ A7]E;; = 0.

Equation (6.22) can be rewritten in comoving time as

{% (a?07 + (ad,a = 2a)0, =2+ Ar) + 1} (a?07 + (ada +2a)d, =2+ A7]E;; = 0.

With a(7) = 1, we can rewrite (6.23) as

[t% (1207 — 10, -2+ Ap) + 1} (207 + 310, — 2 + A7E;;

n 1 Ar=3
- L_z (P82 =10, -2+ A7) + 1} {z [a% +~0, + T—} (tE,-j)]

1 Ar—3 1 Ar—3
- t{n(a%Jr;atJth—z) + 1] [a%+;8t+Tt—2] (tE;;) = 0.

There are two classes of solutions, and with f = tE;;
they symbolically obey

1 Ap —
[8?+;8,+—th 3]f—Df—O’ (6.25)
1 Ar=3 1 1
{3tz+—8,+ T2 +—]g: [D+—]g=0, Df =g,
t t n n

(6.26)

with (6.25) serving to define the derivative operator D. For
the first class of solutions, we can set

fi = E3=An", (6.27)
For the second class of solutions, we have
g=J,t/n'?),  o==+(3-Ap)"% (6.28)

However, for this second class of solutions, we also have

D<g—|—&) =0,
n

and thus we can set g+ f,/n = t°. Thus, finally with
f = tE;j, the general solution to (6.23) in comoving time
and conformal time is given by

(6.29)

(6.22)
(6.23)
12
(6.24)
|
E;; = €;lar”™" 4+ br ' ,(t/n"?)],
E;; = e;jlael V7 + be"J (e /n'/?)].
c=+(3-A7)"2, (6.30)

where ¢;; is a transverse-traceless polarization tensor and a
and b are time-independent coefficients.

As we see, at recombination both comoving time
solutions behave as °~!. Since we introduced an overall
factor of Q?(7) in the definition of the fluctuations in (2.11),
the full tensor sector fluctuation is given by Q*E; ;- Thus, at
recombination, the solutions behave in comoving time as
PE;~ £G=A)'"+1 With the dependence on the spatial
coordinate y as y — oo being given in (4.21) as e where
A=-3+3-A;)"2, we see exactly the same +(3 —
A7)'/? dependence as in the behavior in ¢. Finally, we note
that if Ay is real and obeys Ay > 3, then in the tensor sector
the solutions would behave as e~* times an oscillating
function, and thus be well behaved and delta function
normalizable as y — oo. Since according to (4.21) tensor
sector solutions with £ > 2 are well behaved at y = 0, for
real Ay > 3, all £ > 2 tensor sector solutions are well
behaved at both ¥y = 0 and y = oo.

The time behaviors that we have found for the scalars,
vectors, and tensors in (6.14), (6.20), and (6.30) are of the
respective forms @ = (+(1749)*+1 B, — 19, E; = £(2-4)'""?,
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E; = £3=A1)'"=1" and according to the master equation
discussed in Sec. IVD are thus of the form a = = +1,
B; —t0,E; = =", E;; = r**~!. We thus see a drop in
powers of ¢ as we go from scalar to vector to tensor. To
understand this, we note that because of the Bianchi identity
for the background we have V, (nW** —A’(‘g)) =0. Thus, on

perturbing, we have

B, (nOWH — AM) Ty (nSW — A%) T, (nSWHT — Ak)
+ 8T (PW =A%) + 8T, (nWHe — AT ) =0, (6.31)

But in the background nWo — A’((’;) = 0. Thus, the per-

turbed equations of motion obey

Vﬂ(n(SW”” — A") = 0. (6.32)
We thus have
Vo(ndWP — AY) + V,(psW° — A0) = 0,
Vo(n(SWW - Aoj) + Vi(n(SWi/ - AU) =0. (6.33)

Consequently, as we go from scalar to vector, we lose one
power of ¢, and as we go from vector to tensor we lose
another power of ¢.

Having now obtained the structure of the solutions, we
still need to fix appropriate values for Ag, Ay, and A7. To do
this, we turn to an alternate way of solving the problem
based on the traceless part K, = h,, — %gﬂyg‘mhpg of the
fluctuations. This will naturally lead us to oscillating
solutions, just as we would like.

VII. FIXING THE SEPARATION CONSTANTS
A. The K, basis

To fix the separation constants, we compare the above
scalar, vector, tensor results with an alternate approach to
the problem, one which involves none of the scalar, vector,
tensor separation constants at all. Specifically, in the
approach presented in [21,22], 6W,, was developed in
terms of the traceless fluctuation K, = h,, —+g,,9"hys
where g, + h,, is the full fluctuation. The utility of using
K, is that for any background geometry that is conformal
to flat Minkowski, viz. of the form

ds?* = Q?(x)[de? — dx* — dy* — d7?], (7.1)
where Q(x) is an arbitrary function of the coordinates,
oW,, is given without approximation and without any
choice of gauge as [22]

1
Wy =597 <a,,aaafaf QK| — 8,0°0,0"[Q K, ]
2
— 0,0°0,0°[Q72K,,, | + 3 0,0,0°0° Q2K 4]

1
+ 3 Dp [g—zKaﬂ]> . (7.2)

With 6W,, being traceless, it is written in terms of the
nine traceless components of 4, viz. K. The great utility
of (7.2) is that it only involves the Minkowski fourth-
order derivative operator, to thus involve none of the
separation constants of the wave equation associated with
the conformal time Robertson-Walker metric ds? =
Q*(z)[de® — dr? /(1 — kr?) — r2d0* — r’sin?0dg?]. Tt will
of course involve the separation constants of the 0,0°9,0"
operator, but they are just the standard momentum
variables.

To take advantage of (7.2), we must rewrite the con-
formal time Robertson-Walker metric with negative k in the
form given in (7.1). Following, e.g., [22], on conveniently
setting k = —1/L? and introducing sinhy = r/L, the
conformal time metric then takes the form

ds> = L*a*(p)[dp? — dy* — sinh’yd6* — sinh?ysin’0d¢?).
(7.3)

where p = t/L. Next, we introduce

p'+r =tanh[(p+y)/2],  p'—r'=tanh[(p-x)/2],

inh inh
= sinh p e sinhy , (7.4)
cosh p +coshy cosh p 4-coshy
so that
1
dp” — dr” = 2|dp? — dy’]sech’((p + 1)/2]
x sech?((p — x)/2].
1
7 (cosh p +cosh)? = cosh?((p + x)/2]cosh?[(p —7)/2]
B 1
=PI =

(7.5)

With these transformations, the line element takes the
conformal to flat form

4L%a*(p)
(1= (p'+ 7)1 =(p' =)
X [dp”? — dr'* — r?d6* — r?sin*0d¢?).

ds? =

(7.6)
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The spatial sector can then be written in Cartesian form

ds*=L?a*(p)(cosh p +coshy)?[dp” — dx"> — dy? — d7"?],
(7.7)

where ' = (x> + y> + z/?)'/2. The metric is now written in
the conformal to flat form given in (7.1), and we can identify
its Q2(x) factor as Q?(x) = L%a*(p)(cosh p + cosh y)>. We
note that in transforming from (7.3) to (7.7) we have only
made coordinate transformations and not made any con-
formal transformation.

To determine the implications of (7.2) in a conformal to
flat geometry such as that given in (7.7), we note that in the
gauge O*[Q 2K, | = 0, the perturbation tensor W, takes
the form

1

W, = 59‘28,,8”8787 Q7K. (7.8)

The great utility of (7.8) is that not only does it only involve
the flat Minkowski wave operator, it is even diagonal in the
(u.v) indices. If we ignore A,, (the case considered in
[22]), we need to solve n6W,,, = 0, and the solution then is
of the form

pr(xl) = Qz(xl)[A/weik.x, + B/w(n ) x/)eik'X/]’

k, k" =0, (7.9)

together with the complex conjugate solution. Here n,, is a
spacetime-independent reference vector, A, and B, are
traceless polarization tensors, with the A, solution being a
standard massless plane wave and with the massless B,
solution growing as (n - x’). In the O*[Q2K,,] = 0 gauge,
the solutions obey ik*B,, =0, ik"A,, + n"B,, =0 [22].
From (7.9), we see the natural emergence of massless plane
wave solutions to the theory, with separation constants that
are just the momentum variables associated with plane
wave fluctuations.

If we now do include A, we can integrate n6W,, = A,
with the retarded Green’s function associated with the

0,0°0,0" operator. This Green’s function is of the form
0(t — r)/8x [78] as it obeys

@ -vp (M) — - v (20)

8 drr

= & (). (7.10)

Consequently, the solution to n6W,, = A, in the metric

given by (7.7) is given by

ZQZ /
K,w(x’) — 871(; ) / d4X”9[pl _ p// _ |X, _ X//H

XQZ(x”)A”,,(x”). (7.11)
For sources that are localized in space and oscillating in
time, the solution given in (7.11) will approach (7.9) far
from the sources. Once we have (7.11), we can transform
back from (7.7) to (7.3) by general coordinate trans-
formations. And with a plane wave explik(p’ — )] trans-
forming into expl[ik tanh[(p — x)/2]], the oscillating nature
of the solution persists, and thus we can set all three of
(1—=Ag)"/2,(2=Ay)"2, and (3 — A7)"/? equal to iv where
v is a continuous positive parameter.

To reinforce these remarks, we note that since we are in a
conformal invariant theory, as well as make coordinate
transformations we can also make conformal transforma-
tions. With the gauge condition that we are using being
conformal invariant [79], by a conformal transformation we
can transform the metric in (7.7) into the completely flat
metric ds®> = dp”® — dx’> — dy” — dz”>. Under this con-
formal transformation, (7.2) will transform into

ow

uv

1
= <a,,aﬂafafl<w — 0,0°0,0°K g, — 0,0°0,0°K
2 a Hf 1 o Ja Af
300,00 K gy + 310,070 F Ky ). (1.12)

At the same time, our conformal invariant gauge condition
will transform into 9,K** = 0, so that (7.12) will reduce to

oW, = %668"81811(,”.
Thus, again plane wave solutions emerge. Finally, to ensure
that oscillating solutions in the K,, sector do propagate
through to the scalar, vector, tensor basis, we now relate the
two sets of bases, something that is actually of interest in its
own right as it is a strictly kinematic procedure that does not
involve the imposition of any gravitational equation of
motion at all.

(7.13)

B. Matching the scalar, vector, tensor basis
with the K, basis

To achieve the required matching of the two sets of
bases, we recall from above that for fluctuations around a
k # 0 conformal time Robertson-Walker metric of the form

ds? =—(g,, +h,,)dx*dx*

dr?

= r2d6? — rsin20d¢?
~

=Q?(7) |d7* - ]

+Q2(7)[2¢pd7® —2(V;B + B;)drdx!
(7.14)
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the perturbed 6W,, is given by

Woo = =305 (V. V +3k)V,Vla,
SWo; évl(ﬁ,ﬁ“ + 3k)a + ﬁ [(V,V? — 02 = 2k)(V .V 4 2k)|(B; - E;).
W, = 3;22 7V, 99,97 + 2% — 02)a - V,9,(V, 9 - 302)d]
+ 2;22 V(9,9 = 2k = ) (B, — ;) + V(7,9 — 2k — 02)(B; - E)
- é [(V,V? — 92 — 2k)? + 4kO2E,. (7.15)

It must thus be possible to match the scalar «, the vector B; — E,, and the tensor E; J with the K - And since the remaining
scalar y of the scalar, vector, tensor expansion of 4, does not appear in 6W,, in any matching y (a tenth degree of freedom)
must involve the trace of h,,. As we now show, not only is it possible to have such a matching, the matching is purely
kinematical and requires no reference to any gravitational tensor such as 6W,, at all.

To achieve the matching, it is convenient to set /,, = Q*(7)f,,, so that from (7.14) we obtain

fre==2¢.  fu=ViB+B,  fi;=-297;+2V,VE+V,E;+V,E; +2E,. (7.16)

Then with @ = ¢ +y + 0,.B — O?E, y = —Q[0.Q|™'w + B — 8. E, solely by taking appropriate derivatives of (7.16), we
obtain [23]

(3k 4+ V'V,)V°

41
<1
N
Q
I
|
|
w
»
+
<
>
<
T
<
<
o
+

VOV (=2kf = V"V, f +V"V" f0) + 0.3k + V"V, ) V[,

- %az(ﬁmﬁ" Fon = V1), (7.17)

(3k + V9,97 — —%Q[@ Q19T (<2kf — V20, f + V"V f,0) + (3K + V0, )V .

_%af(gvmvn Fon = V9.6, (7.18)

where f =77 f ;.
With h,, = Q*f,,, we introduce K, = Q%k,, so that k,, = f,, —19,,(—f + f) and obtain

4 1

ko —=
T 3

1_
3 S S =k, Sfij = kij +§7ij[f_ k). (7.19)

fTT =
On now inserting (7.19) into (7.17) and (7.18), we obtain
(3k + VPV, VIV a0 = —% (8k +3V*V,)V . V'k,, %vdvdvevfkef + 8,3k + V*V,)V'k,,
- %83(3?’”?"1%1 -V, V%), (7.20)
(3k + VIV, VY, = —%9[8 Qv ( 2kf = —V”Vhf - —vahkﬂ +V"Vk ) + (3k+ V'V, Vk,,
- %ar(3vmvnkmn - vavak‘m’)- (721)

With « but not y appearing in W, , and with the trace of &, not appearing in 6W,,, it follows that f must not appear in

%
but must appear in y, just as we see.
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For the vector sector, we have [23]

(vava - 2k) (vivi + 2k) (Bj - 6TE ) (v v )( a afrj - 2kfrj - v 'vafm)
=NV N fi;+ 0V VNV £+ 2k V' f 1, (7.22)
and thus with use of the first relation in (3.1), we obtain
(V'V, = 2k)(V'V,; + 2k)(B; = 0,E;) = (V'V; + 2k)(V*V k,; — 2kk,; — V ;Vky,)
—9.V'V V'k;; + 0,V;V*V’ky, + 2k0,V'k;;. (7.23)
As we see, again f drops out just as it should, since like a, B; — 0.E; also appears in 6W,,.
For the tensor sector, we have [23]
2(VV, = 2k)(VPV, = 3k)E;; = (V*V, = 2k)(V'V, = 3k)f;
l = a a ViAV vAY vAY
Ev [V V fap + (VV, +4k) f] = (V'V, — 3k)(vivbfjb + vjvbfih)
1~ A VA vAvVAvAY avya
+57i VOV, = 4k)VPVE £ = (V, VOV, VP = 2kVV? + 4K2)f). (7.24)

On substituting (7.19) and using the first relation in (3.2) with A; = \% ;f> we obtain

2(VV, = 2k)(VPV, = 3k)E;; = (V°V )(VPV, - 3k)
1"’~"’~ 74 vAY vAY 1~ 74 brc
5 ViV, Ve VPkap = (VOV, = 3K)(V,V k) + V; Vi) + ST (V- 4k)VP Yk,
%ﬁ V,(V, VP + 4k)k,, — ly,,(v VOV, VP —2kV,V? + 4Kk, (7.25)

As we see again, f drops out just as it should, since like @
and B; — 0.E;, E;; also appear in 6W

One can directly check the validity of (7.20), (7.21),
(7.23), and (7.25) by substituting (7.19) and (7.16) into
their right-hand sides. Now, in arriving at (7.20), (7.21),
(7.23), and (7.25), we made no gauge choice. Then with a,
v, B — 0.E;, and E;; all being gauge invariant, it follows
that the right-hand sides of (7.20), (7.21), (7.23), and (7.25)
have to be gauge invariant too, with their invariance under
h,, = h,, —V,e, — Ve, being explicitly established in
[23]. (Alternatively, one could start by showing that the
right-hand sides of the purely kinematic (7.20), (7.21),
(7.23), and (7.25) are invariant under h,, — h,, — Vﬂe,, —
V,¢, and then infer that a, y, B; — 0,E;, and E;; are indeed
gauge invariant.) As anticipated in Sec. I A, the relations in
(7.20), (7.21), (7.23), and (7.25) generalize the study that
we made in Sec. [ A on the decomposition of a vector into
its transverse and longitudinal components. And whether
we can go from differential equations to integral relations
for a, y, B; — 0.E;, and E;; will also depend on boundary
conditions. Thus, just as in the simple example given in
Sec. T A, establishing the decomposition theorem for a, y,
B;—0.E;, and E;; depends on the same boundary

conditions that are needed to establish their very existence
in the first place.

Finally, since the relations given in (7.20), (7.21),
(7.23), and (7.25) are gauge invariant, we can evaluate
them in any gauge we like. Choosing the O*[Q*K,,] = 0
gauge in which 6W,, takes the form given in (7.8), from
(7.20), (7.21), (7.23), and (7.25), we see that oscillating
solutions in the K,, sector do indeed propagate to the
scalar, vector, and tensor sectors. With the K, fluctua-
tions being plane waves, it follows that Ag, Ay, and Ay
must be oscillating continuum modes, to thus fix Ag > 1
in the scalar (6.14), Ay > 2 in the vector (6.20), and
Ar >3 in the tensor (6.30), i.e., continua that start at
Ag=1, Ay =2, and Ay = 3.

VIII. THE FULL SOLUTION
AT RECOMBINATION

Given that we did find plane wave solutions by
analyzing the K, basis, we thus look for scalar, vector,
and tensor mode solutions that oscillate in both time and
space. For the spatial behavior of the scalar modes, we
see from (4.4) that we get oscillatory behavior in y for all
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continuous values of Ag that obey Ag > 1. For the vector
modes, we see from (4.15) that we get oscillatory
behavior in y for all Ay that obey Ay > 2. For the
tensor modes, we see from (4.21) that we get oscillatory
behavior in y for all Ay that obey Ay > 3. Noting next
that Bessel functions with pure imaginary index have a
leading small ¢ behavior of the form

Ji(t) = ¥ = cos(vlogt) + isin(vlog?)  (8.1)
from (6.14), (6.20), and (6.30), we see that we get
oscillatory behavior in time in the scalar, vector, and
tensor sectors under precisely these same Ag > 1,
Ay > 2, A7 > 3 conditions. These then are the required
ranges for the scalar, vector, and tensor separation
constants.

As far as the spatial behavior is concerned, these
solutions belong to the f(v) = (cosuy,sinwyy) sector of
options for the function f(v) as listed in (4.7), with the class
of all v > 0 solutions being complete [just like the spherical
waves that they would become if were to set k =0 in
(1.18)]. For the scalar modes, the solutions to (4.3) have
v? = Ag — 1. For the vector modes, the solutions to (4.14)
have 12 = Ay — 2. For the tensor modes, the solutions to
(4.20) have 1> = Ay — 3. Thus, all solutions in the scalar,
vector, and tensor mode sectors are indeed oscillatory in
space, just as we want.

Since according to (4.4) spatial sector scalar mode
solutions behave as e% at large y where 1=
—1 4 (1 — Ag)'/2, both solutions with any given Ay > 1
(i.e., either sign of the square root) will be suppressed at
large y (and thus at large r), and thus automatically satisfy
the asymptotic boundary and normalization conditions that
we require of all fluctuations. Since we also see from (4.4)
that one of the two solutions will be well behaved at y = 0,
for any Ag > 1 there will always be one solution that meets
the boundary conditions at both y = o0 and y =0 (viz.
r = oo and r = 0). Now, according to (4.8), Sy(y) is given
by (df/dy)/ sinhy. This solution will be well behaved at
x =0 if we choose the f(v) = cosvy family. With this
choice of f(v), the first few solutions given in (4.8) are of
the form

2

A vsinvy 4 vsinyycoshy v-cosvy
S e N S = N - . )
o) sinhy 2 sinh?y sinhy
. 3v%cosyycoshy v(2—1?)sinyy 3usinuy
S:(0)= - - (8.2)

sinh%y sinhy sinh?y
to be normalized as described above using the master
equation given in Sec. IV D. All of these solutions are well
behaved at both y = 0 and y = oo, with all integer £ > 0
being allowed. We note that all of these solutions are

even in v. Thus, while choosing either of the two roots

v = 4(Ag — 1)/? affects the #* behavior in time, it does
not affect the behavior in space.

According to (4.16), the first few allowed spatial sector
vector mode solutions that satisfy the asymptotic boundary
and normalization conditions are of the form

_wsinyycoshy 1Pcosvy  Si(x)

‘A/ - - - k)
1) sinh®y sinh’y  sinhy
7a(y) = 31 cosyycoshy v(2—1?)sinyy 3usinyy
2 sinh3y sinh?y sinh*y
S
sinh y

with all integer # > 1 being allowed. All of these solutions
are also even in v.

Similarly, according to (4.22), the first allowed spatial
sector tensor mode solution that satisfies the asymptotic
boundary and normalization conditions is of the form

3 cosyycoshy v(2—1?)sinyy  3Businyy
sinh*y
Vo) _ 5(x)

_ 20 _ , 8.4
sinhy  sinh’y (84)

Tz()() =

sinh®y sinh’y

with all integer £ > 2 being allowed. This solution is also
even in v.

From (6.14), (6.20), and (6.30), we see that the behavior
in time is of the form 1, (¢t/n'?), J,(t/n"/?), and
t71J,,(t/n'/?) in the respective cases. Finally, on multiply-
ing by Y”(0, ¢), introducing the polarization vectors and
tensors given in (6.20) and (6.30) and the A(v,f, F)
normalization factors with f=¢— (F—3)/2 that are
given in (4.25), the full structure for the allowed modes
is given by

a=Aw.?.3)8,(0)Y2 (0. )], (t/n'?),

%(uu 1 +36,2)a—g,
B; —t0,E; = A(v, € — 1,5)e;V ()Y (0, $)J, (t/0'?),

Ej;j =A@, ¢ =2.7)e;To ()Y} (0, 9)t™" 03, (t/n'?)

(8.5)

V==

for all real and positive v. In the conformal theory, these
scalar, vector, and tensor mode solutions are exact to one
part in 10* at recombination [80].
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APPENDIX A: SOME TYPICAL SOLUTIONS TO THE SCALAR, VECTOR, AND TENSOR EQUATIONS

In Sec. 111, we obtained higher-derivative, decoupled fluctuation equations for the scalar, vector, and tensor fluctuations.
For the scalars, we obtained equations such as (3.9), viz.

2N & @iy &) SRV SRV vAval Sy
oz YV (V9 4 30) (302 = V,V)a = 29,9 (V; ¥/ 4 3k) (o + 20071 7) = 0. (A1)

For the vectors, we obtained equations such as (3.19), viz.

sor (V¥ =209, 9" + (V.Y +20) (9,9 - 2k - 92)(B; - Ey)

— (V,V* = 2k)(V,V? + k) (V. V° + 2k) %(B,. —E)+QQ (B, - Ei)] =0. (A2)
For the tensors, we obtained equations such as (3.30), viz.
(V.V¢ = 2k)(V,V* - 6k)(V,V° - 3k)
x é [(V,VP — 92 = 2k)? + 4kOP|E,; + Eyj + 2KE;; + 2QQ7'E;; — vdvdEl,} =0. (A3)

Then, in Sec. IV, we presented a general procedure for  Since 6,@" and V ﬁf + 3k commute with each other, there
solving the associated wave equations for the scalar, vector, are three possibilities: that ﬁlvi S(z.x.6.¢) =0, that

and tensor fluctuations. We now show how to use this (@@/ +3k)S(2.4,0.4) =0, or that S(z.y.0.¢) =0
j 9 9 K b K 9 K .

procedure to solve (A1)~(A3). Of these three options, only the last one fixes the 7

dependence of S(z,y,0,¢). We thus need to find a way

APPENDIX B: THE SCALAR SECTOR to exclude the first two options. This will be done with

We can write (A1) in the generic form boundary conditions on y.
S — On introducing a separation constant Ag and extracting
ViVI(V, V! 4 3K)S(z. 1.0, ) = 0, (BI) " out the angular Y’ (0, ¢) behavior, we found that the radial
where S, (x) obeyed the second-order differential equation given
in (4.3). With k < 0, we thus need to solve this equation for
S(t.x.0.¢) = — 2_'72 (302 — ﬁaﬁa)a —2(a+ 2(29‘%/). Ag = 0 and Ag = —3. Explicit solutions in these two cases
3Q have been given in [23]. For Ay = 0, the first few solutions

(B2)  are of the form

50 (Ag =0) = Z?jﬁj L S9Ag=0)=1.
$1V (45 =0) —@, 32 (Ag = 0) _Z?S}l:ﬁ_me%(
Sgl)(AS =0) 4 5 3,(32)(145 —0) = 2coshy n 15coshy 12y 15y (83)

== . 5 + V14 . . - . - . )
sinh’y  sinh*y sinhy sinh’y  sinh?y sinh*y

where as before there are two solutions for each £ value, with £ being the lower index. From this pattern, we see that the
solutions that are bounded at y = oo are badly behaved at y = 0, while the solutions that are well behaved at y = 0 are
unbounded at y = oo. Thus, all of these Ag = 0 solutions are excluded by a requirement that solutions be bounded at y = oo
and be well behaved at y = 0.
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For Ag = -3, the first few solutions are of the form
a0 2 . 1
S(()>(AS = —3) = coshy, S((])(AS: -3) :2smh}(+sinh)(’
(1 . a2 cosh y
S(l >(AS = —3) = sinhy, Sg )(AS = —-3) =2coshy — Sinhly
(1) 3COSh}( 3)( &(2) 1
> (4s ) cosL¥ sinh’y  sinh’y 2 (4s ) sinh3y
a(1) . 15 15y coshy &(2) cosh y
Sy (Ag = —=3) = 2sinhy — - S (Aq = B4
> (As ) ST Sinh x sinh’y sinh*y 3 (As sinh*y (B4)
|
From this pattern, we again see that the solutions that are ~ where
bounded at y = oo are badly behaved at y = 0, while the
solutions that are well behaved at y = 0 are unbounded at V. 0.4) — n V VYV — 2k — 2B, — E
x = oo. Thus, all of these Ag = —3 solutions are also (01,0 ¢) 202 (Va 2)(B: 2
excluded by a requirement that solutions be bounded at 1. .. . .
y = oo and be well behaved at y = 0. 5 (Bi — E;) — QQ7(B; — E). (C2)
Thus, for the scalar sector, the only option left is that o o o
S(z,x,0,¢) as given in (B2) vanishes. Thus in the  Since V,V'-2k, V,V'4+k and V;V/ +2k all

recombination era, (B2) leads to (6.5). And in Sec. VI
we solved (6.5) and the three other scalar sector equa-
tions (6.1), (6.6), and (6.4), equations that can be derived
from (3.4) and (3.6), and a linear combination of (3.9)
and (3.10) by a treatment analogous to the one we have
just given for (3.9). Hence, for the scalar sector, we
see that boundary conditions enable us to exclude the
spatial derivative conditions V,V'S(z,7.6,¢) =0 and
(ﬁﬁf +3k)S(7,x.0,¢) =0, and we only need to con-
sider S(z, y, 0, ¢) = 0, which thereby enables us to fix the
behavior of the scalar sector.

APPENDIX C: THE VECTOR SECTOR

For the vector sector, we can write (A2) in the generic
form

(V .V =2k)(V, VP 4 k)(V NV +2k)V.(z, .6, ¢) = 0,

commute with each other, there are four possibilities:
that (V;V' = 2K)V,(z.7,0,4) =0, that (V,;V'+k) x
Vi(z.x.0.¢) =0, that (V,V' +2k)V.(z,4.0.4) =0, or
that V;(z,y, 0, ¢) = 0. Of these four options, only the last
one fixes the = dependence of V;(z,y, 0, ¢). We thus need
to find a way to exclude the first three options.

On introducing a separation constant Ay and extracting
out the angular Y7/ (6, ¢) behavior, we found that the radial
g1.¢(y) obeyed the second-order differential equation given
in (4.14). With k < 0, we thus need to solve this equation
for Ay =2, Ay = —1, and Ay = —2. Explicit solutions for
Ay =2 have been given above in (4.37). For the Ay, =2
solutions, we see that the ‘A/Ef) (Ay = 2) solutions with
¢ > 1 are bounded at y = co and well behaved at y = 0.
Thus, if implement (C1) by (V,V“ +2)V; = 0, we are not
forced to V; = 0.

Solutions for Ay = —1, Ay = —2 have been given in
[23]. For A, = —1, the first few solutions are of the form

e X3 )
= —sinh3)( [—y/3sinhy — coshy],

e V3
sinh'y [3 + 34/3 coshy sinhy + Ssinh?y],
sin

(C1)
|
V3 —1V3
oD o & 72 (4 _€
o) 6” o) 4
Vi'(Ay =-1) = Sinhy [V/3sinhy —coshy], V7 (Ay =
(0 erV?
Vi (Ay =-1) :smh4 [3 —3,/3 coshy sinhy + 5sinh?y],
Vi'(Ay=-1)= sinhs)( [154/3sinhy + 14,/3sinh’y — 15 cosh y — 24 cosh ysinh?y],
/3
~(2) e
Vii(Ay=-1)=
3 (Ay ) sinh’y

[-154/3 sinhy — 14/3sinh®y — 15 cosh y — 24 cosh ysinh?y].

(C3)
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All of these solutions are bounded at y = co and all
\A/E))(AV =-1)— \A/(fz)(AV =-—1) with £>1 are well
behaved at y =0. Thus, if implement (Cl) by
(V, V"= 1)V, =0, we are not forced to V; = 0.

For Ay = -2, the first few solutions are of the form
(1) . . COSh)( &(2) o o 1
Vo (Ay =-2) = s Vii(Ay=-2)=2+—5-,
0 ( Vv ) Sinh/'{/ 0 ( 1 ) + Slnhzjf
_ ,coshy coshy

(1) - (2)
Ay =-2)=1, 72(4, =—2) =252 _coshy.
1 (Ay ) Ay ) sinhy sinh’y
N h 3cosh 3
P (A, = —2) —poshr_3coshy 3y

sinhy sinh’y = sinh*y’
~(2) B 1
vy (Ay =-2) = sinh'y’
5 15 15y coshy

(1) _ _
70A, =—2)=2— -
2 (A ) sinh?y sinh*y = sinh’y

_ coshy

Py =-2) (C4)

~sinhy’
Of these solutions, the only ones that are bounded at y = o
are ng) (Ay = =2) and ‘752) (Ay = =2). However, they are
not well behaved at y = 0. Since they thus can be excluded
by boundary conditions at y = oo and y =0, if we set
(V,V*=2)V; =0, the only allowed solution will be
V; =0. As we see, boundary conditions are not capable
of excluding the Ay, =2 and Ay, = —1 cases. We address

this concern in Sec. IV D. Because of its overall @a Ve -2k
factor, we note that considerations similar to our treatment
of (3.19) also apply to (3.13), the other vector sector
equation.

APPENDIX D: THE TENSOR SECTOR

For the tensor sector, we can write (A3) in the generic
form

(V. V€ = 2k)(V, V" = 6k)(V,V? = 3K)T (7, 2,0,¢) = 0,

(D1)
where
Tij(r..0.9) = o5 (V9" = 0% = 202 + 4k,
+ Ejj 4+ 2kE;; +2QQ7'E;;
-V, VIE;. (D2)

Since V,V' -2k, V,V'—6k and V;V/-3k all
commute with each other, there are four possibilities:
that (V,V' =2K)T;;(7,2,0,¢) =0, that (V,V'—6k)x
Tii(z.0.0,) =0, that (V,;V' = 3k)T;;(z,5,6.¢) =0, or
that T j(r, .0, @) = 0. Of these four options, only the last

one fixes the 7 dependence of 7';;(z, .6, ¢). We thus need
to find a way to exclude the first three options.

On introducing a separation constant Ay and extracting
out the angular Y7 (6, ¢) behavior, we found that the radial
hi1-(y) obeyed the second-order differential equation
given in (4.20). With k < 0, we thus need to solve this
equation for Ay =2, Ay =6, and Ay = 3. Explicit sol-
utions for A7 = 2 have been given above in (4.39). For the
Ay = 2 solutions, we see that the T(;) (A7 = 2) solutions
with £ > 2 are bounded at y = co and well behaved at
z = 0. Thus, if implement (D1) by (V,V* + 2)T;; =0, we
are not forced to T;; = 0.

Solutions for Ay = 6, Ay = 3 have been given in [23].
For Ay = 3, the first few solutions are of the form

(1) 1 #(2) X

Ty (Ap=3)=——, T, (A;=3)=—""+,

0 (Ar=3) sinh®y 0 (Ar=3) sinh3y

(1 coshy A (2 1 ycoshy
T<1 )(AT:?’):sinh“)(’ Tg )(ATZS :sinh3;(_m’
A (1) 2 3

T, (Ap=3)=—+—=,

2 (Ar=3) sinh3;(+sinh5)(

. 3cosh 2 3
T Ar=3) = e o~ i

sinh*y  sinh®y sinhSy’

f“)(A B ):2cosh;( Scoshy
3T sinh*y  sinh®’
A 11 15 6ycoshy 15ycosh
TgZ)(AT:?’): . 3 + . 5 )( 4 ){_ X 6 I
sinh’y sinh’y  sinh"y sinh®y
(D3)

All of these solutions are bounded at y = co and all
fff) (A7 =3) with £>2 are well behaved at y =0.
Thus, if implement (D1) by (V,V¢ + 3)T;; =0, we are
not forced to T;; = 0.

A similar outcome occurs for Ay = 6, and even though
we do not evaluate the Ay = 6 solutions explicitly, accord-
ing to (4.21) all solutions to (V,V*+6)T,; =0 with
A7 = 6 are bounded at y = oo (behaving as e~ cos(1/3y)
and e~¥ sin(y/3y)), with one set of these solutions being
well behaved at y = 0 for all # > 2. Thus, if implement
(D1) by (?ﬁ“ +6)T;; = 0, we are not forced to T;; = 0.

We thus see that while boundary conditions at y = oo
and at y = 0 will force us to set S(z,x,60,¢) =0 in the
scalar sector, they do not force us to set V;(z, v, 0, ¢) = O or
T; j(r, )(,9,4)) =0 in the vector and tensor sectors. However,
solutions in which V,(r,y,0,¢) and TU(T,)(, 0,¢) are
nonvanishing will each have their own specific dependence
on y. In Sec. IV E, we show that these various y depend-
encies do not line up with each other in the original coupled
second-order 76W,, —A,, =0 fluctuation equations
themselves, and in the end that is what forces us to
Vi(z,x,0,¢) =0, Tij(r,;(, 0,¢) = 0. Thus, solving the
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higher-derivative (3.9), (3.19), and (3.30) [and analogously
(3.4), (3.6), (3.10), and (3.13)] does not lead us to any
discrete allowed values for Ag, Ay, or Ay. Rather, the
analysis of Sec. VII shows that they each possess a
continuum of values with Ag > 1, Ay > 2, and Ay > 3.

In Sec. VI, we solved the S(z,y,0,¢) =0, V(z,x,0,¢) =0
and T;(z,x.6.¢) = 0 equations in the recombination era.

In those solutions, the factors u, p, and o that appear in the
scalar (6.14), the vector (6.20), and the tensor (6.28) are
thus all pure imaginary.
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derivative of the scalar wave equation (4.3) become the
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In [23] and in Appendix B, it is shown that for k = —1 there

are no solutions to (V,V* + 3k)S = 0 where S is a scalar
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that are well behaved at both y = co and y = 0. Thus, we
can factor out the overall ﬁa@” + 3k factor on the right-
hand side of (6.9).

P. D. Mannheim, Found. Phys. 37, 532 (2007).

In [21,22], we introduced a gauge condition, V, K* —
K"T%, = 0, that is preserved under a local conformal trans-
formation g, (x) >Q?(x)g,,(x). With V, KW —KWT4 =
0,K" +T,K, for the background metric given in
(7.1), we have O,K* +2Q7'K*9,Q =0. Then, with
K" = pP Q4K 45, we have 9/K,5—2Q7'K, ,0/Q =
Q?’P|QK,5] = 0. Thus, the condition 0’[Q7?K 5] =0
that we are using here is conformal invariant.

It would be of interest to see whether the one part in 10*
contribution identified in (1.38) might be related to the one
part in 10° temperature fluctuation in the CMB.
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