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We study cosmological perturbation theory in the cosmology associated with conformal gravity,
establish the validity of the decomposition theorem for it, and then use the theorem to provide an exact
solution to the theory in the recombination era. Central to our approach is the use of a fully gauge invariant
formulation of the cosmological fluctuation equations. In the recombination era, not only is perturbation
theory applicable, because of its specific structure in the conformal case, the fluctuation equations are found
to greatly simplify. Using a master equation for scalar, vector, and tensor fluctuation modes, we show that
the radial equations for the three-dimensional vector and tensor modes are, respectively, the same as those
of scalar modes in five and seven spatial dimensions. This enables us to construct normalization conditions
for the three-dimensional modes.
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I. INTRODUCTION

A. Motivation

Since the discovery of the cosmic microwave back-
ground (CMB), a central focus of cosmological research
has been the study of fluctuations around that background
(see, e.g., [1–6]). With the background itself being homo-
geneous and isotropic, these fluctuations are associated
with anisotropies and inhomogeneities in the background.
While such fluctuations eventually grow nonperturbatively
into the galaxies that we see today, at the time of
recombination of electrons and baryons into atoms (typical
temperatures of order 1 eV or 104°K), these fluctuations
were very small and could thus be explored perturbatively.
The actual behavior of the perturbations depends on the
dynamics of the particular gravitational theory under
consideration, with the standard treatment of these fluctua-
tions being based on the Newton-Einstein gravitational
theory, viz. the standard cosmological model. However, use
of this model requires the inclusion of unobserved dark
matter particles, of a not as of yet understood, highly fine-
tuned dark energy or cosmological constant component,
and a presumption that the classical treatment of the model
that is made would not be destroyed by quantum radiative
corrections even though these corrections are known to lead
to uncontrollable infinities [7]. In response to these con-
cerns, some candidate alternative proposals have been
advanced in the literature and in this paper we consider
one specific alternative, namely, conformal gravity.

As shown in [8–12] and references therein, conformal
gravity eliminates the need for galactic dark matter by
providing fits to a wide class of galactic rotation curves
without any need for dark matter. Moreover, conformal
gravity has a local conformal symmetry [invariance under
gμνðxÞ → e2αðxÞgμνðxÞ] that controls the cosmological con-
stant without fine-tuning. And with the conformal sym-
metry requiring the gravitational coupling constant, αg, to
be dimensionless, the conformal theory is renormalizable.
With conformal gravity also being quantum-mechanically
ghost free and unitary [13–16], conformal gravity provides
a consistent quantum gravity theory in four spacetime
dimensions. (The gravitational coupling constant associ-
ated with the conformal gravity action IW that is given
below is only dimensionless in four spacetime dimensions.)
The view of conformal gravity is that the dark matter, dark
energy, and quantum gravity problems are not three
separate problems, but that since they all have the same
common origin, namely, the extrapolation of Newton-
Einstein gravity beyond its solar system origins, they
can have a common solution, with conformal gravity
endeavoring to provide such a solution through a different
extrapolation of solar system wisdom. However, in order
for the conformal theory to be viable, it needs to address the
other regime in which the standard model needs dark
matter, namely, cosmology. And even though the con-
formal theory has successfully done this for the homo-
geneous and isotropic background by providing [10–12,17]
a horizon-free background cosmology with no flatness
problem [18], while providing a very good, non-fine-tuned,
dark matter free fit to the accelerating universe supernovae
data of [19,20], it still needs to do so for the fluctuations*philip.mannheim@uconn.edu
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around that background. The development of the cosmo-
logical perturbation theory that is required for this has been
presented in general in [21–24], and in this paper we take a
further step by providing a new exact solution to the
conformal cosmological fluctuation equations in the recom-
bination era. In regard to conformal gravity, we note also that
various other studies of conformal gravity and of higher-
derivativegravity theories in general can be found in [25–38].
In order to be able to derive solutions to the conformal

gravity cosmological fluctuation equations, we first need to
derive the equations themselves, and in so doing we actually
obtain conformal gravity fluctuation equations that hold in
any cosmological epoch, and not just at recombination.
Moreover, even though negative spatial three-curvature is
preferred for conformal gravity itself [10–12], somethingwe
elaborate in Secs. I and II, the equations that we obtain [viz.
(2.31)–(2.33)] are generic to conformal gravity in the sense
that they hold for general backgroundmatter sources and for
any general Robertson-Walker background with arbitrary
expansion radius aðtÞ and arbitrary spatial three-curvature k.
To actually study the gravitational fluctuation equations,
we shall use the scalar, vector, tensor expansion of the
fluctuation metric that was first introduced in [39,40] and
then widely applied in perturbative cosmological studies
(see, e.g., [41–48] and [1–6]). This expansion is based on
quantities that transform as three-dimensional scalars, vec-
tors, and tensors, and as such it is particularly well suited to
Robertson-Walker geometries because such geometries
have a spatial sector that is maximally three-symmetric.
While not manifestly covariant, the scalar, vector, tensor
expansion is covariant as it leads to equations that involve
appropriate combinations of the scalars, vectors, and tensors
that are fully four-dimensionally gauge invariant; this being
all that one needs for covariance [49]. To be as general as
possible, we shall both derive and solve the fluctuation
equations in a procedure in which this full gauge invariance
is maintained at each stage of the process and shall make no
restriction to any particularly convenient gauge that might
facilitate finding a solution.
Since the appropriate gauge invariant combinations of the

scalar, vector, and tensor components of the fluctuation
metric are coupled in the fluctuation equations, our strategy
is to first manipulate these equations so that we obtain
equations in Sec. III in which these various components are
decoupled. Since this decoupling is only achievable at a
higher-derivative level, it is these higher-derivative equa-
tions that we will need to integrate. And to be able to do so,
we will need to introduce spatial boundary conditions, with
it turning out that we will need boundary conditions not just
at r ¼ ∞ but also at r ¼ 0. Asymptotic boundedness is not
actually a new dynamical assumption, since, as noted in
[22,23], it is actually needed in order to be able to make
the scalar, vector, tensor expansion in the first place. For
the typical case, e.g., of the decomposition of a three-
dimensional Cartesian vector Ai into its transverse and

longitudinal components, one wants to be able to set Ai ¼
∂iV þ Vi where ∂iVi ¼ 0. On applying ∂i to Ai, we obtain

∂iAi ¼ ∂i∂iV: ð1:1Þ

On introducing the Green’s functionDð3Þðx − yÞ that obeys

∂i∂iDð3Þðx − yÞ ¼ δ3ðx − yÞ; ð1:2Þ

V is given by

VðxÞ ¼
Z

d3yDð3Þðx − yÞ∂iAiðyÞ; ð1:3Þ

with Vi then being given by

ViðxÞ ¼ AiðxÞ − ∂i

Z
d3yDð3Þðx − yÞ∂jAjðyÞ: ð1:4Þ

Thus, in order to be able to decompose a vector into its
transverse and longitudinal components in the first place,
one requires Ai to be well enough behaved at spatial infinity
so that the integral in (1.3) actually exists. In [22,23], we
have carried out an analogous analysis for the full scalar,
vector, tensor expansion and discuss it further in Sec. VII B.
In the literature, it is standard practice not to decouple the

fluctuation equations at some higher-derivative level but to
treat the various components as evolving independently at
the level of the fluctuation equations themselves, the so-
called decomposition theorem. The basic idea behind the
decomposition theorem is that in an equation such as

Bi þ ∂iB ¼ Ci þ ∂iC; ð1:5Þ

where B and C are three-scalars and Bi and Ci are
transverse three-vectors that obey ∂iBi ¼ 0, ∂iCi ¼ 0 the
solutions are taken to obey

B ¼ C; Bi ¼ Ci; ð1:6Þ

with the scalar and vector sectors of (1.5) solving (1.5)
separately. However, if we apply ∂i, we obtain

∂i∂iðB − CÞ ¼ 0; ð1:7Þ

an equation that can admit of solutions other than B ¼ C. In
fact, in general, we can obtain B − C ¼ cþ cixi, where c
and ci are constants. To exclude such an outcome, we
impose boundary conditions that the solutions vanish at
spatial infinity. This then sets B − C ¼ 0, and then from the
initial Bi þ ∂iB ¼ Ci þ ∂iC we infer that Bi − Ci ¼ 0 too.
With asymptotic boundary conditions, we thus establish the
validity of the decomposition theorem [that the only
allowed solution to (1.5) is (1.6)] in this particular case.
In this simple example we see that the asymptotic boundary
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condition needed to decompose a vector into its separate
longitudinal and transverse components in the first place is
the same as the one needed to establish the validity of the
decomposition theorem. It is thus only through the use of
boundary conditions that we can obligate the separate
scalar, vector, and tensor sectors to propagate independ-
ently. For fluctuations in the standard cosmological theory,
it was shown [23] that, as augmented by conditions at the
origin of coordinates, this analysis generalizes to the full
scalar, vector, tensor cosmological expansion, to thus
establish the validity of the decomposition theorem in
the standard case. In the present paper, we show in Secs. IV
and V that the decomposition theorem also generalizes to
the conformal case, again in any cosmological epoch.
Armed with this theorem, we can then proceed in
Secs. VI–VIII and four Appendices to solve the conformal
gravity fluctuation equations. And we find that in the
conformal gravity case the fluctuation equations simplify
so much in the recombination era that one is able to find
exact analytic solutions.
As well as impose boundary conditions on the fluc-

tuation modes, in Sec. IV D, we present a master equation
for scalar, vector, and tensor fluctuation modes and show
that the radial equations for the three-dimensional vector
and tensor modes are, respectively, the same as those of
scalar modes in five and seven spatial dimensions. This
enables us to construct normalization conditions for the
three-dimensional vector and tensor modes (construction of
normalization conditions for the three-dimensional scalar
modes can be achieved with three-dimensional information
alone). To ensure that these modes are normalizable, we
will again require spatially asymptotic boundary condi-
tions, conditions that will turn out to be more stringent than
just having the modes vanish at infinity as minimally as
possible. Specifically, for the negative spatial curvature
Robertson-Walker cosmology that we study in detail in this
paper, this being the one of relevance to conformal gravity,
we find that in terms of the radial coordinate r ¼ sinh χ
normalizability requires that the scalar, vector, and tensor
modes, respectively, behave as e−χ , e−2χ , e−3χ as χ → ∞.

B. The background conformal gravity
cosmology—gravity sector

Conformal gravity is a pure metric theory of gravity that
possesses all of the general coordinate invariance and
equivalence principle structure of standard gravity while
augmenting it with an additional symmetry, local con-
formal invariance, in which the action is left invariant under
local conformal transformations on the metric of the form
gμνðxÞ → e2αðxÞgμνðxÞ with arbitrary local phase αðxÞ.
Under such a symmetry, a gravitational action that is to
be a polynomial function of the Riemann tensor is uniquely
prescribed, and with use of the Gauss-Bonnet theorem it is
given by (see, e.g., [10])

IW ¼ −αg
Z

d4xð−gÞ1=2CλμνκCλμνκ

≡ −2αg
Z

d4xð−gÞ1=2
�
RμκRμκ −

1

3
ðRα

αÞ2
�
: ð1:8Þ

Here αg is a dimensionless gravitational coupling constant,
and

Cλμνκ ¼ Rλμνκ −
1

2
ðgλνRμκ − gλκRμν − gμνRλκ þ gμκRλνÞ

þ 1

6
Rα

αðgλνgμκ − gλκgμνÞ ð1:9Þ

is the conformal Weyl tensor.
The conformal Weyl tensor has two features that are not

possessed by the Einstein tensor Gμν ¼ Rμν − 1
2
gμνRα

α,
namely, thatCλ

μνκ vanishes in geometries that are conformal
to flat (this precisely being the case for the Robertson-
Walker and de Sitter geometries that are of relevance to
cosmology), and that for any arbitrary metric Cλ

μνκ trans-
forms as Cλ

μνκ→Cλ
μνκ under gμνðxÞ→e2αðxÞgμνðxÞ, with all

derivatives of αðxÞ dropping out. With all of these deriva-
tives dropping out, IW is locally conformal invariant [50].
With the Weyl action IW given in (1.8) being a fourth-

order derivative function of the metric, functional variation
with respect to the metric gμνðxÞ generates fourth-order
derivative gravitational equations of motion of the form [10]

−
2

ð−gÞ1=2
δIW
δgμν

¼ 4αgWμν ¼ 4αg½2∇κ∇λCμλνκ − RκλCμλνκ�

¼ 4αg

�
Wμν

ð2Þ −
1

3
Wμν

ð1Þ

�
¼ Tμν; ð1:10Þ

where the functionsWμν
ð1Þ andW

μν
ð2Þ [respectively, associated

with the ðRα
αÞ2 and RμκRμκ terms in (1.8)] are given by

Wμν
ð1Þ ¼2gμν∇β∇βRα

α−2∇ν∇μRα
α−2Rα

αRμνþ1

2
gμνðRα

αÞ2;

Wμν
ð2Þ ¼

1

2
gμν∇β∇βRα

αþ∇β∇βRμν−∇β∇νRμβ−∇β∇μRνβ

−2RμβRν
βþ

1

2
gμνRαβRαβ; ð1:11Þ

andwhere Tμν is the conformal invariant energy-momentum
tensor associated with a conformal matter source. Since
Wμν ¼ Wμν

ð2Þ − ð1=3ÞWμν
ð1Þ, known as the Bach tensor [51], is

obtained from an action that is both general coordinate
invariant and conformal invariant, in consequence, and
without needing to impose any equation of motion or
stationarity condition, Wμν is automatically covariantly
conserved and covariantly traceless and obeys ∇νWμν¼0,
gμνWμν ¼ 0 on every variational path used for the functional
variation of IW.While this is not necessarily the case for the
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arbitrary matter field, it is the case for massless gauge fields
since, as noted in [50], they have a conformal structure
analogous to that of the gravitational field of a conformal
theory. However, for nongauge fields, we note that in a
conformal invariant theory the relevant Tμν is still conformal
invariant. Then, with Wμν being both conserved and trace-
less, in solutions to the gravitational equations of motion the
conformal invariant Tμν is covariantly conserved and cova-
riantly traceless too. Without the imposition of the gravi-
tational equations of motion, a nongauge matter field Tμν

would still be covariantly conserved and covariantly trace-
less in solutions to matter field equations of motion as long
as they are conformal invariant.

C. The background conformal gravity
cosmology—matter sector

As well as being covariantly conserved and covariantly
traceless in any geometry, because a general Robertson-
Walker geometry is conformal to flat, in such a geometry
the Weyl tensor vanishes identically, and thus from (1.10) it
follows that Wμν vanishes identically too. Thus, given the
conformal gravity field equation 4αgWμν ¼ Tμν, it follows
that in a background Robertson-Walker conformal cosmol-
ogy the matter sector Tμν also vanishes. While this would
seem to imply that the matter source is trivial, this is not in
fact necessarily the case. Specifically, in the literature, two
ways in which a background Tμν could vanish nontrivially
have been identified, one involving a conformally coupled
elementary scalar field [52] and the other involving a
conformal perfect fluid [53]. We describe both of the cases
now since even though they both were developed for the
background; we shall have occasion to discuss aspects of
both of them when we study fluctuations below.
For a conformally coupled scalar field SðxÞ, the matter

action is

IS ¼ −
Z

d4xð−gÞ1=2
�
1

2
∇μS∇μS −

1

12
S2Rμ

μ þ λS4
�

¼
Z

d4xð−gÞ1=2
�
1

2c2
_S2 −

1

2
ð∇⃗SÞ2 þ 1

12
S2Rμ

μ − λS4
�
;

ð1:12Þ

where λ is a dimensionless coupling constant. (Since we
use the convention given in [54] where g00 is taken to have
negative signature, and where the proper time is written as
ds2 ¼ −gμνdxμdxν, (1.12) thus corresponds to a scalar field
with a normal positive signatured kinetic energy.) As such,
the IS action is the most general curved space polynomial
matter action for the SðxÞ field that is invariant under both
general coordinate transformations and local conformal
transformations of the form SðxÞ → e−αðxÞSðxÞ, gμνðxÞ →
e2αðxÞgμνðxÞ. Variation of the IS action with respect to SðxÞ
yields the scalar field equation of motion

∇μ∇μSþ 1

6
SRμ

μ − 4λS3 ¼ 0; ð1:13Þ

while variation with respect to the metric yields a matter
field energy-momentum tensor

Tμν
S ¼ 2

3
∇μS∇νS −

1

6
gμν∇αS∇αS −

1

3
S∇μ∇νS

þ 1

3
gμνS∇α∇αS −

1

6
S2
�
Rμν −

1

2
gμνRα

α

�

− gμνλS4: ð1:14Þ

Use of the matter field equation of motion then confirms
that this energy-momentum tensor obeys the tracelessness
condition gμνT

μν
S ¼ 0, just as it should do in a conformal

invariant theory.
In the presence of a spontaneously broken, scale-setting,

nonzero constant vacuum expectation value S0 for the
scalar field, the scalar field wave equation and the energy-
momentum tensor are then found to simplify to

Rα
α ¼ 24λS20;

Tμν
S ¼ −

1

6
S20

�
Rμν −

1

2
gμνRα

α

�
− gμνλS40: ð1:15Þ

With the Ricci scalar being nonzero in this solution, we see
immediately that once S0 is nonzero the geometry is
necessarily nontrivial [55]. Moreover, if we take the
geometry to be a de Sitter geometry in which
Rλμσν ¼ K½gμσgλν − gμνgλσ�, Rμν ¼ −3Kgμν, Rα

α ¼ −12K,
Gμν ¼ Rμν − 1

2
gμνRα

α ¼ 3Kgμν, then since Wμν will vanish
identically in such a de Sitter geometry, it follows that Tμν

S
must vanish identically too. And with K ¼ −2λS20 it can
readily be checked that it in fact does. Thus, even though
Wμν and Tμν both vanish identically, as noted in [52], the
conformal cosmology governed by 4αgWμν ¼ Tμν admits
of a nontrivial de Sitter geometry solution, with a non-
vanishing four-curvature K ¼ −2λS20.
A second way in which Tμν can vanish nontrivially was

given in [53]. If we drop the λ-dependent term in IS, then in
a generic Robertson-Walker geometry with metric

ds2 ¼ c2dt2 − a2ðtÞ
�

dr2

1 − kr2
þ r2dθ2 þ r2sin2θdϕ2

�

¼ c2dt2 − a2ðtÞγ̃ijdxidxj; ð1:16Þ

solutions to the scalar field wave equation (1.13) obey [56]

1

fðτÞ
�
1

c2
d2f
dτ2

þkfðτÞ
�
¼ 1

gðr;θ;ϕÞ γ̃
−1=2∂i½γ̃1=2γ̃ij∂jgðr;θ;ϕÞ�

¼−ζ2; ð1:17Þ
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where τ ¼ R
dt=aðtÞ, S ¼ fðτÞgðr; θ;ϕÞ=aðτÞ, γ̃ij is the

metric of the spatial part of the Robertson-Walker metric,
and ζ2 is a separation constant. From (1.17), we see that fðτÞ
is harmonic with frequencies that obey ω2=c2 ¼ ζ2 þ k,
while we can set gðr; θ;ϕÞ ¼ glζ ðrÞYm

l ðθ;ϕÞ, where glζ ðrÞ
obeys

�
ð1− kr2Þ ∂

2

∂r2 þ
ð2− 3kr2Þ

r
∂
∂r−

lðlþ 1Þ
r2

þ ζ2
�
glζ ðrÞ ¼ 0:

ð1:18Þ

To form a perfect fluid energy-momentum tensor, in Tμν
S

we make an incoherent averaging over all allowed spatial
modes associated with a given ω (this is equivalent to
calculating statistical averages using a density matrix that is
proportional to the unit matrix and normalized to one). And
on doing the sum over all modes, for each ω we obtain [56]
the automatically traceless

Tμν
S ¼ω4ðgμνþ4UμUνÞ

6c4π2a4ðtÞ ¼ðζ2þkÞ2ðgμνþ4UμUνÞ
6π2a4ðtÞ ; ð1:19Þ

where Uμ is a unit timelike vector. This Tμν
S vanishes if

ω2 ¼ 0, and with ω2=c2 ¼ ζ2 þ k, we can thus satisfy
Tμν
S ¼ 0 nontrivially if and only if k is negative. In doing

the incoherent averaging when ω ¼ 0, for T00
S for instance

we obtain

T00
S ¼ 1

6

X
l;m

�X3
i¼1

γ̃iij∂iðglð−kÞ1=2Ym
l ðθ;ϕÞÞj2

þ kjglð−kÞ1=2Ym
l ðθ;ϕÞj2

�
; ð1:20Þ

when k is negative, with it being shown in [53] that the sum
in (1.20) vanishes identically. Essentially what happens is
that a positive contribution to Tμν

S by the scalar field modes
is canceled by a negative contribution from the gravita-
tional field due to its negative spatial three-curvature. With
negative k, solutions to (1.18) are associated Legendre
functions, and even though we have now fixed ζ2 to −k,
(1.18) still possesses an infinite number of solutions labeled
by l and m. An incoherent averaging over all of these
solutions then causes Tμν

S to vanish nontrivially. Thus as we
see, it is negative k that is selected.

D. Phenomenological justification for negative
spatial three-curvature

In applications of conformal gravity to astrophysical
and cosmological data, it has been found that phenomeno-
logically k actually should be negative. In conformal
cosmology, very good non-fine-tuned, negative k fits to
the accelerating universe Hubble plot data have been

presented in [10–12] and will be described below.
Similarly, very good negative k conformal gravity fits to
the rotation curves of 138 galaxies have been presented in
[57–59]. That galactic rotation curves would even be
sensitive to cosmology is initially somewhat puzzling since
this is not the case in standard Newton-Einstein gravity, and
so we clarify the point. Without needing to impose any
gravitational equation of motion, in conformal gravity,
the metric associated with a static, spherically symmetric
system can be brought to the form ds2 ¼ BðrÞc2dt2 −
dr2=BðrÞ − r2dθ2 − r2sin2θdϕ2 via a sequence of general
coordinate and conformal transformations [8], with the
relation 4αgWμν ¼ Tμν taking the exact form [9]

∇4BðrÞ ¼ 3

4αgBðrÞ
ðT0

0 − Tr
rÞ ¼ fðrÞ ð1:21Þ

in such a geometry without approximation, with (1.21)
serving to define fðrÞ. The solution to (1.21) can be written
as [9]

BðrÞ ¼ −
r
2

Z
r

0

dr0r02fðr0Þ − 1

6r

Z
r

0

dr0r04fðr0Þ

−
1

2

Z
∞

r
dr0r03fðr0Þ − r2

6

Z
∞

r
dr0r0fðr0Þ;

B0ðrÞ ¼ −
1

2

Z
r

0

dr0r02fðr0Þ þ 1

6r2

Z
r

0

dr0r04fðr0Þ

−
r
3

Z
∞

r
dr0r0fðr0Þ: ð1:22Þ

In (1.22), we recognize two potential terms coming from
matter localized to a finite region and one potential term
coming from global matter that is distributed all the way to
r ¼ ∞. For localized matter, the potential of a star of radius
R� is given by V�ðr > R�Þ ¼ −β�c2=rþ γ�c2r=2 [8],
where [9]

γ�¼−
1

2

Z
R�

0

dr0r02fðr0Þ; 2β�¼1

6

Z
R�

0

dr0r04fðr0Þ: ð1:23Þ

While the global curvature of the Universe plays no role
in dark matter fits to galactic rotation curves (for a 1=r
potential one only needs to consider sources within
individual galaxies), in the conformal gravity (1.22), there
are contributions coming from material not just outside of a
given star of interest but from the global sources in the
entire rest of the Universe. (If the potential of a given source
is growing with distance, then the potentials of sources
very distant from the given source are also growing with
distance, to thus impact the given source.) These global
sources provide two forms of contributions that are
associated with conformal cosmology, namely, the contri-
bution of the Hubble flow and the contribution of inho-
mogeneities in it. Since galactic motions are determined in
the rest frames of galaxies, one has to transform the
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comoving Hubble flow to each local galactic rest frame. On
doing this, one finds [8] that a negative three-curvature (and
only a negative three-curvature) background Robertson-
Walker cosmology generates a universal linear potential
γ0c2=r where γ0 ¼ ð−4kÞ1=2. Similarly, inhomogeneities in
the Hubble flow are found [57] to generate a universal
quadratic potential −κc2r2 [the last term in BðrÞ in (1.22)].
For a spiral disk galaxy with surface brightness

ΣðRÞ ¼ Σ0e−R=R0 , where R is the radial distance in the
plane of the disk and R0 is the disk scale length, the rotation
velocity is given by [10]

v2ðRÞ ¼ N�β�c2R2

2R3
0

�
I0

�
R
2R0

�
K0

�
R
2R0

�

− I1

�
R
2R0

�
K1

�
R
2R0

��

þ N�γ�c2R2

2R0

I1

�
R
2R0

�
K1

�
R
2R0

�

þ γ0c2R
2

− κc2R2; ð1:24Þ

where N� is the number of stars in the galaxy in solar mass
units,β� is theSchwarzschild radius of the sun, and I0, I1,K0,
andK1 aremodifiedBessel functions.Verygood fitting to the
rotation curves of the 138 galaxies is obtained in [57–59]
with fixed, universal (i.e., galaxy-independent) parameters

β� ¼ 1.48×105 cm; γ� ¼ 5.42×10−41 cm−1;

γ0¼ 3.06×10−30 cm−1; κ¼ 9.54×10−54 cm−2; ð1:25Þ

and with there being no need to introduce any dark matter.
Since current dark matter fits require two free parameters per
galactic halo, the galaxy-dependent 276 free darkmatter halo
parameters that are needed for the 138 galaxy sample are
replaced by just the three universal parameters: γ�, γ0, and κ.
[The luminous Newtonian N�β�-dependent contribution in
(1.24) is common to both dark matter and conformal gravity
fits and is included in both cases.] With γ0 being of order the
inverse of the Hubble radius and with κ being of order a
typical cluster of galaxies scale, the values for γ0 and κ that
are obtained show that they are indeed of the cosmological
scales associatedwith the homogeneousHubble flow and the
inhomogeneities in it. We can thus use stars in galaxies to
serve as test particles that measure the global geometry of the
Universe. From the perspective of a local 1=r Newtonian
potential, the fact that the measured velocities exceed the
luminous Newtonian expectation is described as the missing
mass problem, with undetected or dark matter within the
galaxies themselves being needed in order to be able to
account for the shortfall [60]. From the perspective of
conformal gravity, the shortfall is explained by the rest of
the visiblemass in theUniverse. Themissingmass is thus not

missing at all, it is the rest of the visible universe and it has
been hiding in plain sight all along.
Now, in the standard gravity, inflationary universe model

[61] fits to accelerating universe data, to properties of
clusters of galaxies, and to the anisotropy of the CMB lead
[62–64] to a spatially flat three-geometry. It is thus para-
mount to determine the conformal gravity expectations for
the anisotropy to see if the data could support a k < 0
universe, and the objective of this paper is to prepare some
of the needed groundwork by studying an exact solution to
fluctuations around a k < 0 conformal cosmology. While
beyond the scope of the present paper, this groundwork will
also enable us to analyze baryon acoustic oscillations in the
CMB and analyze the galaxy correlation function, and for
the moment we note only that both are associated with a
150 Mpc scale, viz. an inhomogeneity scale that is of the
same order as the scale associated with the inhomogeneity-
generated κ (κ−1=2 ∼ 100 Mpc) that is measured in con-
formal gravity fits to galactic rotation curves.

E. The background cosmological model

To construct a background cosmological model, we
combine the scalar field and perfect fluid models described
above, but now look for a vanishing of the total Tμν by an
interplay between them. We thus take the total background
matter sector energy-momentum tensor to be of the form

Tμν ¼ 1

c
½ðρmþpmÞUμUνþpmgμν�−

1

6
S20

�
Rμν −

1

2
gμνRα

α

�

− gμνλS40; ð1:26Þ

where the suffix m denotes matter. On taking the back-
ground geometry to be the comoving Robertson-Walker
metric given in (1.16), the background Wμν thus vanishes,
so that the background Tμν ¼ Wμν=4αg then vanishes too.
We can rewrite the equation Tμν ¼ 0 in the instructive form

1

6
S20

�
Rμν −

1

2
gμνRα

α

�
¼ 1

c
½ðρm þ pmÞUμUν þ pmgμν�

− gμνλS40: ð1:27Þ

We thus recognize the conformal cosmological evolution
equation given in (1.27) as being of the form of none other
than the cosmological evolution equation of the standard
theory, viz. (on setting Λ ¼ λS40)

−
c3

8πG

�
Rμν −

1

2
gμνRα

α

�
¼ 1

c
½ðρm þ pmÞUμUν þ pmgμν�

− gμνΛ; ð1:28Þ

save only for the fact that the standard G has been replaced
by an effective, dynamically induced one given by
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Geff ¼ −
3c3

4πS20
; ð1:29Þ

viz. by an effective gravitational constant that, as had been
noted in [17], is expressly negative. Conformal cosmology
is thus controlled by an effective gravitational coupling
constant that is repulsive rather than attractive, and which
becomes smaller the larger S0 might be.
In the conformal theory, local nonrelativistic solar

system gravity is controlled by the parameter β� that
appears in (1.23). With the conformal coupling constant
αg not participating in homogeneous geometries such as the
cosmological one in which the Weyl tensor is zero, while
participating in the inhomogeneous (1.21) where the Weyl
tensor is nonzero (static, spherically symmetric geometries
not being conformal to flat), Geff is completely decoupled
from αg, and thus completely decoupled from the local
Newtonian G ¼ β�c2=M� associated with a source of mass
M�. Thus, in the conformal gravity theory, the sign of the
local β� is related to the sign of αg while the sign of Geff is
not. Consequently, a negative effective global cosmological
Geff is not in conflict with the existence of a positive local
G. The fact that the dynamically induced Geff is negative in
the conformal theory had been thought of as being a
disadvantage since it seemed to imply that the local G
would be given by the same negative Geff , to then be
repulsive too. (This even prompted many authors to flip the
overall sign of IS even though that would then make the
kinetic energy ghostlike.) However, as we see, a repulsive
global cosmological Geff and an attractive local G can
coexist in one and the same theory, an aspect of the theory
which can now actually be regarded as a plus since a
repulsive component to gravity causes cosmic acceleration
rather than deceleration.
To see how central the negative sign of Geff is to cosmic

acceleration, we define

Ω̄MðtÞ ¼
8πGeffρmðtÞ
3c2H2ðtÞ ; Ω̄ΛðtÞ ¼

8πGeffΛ
3cH2ðtÞ ;

Ω̄kðtÞ ¼ −
kc2

_a2ðtÞ ; ð1:30Þ

where H ¼ _a=a. And on introducing the deceleration
parameter q ¼ −aä= _a2, from (1.27), we obtain

_a2ðtÞ þ kc2 ¼ _a2ðtÞðΩ̄MðtÞ þ Ω̄ΛðtÞÞ;
Ω̄MðtÞ þ Ω̄ΛðtÞ þ Ω̄kðtÞ ¼ 1;

qðtÞ ¼ 1

2

�
1þ 3pm

ρm

�
Ω̄MðtÞ − Ω̄ΛðtÞ; ð1:31Þ

as the evolution equations of conformal cosmology. To
solve (1.31), we need to specify an equation of state for the
matter field, and since we will momentarily find that it will

not matter whether we use a massless or a massive field
equation of state, we set ρm ¼ 3pm ¼ A=a4ðtÞ ¼ aT4, and
with k < 0 obtain [10]

a2ðtÞ ¼ −
kðβ − 1Þ

2α
−
kβsinh2ðα1=2ctÞ

α
; ð1:32Þ

where

α ¼ −2λS20 ¼
8πGeffΛ

3c
; β ¼

�
1 −

16Aλ
k2c

�
1=2

: ð1:33Þ

Since Λ represents the free energy that is released in the
phase transition that generated S0 in the first place, Λ is
necessarily negative. Then withGeff also being negative the
quantity Ω̄ΛðtÞ is positive, i.e., the conformal theory needs
a negative Geff in order to obtain a positive Ω̄ΛðtÞ. (In
contrast, the standard model rationale for positive ΩΛ ¼
8πGΛ=3c2H2 is that since the Newtonian G is positive Λ
has to be taken to be positive too.) While the standard
model cannot accommodate a largeΛ, the conformal theory
can since Geff can be much smaller than G. In fact, as S0
gets bigger, Λ gets bigger too but Geff gets smaller, with
Ω̄ΛðtÞ self-quenching. To see by how much we note that if
we set Λ ¼ −aT4

V=c (V denotes vacuum) where TV is the
large temperature at which the S0 generating phase tran-
sition occurs, then with Ω̄MðtÞ being of order aT4=c, in the
current era, the ratio Ω̄MðtÞ=Ω̄ΛðtÞ ¼ T4=T4

V is completely
negligible. Moreover, since the temperature at recombina-
tion is only of order 1 eV, at recombination Ω̄MðtÞ=Ω̄ΛðtÞ is
negligible too. Thus, we have to go into the very early
universe to obtain a temperature at which Ω̄MðtÞ=Ω̄ΛðtÞ ¼
T4=T4

V would not be negligible. In the very early universe,
we can use ρm ¼ 3pm as the equation of state, and while
massive matter would be nonrelativistic at recombination, it
would be irrelevant as to what equation of state we were to
use for it since Ω̄MðtÞ=Ω̄ΛðtÞ is negligible at recombination.
With the matter contribution being negligible at recombi-
nation, for all temperatures from recombination until the
current era (1.31) reduces to

Ω̄ΛðtÞ þ Ω̄kðtÞ ¼ 1; qðtÞ ¼ −Ω̄ΛðtÞ: ð1:34Þ

With k being negative, the quantity Ω̄kðtÞ must be positive.
Thus, with Ω̄ΛðtÞ also being positive, other than in the early
universe, it must lie in the interval 0 ≤ Ω̄ΛðtÞ ≤ 1, and thus
it is indeed self-quenched sufficiently. Similarly, Ω̄kðtÞ
must lie in the range 0 ≤ Ω̄kðtÞ ≤ 1. Moreover, from
recombination onward, the deceleration parameter must
lie in the interval −1 ≤ qðtÞ ≤ 0, to not only be accelerating
but to be so without any need for fine-tuning.
For evolution in the region from recombination until the

current time t0, the matter density plays no role and so we
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we can approximate β ¼ 1 in this region, with aðtÞ then
being given by

aðtÞ ¼ ð−kÞ1=2 sinhðα1=2ctÞ
α1=2

: ð1:35Þ

With such an aðtÞ, we obtain

Ω̄ΛðtÞ ¼ tanh2ðα1=2ctÞ; Ω̄kðtÞ ¼ sech2ðα1=2ctÞ;
qðtÞ ¼ −tanh2ðα1=2ctÞ ð1:36Þ

and a luminosity distance redshift relation of the form [10]

dL¼−
c

Hðt0Þ
ð1þzÞ2

q0

�
1−

�
1þq0−

q0
ð1þzÞ2

�
1=2

�
; ð1:37Þ

where q0 ¼ qðt0Þ is the current era value of the deceleration
parameter and Hðt0Þ is the current era value of the Hubble
parameter.
Fitting the type 1A supernovae accelerating universe

data with (1.37) gives a fit [10–12] that is comparable in
quality with that of the standard model ΩM ¼ 0.3, ΩΛ ¼
0.7 dark matter dark energy paradigm. In the conformal
gravity fit, q0 is fitted to the value −0.37, i.e., quite
nontrivially found to be right in the allowed −1≤q0≤0

range. Since Ω̄M is negligible, no dark matter is needed, and
since q0 and Ω̄Λ ¼ −q0 fall right in the allowed region, no
fine-tuning is needed either.
With tanh2ðα1=2ct0Þ¼0.37, we determine tanhðα1=2ct0Þ ¼

0.61, sinhðα1=2ct0Þ ¼ 0.77, α1=2ct0 ¼ 0.71, Hðt0Þ¼
α1=2c=tanhða1=2ct0Þ¼1.16=t0. With H0¼72km=sec=Mpc,
we obtain t0 ¼ 4.83 × 1017 sec, a perfectly acceptable value
for the age of the Universe. Similarly, we obtain α1=2c ¼
0.15 × 10−17 sec−1, α1=2 ¼ 0.50 × 10−28 cm−1. Recalling
that ð−kÞ1=2¼γ0=2¼1.53×10−30 cm−1, we obtain aðt0Þ ¼
2.36 × 10−2, so the current era expansion radius itself is
also small.
If we extrapolate back to the recombination time tR, we

obtain aðtRÞ=aðt0Þ ¼ T0=TR ¼ Oð10−4Þ. Consequently,
with sinhðα1=2ct0Þ ¼ 0.77, we obtain sinhðα1=2ctRÞ ¼
0.77 × 10−4. Thus, we can approximate sinhðα1=2ctRÞ by
α1=2ctR itself at recombination. Finally then, to one part in
104 for both Ω̄ΛðtRÞ and Ω̄kðtRÞ, we have

aðtRÞ¼ ð−kÞ1=2ctR; Ω̄ΛðtRÞ≈0; Ω̄kðtRÞ≈1 ð1:38Þ

at recombination, with α dropping out of aðtRÞ, and with
the numerical value of aðtRÞ being 2.36 × 10−6. As we see,
at recombination, the conformal universe is curvature
dominated. We thus recognize three epochs for conformal
cosmology: radiation dominated early universe, curvature
dominated recombination universe, cosmological constant
dominated late universe. While there will always be
a trace of Ω̄MðtÞ in any nonearly universe epoch, and

while nonearly universe propagating matter fields will
respond to a geometry that they are not affecting in any
substantial way, at recombination we see that aðtRÞ as given
in (1.38) is independent not just of Ω̄MðtRÞ but even of
Ω̄ΛðtRÞ as well.
Now a geometry in which k is negative and aðtÞ is linear

in t can formally actually be brought to a locally four-flat
form (though not globally four-flat since the negative three-
curvature global topology does not change under a coor-
dinate transformation). Specifically, under t0 ¼ð1þr2Þ1=2t,
r0 ¼ rt, we obtain

dt2 − t2
�

dr2

1þ r2
þ r2dθ2 þ r2sin2θdϕ2

�

→ dt02 − dr02 − r02dθ2 − r02sin2θdϕ2: ð1:39Þ

However, since t02−r02¼t2, only the region with t02−r02≥0
is mapped this way, with the region that would map into the
unobservable spacelike t02 − r02 < 0 region being associ-
ated with a Euclidean t region [65]. We described this
transformation as being formal since the t → 0 limit of
(1.35) is quite delicate. As noted in [55], the Ricci scalar is
given by Rα

α ¼ −6ðaäþ _a2 þ kÞ=a2, and evaluating it for
a ¼ sinh t, k ¼ −1 yields Rα

α ¼ −12. Now under a coor-
dinate transformation Rα

α cannot change, and thus it cannot
be brought to a flat form in which Rα

α ¼ 0. To see what is
happening, we work to order t2 and set a _a ¼ sinh2t → t2,
_a2¼ cosh2 t→ 1þ t2, with the Ricci scalar thus limiting to

Rα
α → −6

t2 þ 1þ t2 − 1

t2
¼ −6

1− 1

t2
− 6

t2 þ t2

t2
¼ 0

t2
− 12:

ð1:40Þ

Thus, because of the t2 factor in the denominator of Rα
α, we

must work to order t2 in the numerator. Without including
this term, wewould be lead to the erroneous conclusion that
Rα

α is zero. In other words, if we simply set aðtÞ¼ t, k¼−1
in Rα

α ¼ −6ðaäþ _a2 þ kÞ=a2, we would indeed get zero.
However, we are working in a geometry in which aðtÞ
limits to t, not in one in which it is identically equal to t, and
in the limit we need to carry the order t2 term. Moreover,
regardless of this concern, we note that in the t02 − r02 ≥ 0
region, the only region that is observable, the cosmological
recombination era geometry is anyway not exactly locally
four-flat, but we can approximate it as such to one part in
104. And even so, current era observers are looking at
anisotropies in theCMB through a geometry inwhichaðtÞ is
given by the nonflat (1.35). Given the negative signs forGeff
and k and given the form for aðtRÞ, we can now proceed to
study conformal cosmological fluctuations around the
Robertson-Walker metric given in (1.16) at recombination.
However, before doing so, we note that conformal

models in which the scalar field is not an elementary field
but actually a vacuum expectation value hΩjψ̄ψ jΩi of a
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fermion bilinear have also been considered [11,12]. In these
models, it is possible for the matter sources to make a more
substantial contribution to cosmic expansion at recombi-
nation than in the elementary scalar field case. These
dynamical models are not as straightforward to handle
as the elementary scalar field model and will be considered
elsewhere. Nonetheless, in these models, the gauge invari-
ant evolution equations given in Sec. II and the decom-
position theorem structure that we derive in Sec. V also
hold just as exactly (these equations being generic to any
conformal cosmology). It is just that the form of the
background aðtRÞ at recombination is not as straightfor-
ward to deal with as in the elementary scalar field model.
And indeed, it is the simplicity of aðtRÞ ¼ ð−kÞ1=2ctR in
the elementary scalar field model at recombination that
enables us to solve the model completely analytically at
recombination, just as we now do.

II. THE FLUCTUATIONS

A. Converting the background to conformal time

While the above phenomenological discussion was devel-
oped for a specific background conformal cosmology with
k < 0, we now discuss the fluctuation equations for arbitrary
aðtÞ, arbitrary k, and arbitrary background matter sources.
Rather than work in comoving time, we have found it more
convenient to work in conformal time. Thus, on defining

τ ¼
Z

dt
aðtÞ ; ΩðτÞ ¼ aðtÞ; ð2:1Þ

we replace the background (1.16) by

ds2 ¼ Ω2ðτÞ
�
c2dτ2 −

dr2

1 − kr2
− r2dθ2 − r2sin2θdϕ2

�

¼ Ω2ðτÞ½c2dτ2 − γ̃ijdxidxj�; ð2:2Þ
with γ̃ij being the metric of the spatial sector, and with
ði; j; kÞ ¼ ðr; θ;ϕÞ. In conformal time, the background
Einstein tensor is given by

G00 ¼ −3k −
3

c2
_Ω2Ω−2; G0i ¼ 0;

Gij ¼ γ̃ij

�
k −

1

c2
_Ω2Ω−2 þ 2

c2
Ω̈Ω−1

�
;

Rα
α ¼ −

6

Ω2

�
kþ 1

c2
Ω̈Ω−1

�
; ð2:3Þ

where the dot now denotes the derivativewith respect to τ. In
conformal time, a generic background perfect matter fluid is
described by

Tm
μν ¼

1

c
½ðρmþpmÞUμUνþpmgμν�; gμνUμUν ¼−1;

U0¼Ω−1ðτÞ; U0¼−ΩðτÞ; Ui¼ 0; Ui ¼ 0; ð2:4Þ

with covariant conservation condition

_ρm þ 3
_Ω
Ω
ðρm þ pmÞ ¼ 0: ð2:5Þ

For a conformal time radiation fluid with 3pm ¼ ρm, we
obtain ρm ¼ A=Ω4, and for a nonrelativistic fluid with pm ¼
0 we obtain ρm ¼ B=Ω3, viz. the same relations as obtained
in comoving time. The background evolution equations are
of the form

4αgWμν ¼
1

c
½ðρm þ pmÞUμUν þ pmgμν� −

1

6
S20Gμν

− gμνλS40: ð2:6Þ

In a conformal to flat background geometry in which
Wμν ¼ 0, the background evolution equations take the form

1

2c2
S20ðkc2þ _Ω2Ω−2Þþρm

c
Ω2þΩ2Λ¼0;

−
1

6c2
S20ðkc2− _Ω2Ω−2þ2Ω̈Ω−1Þþpm

c
Ω2−Ω2Λ¼0: ð2:7Þ

For ρm ¼ A=Ω4, we obtain

−
S20

2c2Λ
_Ω2 ¼

�
Ω2 þ kS20

4Λ
þ
�
k2S40
16Λ2

−
A
Λc

�
1=2

�

×

�
Ω2 þ kS20

4Λ
−
�
k2S40
16Λ2

−
A
Λc

�
1=2

�
: ð2:8Þ

While integrating (2.8) gives a somewhat intractable elliptic
integral, in the nonearly conformal gravity universe we can
ignore radiation and set A ¼ 0, and with k and Λ both being
negative then obtain

ΩðτÞ ¼ S0ðk=2ΛÞ1=2
sinhð−ð−kÞ1=2cτÞ : ð2:9Þ

To relate the conformal τ and the comoving t, from aðtÞ ¼
ð−k=αÞ1=2 sinhðα1=2ctÞ as given in (1.35), we set

τ¼
Z

dt

ð−k=αÞ1=2sinhα1=2ct¼
1

ð−kc2Þ1=2 log tanhðα
1=2ct=2Þ;

eð−kc2Þ1=2τ¼ tanhðα1=2ct=2Þ; ð2:10Þ

as normalized so that τ ¼ −∞ when t ¼ 0 and τ ¼ 0 when
t ¼ ∞. [With the range of τ being negative, as given in (2.9)
ΩðτÞ is positive everywhere within the range.] With
ΩðτÞ¼aðtÞ, from (2.10) and aðtÞ¼ð−k=αÞ1=2sinhðα1=2ctÞ
(2.9) then follows since α ¼ −2Λ=S20 [66]. Finally, since
at small comoving t the conformal time τR goes to
minus infinity, at recombination we can set ΩðτRÞ ¼
2S0ðk=2ΛÞ1=2 exp½ð−kÞ1=2cτR�.
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B. The scalar, vector, tensor basis for fluctuations

In analyzing cosmological perturbations, it is very
convenient to use the scalar, vector, tensor basis for the
fluctuations as developed in [39,40]. In this basis, the
fluctuations are characterized according to how they trans-
form under three-dimensional rotations, and in this form
the basis has been applied extensively in cosmological
perturbation theory (see, e.g., [41–48] and [1–6]) since
the background Robertson-Walker geometry itself has an
underlying maximal spatial symmetry. With the back-
ground metric being written with an overall conformal
factor Ω2ðτÞ in (2.2), we shall take the fluctuation metric to
also have an overall conformal factor, with the full metric
thus being of the form [67]

ds2 ¼ −ðgμν þ hμνÞdxμdxν

¼ Ω2ðτÞ
�
dτ2 −

dr2

1− kr2
− r2dθ2 − r2sin2θdϕ2

�

þΩ2ðτÞ½2ϕdτ2 − 2ð∇̃iBþBiÞdτdxi
− ½−2ψγ̃ij þ 2∇̃i∇̃jEþ ∇̃iEj þ ∇̃jEi þ 2Eij�dxidxj�:

ð2:11Þ
In (2.11), ∇̃i ¼ ∂=∂xi and ∇̃i ¼ γ̃ij∇̃j (with Latin indices)
are defined with respect to the background three-space
metric γ̃ij, and ð1; 2; 3Þ ¼ ðr; θ;ϕÞ. And with

γ̃ij∇̃jVi ¼ γ̃ij½∂jVi − Γ̃k
ijVk� ð2:12Þ

for any three-vector Vi in a three-space with three-space
connection Γ̃k

ij, the elements of (2.11) are required to obey

γ̃ij∇̃jBi ¼ 0; γ̃ij∇̃jEi ¼ 0; Eij ¼ Eji;

γ̃jk∇̃kEij ¼ 0; γ̃ijEij ¼ 0: ð2:13Þ

With the three-space sector of the background geometry
being maximally three-symmetric, it is described by a
Riemann tensor of the form

R̃ijkl ¼ k½γ̃jkγ̃il − γ̃ikγ̃jl�: ð2:14Þ

As written, (2.11) contains ten elements, whose trans-
formations are defined with respect to the background
spatial sector as four three-dimensional scalars (ϕ, B, ψ , E)
each with 1 degree of freedom, two transverse three-
dimensional vectors (Bi, Ei) each with 2 independent
degrees of freedom, and one symmetric three-dimensional
transverse-traceless tensor (Eij) with 2 degrees of freedom.
The great utility of this basis is that since the cosmological
fluctuation equations are gauge invariant, only gauge
invariant scalar, vector, or tensor combinations of the
components of the scalar, vector, tensor basis can appear
in the fluctuation equations. In [22], it was shown that for
the fluctuations associated with the metric given in (2.11)
and with ΩðτÞ being an arbitrary function of τ, the gauge
invariant metric combinations are

α ¼ ϕþ ψ þ _B − Ë; γ ¼ − _Ω−1Ωψ þ B − _E;

Bi − _Ei; Eij ð2:15Þ

for a total of 6 degrees of freedom, just as required since one
can make four coordinate transformations on the initial ten
fluctuation components. As we shall see below, the fluc-
tuation equations will explicitly depend on these specific
combinations.
Given the fluctuation basis, we evaluate the fluctuation

Einstein tensor, and obtain [23]

δG00 ¼ −6kϕ − 6kψ þ 6 _ψ _ΩΩ−1 þ 2 _ΩΩ−1∇̃a∇̃aB − 2 _ΩΩ−1∇̃a∇̃a _E − 2∇̃a∇̃aψ ;

δG0i ¼ 3k∇̃iB − _Ω2Ω−2∇̃iBþ 2Ω̈Ω−1∇̃iB − 2k∇̃i
_E − 2∇̃i _ψ − 2 _ΩΩ−1∇̃iϕþ 2kBi − k _Ei

− Bi
_Ω2Ω−2 þ 2BiΩ̈Ω−1 þ 1

2
∇̃a∇̃aBi −

1

2
∇̃a∇̃a _Ei;

δGij ¼ −2ψ̈ γ̃ij þ 2 _Ω2γ̃ijϕΩ−2 þ 2 _Ω2γ̃ijψΩ−2 − 2 _ϕ _Ω γ̃ijΩ−1 − 4 _ψ _Ω γ̃ijΩ−1 − 4Ω̈γ̃ijϕΩ−1

− 4Ω̈γ̃ijψΩ−1 − 2 _Ωγ̃ijΩ−1∇̃a∇̃aB − γ̃ij∇̃a∇̃a _Bþ γ̃ij∇̃a∇̃aËþ 2 _Ωγ̃ijΩ−1∇̃a∇̃a _E

− γ̃ij∇̃a∇̃aϕþ γ̃ij∇̃a∇̃aψ þ 2 _ΩΩ−1∇̃j∇̃iBþ ∇̃j∇̃i
_B − ∇̃j∇̃iË − 2 _ΩΩ−1∇̃j∇̃i

_E

þ 2k∇̃j∇̃iE − 2 _Ω2Ω−2∇̃j∇̃iEþ 4Ω̈Ω−1∇̃j∇̃iEþ ∇̃j∇̃iϕ − ∇̃j∇̃iψ þ _ΩΩ−1∇̃iBj þ
1

2
∇̃i

_Bj

−
1

2
∇̃iËj − _ΩΩ−1∇̃i

_Ej þ k∇̃iEj − _Ω2Ω−2∇̃iEj þ 2Ω̈Ω−1∇̃iEj þ _ΩΩ−1∇̃jBi þ
1

2
∇̃j

_Bi

−
1

2
∇̃jËi − _ΩΩ−1∇̃j

_Ei þ k∇̃jEi − _Ω2Ω−2∇̃jEi þ 2Ω̈Ω−1∇̃jEi − Ëij − 2 _Ω2EijΩ−2

− 2 _Eij
_ΩΩ−1 þ 4Ω̈EijΩ−1 þ ∇̃a∇̃aEij;
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gμνδGμν ¼ 6 _Ω2ϕΩ−4 þ 6 _Ω2ψΩ−4 − 6 _ϕ _ΩΩ−3 − 18 _ψ _ΩΩ−3 − 12Ω̈ϕΩ−3 − 12Ω̈ψΩ−3 − 6ψ̈Ω−2 þ 6kϕΩ−2

þ 6kψΩ−2 − 6 _ΩΩ−3∇̃a∇̃aB − 2Ω−2∇̃a∇̃a _Bþ 2Ω−2∇̃a∇̃aËþ 6 _ΩΩ−3∇̃a∇̃a _E

− 2 _Ω2Ω−4∇̃a∇̃aEþ 4Ω̈Ω−3∇̃a∇̃aEþ 2kΩ−2∇̃a∇̃aE − 2Ω−2∇̃a∇̃aϕþ 4Ω−2∇̃a∇̃aψ : ð2:16Þ

For fluctuations in the matter field Tm
μν, we obtain

δTm
μν ¼

1

c
½ðδρm þ δpmÞUμUν þ δpmgμν

þ ðρm þ pmÞðδUμUν þ UμδUνÞ þ pmhμν�: ð2:17Þ
With gμνUμUν ¼ −1, we obtain

δg00U0U0 þ 2g00U0δU0 ¼ 0; ð2:18Þ
which entails that

δU0 ¼ −
1

2
ðg00Þ−1ð−g00g00δg00ÞU0 ¼ −ΩðτÞϕ; ð2:19Þ

with δU0 thus not being an independent degree of freedom.
With δUi being a three-vector, we shall decompose it into
its transverse and longitudinal parts as δUi ¼ Vi þ ∇̃iV,
where now γ̃ij∇̃jVi ¼ γ̃ij½∂jVi − Γ̃k

ijVk� ¼ 0. As con-
structed, in general, we have 11 fluctuation variables, 6
from the metric together with δρm, δpm and 3 δUi. But we
only have ten fluctuation equations. Thus, to solve the
theory when there is both a δρm and a δpm, we will need
some constraint between δpm and δρm. However, while this
would be required if we want to obtain the general solution,
as we had noted above, at recombination both δpm and δρm
are suppressed in the conformal case, so no constraint
between ρm and pm is needed for our purposes here.
Finally, we note that the fluctuation in the cosmological
constant term is just −λS40hμν.
The fluctuation δWμν in the Bach tensor Wμν is of the

form [23]

δW00 ¼ −
2

3Ω2
ð∇̃a∇̃a þ 3kÞ∇̃b∇̃bα;

δW0i ¼ −
2

3Ω2
∇̃ið∇̃a∇̃a þ 3kÞ _α

þ 1

2Ω2
ð∇̃b∇̃b − ∂2

τ − 2kÞð∇̃c∇̃c þ 2kÞðBi − _EiÞ;

δWij ¼ −
1

3Ω2
½γ̃ij∇̃a∇̃að∇̃b∇̃b þ 2k − ∂2

τÞα
− ∇̃i∇̃jð∇̃a∇̃a − 3∂2

τÞα�

þ 1

2Ω2
½∇̃ið∇̃a∇̃a − 2k − ∂2

τÞð _Bj − ËjÞ
þ ∇̃jð∇̃a∇̃a − 2k − ∂2

τÞð _Bi − ËiÞ�

þ 1

Ω2
½ð∇̃b∇̃b − ∂2

τ − 2kÞ2 þ 4k∂2
τ �Eij: ð2:20Þ

The structure of δWμν is noteworthy in two regards: first δWμν

is built out of gauge invariant quantities alone, even though
this is not the case for δGμν, and second it obeys the
tracelessness condition gμνδWμν ¼ 0. Neither of these two
features is generic for any δWμν, but they do hold for
fluctuations around a background in which Wμν is zero.
Specifically, when Wμν is zero, any general background Tμν

must be zero too. Now while we had noted above that Tμν

could vanish nontrivially, it could of course also vanish
trivially if there are no matter sources. The structure of
δWμν is not sensitive to how the background Tμν vanishes,
and it would have the same form in either case. However,
4αgδWμν − δTμν is always gauge invariant, and thus it would
begauge invariant ifTμν vanishes trivially and there is noδTμν

at all. Thus, for fluctuations around any background in which
Wμν vanishes, δWμνwill alwaysbegauge invariant on its own.
Now, regardless of whether or not the background Wμν

vanishes, because of the underlying conformal invariance
of the theory, it will still obey the tracelessness condition
gμνWμν ¼ 0. Thus, one will always have δ½gμνWμν� ¼ 0,
i.e., gμνδWμν − hμνWμν ¼ 0. Then if the background is such
thatWμν ¼ 0 one would have gμνδWμν ¼ 0. This then is the
case for fluctuations around any Robertson-Walker back-
ground, and thus gμνδWμν ¼ 0 does hold for the δWμν given
in (2.20). Since gμνδWμν does vanish, the tensor δWμν can
only have nine independent components. With four coor-
dinate invariances, δWμν can only depend on 5 gauge
invariant degrees of freedom, and as we see, they are α,
Bi − _Ei, and Eij.
From (2.6), we obtain background and fluctuation

equations of the form

4αgWμν ¼
1

c
½ðρm þpmÞUμUν þpmgμν�−

1

6
S20Gμν − gμνΛ;

4αgδWμν ¼
1

c
½ðδρm þ δpmÞUμUν þ δpmgμν

þ ðρm þpmÞðδUμUν þUμδUνÞ þpmhμν�

−
1

6
S20δGμν − hμνΛ: ð2:21Þ

It is convenient to define

η¼−
24αg
S20

; ρ¼−
6ðρmþcΛÞ

S20
;

p¼−
6ðpm−cΛÞ

S20
; δρ¼−

6δρm
S20

; δp¼−
6δpm

S20
: ð2:22Þ
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The background and fluctuation equations then take the
form

ηWμν ¼ Gμν þ
1

c
½ðρþ pÞUμUν þ pgμν� ¼ Δð0Þ

μν ; ð2:23Þ

ηδWμν ¼ δGμν þ
1

c
½ðδρþ δpÞUμUν þ δpgμν

þ ðρþ pÞðδUμUν þ UμδUνÞ þ phμν�
¼ Δμν; ð2:24Þ

with (2.23) and (2.24) serving to define Δð0Þ
μν and Δμν. With

use of Δð0Þ
μν ¼ 0 (which follows here since Wμν ¼ 0), and

with δGμν being given in (2.16), the components of Δμν

have been given in [23] and are of the form

Δ00 ¼ 6 _Ω2Ω−2ðα − _γÞ þ δρ̂Ω2 þ 2 _ΩΩ−1∇̃a∇̃aγ; ð2:25Þ

Δ0i ¼ −2 _ΩΩ−1∇̃iðα − _γÞ þ 2k∇̃iγ

þ ð−4 _Ω2Ω−3 þ 2Ω̈Ω−2 − 2kΩ−1Þ∇̃iV̂

þ kðBi − _EiÞ þ
1

2
∇̃a∇̃aðBi − _EiÞ

þ ð−4 _Ω2Ω−3 þ 2Ω̈Ω−2 − 2kΩ−1ÞVi; ð2:26Þ

Δij ¼ γ̃ij½2 _Ω2Ω−2ðα− _γÞ− 2 _ΩΩ−1ð _α− γ̈Þ− 4Ω̈Ω−1ðα− _γÞ
þΩ2δp̂− ∇̃a∇̃aðαþ 2 _ΩΩ−1γÞ�
þ ∇̃i∇̃jðαþ 2 _ΩΩ−1γÞ þ _ΩΩ−1∇̃iðBj − _EjÞ

þ 1

2
∇̃ið _Bj − ËjÞ þ _ΩΩ−1∇̃jðBi − _EiÞ þ

1

2
∇̃jð _Bi − ËiÞ

− Ëij − 2kEij − 2 _Eij
_ΩΩ−1 þ ∇̃a∇̃aEij; ð2:27Þ

γ̃ijΔij ¼ 6 _Ω2Ω−2ðα− _γÞ− 6 _ΩΩ−1ð _α− γ̈Þ− 12Ω̈Ω−1ðα− _γÞ
þ 3Ω2δp̂− 2∇̃a∇̃aðαþ 2 _ΩΩ−1γÞ; ð2:28Þ

gμνΔμν ¼ 3δp̂ − δρ̂ − 12Ω̈Ω−3ðα − _γÞ − 6 _ΩΩ−3ð _α − ̈γÞ
− 2Ω−2∇̃a∇̃aðαþ 3 _ΩΩ−1γÞ; ð2:29Þ

where

Ω2ρ ¼ 3kþ 3 _Ω2Ω−2; Ω2p ¼ −kþ _Ω2Ω−2 − 2Ω̈Ω−1;

_ρþ 3 _Ωðρþ pÞΩ−1 ¼ 0; α ¼ ϕþ ψ þ _B − Ë;

γ ¼ − _Ω−1Ωψ þ B − _E; V̂ ¼ V −Ω2 _Ω−1ψ ;

δρ̂ ¼ δρ − 12 _Ω2ψΩ−4 þ 6Ω̈ψΩ−3 − 6kψΩ−2

¼ δρþ _Ω−1 _ρψΩ ¼ δρ − 3ðρþ pÞψ ;
δp̂ ¼ δp − 4 _Ω2ψΩ−4 þ 8Ω̈ψΩ−3 þ 2kψΩ−2

− 2Ω̈ _Ω−1ψΩ−2 ¼ δpþ _Ω−1 _pψΩ: ð2:30Þ

[The first three expressions in (2.30) hold for the back-

ground and follow from Δð0Þ
μν ¼ 0.] With ηδWμν − Δμν

being gauge invariant and with δWμν being gauge invariant
on its own, it follows that Δμν is gauge invariant too, and
thus its dependence on the metric sector fluctuations must
be solely on the metric combinations α, γ, Bi − _Ei, and Eij,
just as we see. Then since the metric sector α, γ, Bi − _Ei,
and Eij are gauge invariant, from the gauge invariance of
Δμν, it follows that δρ̂, δp̂, V̂, and Vi are gauge invariant too
[68]. We thus have expressed the fluctuation equations
entirely in terms of gauge invariant combinations without
needing to specify any particular gauge [69]. Given (2.20)
and (2.25)–(2.27), the fluctuation equations take the form

ηδW00 ¼ −
2η

3Ω2
ð∇̃a∇̃a þ 3kÞ∇̃b∇̃bα ¼ Δ00 ¼ 6 _Ω2Ω−2ðα − _γÞ þ δρ̂Ω2 þ 2 _ΩΩ−1∇̃a∇̃aγ; ð2:31Þ

ηδW0i ¼ −
2η

3Ω2
∇̃ið∇̃a∇̃a þ 3kÞ _αþ η

2Ω2
ð∇̃b∇̃b − ∂2

τ − 2kÞð∇̃c∇̃c þ 2kÞðBi − _EiÞ
¼ Δ0i ¼ −2 _ΩΩ−1∇̃iðα − _γÞ þ 2k∇̃iγ þ ð−4 _Ω2Ω−3 þ 2Ω̈Ω−2 − 2kΩ−1Þ∇̃iV̂

þ kðBi − _EiÞ þ
1

2
∇̃a∇̃aðBi − _EiÞ þ ð−4 _Ω2Ω−3 þ 2Ω̈Ω−2 − 2kΩ−1ÞVi; ð2:32Þ

ηδWij ¼ −
η

3Ω2
½γ̃ij∇̃a∇̃að∇̃b∇̃b þ 2k − ∂2

τÞα − ∇̃i∇̃jð∇̃a∇̃a − 3∂2
τÞα�

þ η

2Ω2
½∇̃ið∇̃a∇̃a − 2k − ∂2

τÞð _Bj − ËjÞ þ ∇̃jð∇̃a∇̃a − 2k − ∂2
τÞð _Bi − ËiÞ� þ

η

Ω2
½ð∇̃b∇̃b − ∂2

τ − 2kÞ2 þ 4k∂2
τ �Eij

¼ Δij ¼ γ̃ij½2 _Ω2Ω−2ðα − _γÞ − 2 _ΩΩ−1ð _α − γ̈Þ − 4Ω̈Ω−1ðα − _γÞ þΩ2δp̂ − ∇̃a∇̃aðαþ 2 _ΩΩ−1γÞ�

þ ∇̃i∇̃jðαþ 2 _ΩΩ−1γÞ þ _ΩΩ−1∇̃iðBj − _EjÞ þ
1

2
∇̃ið _Bj − ËjÞ þ _ΩΩ−1∇̃jðBi − _EiÞ þ

1

2
∇̃jð _Bi − ËiÞ

− Ëij − 2kEij − 2 _Eij
_ΩΩ−1 þ ∇̃a∇̃aEij: ð2:33Þ
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In the conformal gravity theory, these cosmological fluc-
tuation equations are completely general and hold for any
possible matter source and any possible aðtÞ and k.
We had noted above that the only difference between the

conformal gravity (1.27) and the standard Einstein gravity
(1.28) was in the replacement of the Newtonian G by the
conformal gravity Geff given in (1.29). We can thus treat
both Δμν

ð0Þ and Δμν as being generic to both theories.

Consequently, Einstein gravity fluctuation theory can be
recognized as the η ¼ 0 limit of the conformal gravity
ηWμν − Δμν

ð0Þ ¼ 0, ηδWμν − Δμν ¼ 0 in which Δμν
ð0Þ ¼ 0 and

Δμν ¼ 0. As we will see in Secs. III and IV, some of the
analysis obtained in the Einstein gravity study given in [23]
will thus carry over to our present conformal gravity study.
We should also add that the parameter αg is actually

known to be negative [15,70]. The parameter η ¼
−24αg=S20 is thus positive. This will prove to be a key
feature of the development below as it will lead us to
solutions to the fluctuation equations that oscillate in time
rather than grow or decay exponentially. To actually find
the solutions, we need first to manipulate the fluctuation
equations so as to find equations for the individual gauge
invariant combinations (this will be done by taking the
same judicious choice of derivatives of the fluctuation
equations as was done in [23]), and to then solve the
equations that are obtained by such a technique.

III. SEPARATING THE
FLUCTUATION EQUATIONS

A. The scalar sector

With the ∇̃i derivatives acting in a maximally symmetric
three-space with three-curvature equal to k, the following
relations hold for any three-scalar S [23]:

∇̃a∇̃a∇̃iS ¼ ∇̃i∇̃a∇̃aSþ 2k∇̃iS;

∇̃a∇̃a∇̃i∇̃jS ¼ ∇̃i∇̃j∇̃a∇̃aSþ 6k∇̃i∇̃jS − 2kγ̃ij∇̃a∇̃aS;

∇̃a∇̃b∇̃i∇̃jS ¼ ∇̃i∇̃j∇̃a∇̃bSþ 2kγ̃ab∇̃i∇̃jS − 2kγ̃ij∇̃a∇̃bS

þ kγ̃aj∇̃b∇̃iS − kγ̃bi∇̃a∇̃jS: ð3:1Þ

Similarly, for any three-vector Ai, we have [23]

∇̃i∇̃a∇̃aAj− ∇̃a∇̃a∇̃iAj ¼ 2kγ̃ij∇̃aAa−2kð∇̃iAjþ ∇̃jAiÞ;
∇̃j∇̃a∇̃aAj ¼ ð∇̃a∇̃aþ2kÞ∇̃jAj;

∇̃j∇̃iAj ¼ ∇̃i∇̃jAjþ2kAi; ð3:2Þ

with (3.2) stating that if Aj is transverse then so is ∇̃a∇̃aAj.
For a general symmetric rank two tensor in a (more general)
maximally symmetric D-dimensional space with curvature
K, we have [21]

∇P∇N∇NAP
M¼½∇N∇NþKðDþ1Þ�∇PAP

M−2K∇MAP
P:

ð3:3Þ

Thus, for D ¼ 3, we see that if Aij is transverse and

traceless, then so is ∇̃a∇̃aAij.
We shall now use this information to obtain equations

that do not mix scalars, vectors, and tensors. For the scalar
sector, we already have two such relations already,
ηδW00 ¼ Δ00 and also gμνΔμν ¼ 0 since gμνδWμν ¼ 0, viz.

ηδW00−Δ00¼−
2η

3Ω2
ð∇̃a∇̃aþ3kÞ∇̃b∇̃bα−6 _Ω2Ω−2ðα− _γÞ

−δρ̂Ω2−2 _ΩΩ−1∇̃a∇̃aγ¼ 0; ð3:4Þ

gμνðηδWμν − ΔμνÞ ¼ −3δp̂þ δρ̂þ 12Ω̈Ω−3ðα − _γÞ
þ 6 _ΩΩ−3ð _α − ̈γÞ
þ 2Ω−2∇̃a∇̃aðαþ 3 _ΩΩ−1γÞ

¼ 0: ð3:5Þ

From the ð0; iÞ sector, we have ∇̃iðδW0i − Δ0iÞ ¼ 0, and
with ∇̃i∇̃a∇̃aðBi− _EiÞ¼ ð∇̃a∇̃aþ2kÞ∇̃iðBi− _EiÞ¼ 0, we
thus obtain

∇̃iðηδW0i −Δ0iÞ ¼ −
2η

3Ω2
∇̃i∇̃ið∇̃a∇̃aþ 3kÞ _α

þ 2 _ΩΩ−1∇̃i∇̃iðα− _γÞ− 2k∇̃i∇̃iγ

− ð−4 _Ω2Ω−3 þ 2Ω̈Ω−2 − 2kΩ−1Þ∇̃i∇̃iV̂

¼ 0: ð3:6Þ

With ∇̃i∇̃jð∇̃iAj þ ∇̃jAiÞ ¼ 2ð∇̃i∇̃i þ 2kÞ∇̃jAj and
∇̃i∇̃j∇̃i∇̃jS ¼ ð∇̃i∇̃i þ 2kÞ∇̃j∇̃jS, in the ði; jÞ sector,
we obtain

∇̃i∇̃jðηδWij − ΔijÞ

¼ −
2η

3Ω2
∇̃i∇̃ið∇̃a∇̃a þ 3kÞ∂2

τα

− ∇̃i∇̃i½2 _Ω2Ω−2ðα − _γÞ − 2 _ΩΩ−1ð _α − ̈γÞ
− 4Ω̈Ω−1ðα − _γÞ þ Ω2δp̂þ 2kðαþ 2 _ΩΩ−1γÞ�

¼ 0; ð3:7Þ

γ̃ijðηδWij −ΔijÞ

¼ −
2η

3Ω2
∇̃i∇̃ið∇̃a∇̃a þ 3kÞα

− ½6 _Ω2Ω−2ðα− _γÞ− 6 _ΩΩ−1ð _α − γ̈Þ− 12Ω̈Ω−1ðα − _γÞ
þ 3Ω2δp̂− 2∇̃a∇̃aðαþ 2 _ΩΩ−1γÞ� ¼ 0: ð3:8Þ
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To separate out the various combinations, we evaluate

3∇̃i∇̃jðηδWij − ΔijÞ − ∇̃a∇̃aγ̃ijðηδWij − ΔijÞ

¼ −
2η

3Ω2
∇̃i∇̃ið∇̃j∇̃j þ 3kÞð3∂2

τ − ∇̃a∇̃aÞα
− 2∇̃i∇̃ið∇̃j∇̃j þ 3kÞðαþ 2 _ΩΩ−1γÞ ¼ 0; ð3:9Þ

∇̃i∇̃jðηδWij − ΔijÞ þ kγ̃ijðηδWij − ΔijÞ

¼ −
2η

3Ω2
∇̃i∇̃ið∇̃a∇̃a þ 3kÞðkþ ∂2

τÞα
− ½∇̃a∇̃a þ 3k�½2 _Ω2Ω−2ðα − _γÞ − 2 _ΩΩ−1ð _α − γ̈Þ
− 4Ω̈Ω−1ðα − _γÞ þ Ω2δp̂� ¼ 0: ð3:10Þ

Thus, for the five scalar functions α, γ, δρ̂, δp̂, and V̂, we
initially appear to have obtained what would be a requisite
five equations for them, viz. (3.4), (3.5), (3.6), (3.9), and
(3.10), with one of them, viz. (3.9), not depending on
any of the matter sources. However, the trace condition
given in (3.5) is not independent of the other conditions.

Specifically, we already have gμνΔð0Þ
μν ¼ 0 since the back-

ground matter sector is conformal. Now, in general, in any

background that does obey gμνΔð0Þ
μν ¼ 0, we can set

0 ¼ δ½gμνΔð0Þ
μν � ¼ gμνΔμν − hμνΔð0Þ

μν ; ð3:11Þ

and so in general gμνΔμν will not be zero. However, if we

now impose the background equations of motion ηWμν ¼
Δð0Þ

μν given in (2.23), then since the backgroundWμν is zero
(the background being conformal to flat), it follows that the

background Δð0Þ
μν is zero too, and thus the fluctuation trace

gμνΔμν is automatically zero in solutions to the background
equations of motion. With the form of the fluctuation Δμν

given in (2.25)–(2.29) having been derived under the

imposition of Δð0Þ
μν ¼ 0, (3.5) is automatically obeyed for

the ΩðτÞ that obeys the background (2.7). Thus, in the
scalar sector, we only have four independent fluctuation
equations [(3.4), (3.6), (3.9), and (3.10)], but we have five
dynamical variables in the sector: α, γ, δρ̂, δp̂, and V̂. Thus,
without further information, we cannot solve completely.
This is a common feature of all fluctuation studies, and the
additional information that is ordinarily assumed in fluc-
tuation theory is a relation between δρ and δp of the form
δp=δρ ¼ v2=c2 where v is a matter fluid fluctuation
velocity. (While this relation is ordinarily imposed in
k ¼ 0 backgrounds, as noted in [23] in the k < 0 case
of interest to us here, this relation would need to be
generalized using fluids built out of incoherent averages
of modes that obey (1.18) and the analogs of it that we
encounter below.)
While we do need more information to solve the scalar

sector completely, this is not the case for either the vector or

the tensor sectors as there we have just the right number of
degrees of freedom [four in the vector sector (Bi − _Ei and
Vi) and two in the tensor sector (Eij)]. In fact, since we have
the ten fluctuation equations given in (2.31)–(2.33) and 11
dynamical degrees of freedom, we only have a shortfall of
1 degree of freedom, and thus no more than one of the
scalar, vector, or tensor sectors can be affected by this
concern. However, since we could not have just a single
extraneous degree of freedom in either the vector or the
tensor sectors (we would need an even number since
Bi − _Ei, Vi and Eij each have two components), the
shortfall would have to be in the scalar sector, just as
we have found. Thus, whatever goes on in the vector and
tensor sectors could not be sensitive to this shortfall, and
thus these two sectors can always be solved without
needing to specify any relation between δp and δρ.

B. The vector sector

For the vector sector, the gauge invariant combination
Bi − _Ei appears in the ð0; iÞ and ði; jÞ sectors. For the ð0; iÞ
sector first, we note that, given (2.32), we see that ηδW0i −
Δ0i can be written symbolically as the derivative of a scalar
plus a transverse vector, viz. as ηδW0i − Δ0i ¼ ∇̃iX þ Xi,
where ∇̃iXi ¼ 0. Thus, ∇̃iðηδW0i − Δ0iÞ ¼ ∇̃i∇̃iX ¼ 0.
Then given the relation ∇̃i∇̃a∇̃aS ¼ ð∇̃a∇̃a − 2kÞ∇̃iS that
holds for any three-scalar in the background associated
with (2.14), we can set

ð∇̃k∇̃k − 2kÞðηδW0i −Δ0iÞ ¼ ð∇̃i∇̃i − 2kÞð∇̃iXþXiÞ
¼ ∇̃i∇̃a∇̃aXþ ð∇̃i∇̃i − 2kÞXi

¼ ð∇̃i∇̃i − 2kÞXi ¼ 0: ð3:12Þ

Thus, we directly obtain

ð∇̃k∇̃k − 2kÞðηδW0i − Δ0iÞ
¼ ð∇̃k∇̃k − 2kÞ η

2Ω2
ð∇̃b∇̃b − ∂2

τ − 2kÞ
× ð∇̃c∇̃c þ 2kÞðBi − _EiÞ

− ð∇̃k∇̃k − 2kÞ
�
kðBi − _EiÞ þ

1

2
∇̃a∇̃aðBi − _EiÞ

þ ð−4 _Ω2Ω−3 þ 2Ω̈Ω−2 − 2kΩ−1ÞVi

�
¼ 0; ð3:13Þ

a relation that only involves vectors, with no scalars being
present.
A second relation that we can obtain is given by noting

that ϵkji∇̃jð∇̃iX þ XiÞ ¼ ϵkji∇̃jXi. Thus, we obtain
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ϵkji∇̃j
η

2Ω2
½ð∇̃b∇̃b − ∂2

τ − 2kÞð∇̃c∇̃c þ 2kÞ�ðBi − _EiÞ

− ϵkji∇̃j

�
kðBi − _EiÞ þ

1

2
∇̃a∇̃aðBi − _EiÞ

þ ð−4 _Ω2Ω−3 þ 2Ω̈Ω−2 − 2kΩ−1ÞVi

�
¼ 0: ð3:14Þ

We thus have ð∇̃k∇̃k − 2kÞXi ¼ 0 and ϵkji∇̃jXi ¼ 0, rela-

tions that can lead to Xi ¼ 0 or to Xi ¼ ∇̃iχ where χ is a
scalar that obeys ∇̃iXi ¼ ∇̃i∇̃iχ ¼ 0 since Xi is transverse.
(A transverse vector can be equal to the gradient of a scalar
χ without being longitudinal if ∇̃i∇̃iχ ¼ 0.) The ∇̃i∇̃iχ ¼
0 condition is consistent with ð∇̃k∇̃k − 2kÞXi ¼ 0 when
Xi ¼ ∇̃iχ since ð∇̃k∇̃k − 2kÞXi ¼ ð∇̃k∇̃k − 2kÞ∇̃iχ ¼
∇̃i∇̃k∇̃kχ ¼ 0. Consequently, (3.13) and (3.14) are not
independent, and we thus need more information in order to
be able to solve for the vector sector.
This extra information comes from the ði; jÞ sector. To

discuss the ði; jÞ sector, it is convenient to define

A ¼ 2 _Ω2Ω−2ðα − _γÞ − 2 _ΩΩ−1ð _α − ̈γÞ − 4Ω̈Ω−1ðα − _γÞ
þΩ2δp̂;

C ¼ αþ 2 _ΩΩ−1γ;

P ¼ −
1

3Ω2
∇̃a∇̃að∇̃b∇̃b þ 2k − ∂2

τÞα;

Q ¼ 1

3Ω2
ð∇̃a∇̃a − 3∂2

τÞα;
δWij ¼ γ̃ijPþ ∇̃i∇̃jQþ Xij;

Δij ¼ γ̃ijðA − ∇̃a∇̃aCÞ þ ∇̃i∇̃jCþ Fij; ð3:15Þ

where Xij and Fij are everything other than the scalar part.
With A, C, P, and Q all being scalars, we can set

∇̃i½γ̃ijðA − ∇̃a∇̃aCÞ þ ∇̃i∇̃jC� ¼ ∇̃jðAþ 2kCÞ;

∇̃iðγ̃ijPþ ∇̃i∇̃jQÞ ¼ −
2

3Ω2
∇̃jð∇̃b∇̃b þ 3kÞα̈ ð3:16Þ

and thus obtain

ð∇̃a∇̃a − 2kÞð∇̃a∇̃a þ kÞ∇̃iðγ̃ijPþ ∇̃i∇̃jQÞ ¼ −
2

3Ω2
∇̃i∇̃a∇̃að∇̃b∇̃b þ 3kÞð∇̃b∇̃b þ 3kÞα̈;

ð∇̃a∇̃a − 2kÞð∇̃a∇̃a þ kÞ∇̃i½γ̃ijðA − ∇̃a∇̃aCÞ þ ∇̃i∇̃jC� ¼ ∇̃i∇̃a∇̃að∇̃b∇̃b þ 3kÞðAþ 2kCÞ: ð3:17Þ
Then with (3.7) and (3.16) giving

∇̃i∇̃jðηδWij − ΔijÞ ¼ −
2η

3Ω2
∇̃i∇̃ið∇̃a∇̃a þ 3kÞα̈ − ∇̃i∇̃iðAþ 2kCÞ ¼ 0;

ð∇̃a∇̃a − 2kÞ∇̃j½ηðγ̃ijPþ ∇̃i∇̃jQÞ − γ̃ijðA − ∇̃a∇̃aCÞ − ∇̃i∇̃jC� ¼ ð∇̃a∇̃a − 2kÞ∇̃j
�
−

2η

3Ω2
ð∇̃b∇̃b þ 3kÞα̈ − ðAþ 2kCÞ

�

¼ ∇̃j∇̃a∇̃a
�
−

2η

3Ω2
ð∇̃b∇̃b þ 3kÞα̈ − ðAþ 2kCÞ

�

¼ 0 ð3:18Þ
through use of (3.2), we obtain

ð∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞ∇̃jðηδWij − ΔijÞ ¼ ð∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞ∇̃jðηXij − FijÞ
¼ η

2Ω2
ð∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞð∇̃c∇̃c þ 2kÞð∇̃a∇̃a − 2k − ∂2

τÞð _Bi − ËiÞ

− ð∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞð∇̃c∇̃c þ 2kÞ
�
1

2
ð _Bi − ËiÞ þ _ΩΩ−1ðBi − _EiÞ

�

¼ 0; ð3:19Þ

a relation that only involves Bi − _Ei. From (3.19), we can
determine the two components of the transverse Bi − _Ei,
and then use (3.13) to determine the two components of the
transverse Vi. In the vector sector then, we have just the
right number of equations needed to fix all of the vector
sector degrees of freedom.

C. The tensor sector

For the tensor sector, the gauge invariantEij appears in the
ði; jÞ sector. In the tensor sector, it is convenient to define

Rij ¼ γ̃ijPþ ∇̃i∇̃jQ; Dij ¼ γ̃ijðA− ∇̃a∇̃aCÞþ ∇̃i∇̃jC:

ð3:20Þ
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We next introduce

Sij ¼ Rij −
1

3
γ̃ijγ̃

abRab ¼
�
∇̃i∇̃j −

1

3
γ̃ij∇̃a∇̃a

�
Q;

Aij ¼ Dij −
1

3
γ̃ijγ̃

abDab ¼
�
∇̃i∇̃j −

1

3
γ̃ij∇̃a∇̃a

�
C: ð3:21Þ

Then with

δWij ¼ γ̃ijPþ ∇̃i∇̃jQþ Xij; Δij ¼ γ̃ijðA − ∇̃a∇̃aCÞ þ ∇̃i∇̃jCþ Fij; γ̃ijXij ¼ 0; γ̃ijFij ¼ 0; ð3:22Þ

we can set

δWij −
1

3
γ̃ijγ̃

abδWab ¼
�
∇̃i∇̃j −

1

3
γ̃ij∇̃a∇̃a

�
Qþ Xij ¼ Sij þ Xij;

Δij −
1

3
γ̃ijγ̃

abΔab ¼
�
∇̃i∇̃j −

1

3
γ̃ij∇̃a∇̃a

�
Cþ Fij ¼ Aij þ Fij;

ηδWij − Δij −
1

3
γ̃ijγ̃

abðηδWab − ΔabÞ ¼
�
∇̃i∇̃j −

1

3
γ̃ij∇̃a∇̃a

�
ðηQ − CÞ þ ηXij − Fij: ð3:23Þ

With repeated use of the second relation in (3.1), we obtain

ð∇̃b∇̃b − 3kÞSij ¼
�
∇̃i∇̃j −

1

3
γ̃ij∇̃a∇̃a

�
ð∇̃c∇̃c þ 3kÞQ;

ð∇̃b∇̃b − 3kÞAij ¼
�
∇̃i∇̃j −

1

3
γ̃ij∇̃a∇̃a

�
ð∇̃c∇̃c þ 3kÞC;

ð∇̃a∇̃a − 6kÞð∇̃b∇̃b − 3kÞSij ¼
�
∇̃i∇̃j −

1

3
γ̃ij∇̃a∇̃a

�
∇̃b∇̃bð∇̃c∇̃c þ 3kÞQ;

ð∇̃a∇̃a − 6kÞð∇̃b∇̃b − 3kÞAij ¼
�
∇̃i∇̃j −

1

3
γ̃ij∇̃a∇̃a

�
∇̃b∇̃bð∇̃c∇̃c þ 3kÞC: ð3:24Þ

Through use of (3.24), we obtain

ð∇̃a∇̃a − 6kÞð∇̃b∇̃b − 3kÞ
�
ηδWij − Δij −

1

3
γ̃ijγ̃

abðηδWab − ΔabÞ
�

¼
�
∇̃i∇̃j −

1

3
γ̃ij∇̃a∇̃a

�
∇̃i∇̃ið∇̃j∇̃j þ 3kÞðηQ − CÞ þ ð∇̃a∇̃a − 6kÞð∇̃b∇̃b − 3kÞðηXij − FijÞ: ð3:25Þ

On rewriting (3.9) as

3∇̃i∇̃jðηδWij − ΔijÞ − ∇̃a∇̃aγ̃ijðηδWij − ΔijÞ ¼ 2∇̃b∇̃bð∇̃c∇̃c þ 3kÞðηQ − CÞ ¼ 0; ð3:26Þ

it then follows that the scalar sector drops out of (3.25), to leave us with

ð∇̃a∇̃a−6kÞð∇̃b∇̃b−3kÞ
�
ηδWij−Δij−

1

3
γ̃ijγ̃abðηδWab−ΔabÞ

�
¼ð∇̃a∇̃a−6kÞð∇̃b∇̃b−3kÞðηXij−FijÞ¼ 0; ð3:27Þ

with the right-hand side of (3.27) only involving the vector and tensor sectors.
To eliminate the vector sector, we now note that for any vector Ai that obeys ∇̃iAi ¼ 0, through repeated use of the first

relation in (3.2), we obtain

PHILIP D. MANNHEIM PHYS. REV. D 102, 123535 (2020)

123535-16



ð∇̃b∇̃b − 3kÞð∇̃iAj þ ∇̃jAiÞ ¼ ∇̃ið∇̃b∇̃b þ kÞAj þ ∇̃jð∇̃b∇̃b þ kÞAi;

ð∇̃a∇̃a − 6kÞð∇̃b∇̃b − 3kÞð∇̃iAj þ ∇̃jAiÞ ¼ ∇̃ið∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞAj þ ∇̃jð∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞAi: ð3:28Þ

On using the first relation in (3.2) again, it follows that

ð∇̃c∇̃c − 2kÞð∇̃a∇̃a − 6kÞð∇̃b∇̃b − 3kÞð∇̃iAj þ ∇̃jAiÞ
¼ ∇̃ið∇̃c∇̃c þ 2kÞð∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞAj þ ∇̃jð∇̃c∇̃c þ 2kÞð∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞAi: ð3:29Þ

On recognizing that the vector sectors of Xij and Fij are precisely of the form ∇̃iAj þ ∇̃jAi, using (3.19) we can eliminate

the dependence on the vector sector by applying ∇̃c∇̃c − 2k to (3.27). Then, finally from (3.27), we obtain

ð∇̃c∇̃c − 2kÞð∇̃a∇̃a − 6kÞð∇̃b∇̃b − 3kÞ
�
ηδWij − Δij −

1

3
γ̃ijγ̃abðηδWab − ΔabÞ

�

¼ ð∇̃c∇̃c − 2kÞð∇̃a∇̃a − 6kÞð∇̃b∇̃b − 3kÞ
�
η

Ω2
½ð∇̃b∇̃b − ∂2

τ − 2kÞ2 þ 4k∂2
τ �Eij þ Ëij þ 2kEij þ 2 _ΩΩ−1 _Eij − ∇̃d∇̃dEij

�

¼ 0: ð3:30Þ

We thus obtain a relation that only involves Eij. Since there
is no tensor part to the matter fluctuation, (3.30) is all we
need for the two degree of freedom tensor sector. Having
now decoupled the scalar, vector, and tensor sectors from
each other in a set of gauge invariant equations that are
completely exact, that hold for arbitrary aðtÞ, arbitrary k
and arbitrary background matter sources, we can now
proceed to solve them. For solutions, we shall focus on
the k < 0 cosmology that is phenomenologically preferred
in the conformal case, though a similar analysis could
be made for k ¼ 0 or k > 0 conformal cosmologies if
desired.

IV. SOLVING THE FLUCTUATION EQUATIONS

In all, there are ten independent fluctuation equations,
four for the scalars [(3.4), (3.6), (3.9), (3.10)], two for the
vectors [(3.13), (3.19)] and one for the tensor [(3.30)].
All of these equations have in common the appearance of
the spatial derivative operator ∇̃i∇̃i. If we, e.g., consider
(3.30), we could satisfy it by ð∇̃c∇̃c − 2kÞTij ¼ 0, by

ð∇̃a∇̃a − 6kÞTij ¼ 0, by ð∇̃b∇̃b − 3kÞTij ¼ 0, or by hav-
ing the term in brackets vanish. [Here Tij represents the
entire Eij-dependent term that appears in the term in
brackets in (3.30).] Ignoring the possibility that Tij itself
vanishes for the moment (the only possibility that involves
both spatial and temporal derivatives), we would have to
solve the generic ð∇̃d∇̃d þ ATÞTij ¼ 0 where AT is an
appropriate separation constant. Analogously, there will be
separation constants AS and AV in the scalar and vector
cases. (While for the moment AS, AV , and AT are just
appropriate constants, we designate them as separation

constants since in Sec. VI they will serve as such for wave
equations that contain a time dependence.) Having such a
class of solutions in which Tij and its scalar and vector
analogs do not vanish would not be even remotely desirable
for fluctuation theory since only the spatial behavior of the
fluctuations would be specified and nothing would then fix
the time behavior. However, by solving these ð∇̃d∇̃d þ
ATÞTij ¼ 0 type equations and finding the eigenmodes of

the ∇̃d∇̃d operator, it was shown in [23] in the analog
Einstein gravity fluctuation case that the way that the
various scalar, vector, and tensor components would need
to interplay with each other in the fluctuation equations is
actually excluded, as the requisite interplay is not compat-
ible with the boundary conditions at χ ¼ ∞ and χ ¼ 0.
Thus, in the Einstein gravity case, we have to solve the
fluctuation equations by having the η ¼ 0 limit of the term
in brackets in (3.30) and its scalar and vector analogs
vanish, and then we are able to fix the time dependence of
the fluctuations. Moreover, this also enabled us to show in
[23] that the so-called decomposition theorem (viz. that the
scalar, vector, and tensor components separately solve the
Δμν ¼ 0 fluctuation equations) holds for standard Einstein
cosmological fluctuation theory.
We now apply this same analysis to conformal gravity.

This will enable us to show that the decomposition theorem
also holds in the conformal gravity case, and we discuss
this point below. Moreover, even if we solve equations such
(3.30) by having the term in brackets vanish, we would still
need to have to find the eigenmodes of the ∇̃d∇̃d operator
as it appears in the bracketed term. Thus, we proceed first to
a study of the ∇̃d∇̃d operator, and we follow the technique
developed for it in [23].
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A. Scalar fluctuations

To study the eigenmodes of the ∇̃d∇̃d operator in the
k < 0 case of interest to us here, we have found it
convenient to set k ¼ −1=L2, r=L ¼ sinh χ, p ¼ τ=L, so
that the background metric takes the form

ds2 ¼ L2Ω2ðpÞ½dp2 − dχ2 − sinh2χdθ2 − sinh2χsin2θdϕ2�:
ð4:1Þ

In all allowable solutions, we will require the fluctuations to
be well behaved and not diverge anywhere. We shall thus
require the fluctuations to go to zero at χ ¼ ∞ and to a
finite value at χ ¼ 0.
For the scalar case, we need to solve

�
∇̃a∇̃a þ AS

L2

�
S ¼ 0 ð4:2Þ

for a generic scalar function S. On setting Sðχ; θ;ϕÞ ¼
SlðχÞYm

l ðθ;ϕÞ, (4.2) reduces to

1

L2

�
d2

dχ2
þ 2

cosh χ
sinh χ

d
dχ

−
lðlþ 1Þ
sinh2χ

þ AS

�
Sl ¼ 0: ð4:3Þ

In the χ → ∞ and χ → 0 limits, we take the solution to
behave as eλχ (times an irrelevant polynomial in χ), and as
χn, to thus obtain

λ2 þ 2λþ AS ¼ 0; λ ¼ −1� ð1− ASÞ1=2;
nðn− 1Þ þ 2n− lðlþ 1Þ ¼ 0; n ¼ l;−l− 1: ð4:4Þ

Asymptotic convergence will thus depend on AS, while
finiteness at χ ¼ 0 will depend on l. With there being two
possible values for λ, there will be two families of solutions,

which we will label Ŝð1Þl and Ŝð2Þl in the following.
Exact solutions to (4.3) exist in the literature (see, e.g.,

[23,56,71]). They are known as associated Legendre
functions and are of the form

Sl ¼ sinhlχ

�
1

sinh χ
d
dχ

�
lþ1

fðχÞ; ð4:5Þ

where fðχÞ obeys
�
d3

dχ3
þ ν2

d
dχ

�
fðχÞ ¼ 0; ν2 ¼ AS − 1; ð4:6Þ

with fðχÞ thus obeying

fðν2> 0Þ¼ cosνχ; sinνχ; fðν2¼−μ2< 0Þ¼ coshμχ;

sinhμχ; fðν2 ¼ 0Þ¼ χ;χ2: ð4:7Þ

Both ν and μ are continuous variables, with the class of all
ν ≥ 0 and the class of all μ ≥ 0 both being complete. For
each fðχÞ, (4.7) would lead to solutions of the form

Ŝ0 ¼
1

sinh χ
df
dχ

; Ŝ1 ¼
dŜ0
dχ

; Ŝ2 ¼ sinh χ
d
dχ

�
Ŝ1

sinh χ

�
;

Ŝ3 ¼ sinh2χ
d
dχ

�
Ŝ2

sinh2χ

�
;…: ð4:8Þ

However, on evaluating these expressions, it can happen
that some of these solutions vanish. Thus, for AS ¼ 0, e.g.,
where fðχÞ ¼ ðsinh χ; cosh χÞ, the two solutions with
l ¼ 0 are cosh χ= sinh χ and 1. However, this would lead
to the two solutions with l ¼ 1 being 1= sinh2 χ and 0. To
address this point, we note that suppose we have obtained
some nonzero solution Ŝl. Then, a second solution of the
form f̂lðχÞŜlðχÞ may be found by inserting f̂lðχÞŜlðχÞ
into (4.3) to yield

Ŝl
d2f̂l
dχ2

þ 2Ŝl
cosh χ
sinh χ

df̂l
dχ

þ 2
dŜl
dχ

df̂l
dχ

¼ 0; ð4:9Þ

which integrates to

df̂l
dχ

¼ 1

sinh2χŜ2l
; f̂lŜl ¼ Ŝl

Z
dχ

sinh2χŜ2l
: ð4:10Þ

Thus, for l ¼ 1, from the nontrivial AS ¼ 0 solution
Ŝ1 ¼ 1= sinh2 χ, we obtain a second solution of the form
f̂lŜl ¼ cosh χ= sinh χ − χ=sinh2χ. However, once we have
this second solution, we can then return to (4.8) and use it to
obtain the subsequent solutions associated with higher l
values, since use of the chain in (4.8) only requires that at
any point the elements in it are solutions regardless of how
they may or may not have been found.

B. Vector fluctuations

In the vector sector, the components of Vi obey the
transverseness condition

∇̃aVa ¼ V2 cos θ
sin θsinh2χ

þ 2V1 cosh χ
sinh χ

þ ∂1V1 þ
∂2V2

sinh2χ

þ ∂3V3

sin2θsinh2χ

¼ 0: ð4:11Þ

On implementing this condition, the ðχ; θ;ϕÞ≡ ð1; 2; 3Þ
components of ∇̃a∇̃aVi take the form
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∇̃a∇̃aV1 ¼ V1

�
2þ 2

sinh2χ

�
þ 4 cosh χ∂1V1

sinh χ
þ ∂1∂1V1 þ

cos θ∂2V1

sin θsinh2χ
þ ∂2∂2V1

sinh2χ
þ ∂3∂3V1

sin2θsinh2χ
;

∇̃a∇̃aV2 ¼ V2

�
−

2

sinh4χ
þ 1

sin2θsinh4χ
−

2

sinh2χ

�
þ 4V1 cos θ cosh χ

sin θsinh3χ
þ 2 cos θ∂1V1

sin θsinh2χ
þ ∂1∂1V2

sinh2χ

þ 2 cosh χ∂2V1

sinh3χ
þ 3 cos θ∂2V2

sin θsinh4χ
þ ∂2∂2V2

sinh4χ
þ ∂3∂3V2

sin2θsinh4χ
;

∇̃a∇̃aV3 ¼ −
2V3

sin2θsinh2χ
þ ∂1∂1V3

sin2θsinh2χ
−

cos θ∂2V3

sin3θsinh4χ
þ ∂2∂2V3

sin2θsinh4χ
þ 2 cosh χ∂3V1

sin2θsinh3χ

þ 2 cos θ∂3V2

sin3θsinh4χ
þ ∂3∂3V3

sin4θsinh4χ
: ð4:12Þ

To explore the structure of the k ¼ −1=L2 vector sector,
we seek solutions to

�
∇̃a∇̃a þ AV

L2

�
Vi ¼ 0 ð4:13Þ

for a generic Vi. Conveniently, we find that the equation for
V1 involves no mixing with V2 or V3 and can thus be
solved directly. On setting V1ðχ; θ;ϕÞ ¼ g1;lðχÞYm

l ðθ;ϕÞ,
the equation for V1 reduces to

1

L2

�
d2

dχ2
þ 4

cosh χ
sinh χ

d
dχ

þ 2þ AV þ 2

sinh2χ
−
lðlþ 1Þ
sinh2χ

�
g1;l

¼ 0: ð4:14Þ

The χ → ∞ and χ → 0 limits give

λ2þ4λþ2þAV¼0; λ¼−2�ð2−AVÞ1=2;
nðn−1Þþ4nþ2−lðlþ1Þ¼0; n¼l−1;−l−2: ð4:15Þ

Asymptotic convergence will thus depend on AV , while
finiteness at χ ¼ 0 will depend on l. However, the
conditions differ from the scalar ones, a point that will
prove crucial below in establishing the conformal gravity
decomposition theorem. With there being two possible
values for λ, there will be two families of solutions, which

we will label V̂ð1Þ
l and V̂ð2Þ

l in the following.
To solve (4.14), we set g1;l ¼ αl= sinh χ and find that

(4.14) takes the form

1

L2

�
d2

dχ2
þ2

coshχ
sinhχ

d
dχ

−
lðlþ1Þ
sinh2χ

þAV −1

�
αl ¼ 0: ð4:16Þ

We recognize (4.16) as being in the form given in (4.3),
which we discussed above, with ν2 ¼ AV − 2.

C. Tensor fluctuations

For k ¼ −1=L2, the transverse-traceless tensor sector
modes need to satisfy

γ̃abTab ¼ T11 þ
T22

sinh2χ
þ T33

sin2θsinh2χ
¼ 0;

∇̃aTa1 ¼ −
cosh χT22

sinh3χ
−

cosh χT33

sin2θsinh3χ
þ cos θT12

sin θsinh2χ
þ 2 cosh χT11

sinh χ
þ ∂1T11 þ

∂2T12

sinh2χ
þ ∂3T13

sin2θsinh2χ
¼ 0;

∇̃aTa2 ¼ −
cos θT33

sin3θsinh4χ
þ cos θT22

sin θsinh4χ
þ 2 cosh χT12

sinh3χ
þ ∂1T12

sinh2χ
þ ∂2T22

sinh4χ
þ ∂3T23

sin2θsinh4χ
¼ 0;

∇̃aTa3 ¼ cos θT23

sin3θsinh4χ
þ 2 cosh χT13

sin2θsinh3χ
þ ∂1T13

sin2θsinh2χ
þ ∂2T23

sin2θsinh4χ
þ ∂3T33

sin4θsinh4χ
¼ 0: ð4:17Þ

Under these conditions, the components of ∇̃a∇̃aTij evaluate to
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∇̃a∇̃aT11 ¼ T11

�
6þ 6

sinh2χ

�
þ 6 cosh χ∂1T11

sinh χ
þ ∂1∂1T11 þ

cos θ∂2T11

sin θsinh2χ
þ ∂2∂2T11

sinh2χ
þ ∂3∂3T11

sin2θsinh2χ
;

∇̃a∇̃aT22 ¼ 4T22

sinh6χ
−

4T22

sin2θsinh6χ
þ 4T11

sinh4χ
−

2T22

sinh4χ
−

2T11

sin2θsinh4χ
þ 2T11

sinh2χ
−
2 cosh χ∂1T22

sinh5χ

þ ∂1∂1T22

sinh4χ
þ 4 cosh χ∂2T12

sinh5χ
þ cos θ∂2T22

sin θsinh6χ
þ ∂2∂2T22

sinh6χ
−
4 cos θ∂3T23

sin3θsinh6χ
þ ∂3∂3T22

sin2θsinh6χ
;

∇̃a∇̃aT33 ¼ 2T33

sin4θsinh6χ
ð1 − sinh2χÞ þ T11

�
2

sin4θsinh4χ
þ 2

sin2θsinh2χ

�
−
4 cos θ cosh χT12

sin3θsinh5χ

−
4 cos θ∂1T12

sin3θsinh4χ
−
2 cosh χ∂1T33

sin4θsinh5χ
þ ∂1∂1T33

sin4θsinh4χ
þ 4 cos θ∂2T11

sin3θsinh4χ
þ cos θ∂2T33

sin5θsinh6χ

þ ∂2∂2T33

sin4θsinh6χ
þ 4 cosh χ∂3T13

sin4θsinh5χ
þ ∂3∂3T33

sin6θsinh6χ
;

∇̃a∇̃aT12 ¼ T12

�
−

1

sin2θsinh4χ
−

2

sinh2χ

�
þ 2 cosh χ∂1T12

sinh3χ
þ ∂1∂1T12

sinh2χ
þ 2 cosh χ∂2T11

sinh3χ

þ cos θ∂2T12

sin θsinh4χ
þ ∂2∂2T12

sinh4χ
−
2 cos θ∂3T13

sin3θsinh4χ
þ ∂3∂3T12

sin2θsinh4χ
;

∇̃a∇̃aT13 ¼ −
2T13

sin2θsinh2χ
þ 2 cosh χ∂1T13

sin2θsinh3χ
þ ∂1∂1T13

sin2θsinh2χ
−

cos θ∂2T13

sin3θsinh4χ
þ ∂2∂2T13

sin2θsinh4χ

þ 2 cosh χ∂3T11

sin2θsinh3χ
þ 2 cos θ∂3T12

sin3θsinh4χ
þ ∂3∂3T13

sin4θsinh4χ
;

∇̃a∇̃aT23 ¼ T23

�
2ð1 − sinh2χÞ
sin2θsinh6χ

−
1

sin4θsinh6χ

�
þ 2 cos θ∂1T13

sin3θsinh4χ
−
2 cosh χ∂1T23

sin2θsinh5χ
þ ∂1∂1T23

sin2θsinh4χ

þ 2 cosh χ∂2T13

sin2θsinh5χ
þ cos θ∂2T23

sin3θsinh6χ
þ ∂2∂2T23

sin2θsinh6χ
þ 2 cosh χ∂3T12

sin2θsinh5χ
þ 2 cos θ∂3T22

sin3θsinh6χ

þ ∂3∂3T23

sin4θsinh6χ
: ð4:18Þ

Following our analysis of the vector sector, in the
k ¼ −1=L2 tensor sector, we seek solutions to

�
∇̃a∇̃a þ AT

L2

�
Tij ¼ 0 ð4:19Þ

for a generic tensor Tij. Conveniently, we find that the
equation for T11 involves no mixing with any other
components of Tij and can thus be solved directly. On
setting T11ðχ; θ;ϕÞ ¼ h11;lðχÞYm

l ðθ;ϕÞ, the equation for
T11 reduces to

1

L2

�
d2

dχ2
þ 6

cosh χ
sinh χ

d
dχ

þ 6þ 6

sinh2χ
−
lðlþ 1Þ
sinh2χ

þAT

�
h11;l

¼ 0: ð4:20Þ

To determine the χ → ∞ and χ → 0 limits, we take the
solutions to behave as eλχ (times an irrelevant polynomial
in χ) and χn in these two limits. For (4.20), the limits give

λ2 þ 6λþ 6þ AT ¼ 0; λ ¼ −3� ð3− ATÞ1=2;
nðn− 1Þ þ 6nþ 6− lðlþ 1Þ ¼ 0; n ¼ l− 2;−l− 3:

ð4:21Þ

Asymptotic convergence will thus depend on AT , while
finiteness at χ ¼ 0 will depend on l. However, the
conditions differ from both the scalar and vector ones, a
point that will prove crucial below in establishing the
conformal gravity decomposition theorem. With there
being two possible values for λ, there will be two families

of solutions, which we will label T̂ð1Þ
l and T̂ð2Þ

l in the
following.
To solve (4.20), we set h11;l ¼ γl= sinh2 χ to obtain

1

L2

�
d2

dχ2
þ2

coshχ
sinhχ

d
dχ

−
lðlþ1Þ
sinh2χ

−2þAT

�
γl ¼ 0: ð4:22Þ

We recognize (4.22) as being (4.3) where ν2 ¼ AT − 3.
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D. Master formalism for scalar, vector, and tensor
modes and their normalization

In [71], a scalar field master equation of the form

�
d2

dχ2
þðF− 1Þcoshχ

sinhχ
d
dχ

−
βðβþF− 2Þ

sinh2χ
þ ν2þ

�
F− 1

2

�
2
�

×Zν;βðχÞ ¼ 0 ð4:23Þ

was presented that holds for the radial modes of a scalar
field propagating in F spatial dimensions with angular
momentum l ¼ β þ ðF − 3Þ=2. However, we can also use
this master equation to describe the propagation of scalar,
vector, and tensor radial modes in three spatial dimensions.
Specifically, we see that comparison with (4.3) shows that
for the scalar we have F ¼ 3, ν2 þ 1 ¼ AS, β ¼ l.
Comparison with (4.14) shows that for the vector we have

F ¼ 5, ν2 þ 2 ¼ AV , β ¼ l − 1. Comparison with (4.20)
shows that for the tensor we have F ¼ 7, ν2 þ 3 ¼ AT ,
β ¼ l − 2. The radial equations for scalar modes in five
and seven spatial dimensions thus, respectively, correspond
to the radial equations for vectors and tensors in three
spatial dimensions.
For the case in which the fðνÞ of (4.7) is given by

fðνÞ ¼ cos νχ, this being the case that will prove to be
relevant in Secs. VI–VIII, the modes are normalized
according to [71]

Zν;βðχÞ ¼ Aðν; β; FÞsinhβχ
�

1

sinh χ
d
dχ

�ðF−1Þ=2þβ

cos νχ;

ð4:24Þ

where

Aðν; β; FÞ ¼ 21=2

½πν2ðν2 þ 12Þðν2 þ 22Þ……ðν2 þ ððF − 3Þ=2þ βÞ2Þ�1=2 : ð4:25Þ

With the integration measure for dχ2 þ sinh2χdθ2 þ sinh2χsin2θdϕ2 being sinh2 χ sin θ as needed for the normalization of
Zν;βðχÞYm

l ðθ;ϕÞ, for Zν;βðχÞ itself the integration measure is sinh2 χ. And with this normalization the modes obey the Dirac
delta function orthonormality condition [71]

Z
∞

0

dχsinh2χsinhðF−3Þ=2χZν1;β1ðχÞsinhðF−3Þ=2χZ�
ν2;β2

ðχÞ ¼ δβ1;β2δðν1 − ν2Þ: ð4:26Þ

The extra sinhðF−3Þ=2 χ factors that have been introduced here take the values 1, sinh χ, sinh2χ for F ¼ 3, 5, 7. While not
relevant for the scalar case, for the vector and the tensor modes these are precisely the factors needed to go from (4.14) to
(4.16) and to go from (4.20) to (4.22) [72].
To understand the emergence of the δðν1 − ν2Þ term, we directly evaluate the scalar mode case with F ¼ 3, l1 ¼ l2 ¼ 0,

β1 ¼ β2 ¼ 0, viz. the scalar field Ŝ0 given in (4.8). And with both ν1 and ν2 positive, we obtain

Aðν1; 0; 3ÞAðν2; 0; 3Þ
Z

∞

0

dχsinh2χ
ν1 sin ν1χν2 sin ν2χ

sinh2χ
¼ 2

π

1

2

1

ð2iÞ2
Z

∞

−∞
dχðeiν1χ − e−iν1χÞðeiν2χ − e−iν2χÞ

¼ δðν1 − ν2Þ − δðν1 þ ν2Þ ¼ δðν1 − ν2Þ: ð4:27Þ

For the vector mode case with F ¼ 5, l1 ¼ l2 ¼ 1, β1 ¼ β2 ¼ 0, and with both ν1 and ν2 again positive, we obtain

Aðν1; 0; 5ÞAðν2; 0; 5Þ
Z

∞

0

dχsinh2χ
d
dχ

�
−
ν1 sin ν1χ
sinh χ

�
d
dχ

�
−
ν2 sin ν2χ
sinh χ

�

¼ Aðν1; 0; 5ÞAðν2; 0; 5Þν1ν2
Z

∞

0

dχ

�
−ν1 cos ν1χ þ

cosh χ
sinh χ

sin ν1χ

��
−ν2 cos ν2χ þ

cosh χ
sinh χ

sin ν2χ

�

¼ Aðν1; 0; 5ÞAðν2; 0; 5Þ
ν1ν2
2

Z
∞

−∞
dχ

�
ν1ν2 cos ν1χ cos ν2χ þ sin ν1χ sin ν2χ

þ sin ν1χ sin ν2χ
sinh2χ

−
cosh χ
sinh χ

ν2 sin ν1χ cos ν2χ −
cosh χ
sinh χ

ν1 sin ν2χ cos ν1χ

�

¼ Aðν1; 0; 5ÞAðν2; 0; 5Þ
ν1ν2
2

Z
∞

−∞
dχ

�
ν1ν2 cos ν1χ cos ν2χ þ sin ν1χ sin ν2χ −

d
dχ

�
sin ν1χ sin ν2χ cosh χ

sinh χ

��
: ð4:28Þ
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With the surface term oscillating away (when integrated with a good test function), it follows that

2

πν1ðν21 þ 12Þ1=2ν2ðν22 þ 12Þ1=2
Z

∞

0

dχsinh2χ
d
dχ

�
−
ν1 sin ν1χ
sinh χ

�
d
dχ

�
−
ν2 sin ν2χ
sinh χ

�
¼ δðν1 − ν2Þ; ð4:29Þ

just as required. Because of the relation between (4.14) and (4.16), this calculation is identical to that of the normalization of
the l ¼ 1 scalar mode Aðν; 1; 3ÞŜ1 introduced in (4.8).
A similar analysis holds for tensor modes with F ¼ 7, l1 ¼ l2 ¼ 2, β1 ¼ β2 ¼ 0 and positive ν1 and ν2. If as in [71], we

define

qpðν; χÞ ¼ sinhpχ

�
1

sinh χ
d
dχ

�
p
fðν; χÞ; ð4:30Þ

where as before fðν; χÞ ¼ cos νχ, then we obtain

q3ðν; χÞ ¼
�
d
dχ

−
2 cosh χ
sinh χ

�
q2ðν; χÞ;

�
d
dχ

þ 2 cosh χ
sinh χ

�
q3ðν; χÞ ¼ −ðν2 þ 22Þq2ðν; χÞ;

q2ðν; χÞ ¼
�
d
dχ

−
cosh χ
sinh χ

�
q1ðν; χÞ;

�
d
dχ

þ cosh χ
sinh χ

�
q2ðν; χÞ ¼ −ðν2 þ 12Þq1ðν; χÞ; q1ðν; χÞ ¼

dfðν; χÞ
dχ

: ð4:31Þ

Following some integrations by parts, we obtain

Z
∞

0

dχq3ðν1; χÞq3ðν2; χÞ ¼
Z

∞

0

dχ

�
d
dχ

−
2 cosh χ
sinh χ

�
q2ðν1; χÞq3ðν2; χÞ

¼ −
Z

∞

0

dχq2ðν1; χÞ
�
d
dχ

þ 2 cosh χ
sinh χ

�
q3ðν2; χÞ

¼ ðν22 þ 22Þ
Z

∞

0

dχq2ðν1; χÞq2ðν2; χÞ

¼ ðν22 þ 22Þ
Z

∞

0

dχ

�
d
dχ

−
cosh χ
sinh χ

�
q1ðν1; χÞq2ðν2; χÞ

¼ −ðν22 þ 22Þ
Z

∞

0

dχq1ðν1; χÞ
�
d
dχ

þ cosh χ
sinh χ

�
q2ðν2; χÞ

¼ ðν22 þ 22Þðν22 þ 12Þ
Z

∞

0

dχq1ðν1; χÞq1ðν2; χÞ

¼ ν1ν2ðν22 þ 22Þðν22 þ 12Þ
Z

∞

0

dχ sin ν1χ sin ν2χ

¼ π

2
ν1ν2ðν22 þ 22Þðν22 þ 12Þδðν1 − ν2Þ: ð4:32Þ

From (4.32), it follows that

2

πν1ðν21 þ 12Þ1=2ðν21 þ 22Þ1=2ν2ðν22 þ 12Þ1=2ðν2 þ 22Þ1=2

×
Z

∞

0

dχsinh4χ
d
dχ

�
1

sinh χ
d
dχ

�
−
ν1 sin ν1χ
sinh χ

��
d
dχ

�
1

sinh χ
d
dχ

�
−
ν2 sin ν2χ
sinh χ

��
¼ δðν1 − ν2Þ; ð4:33Þ

just as required. Because of the relation between (4.20) and (4.22), this calculation is identical to that of the normalization of
the l ¼ 2 scalar mode Aðν; 2; 3ÞŜ2 introduced in (4.8) [73].
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Comparing with (4.4), (4.15), and (4.21), we see that
the scalar, vector, and tensor modes behave asymptoti-
cally as eλχ where, respectively, λ ¼ −1� ð1 − ASÞ1=2 ¼
−1� iν, λ ¼ −2� ð2 − AVÞ1=2 ¼ −2� iν, λ¼−3�
ð3−ATÞ1=2¼−3�iν. For real ν, these modes are all
suppressed at χ ¼ ∞, with the scalar, vector, and tensor
modes, respectively, converging as e−χ , e−2χ , and e−3χ .
However, that does not make them normalizable since the
sinh2 χ, sinh4 χ and sinh6 χ factors in the respective
integration measures for bilinear products of the modes
diverge as e2χ , e4χ , e6χ . Thus, just like plane waves (the
modes appropriate to k ¼ 0), the scalar, vector, and
tensor modes have to be Dirac delta function normalized
[74]. Thus, in general, we have to distinguish between
asymptotic boundedness and normalizability, with our
boundedness criterion having to be that modes have to
fall off at least as fast as needed to match the growth in
the relevant integration measure [75]. Since we will settle
on AS > 1, AV > 2, AT > 3 below, all modes will meet
this normalizability criterion and be delta function
normalized.
Having now set up a second-order derivative formalism

given in (4.3), (4.14), and (4.20) and shown its compat-
ibility with the master equation approach in the respective
scalar, vector, and tensor sectors, we need to use the
formalism to solve the higher-derivative equations, four
for the scalars [(3.4), (3.6), (3.9), (3.10)], two for the
vectors [(3.13), (3.19)], and one for the tensors [(3.30)]. We
leave the details to the Appendices, and in Secs. IV E and V
we show how this will enable us to obtain a conformal
gravity decomposition theorem.

E. Impossibility of reconciling the scalar,
vector, and tensor solutions

While equations such as (3.30) contain the spatial
derivative operator ð∇̃c∇̃c−2kÞð∇̃a∇̃a−6kÞð∇̃b∇̃b−3kÞ,
this derivative operator does not appear in the second-
order derivative fluctuation equation ηδWij − Δij ¼ 0

itself. In Appendix D, we show that there are χ-
dependent solutions to ð∇̃c∇̃c − 2kÞð∇̃a∇̃a − 6kÞð∇̃b∇̃b −
3kÞTij ¼ 0 that can meet boundary conditions at χ ¼ ∞
and χ ¼ 0 without requiring Tij itself to vanish. [Here Tij

represents the entire Eij-dependent term that appears in
the term in brackets in (3.30).] A similar situation also
holds in the vector sector. In the solutions in which Tij

does not itself vanish, the dependence on χ is fixed but
not the dependence on τ. (To fix the dependence on τ, we
would need Tij and its scalar and vector analogs to
vanish, just as we discuss in Sec. VI.) Now we note that
since (4.3), (4.14), and (4.20) are different equations, the
various scalar, vector, and tensor modes would have
differing behaviors in χ. In the event that we do realize

(3.30) and its analogs by not having Tij and its analogs
vanish, the only way for the modes to then be able to
satisfy ηδWμν − Δμν ¼ 0 is by mutual cancellation of
their respective spatial dependencies. We now show that
this cannot be the case, with ηδWμν − Δμν ¼ 0, thus
having to split into separate scalar, vector, and tensor
sectors, to thus give a conformal gravity decomposition
theorem.
To this end, we note that since some scalar mode terms

appear with two ∇̃a derivatives in the Δij sector, the
vector sector terms appear with one ∇̃a derivative and
some of the tensor sector terms appear with none, we
need to compare derivatives of scalars with vectors and
derivatives of vectors with tensors. To see how it would
be possible to obtain such a needed common χ behavior,
we differentiate the scalar field (4.3) with respect to χ
and obtain

�
d2

dχ2
þ 4

cosh χ
sinh χ

d
dχ

þ 2

sinh2χ
−
lðlþ 1Þ
sinh2χ

þ 4þ AS

�
dSl
dχ

þ 2AS
cosh χ
sinh χ

Sl ¼ 0: ð4:34Þ

Comparing with the vector (4.14), we see that up to an
overall normalization we can identify dSl=dχ with the
vector g1;l for modes that obey AS ¼ 0 and AV ¼ 2, so
that these particular scalar and vector modes can
interface.
Similarly, if we differentiate the vector field (4.14) with

respect to χ, we obtain

�
d2

dχ2
þ 6

cosh χ
sinh χ

d
dχ

þ 10þ AV þ 6

sinh2χ
−
lðlþ 1Þ
sinh2χ

�
dg1;l
dχ

þ 2ð2þ AVÞ
cosh χ
sinh χ

g1;l ¼ 0: ð4:35Þ

Comparing with the tensor (4.20), we see that up to an
overall normalization we can identify dg1;l=dχ with the
tensor h11;l for modes that obey AV ¼ −2 and AT ¼ 2, so
that these particular vector and tensor modes can interface.
Thus, while we can interface AS ¼ 0 and AV ¼ 2, we
cannot interface AV ¼ 2 with any of the tensor modes.
Rather, we must interface the AV ¼ −2 vector modes with
the AT ¼ 2 tensor modes [76].
Now, for scalar modes with AS ¼ 0 solutions, we have

ν ¼ i, and the relevant fðν2Þ given in (4.7) are cosh χ and
sinh χ. Similarly, for the vector modes with AV ¼ 2, we
have ν ¼ 0 and fðν2Þ ¼ χ; χ2. Consequently, the first few

ŜðiÞl , i ¼ 1, 2 solutions to ð∇̃a∇̃a þ ASÞS ¼ 0 with AS ¼ 0

and the first few V̂ðiÞ
l , i ¼ 1, 2 solutions to ð∇̃a∇̃a þ

AVÞVi ¼ 0 with AV ¼ 2 are of the form [23]
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Ŝð1Þ0 ðAS ¼ 0Þ ¼ cosh χ
sinh χ

; Ŝð2Þ0 ðAS ¼ 0Þ ¼ 1;

Ŝð1Þ1 ðAS ¼ 0Þ ¼ 1

sinh2χ
; Ŝð2Þ1 ðAS ¼ 0Þ ¼ cosh χ

sinh χ
−

χ

sinh2χ
;

Ŝð1Þ2 ðAS ¼ 0Þ ¼ cosh χ
sinh3χ

; Ŝð2Þ2 ðAS ¼ 0Þ ¼ 1þ 3

sinh2χ
−
3χ cosh χ
sinh3χ

;

Ŝð1Þ3 ðAS ¼ 0Þ ¼ 4

sinh2χ
þ 5

sinh4χ
; Ŝð2Þ3 ðAS ¼ 0Þ ¼ 2 cosh χ

sinh χ
þ 15 cosh χ

sinh3χ
−

12χ

sinh2χ
−

15χ

sinh4χ
: ð4:36Þ

V̂ð1Þ
0 ðAV ¼ 2Þ ¼ 1

sinh2χ
; V̂ð2Þ

0 ðAV ¼ 2Þ ¼ χ

sinh2χ
;

V̂ð1Þ
1 ðAV ¼ 2Þ ¼ cosh χ

sinh3χ
; V̂ð2Þ

1 ðAV ¼ 2Þ ¼ 1

sinh2χ
−
χ cosh χ
sinh3χ

;

V̂ð1Þ
2 ðAV ¼ 2Þ ¼ 2

sinh2χ
þ 3

sinh4χ
; V̂ð2Þ

2 ðAV ¼ 2Þ ¼ 3 cosh χ
sinh3χ

−
2χ

sinh2χ
−

3χ

sinh4χ
;

V̂ð1Þ
3 ðAV ¼ 2Þ ¼ 2 cosh χ

sinh3χ
þ 5 cosh χ

sinh5χ
; V̂ð2Þ

3 ðAV ¼ 2Þ ¼ 11

sinh2χ
þ 15

sinh4χ
−
6χ cosh χ
sinh3χ

−
15χ cosh χ
sinh5χ

; ð4:37Þ

viz. two solutions for each l value, with l being the lower index. From this pattern, we see that the V̂ð2Þ
l ðAV ¼ 2Þ solutions

with l ≥ 1 are bounded at χ ¼ ∞ and well behaved at χ ¼ 0. However, the ŜðiÞl solutions that are bounded at χ ¼ ∞ are
badly behaved at χ ¼ 0, while the solutions that are well behaved at χ ¼ 0 are unbounded at χ ¼ ∞. Thus, all of these
AS ¼ 0 solutions are excluded by a requirement that solutions be bounded at χ ¼ ∞ and be well behaved at χ ¼ 0. Hence,
we cannot interface the scalar AS ¼ 0 solutions with the vector AV ¼ 2 solutions or make (4.4) and (4.15) be compatible,
and so an interface between AS ¼ 0 and AV ¼ 2 is excluded.

For the other possible interface, viz. that between the V̂ð2Þ
l ðAV ¼ −2Þ (ν2 ¼ −4, fðνÞ ¼ cosh 2χ; sinh 2χ) vector modes

and the T̂ð2Þ
l ðAT ¼ 2Þ (ν2 ¼ −1, fðνÞ ¼ cosh χ; sinh χ) tensor modes, the first few relevant mode solutions are [23]

V̂ð1Þ
0 ðAV ¼ −2Þ ¼ cosh χ

sinh χ
; V̂ð2Þ

0 ðAV ¼ −2Þ ¼ 2þ 1

sinh2χ
;

V̂ð1Þ
1 ðAV ¼ −2Þ ¼ 1; V̂ð2Þ

1 ðAV ¼ −2Þ ¼ 2
cosh χ
sinh χ

−
cosh χ
sinh3χ

;

V̂ð1Þ
2 ðAV ¼ −2Þ ¼ 2

cosh χ
sinh χ

−
3 cosh χ
sinh3χ

þ 3χ

sinh4χ
; V̂ð2Þ

2 ðAV ¼ −2Þ ¼ 1

sinh4χ
;

V̂ð1Þ
3 ðAV ¼ −2Þ ¼ 2 −

5

sinh2χ
−

15

sinh4χ
þ 15χ cosh χ

sinh5χ
; V̂ð2Þ

3 ðAV ¼ −2Þ ¼ cosh χ
sinh5χ

: ð4:38Þ

T̂ð1Þ
0 ðAT ¼ 2Þ ¼ cosh χ

sinh3χ
; T̂ð2Þ

0 ðAT ¼ 2Þ ¼ 1

sinh2χ
;

T̂ð1Þ
1 ðAT ¼ 2Þ ¼ 1

sinh4χ
; T̂ð2Þ

1 ðAT ¼ 2Þ ¼ cosh χ
sinh3χ

−
χ

sinh4χ
;

T̂ð1Þ
2 ðAT ¼ 2Þ ¼ cosh χ

sinh5χ
; T̂ð2Þ

2 ðAT ¼ 2Þ ¼ 1

sinh2χ
þ 3

sinh4χ
−
3χ cosh χ
sinh5χ

;

T̂ð1Þ
3 ðAT ¼ 2Þ ¼ 4

sinh4χ
þ 5

sinh6χ
; T̂ð2Þ

3 ðAT ¼ 2Þ ¼ 2 cosh χ
sinh3χ

þ 15 cosh χ
sinh5χ

−
12χ

sinh4χ
−

15χ

sinh6χ
: ð4:39Þ

From this pattern, we see that all of the T̂ð2Þ
l ðAT ¼ 2Þ solutions are bounded at χ ¼ ∞ and all T̂ð2Þ

l ðAT ¼ 2Þ solutions with
l ≥ 2 are well behaved at χ ¼ 0. However, none of the V̂ð1Þ

l ðAV ¼ −2Þ vanish at χ ¼ ∞, and while the V̂ð2Þ
l ðAV ¼ −2Þwith

l ≥ 2 is bounded at χ ¼ ∞ they diverge at χ ¼ 0. Hence, we cannot interface the AV ¼ −2 vector solutions with the AT ¼ 2
tensor solutions or make (4.15) and (4.21) be compatible, and so an interface between AV ¼ −2 and AT ¼ 2 is excluded.
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Consequently, we can only satisfy equations such as (3.30) by having the Eij-dependent term in brackets vanish. The
vanishing of this particular term and its scalar and vector analogs will then fix the dependence of the fluctuations on the
conformal time τ.

V. THE CONFORMAL GRAVITY DECOMPOSITION THEOREM

For a decomposition theorem for ηδWμν ¼ Δμν to hold, the ten ηδWμν ¼ Δμν conditions must break up into separate
scalar, vector, and tensor sectors of the form

−
2η

3Ω2
ð∇̃a∇̃a þ 3kÞ∇̃b∇̃bα ¼ 6 _Ω2Ω−2ðα − _γÞ þ δρ̂Ω2 þ 2 _ΩΩ−1∇̃a∇̃aγ; ð5:1Þ

−
2η

3Ω2
∇̃ið∇̃a∇̃a þ 3kÞ _α ¼ −2 _ΩΩ−1∇̃iðα − _γÞ þ 2k∇̃iγ þ ð−4 _Ω2Ω−3 þ 2Ω̈Ω−2 − 2kΩ−1Þ∇̃iV̂; ð5:2Þ

η

2Ω2
ð∇̃b∇̃b−∂2

τ −2kÞð∇̃c∇̃cþ2kÞðBi− _EiÞ¼ kðBi− _EiÞþ
1

2
∇̃a∇̃aðBi− _EiÞþð−4 _Ω2Ω−3þ2Ω̈Ω−2−2kΩ−1ÞVi; ð5:3Þ

−
η

3Ω2
½γ̃ij∇̃a∇̃að∇̃b∇̃b þ 2k− ∂2

τÞα− ∇̃i∇̃jð∇̃a∇̃a − 3∂2
τÞα�

¼ γ̃ij½2 _Ω2Ω−2ðα− _γÞ− 2 _ΩΩ−1ð _α− γ̈Þ− 4Ω̈Ω−1ðα− _γÞ þΩ2δp̂− ∇̃a∇̃aðαþ 2 _ΩΩ−1γÞ� þ ∇̃i∇̃jðαþ 2 _ΩΩ−1γÞ; ð5:4Þ
η

2Ω2
½∇̃ið∇̃a∇̃a − 2k − ∂2

τÞð _Bj − ËjÞ þ ∇̃jð∇̃a∇̃a − 2k − ∂2
τÞð _Bi − ËiÞ�

¼ _ΩΩ−1∇̃iðBj − _EjÞ þ
1

2
∇̃ið _Bj − ËjÞ þ _ΩΩ−1∇̃jðBi − _EiÞ þ

1

2
∇̃jð _Bi − ËiÞ; ð5:5Þ

η

Ω2
½ð∇̃b∇̃b − ∂2

τ − 2kÞ2 þ 4k∂2
τ �Eij ¼ −Ëij − 2kEij − 2 _Eij

_ΩΩ−1 þ ∇̃a∇̃aEij: ð5:6Þ

However, even if such a decomposition were to occur in this form, initially this is not enough information as there are only
nine pieces of information. The vector sector has four equations and 4 degrees of freedom (the two-component Bi − _Ei and
the two-component Vi), and the tensor sector has 2 degrees of freedom (the two-component Eij). However, in the scalar
sector, there are only three equations [(5.1), (5.2), and (5.4)], with there thus only being a total of nine pieces of information.
However, since γ̃ij and ∇̃i∇̃j transform differently under three-dimensional rotations (5.4) actually breaks up into two
sectors according to

−
η

3Ω2
∇̃a∇̃að∇̃b∇̃bþ2k−∂2

τÞα¼ 2 _Ω2Ω−2ðα− _γÞ−2 _ΩΩ−1ð _α− γ̈Þ−4Ω̈Ω−1ðα− _γÞþΩ2δp̂− ∇̃a∇̃aðαþ2 _ΩΩ−1γÞ ð5:7Þ

and

η

3Ω2
ð∇̃a∇̃a − 3∂2

τÞα ¼ αþ 2 _ΩΩ−1γ; ð5:8Þ

and now we do have ten pieces of information.
In addition, we note that the nontrivial solution to (5.2) is given by

−
2η

3Ω2
ð∇̃a∇̃a þ 3kÞ _α ¼ −2 _ΩΩ−1ðα − _γÞ þ 2kγ þ ð−4 _Ω2Ω−3 þ 2Ω̈Ω−2 − 2kΩ−1ÞV̂; ð5:9Þ

while (5.5) yields

η

2Ω2
ð∇̃a∇̃a − 2k − ∂2

τÞð _Bi − ËiÞ ¼ _ΩΩ−1ðBi − _EiÞ þ
1

2
ð _Bi − ËiÞ: ð5:10Þ

If the decomposition theorem is to be valid, then the scalar (5.1), (5.7)–(5.9), the vector (5.3), (5.10), and the tensor (5.6) all
need to hold, with (5.1) being automatic since ηδW00 − Δ00 only contains scalars to begin with.
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Since the χ → ∞, χ ¼ 0 boundary conditions for the
separated fluctuation equations given in Sec. III exclude
the vanishing of expressions such as ð∇̃c∇̃c − 2kÞð∇̃a∇̃a −
6kÞð∇̃b∇̃b − 3kÞEij other than by having Eij itself vanish,
we must instead set the bracketed term in (3.30) and its
analogs to zero. When this is done, we find that because of
the boundary conditions (5.8), (5.9), (5.3), (5.10), and (5.6),
respectively, follow from (3.9), (3.6), (3.13), (3.19), and
(3.30). However, (5.7) does not follow this way. To derive
(5.7), we note that with the boundary conditions every
sector of ηδWij − Δij other than the γ̃ij sector then does
obey the decomposition theorem. However, since the
relation ηδWij ¼ Δij does hold, it follows that the γ̃ij
sector must obey the decomposition theorem too.
We thus extend the decomposition theorem to conformal

gravity, and note that the ten-component decomposition
theorem equations (5.1), (5.7), (5.8), (5.9), (5.3), (5.10),
and (5.6) are both gauge invariant and exact without
approximation. With ΩðτÞ having to obey (2.7), once we
specify a form for pm=ρm and thus a form for δp=δρ, which
according to (2.22) is equal to δpm=δρm, we can in
principle then solve the theory completely in any cosmo-
logical epoch.

VI. SOLUTION IN THE RECOMBINATION ERA

As noted above, at recombination, we can set ΩðτRÞ ¼
2S0ðk=2ΛÞ1=2 exp½ð−kÞ1=2τR�, _ΩðτRÞ=ΩðτRÞ ¼ ð−kÞ1=2, as
expressed in conformal time. Thus, at recombination, (5.1),
(5.3), and (5.6)–(5.10) reduce to

−
2η

3Ω2
ð∇̃a∇̃aþ3kÞ∇̃b∇̃bα¼−6kðα− _γÞþ2ð−kÞ1=2∇̃a∇̃aγ;

ð6:1Þ

ð∇̃a∇̃aþ2kÞ
�

η

2Ω2
ð∇̃b∇̃b−∂2

τ −2kÞðBi− _EiÞ−
1

2
ðBi− _EiÞ

�

¼ 0; ð6:2Þ
η

Ω2
½ð∇̃b∇̃b − ∂2

τ − 2kÞ2 þ 4k∂2
τ �Eij

¼ −Ëij − 2kEij − 2 _Eijð−kÞ1=2 þ ∇̃a∇̃aEij; ð6:3Þ

−
η

3Ω2
∇̃a∇̃að∇̃b∇̃b þ 2k− ∂2

τÞα
¼ 2kðα− _γÞ− 2ð−kÞ1=2ð _α− γ̈Þ− ∇̃a∇̃aðαþ 2ð−kÞ1=2γÞ;

ð6:4Þ
η

3Ω2
ð∇̃a∇̃a − 3∂2

τÞα ¼ αþ 2ð−kÞ1=2γ; ð6:5Þ

−
2η

3Ω2
ð∇̃a∇̃a þ 3kÞ _α ¼ −2ð−kÞ1=2ðα − _γÞ þ 2kγ; ð6:6Þ

η

2Ω2
ð∇̃a∇̃a − 2k − ∂2

τÞð _Bi − ËiÞ

¼ ð−kÞ1=2ðBi − _EiÞ þ
1

2
ð _Bi − ËiÞ: ð6:7Þ

Just as anticipated above, at recombination, the matter
fields and Λ contributions automatically drop out leaving
us with just the gravitational contributions. (The contribu-
tions of δρ̂ and δp̂ are suppressed by factors of order Ω2 ∼
exp½2ð−kÞ1=2τR� as τR → −∞, while combinations such as
−4 _Ω2Ω−3 þ 2Ω̈Ω−2 − 2kΩ−1 vanish identically at τ ¼ τR.)

A. The scalar sector

For the scalar sector, we only have two independent
degrees of freedom at recombination, α and γ, but we have
four equations, (6.1), (6.4), (6.5), and (6.6). There must
thus be two relations between them. With _Ω=Ω ¼ ð−kÞ1=2,
they are

d
dτ

ð3ð−kÞ1=2ð6.6Þþð6.1ÞÞ
¼ ∇̃b∇̃bð6.6Þþð−kÞ1=2ð6.1Þ
−2ð−kÞ1=2½3ð−kÞ1=2ð6.6Þþð6.1Þ− ð∇̃b∇̃bþ3kÞð6.5Þ�;�
d
dτ

þ2ð−kÞ1=2
�
ð6.6Þ¼ ð∇̃b∇̃bþ2kÞð6.5Þþð6.4Þ: ð6:8Þ

For the two remaining relations, we note first that

3ð−kÞ1=2ð6.6Þ þ ð6.1Þ − ð∇̃b∇̃b þ 3kÞð6.5Þ

¼ ð∇̃b∇̃b þ 3kÞ
�
η

Ω2
ðα̈ − 2ð−kÞ1=2 _α − ∇̃b∇̃bαÞ þ α

�

¼ 0 ð6:9Þ

and can thus set [77]

η½α̈ − 2ð−kÞ1=2 _α − ∇̃b∇̃bα� ¼ −Ω2α: ð6:10Þ

From (6.10), we can fix α, and then from (6.5), we can
determine γ according to

γ ¼ 1

2ð−kÞ1=2
�

η

3Ω2
ð∇̃a∇̃a − 3∂2

τÞα − α

�
: ð6:11Þ

With k ¼ −1 (i.e., L2 ¼ 1), we now look at
separable solutions to (6.10) of the dimensionless form
ð∇̃i∇̃i þ ASÞα ¼ 0 just as in (4.2) and obtain

η

Ω2
ðα̈ − 2_αþ ASαÞ þ α ¼ 0: ð6:12Þ

As introduced, at this stage, the AS separation constant is
arbitrary. We will fix its value below. To solve (6.12), it is
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simplest to convert to comoving time by setting d=dτ ¼
aðtÞd=dt, where aðtÞ ¼ ΩðτÞ. And with ΩðτÞ ¼ eτ,
aðtÞ ¼ t, we obtain

�
η

�
∂2
t −

1

t
∂t þ

AS

t2

�
þ 1

�
α ¼ 0;

�
η

�
∂2
t þ

1

t
∂t þ

AS − 1

t2

�
þ 1

��
α

t

�
¼ 0: ð6:13Þ

The solution to the second equation in (6.13) is a Bessel
function, and on excluding the irregular Bessel function
since it is badly behaved at t ¼ 0, at recombination the
solution to (6.13) is given in comoving time and conformal
time by

α ¼ tJμðt=η1=2Þ; α ¼ eτJμðeτ=η1=2Þ;
μ ¼ �ð1 − ASÞ1=2: ð6:14Þ

With these solutions behaving as tðt=η1=2Þμ near t ¼ 0, we
see that we get oscillating solutions if AS > 1. Also, we
note that if η had been negative (i.e., if the gravitational
coupling constant αg had been positive), the AS > 1

solutions would have been modified Bessel functions with
a totally different behavior as a function of t.
Since we introduced an overall factor of Ω2ðτÞ in the

definition of the fluctuations in (2.11), the full scalar sector
fluctuations are given by Ω2α and Ω2γ. Thus, at recombi-
nation, we see that t2α behaves as t�ð1−ASÞ1=2þ3 in comoving
time, while according to (6.11), the leading behavior of t2γ
is also t�ð1−ASÞ1=2þ3. With the dependence on the spatial
coordinate χ as χ → ∞ being given in (4.4) as eλχ where
λ¼−1�ð1−ASÞ1=2, we see exactly the same �ð1 − ASÞ1=2
dependence as in the behavior in t. Moreover, if AS is real
and obeys AS > 1, then in the scalar sector the solutions
would behave as e−χ times an oscillating function, and thus
be well behaved and delta function normalizable as χ → ∞.
Since according to (4.4) scalar sector solutions with l ≥ 0
are well behaved at χ ¼ 0, for real AS > 1 all l ≥ 0 scalar
sector solutions are well behaved at both χ ¼ 0 and χ ¼ ∞.

B. The vector sector

As discussed in Appendix C, for the Bi − _Ei sector, we
can factor out the ∇̃a∇̃a þ 2k factor in (6.2) and thus obtain

ηð∇̃b∇̃b − ∂2
τ − 2kÞðBi − _EiÞ ¼ Ω2ðBi − _EiÞ: ð6:15Þ

On taking the τ derivative, we obtain

ηð∇̃b∇̃b − ∂2
τ − 2kÞð _Bi − ËiÞ

¼ Ω2ð _Bi − ËiÞ þ 2Ω _ΩðBi − _EiÞ
¼ Ω2ð _Bi − ËiÞ þ 2Ω2ð−kÞ1=2ðBi − _EiÞ: ð6:16Þ

Comparing with (6.7), we obtain

_Bi − Ëi þ 2ð−kÞ1=2ðBi − _EiÞ
¼ 2ð−kÞ1=2ðBi − _EiÞ þ _Bi − Ëi: ð6:17Þ

We thus establish that (6.2) and (6.7) are consistent, with
(6.15) being a first integral of (6.7).
On setting k ¼ −1, we look at separable solutions to

(6.15) of the dimensionless form ð∇̃b∇̃bþAVÞðBi− _EiÞ¼0
just as in (4.13). As with the scalar sector, at this stage
the AV separation constant is arbitrary. We will fix its
value below. With this separation constant, (6.15) takes the
form

�
η

�
AV þ ∂2

∂τ2 − 2

�
þ Ω2

�
ðBi − ∂τEiÞ ¼ 0: ð6:18Þ

To solve (6.18), we rewrite it in comoving coordinates, and
at recombination we obtain

�
η

�
AV − 2

t2
þ ∂2

∂t2 þ
1

t
∂
∂t
�
þ 1

�
ðBi − t∂tEiÞ ¼ 0; ð6:19Þ

with solution in comoving time and conformal time of the
form

Bi − t∂tEi ¼ ϵiJρðt=η1=2Þ; Bi − ∂τEi ¼ ϵiJρðeτ=η1=2Þ;
ρ ¼ �ð2 − AVÞ1=2; ð6:20Þ

where ϵi is a transverse polarization vector.
Since we introduced an overall factor of Ω2ðτÞ in the

definition of the fluctuations in (2.11), the full vector
sector fluctuation is given by t2ðBi − t∂tEiÞ. Thus, at
recombination, the solutions behave in comoving time as
t2ðBi − t∂tEiÞ ∼ t�ð2−AVÞ1=2þ2. With the dependence on the
spatial coordinate χ as χ → ∞ being given in (4.15) as eλχ

where λ ¼ −2� ð2 − AVÞ1=2, we see exactly the same
�ð2 − AVÞ1=2 dependence as in the behavior in t.
Moreover, if AV is real and obeys AV > 2, then in the
vector sector the solutions would behave as e−2χ times an
oscillating function, and thus be well behaved and delta
function normalizable as χ → ∞. Since according to (4.15)
vector sector solutions with l ≥ 1 are well behaved at
χ ¼ 0, for real AV > 2 all l ≥ 1 vector sector solutions are
well behaved at both χ ¼ 0 and χ ¼ ∞.

C. The tensor sector

Because we are able to set _ΩΩ−1 ¼ ð−kÞ1=2 in (5.6), the
resulting (6.3) turns out to be factorizable, and it takes the
form
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�
η

Ω2
ð∇̃a∇̃a − 2k − ∂2

τ þ 2ð−kÞ1=2∂τÞ − 1

�
½∇̃b∇̃b − 2k − ∂2

τ − 2ð−kÞ1=2∂τ�Eij ¼ 0: ð6:21Þ

With k ¼ −1, we look for separable solutions of the dimensionless form ð∇̃a∇̃a þ ATÞEij ¼ 0 just as in (4.19). As
with AS and AV , at this stage the AT separation constant is arbitrary. We will fix its value below, but first we look for
solutions to

�
η

Ω2
ð∂2

τ − 2∂τ − 2þ ATÞ þ 1

�
½∂2

τ þ 2∂τ − 2þ AT �Eij ¼ 0: ð6:22Þ

Equation (6.22) can be rewritten in comoving time as

�
η

a2
ða2∂2

t þ ða∂ta − 2aÞ∂t − 2þ ATÞ þ 1

�
½a2∂2

t þ ða∂taþ 2aÞ∂t − 2þ AT �Eij ¼ 0: ð6:23Þ

With aðtÞ ¼ t, we can rewrite (6.23) as

�
η

t2
ðt2∂2

t − t∂t − 2þ ATÞ þ 1

�
½t2∂2

t þ 3t∂t − 2þ AT �Eij

¼
�
η

t2
ðt2∂2

t − t∂t − 2þ ATÞ þ 1

��
t

�
∂2
t þ

1

t
∂t þ

AT − 3

t2

�
ðtEijÞ

�

¼ t

�
η

�
∂2
t þ

1

t
∂t þ

AT − 3

t2

�
þ 1

��
∂2
t þ

1

t
∂t þ

AT − 3

t2

�
ðtEijÞ ¼ 0: ð6:24Þ

There are two classes of solutions, and with f ¼ tEij
they symbolically obey

�
∂2
t þ

1

t
∂t þ

AT − 3

t2

�
f ¼ Df ¼ 0; ð6:25Þ

�
∂2
t þ

1

t
∂t þ

AT − 3

t2
þ 1

η

�
g ¼

�
Dþ 1

η

�
g ¼ 0; Df ¼ g;

ð6:26Þ

with (6.25) serving to define the derivative operator D. For
the first class of solutions, we can set

f1 ¼ t�ð3−AT Þ1=2 : ð6:27Þ

For the second class of solutions, we have

g ¼ Jσðt=η1=2Þ; σ ¼ �ð3 − ATÞ1=2: ð6:28Þ

However, for this second class of solutions, we also have

D

�
gþ f2

η

�
¼ 0; ð6:29Þ

and thus we can set gþ f2=η ¼ tσ . Thus, finally with
f ¼ tEij, the general solution to (6.23) in comoving time
and conformal time is given by

Eij ¼ ϵij½atσ−1 þ bt−1Jσðt=η1=2Þ�;
Eij ¼ ϵij½aeðσ−1Þτ þ be−τJσðeτ=η1=2Þ�;
σ ¼ �ð3 − ATÞ1=2; ð6:30Þ

where ϵij is a transverse-traceless polarization tensor and a
and b are time-independent coefficients.
As we see, at recombination both comoving time

solutions behave as tσ−1. Since we introduced an overall
factor ofΩ2ðτÞ in the definition of the fluctuations in (2.11),
the full tensor sector fluctuation is given by Ω2Eij. Thus, at
recombination, the solutions behave in comoving time as
t2Eij ∼ t�ð3−ATÞ1=2þ1. With the dependence on the spatial
coordinate χ as χ → ∞ being given in (4.21) as eλχ where
λ ¼ −3� ð3 − ATÞ1=2, we see exactly the same �ð3 −
ATÞ1=2 dependence as in the behavior in t. Finally, we note
that if AT is real and obeys AT > 3, then in the tensor sector
the solutions would behave as e−3χ times an oscillating
function, and thus be well behaved and delta function
normalizable as χ → ∞. Since according to (4.21) tensor
sector solutions with l ≥ 2 are well behaved at χ ¼ 0, for
real AT > 3, all l ≥ 2 tensor sector solutions are well
behaved at both χ ¼ 0 and χ ¼ ∞.
The time behaviors that we have found for the scalars,

vectors, and tensors in (6.14), (6.20), and (6.30) are of the
respective forms α ¼ t�ð1−ASÞ1=2þ1, Bi − t∂tEi ¼ t�ð2−AVÞ1=2 ,
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Eij ¼ t�ð3−ATÞ1=2−1 and according to the master equation
discussed in Sec. IV D are thus of the form α ¼ t�iνþ1,
Bi − t∂tEi ¼ t�iν, Eij ¼ t�iν−1. We thus see a drop in
powers of t as we go from scalar to vector to tensor. To
understand this, we note that because of the Bianchi identity
for the background we have ∇μðηWμν−Δμν

ð0ÞÞ¼0. Thus, on

perturbing, we have

∂μðηδWμν−ΔμνÞþΓμ
μσðηδWσν−ΔσνÞþΓν

μσðηδWμσ −ΔμσÞ
þ δΓμ

μσðηWσν−Δσν
ð0ÞÞþ δΓν

μσðηWμσ −Δμσ
ð0ÞÞ ¼ 0: ð6:31Þ

But in the background ηWσν − Δσν
ð0Þ ¼ 0. Thus, the per-

turbed equations of motion obey

∇μðηδWμν − ΔμνÞ ¼ 0: ð6:32Þ

We thus have

∇0ðηδW00 − Δ00Þ þ∇iðηδWi0 − Δi0Þ ¼ 0;

∇0ðηδW0j − Δ0jÞ þ∇iðηδWij − ΔijÞ ¼ 0: ð6:33Þ

Consequently, as we go from scalar to vector, we lose one
power of t, and as we go from vector to tensor we lose
another power of t.
Having now obtained the structure of the solutions, we

still need to fix appropriate values for AS, AV , and AT . To do
this, we turn to an alternate way of solving the problem
based on the traceless part Kμν ¼ hμν − 1

4
gμνgρσhρσ of the

fluctuations. This will naturally lead us to oscillating
solutions, just as we would like.

VII. FIXING THE SEPARATION CONSTANTS

A. The Kμν basis

To fix the separation constants, we compare the above
scalar, vector, tensor results with an alternate approach to
the problem, one which involves none of the scalar, vector,
tensor separation constants at all. Specifically, in the
approach presented in [21,22], δWμν was developed in
terms of the traceless fluctuation Kμν ¼ hμν − 1

4
gμνgαβhαβ

where gμν þ hμν is the full fluctuation. The utility of using
Kμν is that for any background geometry that is conformal
to flat Minkowski, viz. of the form

ds2 ¼ Ω2ðxÞ½dτ2 − dx2 − dy2 − dz2�; ð7:1Þ

where ΩðxÞ is an arbitrary function of the coordinates,
δWμν is given without approximation and without any
choice of gauge as [22]

δWμν ¼
1

2
Ω−2

�
∂σ∂σ∂τ∂τ½Ω−2Kμν� − ∂σ∂σ∂μ∂α½Ω−2Kαν�

− ∂σ∂σ∂ν∂α½Ω−2Kαμ� þ
2

3
∂μ∂ν∂α∂β½Ω−2Kαβ�

þ 1

3
ημν∂σ∂σ∂α∂β½Ω−2Kαβ�

�
: ð7:2Þ

With δWμν being traceless, it is written in terms of the
nine traceless components of hμν, viz. Kμν. The great utility
of (7.2) is that it only involves the Minkowski fourth-
order derivative operator, to thus involve none of the
separation constants of the wave equation associated with
the conformal time Robertson-Walker metric ds2 ¼
Ω2ðτÞ½dτ2 − dr2=ð1 − kr2Þ − r2dθ2 − r2sin2θdϕ2�. It will
of course involve the separation constants of the ∂σ∂σ∂τ∂τ

operator, but they are just the standard momentum
variables.
To take advantage of (7.2), we must rewrite the con-

formal time Robertson-Walker metric with negative k in the
form given in (7.1). Following, e.g., [22], on conveniently
setting k ¼ −1=L2 and introducing sinh χ ¼ r=L, the
conformal time metric then takes the form

ds2 ¼ L2a2ðpÞ½dp2 − dχ2 − sinh2χdθ2 − sinh2χsin2θdϕ2�;
ð7:3Þ

where p ¼ τ=L. Next, we introduce

p0 þ r0 ¼ tanh½ðpþχÞ=2�; p0− r0 ¼ tanh½ðp−χÞ=2�;

p0 ¼ sinhp
coshpþ coshχ

; r0 ¼ sinhχ
coshpþ coshχ

; ð7:4Þ

so that

dp02 − dr02 ¼ 1

4
½dp2 − dχ2�sech2½ðpþ χÞ=2�

× sech2½ðp − χÞ=2�;
1

4
ðcoshpþ cosh χÞ2 ¼ cosh2½ðpþ χÞ=2�cosh2½ðp − χÞ=2�

¼ 1

½1 − ðp0 þ r0Þ2�½1 − ðp0 − r0Þ2� :

ð7:5Þ

With these transformations, the line element takes the
conformal to flat form

ds2 ¼ 4L2a2ðpÞ
½1 − ðp0 þ r0Þ2�½1 − ðp0 − r0Þ2�
× ½dp02 − dr02 − r02dθ2 − r02sin2θdϕ2�: ð7:6Þ
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The spatial sector can then be written in Cartesian form

ds2¼L2a2ðpÞðcoshpþ coshχÞ2½dp02−dx02−dy02−dz02�;
ð7:7Þ

where r0 ¼ ðx02 þ y02 þ z02Þ1=2. The metric is nowwritten in
the conformal to flat form given in (7.1), and we can identify
itsΩ2ðxÞ factor asΩ2ðxÞ ¼ L2a2ðpÞðcoshpþ cosh χÞ2.We
note that in transforming from (7.3) to (7.7) we have only
made coordinate transformations and not made any con-
formal transformation.
To determine the implications of (7.2) in a conformal to

flat geometry such as that given in (7.7), we note that in the
gauge ∂μ½Ω−2Kμν� ¼ 0, the perturbation tensor δWμν takes
the form

δWμν ¼
1

2
Ω−2∂σ∂σ∂τ∂τ½Ω−2Kμν�: ð7:8Þ

The great utility of (7.8) is that not only does it only involve
the flat Minkowski wave operator, it is even diagonal in the
ðμ; νÞ indices. If we ignore Δμν (the case considered in
[22]), we need to solve ηδWμν ¼ 0, and the solution then is
of the form

Kμνðx0Þ ¼ Ω2ðx0Þ½Aμνeik·x
0 þ Bμνðn · x0Þeik·x0 �;

kμkμ ¼ 0; ð7:9Þ

together with the complex conjugate solution. Here nμ is a
spacetime-independent reference vector, Aμν and Bμν are
traceless polarization tensors, with the Aμν solution being a
standard massless plane wave and with the massless Bμν

solution growing as ðn · x0Þ. In the ∂μ½Ω−2Kμν� ¼ 0 gauge,
the solutions obey ikμBμν ¼ 0, ikμAμν þ nμBμν ¼ 0 [22].
From (7.9), we see the natural emergence of massless plane
wave solutions to the theory, with separation constants that
are just the momentum variables associated with plane
wave fluctuations.
If we now do includeΔμν, we can integrate ηδWμν ¼ Δμν

with the retarded Green’s function associated with the
∂σ∂σ∂τ∂τ operator. This Green’s function is of the form
θðt − rÞ=8π [78] as it obeys

ð∂2
t −∇2Þ2

�
θðt − rÞ

8π

�
¼ ð∂2

t −∇2Þ
�
δðt − rÞ
4πr

�

¼ δ4ðxÞ: ð7:10Þ

Consequently, the solution to ηδWμν ¼ Δμν in the metric
given by (7.7) is given by

Kμνðx0Þ ¼
2Ω2ðx0Þ
8πη

Z
d4x00θ½p0 − p00 − jx0 − x00j�

×Ω2ðx00ÞΔμνðx00Þ: ð7:11Þ

For sources that are localized in space and oscillating in
time, the solution given in (7.11) will approach (7.9) far
from the sources. Once we have (7.11), we can transform
back from (7.7) to (7.3) by general coordinate trans-
formations. And with a plane wave exp½ikðp0 − r0Þ� trans-
forming into exp½ik tanh½ðp − χÞ=2��, the oscillating nature
of the solution persists, and thus we can set all three of
ð1 − ASÞ1=2, ð2 − AVÞ1=2, and ð3 − ATÞ1=2 equal to iνwhere
ν is a continuous positive parameter.
To reinforce these remarks, we note that since we are in a

conformal invariant theory, as well as make coordinate
transformations we can also make conformal transforma-
tions. With the gauge condition that we are using being
conformal invariant [79], by a conformal transformation we
can transform the metric in (7.7) into the completely flat
metric ds2 ¼ dp02 − dx02 − dy02 − dz02. Under this con-
formal transformation, (7.2) will transform into

δWμν ¼
1

2

�
∂σ∂σ∂τ∂τKμν − ∂σ∂σ∂μ∂αKαν − ∂σ∂σ∂ν∂αKαμ

þ 2

3
∂μ∂ν∂α∂βKαβ þ

1

3
ημν∂σ∂σ∂α∂βKαβ

�
: ð7:12Þ

At the same time, our conformal invariant gauge condition
will transform into ∂μKμν ¼ 0, so that (7.12) will reduce to

δWμν ¼
1

2
∂σ∂σ∂τ∂τKμν: ð7:13Þ

Thus, again plane wave solutions emerge. Finally, to ensure
that oscillating solutions in the Kμν sector do propagate
through to the scalar, vector, tensor basis, we now relate the
two sets of bases, something that is actually of interest in its
own right as it is a strictly kinematic procedure that does not
involve the imposition of any gravitational equation of
motion at all.

B. Matching the scalar, vector, tensor basis
with the Kμν basis

To achieve the required matching of the two sets of
bases, we recall from above that for fluctuations around a
k ≠ 0 conformal time Robertson-Walker metric of the form

ds2¼−ðgμνþhμνÞdxμdxν

¼Ω2ðτÞ
�
dτ2−

dr2

1−kr2
−r2dθ2− r2sin2θdϕ2

�

þΩ2ðτÞ½2ϕdτ2−2ð∇̃iBþBiÞdτdxi
− ½−2ψγ̃ijþ2∇̃i∇̃jEþ ∇̃iEjþ ∇̃jEiþ2Eij�dxidxj�;

ð7:14Þ
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the perturbed δWμν is given by

δW00 ¼ −
2

3Ω2
ð∇̃a∇̃a þ 3kÞ∇̃b∇̃bα;

δW0i ¼ −
2

3Ω2
∇̃ið∇̃a∇̃a þ 3kÞ _αþ 1

2Ω2
½ð∇̃b∇̃b − ∂2

τ − 2kÞð∇̃c∇̃c þ 2kÞ�ðBi − _EiÞ;

δWij ¼ −
1

3Ω2
½γ̃ij∇̃a∇̃að∇̃b∇̃b þ 2k − ∂2

τÞα − ∇̃i∇̃jð∇̃a∇̃a − 3∂2
τÞα�

þ 1

2Ω2
½∇̃ið∇̃a∇̃a − 2k − ∂2

τÞð _Bj − ËjÞ þ ∇̃jð∇̃a∇̃a − 2k − ∂2
τÞð _Bi − ËiÞ�

þ 1

Ω2
½ð∇̃b∇̃b − ∂2

τ − 2kÞ2 þ 4k∂2
τ �Eij: ð7:15Þ

It must thus be possible to match the scalar α, the vector Bi − _Ei, and the tensor Eij with the Kμν. And since the remaining
scalar γ of the scalar, vector, tensor expansion of hμν does not appear in δWμν, in any matching γ (a tenth degree of freedom)
must involve the trace of hμν. As we now show, not only is it possible to have such a matching, the matching is purely
kinematical and requires no reference to any gravitational tensor such as δWμν at all.
To achieve the matching, it is convenient to set hμν ¼ Ω2ðτÞfμν, so that from (7.14) we obtain

fττ ¼ −2ϕ; fτi ¼ ∇̃iBþ Bi; fij ¼ −2ψγ̃ij þ 2∇̃i∇̃jEþ ∇̃iEj þ ∇̃jEi þ 2Eij: ð7:16Þ

Then with α ¼ ϕþ ψ þ ∂τB − ∂2
τE, γ ¼ −Ω½∂τΩ�−1ψ þ B − ∂τE, solely by taking appropriate derivatives of (7.16), we

obtain [23]

ð3kþ ∇̃b∇̃bÞ∇̃a∇̃aα ¼ −
1

2
ð3kþ ∇̃b∇̃bÞ∇̃i∇̃ifττ þ

1

4
∇̃a∇̃að−2kf − ∇̃b∇̃bf þ ∇̃m∇̃nfmnÞ þ ∂τð3kþ ∇̃b∇̃bÞ∇̃ifτi

−
1

4
∂2
τð3∇̃m∇̃nfmn − ∇̃a∇̃afÞ; ð7:17Þ

ð3kþ ∇̃b∇̃bÞ∇̃a∇̃aγ ¼ −
1

4
Ω½∂τΩ�−1∇̃a∇̃að−2kf − ∇̃b∇̃bf þ ∇̃m∇̃nfmnÞ þ ð3kþ ∇̃b∇̃bÞ∇̃ifτi

−
1

4
∂τð3∇̃m∇̃nfmn − ∇̃a∇̃afÞ; ð7:18Þ

where f ¼ γ̃ijfij.
With hμν ¼ Ω2fμν, we introduce Kμν ¼ Ω2kμν so that kμν ¼ fμν − 1

4
gμνð−fττ þ fÞ and obtain

fττ ¼
4

3
kττ −

1

3
f; fτi ¼ kτi; fij ¼ kij þ

1

3
γ̃ij½f − kττ�: ð7:19Þ

On now inserting (7.19) into (7.17) and (7.18), we obtain

ð3kþ ∇̃b∇̃bÞ∇̃a∇̃aα ¼ −
1

4
ð8kþ 3∇̃b∇̃bÞ∇̃c∇̃ckττ þ

1

4
∇̃d∇̃d∇̃e∇̃fkef þ ∂τð3kþ ∇̃b∇̃bÞ∇̃ikτi

−
1

4
∂2
τð3∇̃m∇̃nkmn − ∇̃a∇̃akττÞ; ð7:20Þ

ð3kþ ∇̃b∇̃bÞ∇̃a∇̃aγ ¼ −
1

4
Ω½∂τΩ�−1∇̃a∇̃a

�
−2kf −

2

3
∇̃b∇̃bf −

1

3
∇̃b∇̃bkττ þ ∇̃m∇̃nkmn

�
þ ð3kþ ∇̃b∇̃bÞ∇̃ikτi

−
1

4
∂τð3∇̃m∇̃nkmn − ∇̃a∇̃akττÞ: ð7:21Þ

With α but not γ appearing in δWμν, and with the trace of hμν not appearing in δWμν, it follows that f must not appear in α
but must appear in γ, just as we see.
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For the vector sector, we have [23]

ð∇̃a∇̃a − 2kÞð∇̃i∇̃i þ 2kÞðBj − ∂τEjÞ ¼ ð∇̃i∇̃i þ 2kÞð∇̃a∇̃afτj − 2kfτj − ∇̃j∇̃afτaÞ
− ∂τ∇̃a∇̃a∇̃ifij þ ∂τ∇̃j∇̃a∇̃bfab þ 2k∂τ∇̃ifij; ð7:22Þ

and thus with use of the first relation in (3.1), we obtain

ð∇̃a∇̃a − 2kÞð∇̃i∇̃i þ 2kÞðBj − ∂τEjÞ ¼ ð∇̃i∇̃i þ 2kÞð∇̃a∇̃akτj − 2kkτj − ∇̃j∇̃akτaÞ
− ∂τ∇̃a∇̃a∇̃ikij þ ∂τ∇̃j∇̃a∇̃bkab þ 2k∂τ∇̃ikij: ð7:23Þ

As we see, again f drops out just as it should, since like α, Bi − ∂τEi also appears in δWμν.
For the tensor sector, we have [23]

2ð∇̃a∇̃a − 2kÞð∇̃b∇̃b − 3kÞEij ¼ ð∇̃a∇̃a − 2kÞð∇̃b∇̃b − 3kÞfij
þ 1

2
∇̃i∇̃j½∇̃a∇̃bfab þ ð∇̃a∇̃a þ 4kÞf� − ð∇̃a∇̃a − 3kÞð∇̃i∇̃bfjb þ ∇̃j∇̃bfibÞ

þ 1

2
γ̃ij½ð∇̃a∇̃a − 4kÞ∇̃b∇̃cfbc − ð∇̃a∇̃a∇̃b∇̃b − 2k∇̃a∇̃a þ 4k2Þf�: ð7:24Þ

On substituting (7.19) and using the first relation in (3.2) with Aj ¼ ∇̃jf, we obtain

2ð∇̃a∇̃a − 2kÞð∇̃b∇̃b − 3kÞEij ¼ ð∇̃a∇̃a − 2kÞð∇̃b∇̃b − 3kÞkij
þ 1

2
∇̃i∇̃j∇̃a∇̃bkab − ð∇̃a∇̃a − 3kÞð∇̃i∇̃bkjb þ ∇̃j∇̃bkibÞ þ

1

2
γ̃ijð∇̃a∇̃a − 4kÞ∇̃b∇̃ckbc

þ 1

2
∇̃i∇̃jð∇̃b∇̃b þ 4kÞkττ −

1

2
γ̃ijð∇̃a∇̃a∇̃b∇̃b − 2k∇̃b∇̃b þ 4k2Þkττ: ð7:25Þ

As we see again, f drops out just as it should, since like α
and Bi − ∂τEi, Eij also appear in δWμν.
One can directly check the validity of (7.20), (7.21),

(7.23), and (7.25) by substituting (7.19) and (7.16) into
their right-hand sides. Now, in arriving at (7.20), (7.21),
(7.23), and (7.25), we made no gauge choice. Then with α,
γ, Bi − ∂τEi, and Eij all being gauge invariant, it follows
that the right-hand sides of (7.20), (7.21), (7.23), and (7.25)
have to be gauge invariant too, with their invariance under
hμν → hμν −∇μϵν −∇νϵμ being explicitly established in
[23]. (Alternatively, one could start by showing that the
right-hand sides of the purely kinematic (7.20), (7.21),
(7.23), and (7.25) are invariant under hμν → hμν −∇μϵν −
∇νϵμ and then infer that α, γ, Bi − ∂τEi, and Eij are indeed
gauge invariant.) As anticipated in Sec. I A, the relations in
(7.20), (7.21), (7.23), and (7.25) generalize the study that
we made in Sec. I A on the decomposition of a vector into
its transverse and longitudinal components. And whether
we can go from differential equations to integral relations
for α, γ, Bi − ∂τEi, and Eij will also depend on boundary
conditions. Thus, just as in the simple example given in
Sec. I A, establishing the decomposition theorem for α, γ,
Bi − ∂τEi, and Eij depends on the same boundary

conditions that are needed to establish their very existence
in the first place.
Finally, since the relations given in (7.20), (7.21),

(7.23), and (7.25) are gauge invariant, we can evaluate
them in any gauge we like. Choosing the ∂μ½Ω−2Kμν� ¼ 0

gauge in which δWμν takes the form given in (7.8), from
(7.20), (7.21), (7.23), and (7.25), we see that oscillating
solutions in the Kμν sector do indeed propagate to the
scalar, vector, and tensor sectors. With the Kμν fluctua-
tions being plane waves, it follows that AS, AV , and AT

must be oscillating continuum modes, to thus fix AS ≥ 1

in the scalar (6.14), AV ≥ 2 in the vector (6.20), and
AT ≥ 3 in the tensor (6.30), i.e., continua that start at
AS ¼ 1, AV ¼ 2, and AT ¼ 3.

VIII. THE FULL SOLUTION
AT RECOMBINATION

Given that we did find plane wave solutions by
analyzing the Kμν basis, we thus look for scalar, vector,
and tensor mode solutions that oscillate in both time and
space. For the spatial behavior of the scalar modes, we
see from (4.4) that we get oscillatory behavior in χ for all
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continuous values of AS that obey AS > 1. For the vector
modes, we see from (4.15) that we get oscillatory
behavior in χ for all AV that obey AV > 2. For the
tensor modes, we see from (4.21) that we get oscillatory
behavior in χ for all AT that obey AT > 3. Noting next
that Bessel functions with pure imaginary index have a
leading small t behavior of the form

JiνðtÞ → tiν ¼ cosðν log tÞ þ i sinðν log tÞ ð8:1Þ

from (6.14), (6.20), and (6.30), we see that we get
oscillatory behavior in time in the scalar, vector, and
tensor sectors under precisely these same AS > 1,
AV > 2, AT > 3 conditions. These then are the required
ranges for the scalar, vector, and tensor separation
constants.
As far as the spatial behavior is concerned, these

solutions belong to the fðνÞ ¼ ðcos νχ; sin νχÞ sector of
options for the function fðνÞ as listed in (4.7), with the class
of all ν ≥ 0 solutions being complete [just like the spherical
waves that they would become if were to set k ¼ 0 in
(1.18)]. For the scalar modes, the solutions to (4.3) have
ν2 ¼ AS − 1. For the vector modes, the solutions to (4.14)
have ν2 ¼ AV − 2. For the tensor modes, the solutions to
(4.20) have ν2 ¼ AT − 3. Thus, all solutions in the scalar,
vector, and tensor mode sectors are indeed oscillatory in
space, just as we want.
Since according to (4.4) spatial sector scalar mode

solutions behave as eλχ at large χ where λ ¼
−1� ð1 − ASÞ1=2, both solutions with any given AS > 1
(i.e., either sign of the square root) will be suppressed at
large χ (and thus at large r), and thus automatically satisfy
the asymptotic boundary and normalization conditions that
we require of all fluctuations. Since we also see from (4.4)
that one of the two solutions will be well behaved at χ ¼ 0,
for any AS > 1 there will always be one solution that meets
the boundary conditions at both χ ¼ ∞ and χ ¼ 0 (viz.
r ¼ ∞ and r ¼ 0). Now, according to (4.8), Ŝ0ðχÞ is given
by ðdf=dχÞ= sinh χ. This solution will be well behaved at
χ ¼ 0 if we choose the fðνÞ ¼ cos νχ family. With this
choice of fðνÞ, the first few solutions given in (4.8) are of
the form

Ŝ0ðχÞ¼−
νsinνχ
sinhχ

; Ŝ1ðχÞ¼
νsinνχcoshχ

sinh2χ
−
ν2cosνχ
sinhχ

;

Ŝ2ðχÞ¼
3ν2cosνχcoshχ

sinh2χ
−
νð2−ν2Þsinνχ

sinhχ
−
3νsinνχ
sinh3χ

ð8:2Þ

to be normalized as described above using the master
equation given in Sec. IV D. All of these solutions are well
behaved at both χ ¼ 0 and χ ¼ ∞, with all integer l ≥ 0
being allowed. We note that all of these solutions are
even in ν. Thus, while choosing either of the two roots

ν ¼ �ðAS − 1Þ1=2 affects the tiν behavior in time, it does
not affect the behavior in space.
According to (4.16), the first few allowed spatial sector

vector mode solutions that satisfy the asymptotic boundary
and normalization conditions are of the form

V̂1ðχÞ ¼
ν sin νχ cosh χ

sinh3χ
−
ν2 cos νχ
sinh2χ

¼ Ŝ1ðχÞ
sinh χ

;

V̂2ðχÞ ¼
3ν2 cos νχ cosh χ

sinh3χ
−
νð2 − ν2Þ sin νχ

sinh2χ
−
3ν sin νχ
sinh4χ

¼ Ŝ2ðχÞ
sinh χ

; ð8:3Þ

with all integer l ≥ 1 being allowed. All of these solutions
are also even in ν.
Similarly, according to (4.22), the first allowed spatial

sector tensor mode solution that satisfies the asymptotic
boundary and normalization conditions is of the form

T̂2ðχÞ ¼
3ν2 cos νχ cosh χ

sinh4χ
−
νð2 − ν2Þ sin νχ

sinh3χ
−
3ν sin νχ
sinh5χ

¼ V̂2ðχÞ
sinh χ

¼ Ŝ2ðχÞ
sinh2χ

; ð8:4Þ

with all integer l ≥ 2 being allowed. This solution is also
even in ν.
From (6.14), (6.20), and (6.30), we see that the behavior

in time is of the form tJiνðt=η1=2Þ, Jiνðt=η1=2Þ, and
t−1Jiνðt=η1=2Þ in the respective cases. Finally, on multiply-
ing by Ym

l ðθ;ϕÞ, introducing the polarization vectors and
tensors given in (6.20) and (6.30) and the Aðν; β; FÞ
normalization factors with β ¼ l − ðF − 3Þ=2 that are
given in (4.25), the full structure for the allowed modes
is given by

α ¼ Aðν;l; 3ÞŜlðχÞYm
l ðθ;ϕÞtJiνðt=η1=2Þ;

γ ¼ −
η

6t2
ðν2 þ 1þ 3∂2

t Þα −
α

2
;

Bi − t∂tEi ¼ Aðν;l − 1; 5ÞϵiV̂lðχÞYm
l ðθ;ϕÞJiνðt=η1=2Þ;

Eij ¼ Aðν;l − 2; 7ÞϵijT̂lðχÞYm
l ðθ;ϕÞt−1Jiνðt=η1=2Þ

ð8:5Þ

for all real and positive ν. In the conformal theory, these
scalar, vector, and tensor mode solutions are exact to one
part in 104 at recombination [80].
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APPENDIX A: SOME TYPICAL SOLUTIONS TO THE SCALAR, VECTOR, AND TENSOR EQUATIONS

In Sec. III, we obtained higher-derivative, decoupled fluctuation equations for the scalar, vector, and tensor fluctuations.
For the scalars, we obtained equations such as (3.9), viz.

−
2η

3Ω2
∇̃i∇̃ið∇̃j∇̃j þ 3kÞð3∂2

τ − ∇̃a∇̃aÞα − 2∇̃i∇̃ið∇̃j∇̃j þ 3kÞðαþ 2 _ΩΩ−1γÞ ¼ 0: ðA1Þ

For the vectors, we obtained equations such as (3.19), viz.

η

2Ω2
ð∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞð∇̃c∇̃c þ 2kÞð∇̃a∇̃a − 2k − ∂2

τÞð _Bi − ËiÞ

− ð∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞð∇̃c∇̃c þ 2kÞ
�
1

2
ð _Bi − ËiÞ þ _ΩΩ−1ðBi − _EiÞ

�
¼ 0: ðA2Þ

For the tensors, we obtained equations such as (3.30), viz.

ð∇̃c∇̃c − 2kÞð∇̃a∇̃a − 6kÞð∇̃b∇̃b − 3kÞ

×

�
η

Ω2
½ð∇̃b∇̃b − ∂2

τ − 2kÞ2 þ 4k∂2
τ �Eij þ Ëij þ 2kEij þ 2 _ΩΩ−1 _Eij − ∇̃d∇̃dEij

�
¼ 0: ðA3Þ

Then, in Sec. IV, we presented a general procedure for
solving the associated wave equations for the scalar, vector,
and tensor fluctuations. We now show how to use this
procedure to solve (A1)–(A3).

APPENDIX B: THE SCALAR SECTOR

We can write (A1) in the generic form

∇̃i∇̃ið∇̃j∇̃j þ 3kÞSðτ; χ; θ;ϕÞ ¼ 0; ðB1Þ
where

Sðτ; χ; θ;ϕÞ ¼ −
2η

3Ω2
ð3∂2

τ − ∇̃a∇̃aÞα − 2ðαþ 2 _ΩΩ−1γÞ:
ðB2Þ

Since ∇̃i∇̃i and ∇̃j∇̃j þ 3k commute with each other, there
are three possibilities: that ∇̃i∇̃iSðτ; χ; θ;ϕÞ ¼ 0, that
ð∇̃j∇̃j þ 3kÞSðτ; χ; θ;ϕÞ ¼ 0, or that Sðτ; χ; θ;ϕÞ ¼ 0.
Of these three options, only the last one fixes the τ
dependence of Sðτ; χ; θ;ϕÞ. We thus need to find a way
to exclude the first two options. This will be done with
boundary conditions on χ.
On introducing a separation constant AS and extracting

out the angular Ym
l ðθ;ϕÞ behavior, we found that the radial

SlðχÞ obeyed the second-order differential equation given
in (4.3). With k < 0, we thus need to solve this equation for
AS ¼ 0 and AS ¼ −3. Explicit solutions in these two cases
have been given in [23]. For AS ¼ 0, the first few solutions
are of the form

Ŝð1Þ0 ðAS ¼ 0Þ ¼ cosh χ
sinh χ

; Ŝð2Þ0 ðAS ¼ 0Þ ¼ 1;

Ŝð1Þ1 ðAS ¼ 0Þ ¼ 1

sinh2χ
; Ŝð2Þ1 ðAS ¼ 0Þ ¼ cosh χ

sinh χ
−

χ

sinh2χ
;

Ŝð1Þ2 ðAS ¼ 0Þ ¼ cosh χ
sinh3χ

; Ŝð2Þ2 ðAS ¼ 0Þ ¼ 1þ 3

sinh2χ
−
3χ cosh χ
sinh3χ

;

Ŝð1Þ3 ðAS ¼ 0Þ ¼ 4

sinh2χ
þ 5

sinh4χ
; Ŝð2Þ3 ðAS ¼ 0Þ ¼ 2 cosh χ

sinh χ
þ 15 cosh χ

sinh3χ
−

12χ

sinh2χ
−

15χ

sinh4χ
; ðB3Þ

where as before there are two solutions for each l value, with l being the lower index. From this pattern, we see that the
solutions that are bounded at χ ¼ ∞ are badly behaved at χ ¼ 0, while the solutions that are well behaved at χ ¼ 0 are
unbounded at χ ¼ ∞. Thus, all of these AS ¼ 0 solutions are excluded by a requirement that solutions be bounded at χ ¼ ∞
and be well behaved at χ ¼ 0.
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For AS ¼ −3, the first few solutions are of the form

Ŝð1Þ0 ðAS ¼ −3Þ ¼ cosh χ; Ŝð2Þ0 ðAS ¼ −3Þ ¼ 2 sinh χ þ 1

sinh χ
;

Ŝð1Þ1 ðAS ¼ −3Þ ¼ sinh χ; Ŝð2Þ1 ðAS ¼ −3Þ ¼ 2 cosh χ −
cosh χ
sinh2χ

;

Ŝð1Þ2 ðAS ¼ −3Þ ¼ 2 cosh χ −
3 cosh χ
sinh2χ

þ 3χ

sinh3χ
; Ŝð2Þ2 ðAS ¼ −3Þ ¼ 1

sinh3χ
;

Ŝð1Þ3 ðAS ¼ −3Þ ¼ 2 sinh χ −
5

sinh χ
−

15

sinh3χ
þ 15χ cosh χ

sinh4χ
; Ŝð2Þ3 ðAS ¼ −3Þ ¼ cosh χ

sinh4χ
: ðB4Þ

From this pattern, we again see that the solutions that are
bounded at χ ¼ ∞ are badly behaved at χ ¼ 0, while the
solutions that are well behaved at χ ¼ 0 are unbounded at
χ ¼ ∞. Thus, all of these AS ¼ −3 solutions are also
excluded by a requirement that solutions be bounded at
χ ¼ ∞ and be well behaved at χ ¼ 0.
Thus, for the scalar sector, the only option left is that

Sðτ; χ; θ;ϕÞ as given in (B2) vanishes. Thus in the
recombination era, (B2) leads to (6.5). And in Sec. VI
we solved (6.5) and the three other scalar sector equa-
tions (6.1), (6.6), and (6.4), equations that can be derived
from (3.4) and (3.6), and a linear combination of (3.9)
and (3.10) by a treatment analogous to the one we have
just given for (3.9). Hence, for the scalar sector, we
see that boundary conditions enable us to exclude the
spatial derivative conditions ∇̃i∇̃iSðτ; χ; θ;ϕÞ ¼ 0 and
ð∇̃j∇̃j þ 3kÞSðτ; χ; θ;ϕÞ ¼ 0, and we only need to con-
sider Sðτ; χ; θ;ϕÞ ¼ 0, which thereby enables us to fix the τ
behavior of the scalar sector.

APPENDIX C: THE VECTOR SECTOR

For the vector sector, we can write (A2) in the generic
form

ð∇̃a∇̃a − 2kÞð∇̃b∇̃b þ kÞð∇̃c∇̃c þ 2kÞViðτ; χ; θ;ϕÞ ¼ 0;

ðC1Þ

where

Viðτ; χ; θ;ϕÞ ¼
η

2Ω2
ð∇̃a∇̃a − 2k − ∂2

τÞð _Bi − ËiÞ

−
1

2
ð _Bi − ËiÞ − _ΩΩ−1ðBi − _EiÞ: ðC2Þ

Since ∇̃i∇̃i − 2k, ∇̃i∇̃i þ k and ∇̃j∇̃j þ 2k all
commute with each other, there are four possibilities:
that ð∇̃i∇̃i − 2kÞViðτ; χ; θ;ϕÞ ¼ 0, that ð∇̃i∇̃i þ kÞ×
Viðτ; χ; θ;ϕÞ ¼ 0, that ð∇̃i∇̃i þ 2kÞViðτ; χ; θ;ϕÞ ¼ 0, or
that Viðτ; χ; θ;ϕÞ ¼ 0. Of these four options, only the last
one fixes the τ dependence of Viðτ; χ; θ;ϕÞ. We thus need
to find a way to exclude the first three options.
On introducing a separation constant AV and extracting

out the angular Ym
l ðθ;ϕÞ behavior, we found that the radial

g1;lðχÞ obeyed the second-order differential equation given
in (4.14). With k < 0, we thus need to solve this equation
for AV ¼ 2, AV ¼ −1, and AV ¼ −2. Explicit solutions for
AV ¼ 2 have been given above in (4.37). For the AV ¼ 2

solutions, we see that the V̂ð2Þ
l ðAV ¼ 2Þ solutions with

l ≥ 1 are bounded at χ ¼ ∞ and well behaved at χ ¼ 0.
Thus, if implement (C1) by ð∇̃a∇̃a þ 2ÞVi ¼ 0, we are not
forced to Vi ¼ 0.
Solutions for AV ¼ −1, AV ¼ −2 have been given in

[23]. For AV ¼ −1, the first few solutions are of the form

V̂ð1Þ
0 ðAV ¼ −1Þ ¼ eχ

p
3

sinh2χ
; V̂ð2Þ

0 ðAV ¼ −1Þ ¼ e−χ
p
3

sinh2χ
;

V̂ð1Þ
1 ðAV ¼ −1Þ ¼ eχ

p
3

sinh3χ
½p3 sinhχ − coshχ�; V̂ð2Þ

1 ðAV ¼ −1Þ ¼ e−χ
p
3

sinh3χ
½−p3 sinhχ − coshχ�;

V̂ð1Þ
2 ðAV ¼ −1Þ ¼ eχ

p
3

sinh4χ
½3− 3

p
3 coshχ sinhχþ 5sinh2χ�; V̂ð2Þ

2 ðAV ¼ −1Þ ¼ e−χ
p
3

sinh4χ
½3þ 3

p
3 coshχ sinhχ þ 5sinh2χ�;

V̂ð1Þ
3 ðAV ¼ −1Þ ¼ eχ

p
3

sinh5χ
½15p3 sinhχ þ 14

p
3sinh3χ − 15coshχ − 24 coshχsinh2χ�;

V̂ð2Þ
3 ðAV ¼ −1Þ ¼ e−χ

p
3

sinh5χ
½−15p3 sinhχ − 14

p
3sinh3χ − 15coshχ − 24 coshχsinh2χ�: ðC3Þ
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All of these solutions are bounded at χ ¼ ∞ and all

V̂ð1Þ
l ðAV ¼ −1Þ − V̂ð2Þ

l ðAV ¼ −1Þ with l ≥ 1 are well
behaved at χ ¼ 0. Thus, if implement (C1) by
ð∇̃a∇̃a − 1ÞVi ¼ 0, we are not forced to Vi ¼ 0.
For AV ¼ −2, the first few solutions are of the form

V̂ð1Þ
0 ðAV ¼−2Þ ¼ coshχ

sinhχ
; V̂ð2Þ

0 ðAV ¼−2Þ ¼ 2þ 1

sinh2χ
;

V̂ð1Þ
1 ðAV ¼−2Þ ¼ 1; V̂ð2Þ

1 ðAV ¼−2Þ ¼ 2
coshχ
sinhχ

−
coshχ
sinh3χ

;

V̂ð1Þ
2 ðAV ¼−2Þ ¼ 2

coshχ
sinhχ

−
3coshχ
sinh3χ

þ 3χ

sinh4χ
;

V̂ð2Þ
2 ðAV ¼−2Þ ¼ 1

sinh4χ
;

V̂ð1Þ
3 ðAV ¼−2Þ ¼ 2−

5

sinh2χ
−

15

sinh4χ
þ 15χ coshχ

sinh5χ
;

V̂ð2Þ
3 ðAV ¼−2Þ ¼ coshχ

sinh5χ
: ðC4Þ

Of these solutions, the only ones that are bounded at χ ¼ ∞
are V̂ð2Þ

2 ðAV ¼ −2Þ and V̂ð2Þ
3 ðAV ¼ −2Þ. However, they are

not well behaved at χ ¼ 0. Since they thus can be excluded
by boundary conditions at χ ¼ ∞ and χ ¼ 0, if we set
ð∇̃a∇̃a − 2ÞVi ¼ 0, the only allowed solution will be
Vi ¼ 0. As we see, boundary conditions are not capable
of excluding the AV ¼ 2 and AV ¼ −1 cases. We address
this concern in Sec. IV D. Because of its overall ∇̃a∇̃a − 2k
factor, we note that considerations similar to our treatment
of (3.19) also apply to (3.13), the other vector sector
equation.

APPENDIX D: THE TENSOR SECTOR

For the tensor sector, we can write (A3) in the generic
form

ð∇̃c∇̃c − 2kÞð∇̃a∇̃a − 6kÞð∇̃b∇̃b − 3kÞTijðτ; χ; θ;ϕÞ ¼ 0;

ðD1Þ

where

Tijðτ; χ; θ;ϕÞ ¼
η

Ω2
½ð∇̃b∇̃b − ∂2

τ − 2kÞ2 þ 4k∂2
τ �Eij

þ Ëij þ 2kEij þ 2 _ΩΩ−1 _Eij

− ∇̃d∇̃dEij: ðD2Þ

Since ∇̃i∇̃i − 2k, ∇̃i∇̃i − 6k and ∇̃j∇̃j − 3k all
commute with each other, there are four possibilities:
that ð∇̃i∇̃i − 2kÞTijðτ; χ; θ;ϕÞ ¼ 0, that ð∇̃i∇̃i − 6kÞ×
Tijðτ; χ; θ;ϕÞ ¼ 0, that ð∇̃i∇̃i − 3kÞTijðτ; χ; θ;ϕÞ ¼ 0, or
that Tijðτ; χ; θ;ϕÞ ¼ 0. Of these four options, only the last

one fixes the τ dependence of Tijðτ; χ; θ;ϕÞ. We thus need
to find a way to exclude the first three options.
On introducing a separation constant AT and extracting

out the angular Ym
l ðθ;ϕÞ behavior, we found that the radial

h11;lðχÞ obeyed the second-order differential equation
given in (4.20). With k < 0, we thus need to solve this
equation for AT ¼ 2, AT ¼ 6, and AT ¼ 3. Explicit sol-
utions for AT ¼ 2 have been given above in (4.39). For the

AT ¼ 2 solutions, we see that the T̂ð2Þ
l ðAT ¼ 2Þ solutions

with l ≥ 2 are bounded at χ ¼ ∞ and well behaved at
χ ¼ 0. Thus, if implement (D1) by ð∇̃a∇̃a þ 2ÞTij ¼ 0, we
are not forced to Tij ¼ 0.
Solutions for AT ¼ 6, AT ¼ 3 have been given in [23].

For AT ¼ 3, the first few solutions are of the form

T̂ð1Þ
0 ðAT ¼ 3Þ¼ 1

sinh3χ
; T̂ð2Þ

0 ðAT ¼ 3Þ¼ χ

sinh3χ
;

T̂ð1Þ
1 ðAT ¼ 3Þ¼ coshχ

sinh4χ
; T̂ð2Þ

1 ðAT ¼ 3Þ¼ 1

sinh3χ
−
χ coshχ
sinh4χ

;

T̂ð1Þ
2 ðAT ¼ 3Þ¼ 2

sinh3χ
þ 3

sinh5χ
;

T̂ð2Þ
2 ðAT ¼ 3Þ¼ 3coshχ

sinh4χ
−

2χ

sinh3χ
−

3χ

sinh5χ
;

T̂ð1Þ
3 ðAT ¼ 3Þ¼ 2coshχ

sinh4χ
þ5coshχ

sinh6χ
;

T̂ð2Þ
3 ðAT ¼ 3Þ¼ 11

sinh3χ
þ 15

sinh5χ
−
6χ coshχ
sinh4χ

−
15χ coshχ
sinh6χ

:

ðD3Þ

All of these solutions are bounded at χ ¼ ∞ and all

T̂ð2Þ
l ðAT ¼ 3Þ with l ≥ 2 are well behaved at χ ¼ 0.

Thus, if implement (D1) by ð∇̃a∇̃a þ 3ÞTij ¼ 0, we are
not forced to Tij ¼ 0.
A similar outcome occurs for AT ¼ 6, and even though

we do not evaluate the AT ¼ 6 solutions explicitly, accord-
ing to (4.21) all solutions to ð∇̃a∇̃a þ 6ÞT11 ¼ 0 with
AT ¼ 6 are bounded at χ ¼ ∞ (behaving as e−3χ cosðp3χÞ
and e−3χ sinðp3χÞ), with one set of these solutions being
well behaved at χ ¼ 0 for all l ≥ 2. Thus, if implement
(D1) by ð∇̃a∇̃a þ 6ÞTij ¼ 0, we are not forced to Tij ¼ 0.
We thus see that while boundary conditions at χ ¼ ∞

and at χ ¼ 0 will force us to set Sðτ; χ; θ;ϕÞ ¼ 0 in the
scalar sector, they do not force us to set Viðτ; χ; θ;ϕÞ ¼ 0 or
Tijðτ;χ;θ;ϕÞ¼0 in the vector and tensor sectors. However,
solutions in which Viðτ; χ; θ;ϕÞ and Tijðτ; χ; θ;ϕÞ are
nonvanishing will each have their own specific dependence
on χ. In Sec. IV E, we show that these various χ depend-
encies do not line up with each other in the original coupled
second-order ηδWμν − Δμν ¼ 0 fluctuation equations
themselves, and in the end that is what forces us to
Viðτ; χ; θ;ϕÞ ¼ 0, Tijðτ; χ; θ;ϕÞ ¼ 0. Thus, solving the
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higher-derivative (3.9), (3.19), and (3.30) [and analogously
(3.4), (3.6), (3.10), and (3.13)] does not lead us to any
discrete allowed values for AS, AV , or AT. Rather, the
analysis of Sec. VII shows that they each possess a
continuum of values with AS ≥ 1, AV ≥ 2, and AT ≥ 3.

In Sec. VI, we solved the Sðτ;χ;θ;ϕÞ¼0, Viðτ; χ; θ;ϕÞ ¼ 0
and Tijðτ; χ; θ;ϕÞ ¼ 0 equations in the recombination era.
In those solutions, the factors μ, ρ, and σ that appear in the
scalar (6.14), the vector (6.20), and the tensor (6.28) are
thus all pure imaginary.
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