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It has been shown that the observed dark matter (DM) abundance can be produced by amplification
of quantum fluctuations of an energetically subdominant scalar field during inflation. In this paper, we
study the robustness of this “spectator dark matter” scenario to changes in the expansion rate of the early
Universe. Compared to the standard radiation-dominated (RD) scenario, two aspects will change: the DM
energy density evolves differently as a function of time, and also the DM isocurvature perturbation
spectrum will be different from the result in the RD case. These can impose sizeable changes to the values
of model parameters which allow the field to constitute all DM while simultaneously satisfying all
observational constraints. We study both free and self-interacting DM in scenarios with nonstandard
expansion and quantify the changes to the cases with a standard cosmological history. We also discuss
testability of the scenario through primordial DM isocurvature and non-Gaussianity.
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I. INTRODUCTION

The deeper nature of dark matter (DM) is unknown.
While the observational evidence for the existence of DM is
overwhelming, its possible connection to particle physics
remains poorly understood. As of today, the experimental
searches of particle DM have yielded only null results
[1–3], either constraining or ruling out various models or
even model paradigms of particle DM. In particular, the
usual freeze-out paradigm appears less and less likely to
explain the origins of DM [4].
As the only evidence for DM is obtained through its

gravitational effects—its imprints on the cosmic microwave
background (CMB) and the large-scale structure of the
Universe, gravitational lensing and dynamics of galaxy
clusters, rotational velocity curves of individual galaxies,
and so on—we are motivated to ask: what if dark matter
couples to the Standard Model (SM) particles only via
gravity? It is clear that observationally this is not a problem,
and simple and appealing mechanisms for the generation
of DM have been found too. Indeed, the observed DM
abundance may have been initiated purely gravitationally
in the early Universe, either during or right after cosmic
inflation. This idea dates back to the 1980s [5,6] and it has
been gaining increasing attention recently; see, e.g.,
Refs. [7–33] for recent studies of gravitational DM pro-
duction in different contexts.

In this paper, we focus on a particular scenario where
DM is gravitationally produced: the so-called spectator
dark matter scenario, where the DM is generated by
amplification of vacuum fluctuations of an energetically
subdominant scalar field during inflation. The starting point
is well motivated, as weakly coupled scalar fields are
typically abundant in extensions of the SM [34–36] and
their dynamics during inflation is expected to provide the
generic initial conditions for nonthermal production of DM
after inflation [7]—unless the scalar field(s) themselves
constitute all or part of the observed DM abundance.
Previously, spectator DM scenarios have been considered
in the case of free [6,27,28], self-interacting [9,12,14,16,
22,26,37], and nonminimally coupled cases [15,17,19,21,
23,29,31], as well as in scenarios where the DM is coupled
to the inflaton [13], or is axionlike [18,24,25,38], but—
to the best of our knowledge—never in the context of
general nonstandard (i.e., non-radiation-dominated) expan-
sion after inflation.
In this paper, we study the robustness of the spectator

dark matter scenario studied in Refs. [22,27] to changes
in the early Universe’s expansion rate. In particular, we
concentrate on scenarios where the total energy density
after inflation was dominated by a perfect fluid other than
radiation, for example, massive metastable particles or a
fast-rolling scalar field, or where the non-radiation-
dominated expansion was caused by, e.g., a period of slow
reheating after inflation. All these possibilities are well
motivated; for an extensive review of such scenarios, see
Ref. [39]. Compared to the standard radiation-dominated
(RD) scenario, in the context of nonstandard expansion two
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aspects in the spectator DM model will be different: The
DM energy density will evolve differently as a function of
time, and also the dependence of the DM perturbation
spectrum on the initial spectator field value will be different
from the result in the usual RD case.
These can impose sizeable changes to the values of

model parameters which allow the field to constitute all
DM while simultaneously satisfying all observational
constraints. Here we study both free and self-interacting
DM within a nonstandard expansion and quantify the
changes to the cases with a standard cosmological history.
We also discuss testability of the scenario through primor-
dial DM isocurvature and non-Gaussianity, highlighting the
fact that even though DM may couple to ordinary matter
only via gravity, it does not mean that the scenario would
not be testable.
The paper is organized as follows: In Sec. II, we present

the model and discuss the field dynamics during inflation,
whereas Sec. III is devoted to the dynamics after inflation.
In Sec. IV, we compute the DM perturbation spectrum and
investigate how the scenario can be contrasted with CMB
observations. In Sec. V, we present our results and discuss
testability of the model. Finally, in Sec. VI, we conclude
with a brief outlook.

II. SCALAR FIELD EVOLUTION
DURING INFLATION

We begin by reviewing the standard treatment for the
evolution of a light scalar field during inflation. For dark
matter, we consider the Lagrangian

Lχ ¼
1

2
∂μχ∂μχ − VðχÞ; ð2:1Þ

where

VðχÞ ¼ 1

2
m2χ2 þ λ

4
χ4; ð2:2Þ

where χ is a real scalar field which we assume was an
energetically subdominant spectator field during inflation,
m is its mass, and λ is a quartic self-interactions coupling.
We assume that the theory is defined in a frame where
the field that drives inflation, the inflaton field,1 couples

minimally to gravity and where the background during
inflation space-time is well approximated by that of de
Sitter; i.e., the Hubble scale during inflation is approx-
imately constant,H ¼ _a=a ≃Hinf . This is well motivated,
as in slow-roll models of inflation that provide the best fit
to the data (such as plateau models; see, e.g., Ref. [48]), it
is usually a very good approximation that the Hubble
rate did not decrease much during inflation. Therefore, we
will maintain this assumption throughout the paper.
Furthermore, we assume that the inflaton field sources a
major part of the primordial curvature perturbations,
which eventually lead to the observed temperature fluc-
tuations in the CMB.
Assuming that the effective mass of the spectator field χ

was smaller than the Hubble rate during inflation, V 00 <
9H2

inf=4 where the prime denotes the derivative with
respect to the field, it received quantum fluctuations from
the rapidly expanding background. Using the stochastic
approach [49,50] (see also Refs. [51–65] for recent works),
we find that the long wavelength modes of the field evolve
according to the Langevin equation

_χðx̄; tÞ þ 1

3Hinf
V 0ðχÞ ¼ fðx̄; tÞ; ð2:3Þ

where fðx̄; tÞ is a Gaussian noise term with

hfðx̄1; t1Þfðx̄2; t2Þi ¼
H3

inf

4π2
δðt1 − t2Þ; ð2:4Þ

and the point x̄ is to be understood as a patch slightly larger
than the Hubble volume during inflation; i.e., the field is
coarse-grained over the Hubble horizon. Using standard
techniques, one can turn the Langevin equation for the field
into a Fokker-Planck equation for the one-point probability
distribution Pðχðx̄; tÞÞ, which reads

∂Pðχðx̄; tÞÞ
∂t ¼ DχPðχðx̄; tÞÞ; ð2:5Þ

where Dχ is the differential operator

Dχ ≡ V 00ðχÞ
3Hinf

þ V0ðχÞ
3Hinf

∂
∂χ þ

H3
inf

8π2
∂2

∂χ2 : ð2:6Þ

One can show that there is an equilibrium solution for the
one-point distribution function, which is given by

PðχÞ ¼ C exp

�
−

8π2

3H4
inf

VðχÞ
�
; ð2:7Þ

where C is a normalization factor ensuring total proba-
bility of unity. This distribution describes the ensemble
of field values in patches the size of a region slightly

1The inflaton field could be, for example, the SM Higgs field
[40,41].However, herewe remain agnostic of the inflaton sector and
its couplings to the SM fields and/or gravity; for reviews of Higgs-
like inflation, see Refs. [42,43]. Likewise, we assume here that the
possible couplings between the field χ and the inflaton/Higgs field
are negligible and do not affect the field dynamics either during or
after inflation (by, e.g., rendering the χ field heavy during inflation),
nor contribute to the final DM yield through any mechanism, such
as production of χ quanta during reheating. For studies where these
assumptions are relaxed, see, e.g., Refs. [44–47]. For recent studies
of scenarios where the DM field couples nonminimally to gravity,
see, e.g., Refs. [15,17,19,23,29,31].
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larger than the Hubble horizon at the end of inflation; see
Fig. 1. Notably, the scalar field reaches this “equilibrium
state” in a characteristic timescale regardless of its initial
distribution, after which the distribution does not evolve
anymore. This is depicted in Fig. 2. The relaxation
timescale in terms of inflationary e-folds N ≡ lnða=a0Þ,
where a0 is the scale factor at some reference time during
inflation when the field had the value χ0 over a Hubble
volume, is [66]

Nrel ≃
�
11.3=

ffiffiffi
λ

p
; λχ2 ≫ m2;

3H2
inf=m

2; λχ2 ≪ m2;
ð2:8Þ

depending on which term in Eq. (2.2) dominates the
spectator potential during inflation.

Therefore, by assuming inflation lasted for long enough for
the field to reach the equilibrium state,2 the typical χ value at
the end of inflation is given by the variance of (2.7) as

hχ2endi ¼

8>><
>>:

ffiffiffiffiffi
3
2π2

q
Γð3

4
Þ

Γð1
4
Þ
H2

infffiffi
λ

p ≈ 0.132H2
infffiffi
λ

p ; λχ2 ≫ m2;

3
8π2

H4
inf

m2 ; λχ2 ≪ m2:
ð2:9Þ

FIG. 1. When a scalar field χ is light during inflation, it acquires fluctuations which get it displaced from its initial value χ0. As
inflation proceeds, the (coarse-grained) scalar field performs random walk, and the Universe ends up having an ensemble of Hubble
volumes, in each of which the field has a value (χ1; χ2;…) that generically differs from the average value due to the random fluctuations.
The final distribution of values PðχÞ is given by Eq. (2.7). See also Fig. 2.

FIG. 2. Left panel: Equilibrium distributions PðχÞ in the quartic and quadratic cases (blue and orange thick curves, respectively)
with the respective potentials shown in the background (blue dashed and orange dot-dashed curves, respectively). In this figure,
m2 ¼ 0.2H2

inf and λ ¼ 0.1. Right panel: Example of the relaxation of the (unnormalized) distribution function during inflation, here
assuming a narrow Gaussian initial distribution and a quadratic potential with m2 ¼ 0.2H2

inf (shown by the dashed curve). Shown to
the left of each curve is the number of e-folds elapsed since the initial state. In roughly 50 e-folds, the distribution reaches the
equilibrium state given by Eq. (2.7).

2As can be seen from Eq. (2.8), for large enough λ or m=Hinf
the equilibrium state can be reached even within the final
∼60 e-folds of inflation, i.e., between the time when the mode
corresponding to our currently observable Universe exited the
horizon and the end of inflation. After the equilibrium is reached,
all information of the initial conditions has been erased. For
scenarios where the final distribution of field values carries
information of the initial state, see Refs. [67,68].
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It should be noted, however, that while the variance hχ2endi
describes the typical field value, there can be large variations
in the field value in different Hubble patches at the time of
photon decoupling. These constitute potentially dangerous
DM isocurvature perturbations, which provide the most
stringent constraints on our scenario (and also, on the flip
side, the best potential for testability, as we will discuss).
Before discussing the scalar field’s perturbation spectrum,
however, wewill discuss the postinflationary dynamics of the
field and the dark matter production.

III. DYNAMICS AFTER INFLATION

A. Background dynamics

As Eq. (2.9) shows, in a typical situation the field is
displaced away from its potential and has a finite initial
value χend ≡ χðx̄; tendÞ over a patch slightly larger than the
size of the Hubble horizon at the end of inflation, where tend
denotes the end of inflation. The equation of motion for the
field describing its postinflationary dynamics thus is3

χ̈ þ 3HðtÞ_χ þ V 0ðχÞ ¼ 0; ð3:1Þ
where the dots denote derivatives with respect to cosmic
time t, and

HðtÞ ¼ Hinf

ð1þ 3ð1þwÞ
2

HinftÞ
≃

2

3ð1þ wÞ
1

t
; ð3:2Þ

where the latter result applies shortly after inflation. Here,
w≡ p=ρ is the (time-averaged) equation-of-state parameter
for the background with the energy density ρ and pressure
p. In the following, we will consider three cases: the
usual radiation-dominated (w ¼ 1=3, ρ ∝ a−4), matter-
dominated (w ¼ 0, ρ ∝ a−3) and kination-dominated
(w ¼ 1, ρ ∝ a−6) Universe, so that after inflation

H ∝

8<
:

a−3=2; w ¼ 0;

a−2; w ¼ 1=3;

a−3; w ¼ 1:

ð3:3Þ

If reheating is prompt, the Universe quickly becomes
radiation dominated, w ¼ 1=3. On the other hand, an early
matter-dominated epoch could arise due to, e.g., slow
postinflationary reheating or massive metastable particles
that began to dominate the total energy density at some
early stage prior to big bang nucleosynthesis (BBN); see
Ref. [39] for a recent review. Finally, scenarios with 1=3 <
w < 1 are encountered in models where the total energy
density of the Universe is dominated by the kinetic energy
of a scalar field, either through oscillations in a steep

potential, e.g., VðϕÞ ∝ ϕp with p > 4, or by an abrupt drop
in the scalar potential in the direction of this field [69]. The
latter possibility is exactly what happens in, e.g., the case of
quintessential inflation [70], where the inflaton field makes
a transition from potential energy domination to kinetic
energy domination at the end of inflation, reaching values
of w close to unity. The bound w ≤ 1 comes from the
requirement that the sound speed of the dominant fluid does
not exceed the speed of light. Potentially more exotic
scenarios that change the expansion history of the Universe
compared to the standard radiation-dominated case could
also be realized; see, e.g., Refs. [71–75]. Here, however, we
only consider the three more conservative cases above.

B. Quadratic case

Let us begin by discussing the simplest possible case
where the bare mass term dominates the spectator potential
both during and after inflation,m2 ≫ λχ2end. The solution to
the equation of motion (3.1) is then given by

χðtÞ ¼ χend ×

8>>>>><
>>>>>:

sinðmtÞ
mt ; w ¼ 0;

21=4Γ
�
5
4

�
J1=4ðmtÞ
ðmtÞ1=4 ; w ¼ 1=3;

J0ðmtÞ; w ¼ 1;

ð3:4Þ

where Jν is the Bessel function of rank ν. This result agrees
well with the usual assumption that the field starts to
oscillate roughly whenHðtÞ ≃m. At late timesmt ≫ 1, the
solutions (3.4) oscillate rapidly with an amplitude

χ0ðtÞ ∝

8>><
>>:

ðmtÞ−1; w ¼ 0;

ðmtÞ−3=4; w ¼ 1=3;

ðmtÞ−1=2; w ¼ 1;

ð3:5Þ

and therefore, in all cases the field has the associated energy
density

ρχ ¼
1

2
m2χ20 ∝ a−3; ð3:6Þ

as can be verified by inspection of Eqs. (3.2), (3.3), and
(3.5). Therefore, regardless of the background scaling, in
this case the χ field constitutes an effective cold dark matter
(CDM) component from the moment it starts oscillating.
The cosmic history of our model is depicted in Fig. 3. As

discussed above, the amplitude of the field remains frozen
from the end of inflation (which we denote by aend) roughly
until its mass exceeds the Hubble parameter at aosc. At this
moment, the field starts to oscillate and constitutes a DM
component. At areh, the w-dominated phase ends, and the
usual radiation-dominated era takes over the evolution of
the Universe. In all cases considered in this paper, we
assume that the dominant energy component causing the
nonstandard era decays only into radiation and does not
affect the DM yield.

3Here we neglect the gradient term, as the length scale over
which the field values are correlated is typically much larger than
the Hubble horizon at the end of inflation [51].
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Thus, we can write the late-time energy density of the
field as

ρχðaÞ ¼ ρχðaendÞ
�
aosc
areh

�
3
�
areh
a

�
3

¼ ρχðaendÞ
�
aosc
aend

�
3
�
aend
areh

�
3
�
areh
a

�
3

; ð3:7Þ

where the latter form is easier to evaluate, as

�
aosc
aend

�
3

¼ k
4

3ð1þwÞ

�
Hinf

m

� 2
1þw

; ð3:8Þ

where k ≃ 2.1 is a factor that accounts for the fact that the
oscillations do not start exactly when HðtÞ ¼ m and which
we have evaluated by solving Eq. (3.1) numerically,

�
aend
areh

�
3

¼
�
ρreh
ρend

� 1
1þw ¼

�
π2g�ðTrehÞ

90

� 1
1þw

�
T2
reh

HinfMP

� 2
1þw

;

ð3:9Þ

where ρend and ρreh correspond to the total energy density
of the Universe at the given times, Treh is the radiation
temperature at the time when the nonstandard expansion
phase ended4, g� is the corresponding effective number of
degrees of freedom, MP is the reduced Planck mass, and�

areh
a

�
3

¼ g�SðTÞ
g�SðTrehÞ

�
T
Treh

�
3

; ð3:10Þ

which follows from the fact that entropy is conserved after
reheating. In all cases, we assume that the oscillations
began before reheating, aosc < areh, which amounts to
requiring

m > k
2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2g�ðTrehÞ

90

r
T2
reh

MP
; ð3:11Þ

independent of the inflationary scale Hinf .
Thus, by substituting Eqs. (3.8)–(3.10) into Eq. (3.7), we

find the present-day DM energy density

Ωχh2 ¼
k

4
3ð1þwÞ

2

g�SðT0Þ
g�SðTrehÞ

�
π2g�ðTrehÞ

90

� 1
1þw

×
�
T2
reh

mMP

� 2
1þw

�
T0

Treh

�
3m2χ2end
ρc=h2

; ð3:12Þ

where T0 ¼ 2.725 K is the present-day CMB temperature
and ρc=h2 ¼ 8.09 × 10−47 GeV4 is the critical density. For
suitable choices of the parameters m;w; Treh, and χend, the
field can constitute all of the observed DM abundance
Ωχh2 ¼ 0.12 [78], which in this case is produced by
random fluctuations of the χ field during cosmic inflation.
Note that while the local DM density is seemingly indepen-
dent of the inflationary scaleHinf , the typical field value (and
therefore the typical DM density) is given by the variance of
the field’s fluctuation distribution, Eq. (2.9), which is
determined by Hinf. We can therefore use that equation for
χ2end to find the typicalDMdensity.However, aswewill show
in Sec. IV, maintaining the local field value χend in (3.12) is
crucial for determining the DM perturbation spectrum and
therefore also in assessing the viability of the model. Finally,
we note that by setting w ¼ 1=3, we find the result first
obtained in Ref. [27] modulo a factor 4, which was missing
from Ref. [27] but which has now been included.

C. Quartic case

Let us then consider the case where both during and right
after inflation the scalar field’s potential was dominated by
the quartic term

VðχÞ ≃ λ

4
χ4; ð3:13Þ

andm2 ≪ λχ2end. As shown in the Appendix, in this case the
scalar field equation of motion (3.1) can be expressed in
terms of conformal time dη ¼ dt=a as

z00 þ Fðη; wÞzþ z3 ¼ 0; ð3:14Þ

FIG. 3. Cosmological evolution of the Universe in our model, in the case where the bare mass term dominates the spectator potential
both during and after inflation.

4We assume that the decay of the dominant energy density
component causing the w-dominated era and the subsequent
thermalization of SM particles were instantaneous, so that
ρreh ¼ π2=30g�T4

reh. These are both fairly safe assumptions, as
earlier studies have found that in terms of scaling of the
background energy density, the transition from the w-domination
to the usual radiation domination is very quick [46,47,76] and
once the dominant energy density component has decayed, the
SM particles generically thermalize and build up a heat bath in
much less than one e-fold from their production [77].
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where z≡ a
ffiffiffi
λ

p
χ is the rescaled field and Fðη; wÞ is given

by Eq. (A6). As shown in the Appendix, when w ¼ 1=3,
Eq. (3.14) reduces to

z00 þ z3 ¼ 0; ð3:15Þ

whose solution is a well-known oscillating function: the
elliptic (Jacobi) cosine function, whose exact form can be
found analytically (see, e.g., Refs. [12,79]) and which,
besides the oscillations, has no further time dependence
in terms of η. Because χ ∝ z=a, this means that when
the background energy density is radiation dominated, the
oscillation amplitude decays simply as χ ∝ 1=a, and the
spectator field behaves as dark radiation. Furthermore, as
discussed in the Appendix, the F term in Eq. (3.14) dies off
very quickly regardless of w, and the spectator field’s
equation of motion always reduces to (3.15). Thus, in all
cases we retain the usual χ ∝ 1=a scaling, which validates
the following treatment of the scalar field energy density.

1. Coherent oscillations

As in the quadratic case discussed in Sec. III B, the field
is in an overdamped regime roughly until its effective mass
V 00ðχÞ ¼ 3λχ2 exceeds the Hubble parameter, after which χ
starts to oscillate about its origin. We denote this moment
by aosc;r, as the amplitude of the scalar field decays with a−1

and the field constitutes a dark radiation component. At a
time which we denote by aosc;m, the oscillation amplitude
has decreased enough so that the quadratic term of the
potential starts to dominate over the quartic one, and the
field starts to behave as cold dark matter. For simplicity,
we use the standard approximation where the energy
density of χ instantaneously changes from scaling as
ρχ ∝ a−4 to ρχ ∝ a−3 as soon as the quadratic term
dominates, and assume in this subsection that the scalar

field oscillations remained coherent throughout the above
phases. The remaining cosmological history proceeds as in
the scenario we studied in Sec. III B: The background field
that is dominating the evolution of the Universe decays
at areh, and the Universe enters into the usual radiation-
dominated era, followed by a period of matter domination
until the late-time dark energy domination finally takes
over. The cosmic history is illustrated in Fig. 4.
Regardless of when the scalar field reaches the quadratic

part of its potential (before or after reheating), the energy
density of the field is given by

ρχðaÞ ¼
λ

4
χ4end

�
aosc;r
aosc;m

�
4
�
aosc;m
areh

�
3
�
areh
a

�
3

: ð3:16Þ

If the field started to oscillate about the quartic part of
its potential only after reheating, there is no difference in
the DM abundance between this scenario and the usual
radiation-dominated one studied in Ref. [22]. Therefore, in
the following we will assume reheating always happens
after the field has reached the quartic part of its potential.
Let us proceed by finding an expression for the present-

day energy density of the field. First, we have

aosc;r
aosc;m

¼
�
Hosc;m

Hosc;r

� 2
3ð1þwÞ

; ð3:17Þ

where H2
osc;r ¼ 3λχ2end; i.e., the field starts to oscillate

when it becomes effectively massive. At aosc;m, the quad-
ratic term in the equation of motion becomes equal to the
quartic term

3λχ2ðaosc;mÞ ¼ λχ2end

�
aosc;r
aosc;m

�
2

¼ m2; ð3:18Þ

FIG. 4. Upper panel: cosmological evolution of the Universe in a scenario where the χ field behaves like dark radiation at early times
after inflation and starts to behave like CDM before reheating. Lower panel: same as above but in this scenario, reheating occurs before
the field starts to behave like CDM. The final DM abundance is the same in both cases.
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which gives us a relation between the Hubble parameters:

Hosc;m

Hosc;r
¼

�
mffiffiffiffiffi

3λ
p jχendj

�3ð1þwÞ
2

: ð3:19Þ

The factor aosc;m=areh can be obtained recalling that

HðarehÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2g�ðTrehÞ

90

r
T2
reh

MP
; ð3:20Þ

so that

�
aosc;m
areh

�
3

¼
�

mffiffiffi
λ

p jχendj

�
−3
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2g�ðTrehÞ
270

r
T2
rehffiffiffi

λ
p jχendjMP

� 2
1þw

:

ð3:21Þ

Finally, for the ratio areh=a we can again use entropy
conservation, Eq. (3.10).
Hence, by using the relations above, we conclude that the

present DM abundance is in this case given by

Ωχh2 ¼
ffiffiffi
λ

p

4

g�SðT0Þ
g�SðTrehÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2g�ðTrehÞ

270

r
T2
rehffiffiffi

λ
p jχendjMP

� 2
1þw

×

�
T0

Treh

�
3mjχendj3

ρc=h2
: ð3:22Þ

While this result for the DM abundance applies regardless
of when the scalar field reaches the quadratic part of its
potential, in deriving this result we assumed that the
oscillations in the quartic part always start before reheating,
aosc;r < areh. This gives a lower bound on the self-coupling

λ >
π2g�ðTrehÞ

270

T4
reh

M2
Pχ

2
end

; ð3:23Þ

which also has to be taken into account for consistency of
the calculation.

2. Condensate evaporation

If its interactions are sufficiently suppressed, the scalar
field behaves as a long-lived oscillating condensate, never
fragmenting or reaching thermal equilibrium. This is the
scenario considered in the previous section. However, if the
self-interaction coupling λ is large enough, the χ conden-
sate may fragment into χ particles which thermalize into a
Weakly Interacting Massive Particle (WIMP)-like DM
candidate as discussed in Refs. [9,12,14,16,17,22,79].
The condition for a complete decay of the condensate
for quartic self-interactions is given by

ΓðχðadecÞÞ
Hdec

≃ 0.013λ

�
adec
aosc;r

�1
2
ð1þ3wÞ

¼ 1; ð3:24Þ

where ΓðχðaÞÞ ¼ 0.023λ3=2χðaÞ is the decay rate of the
condensate into two χ particles [12], Hdec is the Hubble
parameter at the time of the decay at adec, and the amplitude
of the scalar field is χðaÞ ¼ χendðaosc;r=aÞ. For simplicity,
we assume that the decay always occurs prior to reheating,
which amounts to requiring

adec
areh

¼ ð0.013λÞ− 2
1þ3w

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2g�ðTrehÞ

270

r
T2
rehffiffiffi

λ
p jχendjMP

� 2
3ð1þwÞ

< 1:

ð3:25Þ
The condensate can only fragment while in the quartic part
of its potential [9,12,79], which in addition to Eq. (3.25)
imposes an upper limit on the bare mass:

m2 < 3λχ2dec ¼ 3λð0.013λÞ 4
ð1þ3wÞχ2end: ð3:26Þ

If the bare mass is larger than the limit (3.26), the condensate
never fragments but remains oscillating until the present day,
and the resulting DM abundance is given by Eq. (3.22). In
contrast, if the condition (3.26) is satisfied, the condensate
fragments, the χ sector thermalizes with itself, and we need
to compute the dark matter abundance from the freeze-out of
χ particles from their internal thermal bath.
In the following, we assume that the χ particles freeze

out while still relativistic. The temperature the χ particles
acquire after thermalization is obtained by equating the χ
condensate’s energy density to the usual form of radiation
energy density, which gives

TχðaÞ ¼
�
15λ

2π2

�
1=4

jχendj
�
aosc;r
a

�
: ð3:27Þ

Note that this temperature is different from the temperature
of the SM particle heat bath and can also scale differently
from it in terms of a; see, e.g., Ref. [80]. However, the χ
particle number density corresponding to Tχ is given by the
usual expression

nχðaÞ ¼
ζð3Þ
π2

T3
χðaÞ: ð3:28Þ

After freeze-out, the χ particles do not interact anymore,
which means that the above relation is valid even when χ
becomes nonrelativistic. The energy density of χ at the
present time is therefore simply ρχða0Þ ¼ mnχða0Þ, leading
to the following present abundance:

Ωχh2 ¼
�
15

2

�
3=4 ζð3Þλ3=4

π7=2
g�SðT0Þ
g�SðTrehÞ

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2g�ðTrehÞ

270

r
T2
rehffiffiffi

λ
p jχendjMP

� 2
1þw

�
T0

Treh

�
3mjχendj3
ρc=h2

;

ð3:29Þ
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where the main difference to the result in the case of
coherent oscillations (3.22) is that thermalization of χ
particles changes the result’s dependence on λ.
Finally, we note that the DM freeze-out could also occur

while the DM particles are nonrelativistic. In this case, the
scalar field undergoes a phase of cannibalism [80], where
the 4 → 2 self-annihilations dilute the number density of χ
particles before their eventual freeze-out. While performing
this calculation in the standard radiation-dominated case is
relatively simple [22], in the presence of a nonstandard
epoch and entropy production this calculation becomes
much more involved. While the qualitative picture is quite
different from the case where DM freeze-out is determined
by the 2 → 2 scatterings (as above), the quantitative
difference is very modest in the standard radiation-domi-
nated case [22], and it is expected to be small in non-
standard cases as well; see Ref. [81] for an example in a
matter-dominated case. Therefore, in this paper we do not
consider this possibility but leave it for future work.

IV. DARK MATTER PERTURBATIONS

Because the χ field is assumed to be decoupled from the
SM radiation, fluctuations in the local field value neces-
sarily generate isocurvature perturbations between the DM
and radiation energy densities. Because of the nonobser-
vation of isocurvature perturbations in the CMB, this
provides the most stringent observational constraints on
our scenario.
More precisely, the DM isocurvature perturbation is

defined as

Srχ ≡ −3H
�
δρr
_ρr

−
δρχ
_ρχ

�
; ð4:1Þ

where ρi is the energy density of the fluid i ¼ r, χ, and
perturbations are defined as deviations from the average
energy density of the fluid i,

δρi ≡ ρiðxÞ
hρii

− 1: ð4:2Þ

As discussed in Sec. II, we assume that the perturbations in
radiation energy density were sourced by the inflaton field,
whereas the perturbations in the DM energy density were
also sourced by the spectator field. Because the fluids are
assumed to be decoupled from each other, we obtain

H
δρi
_ρi

¼ δρi
3ð1þ wiÞρi

; ð4:3Þ

where wi ≡ pi=ρi is the effective equation-of-state param-
eter of the fluid iwhich relates the pressure of the fluid to its
energy density, i.e., wr ¼ 1=3 for radiation and wχ ¼ 0 for
the spectator field at late times. The isocurvature perturba-
tion then becomes

Srχ ¼
δfðχendÞ
hfðχendÞi

; ð4:4Þ

where in the quadratic case fðχendÞ ¼ χ2end and in the quartic
case fðχendÞ ¼ jχendj3−2=ð1þwÞ, as given in Eqs. (3.12),
(3.22), and (3.29), respectively. Note that because the mean
field value vanishes hχendi ¼ 0, it would be incorrect to
assume δfðχendÞ ∝ δχend=χend.
The isocurvature perturbation spectrum can be found in

terms of the stochastic correlation functions that describe
the field fluctuations during inflation [50,56]. One finds
that the power spectrum of the equal-time correlator of an
arbitrary function of the scalar field fðχÞ is given by [56]

PfðkÞ ¼ Af

�
k

Hinf

�
nf−1

; ð4:5Þ

where

Af ¼ 2

π
f2nΓ½2 − ðnf − 1Þ� sin

�
πðnf − 1Þ

2

�
ð4:6Þ

and

nf − 1 ¼ 2Λn

Hinf
; ð4:7Þ

which applies for all modes k ≪ Hinf , i.e., for physical
distance scales much larger than the horizon at the end of
inflation. Because the CMB measurements are made at
scales which are exponentially larger than H−1

inf , the form
of (4.5) is indeed suitable for our purposes.
As discussed in Ref. [56] (see also Refs. [22,82]), the

parameters fn and Λn are related to the eigenfunctions and
eigenvalues of the Schrödinger-like equation

�
1

2

∂2

∂χ2 −
1

2
ðv0ðχÞ2 − v00ðχÞÞ

�
ψnðχÞ ¼ −

4π2Λn

H3
inf

ψnðχÞ;

ð4:8Þ

where

vðχÞ ¼ 4π2

3H4
inf

VðχÞ ¼
8<
:

π2λ
3
ð χ
Hinf

Þ4; λχ2 ≫ m2;

2π2

3
ð m
Hinf

Þ2ð χ
Hinf

Þ2; λχ2 ≪ m2;

ð4:9Þ

and fn is given in terms of the eigenfunctions in (4.8) as

fn ¼
Z

dϕψ0ðχÞfðχÞψnðχÞ: ð4:10Þ
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These quantities enter the calculation of the DM iso-
curvature spectrum through the spectral expansion of the
unequal-time correlator5

hfðχð0ÞÞfðχðtÞÞi ¼
X
n

f2ne−Λnt; ð4:11Þ

where only the first nontrivial term is important, as the
higher-order corrections are exponentially suppressed [56].
In the quadratic case λχ2 ≪ m2, we find analytically

Λð2Þ
2 ¼ 2

3

m2

Hinf
; fð2Þ2 ¼

ffiffiffi
2

p
; ð4:12Þ

where the superscripts denote the quadratic case, whereas
in the quartic case λχ2 ≫ m2, a numerical solution of the
eigenvalue equation (4.8) gives

Λð4Þ
2 ≈ 0.289

ffiffiffi
λ

p
Hinf ð4:13Þ

and

fð4Þ2 ðwÞ ≈

8>><
>>:

0.639 w ¼ 0;

0.867 w ¼ 1=3;

1.057 w ¼ 1;

ð4:14Þ

where we used the fact in the quartic case fðχendÞ ¼
jχendj3−2=ð1þwÞ, as discussed below Eq. (4.4).
By substituting the results (4.12)–(4.14) into Eqs. (4.6)

and (4.7), we find the DM isocurvature power spectrum as

PS ¼ AS

�
k
k�

�
nS−1

; ð4:15Þ

where the amplitude at k ¼ k� is given by

AS ¼
8<
:

2ðfð4Þ
2
ðwÞÞ2
π Γ½2 − ðnS − 1Þ� sinðπðnS−1Þ

2
Þe−ðnS−1ÞNðk�Þ; λχ2 ≫ m2;

4
π Γ½2 − ðnS − 1Þ� sinðπðnS−1Þ

2
Þe−ðnS−1ÞNðk�Þ; λχ2 ≪ m2;

ð4:16Þ

where Nðk�Þ is the number of e-folds between the horizon
exit of a scale k� and the end of inflation, and the spectral
tilt is

nS − 1 ¼
(
0.579

ffiffiffi
λ

p
; λχ2 ≫ m2;

4
3
m2

H2
inf
; λχ2 ≪ m2:

ð4:17Þ

As the reference (pivot) scale we use k� ¼ 0.05 Mpc−1,
which is also one of the pivot scales the Planck
Collaboration used in their analysis. Following their con-
ventions, the result (4.15) should be compared to the
observational constraint for an uncorrelated DM isocurva-
ture perturbation

PSðk�Þ ¼
β

1 − β
Pζðk�Þ; ð4:18Þ

where β < 0.38 and Pζðk�Þ ¼ 2.1 × 10−9 is the observed
amplitude of the curvature power spectrum [78].
To compute the DM perturbation spectrum in terms of

our free parameters, we need to know the number of e-folds
between horizon exit of the pivot scale and the end of
inflation. As the result (4.16) shows, the DM isocurvature

power spectrum is exponentially sensitive to this number,
and therefore, the differences between different scenarios
can be large. In particular, this applies to deviations from
the usual radiation-dominated case, which makes it inter-
esting to consider such scenarios and in this way also
constrain them.
The number of e-folds between the horizon exit of a

scale k and the end of inflation is given by (see, e.g.,
Ref. [39])

NðkÞ ¼ ln

�
aend
areh

�
þ ln

�
areh
a0

�
þ ln ðHinfk−1Þ; ð4:19Þ

where the ratio of the scale factors at the end of inflation
and at the time of reheating is

ln

�
aend
areh

�
¼ 1

3ð1þ wÞ ln
�
ρreh
ρend

�

¼ 1

3ð1þ wÞ
�
ln

�
π2g�ðTrehÞ

90

�
þ 4 ln

�
Treh

MP

�

− 2 ln

�
Hinf

MP

�	
: ð4:20Þ

Because the result depends only logarithmically on g�ðTrehÞ
(and is further suppressed by the w-dependent prefactor),
this quantity should differ from the usual value (∼100) by
orders of magnitude in order to affect the result. Therefore,

5By using de Sitter invariance, this result can be used to find an
expression for the equal-time correlator power spectrum (4.5).
Here we present only the most important steps; for more details
on the derivation of this result, see Refs. [50,56].
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here we simply assume g�ðTrehÞ ∼ 100, which allows us to
write Eq. (4.20) as

ln

�
aend
areh

�
≃

1

3ð1þwÞ
�
4 ln

�
Treh

MP

�
− 2 ln

�
Hinf

MP

�	
: ð4:21Þ

We also have

ln

�
areh
a0

�
¼ 1

3
ln

�
g�SðT0ÞT3

0

g�ðTrehÞT3
reh

�
≃ −72.5 − ln

�
Treh

MP

�
;

ð4:22Þ

where we used g�S ¼ 3.909, T0 ¼ 2.725 K, and

ln ðHinfk−1Þ ≃ 133.3þ ln

�
Hinf

MP

�
− ln

�
k

0.05 Mpc−1

�
:

ð4:23Þ

Thus, putting all of the above results together, we obtain
for the e-fold number corresponding to the pivot scale
k� ¼ 0.05 Mpc−1 the result

Nðk�Þ ≃ 60.8þ 1

3ð1þ wÞ
�
4 ln

�
Treh

MP

�
− 2 ln

�
Hinf

MP

�	

þ ln

�
Hinf

MP

�
− ln

�
Treh

MP

�
: ð4:24Þ

It should be noted, however, that for the assumptions made
in this paper (in particular about the Hubble parameter that
stays roughly constant during inflation), the number of
e-folds is bounded from above as Nðk�Þ≲ 63 due to the
BBN constraints on gravitational waves6 [86], which
affects our results in the w ¼ 1 case. In general, we will
use the result (4.24) to evaluate the DM isocurvature
perturbation spectrum amplitude (4.16), which we will
contrast with observations through Eq. (4.18). For an
illustration of the resulting PSðkÞ in a few example cases,
see Fig. 5.

V. RESULTS

Finally, we present the requirements for the field χ to
constitute all DM in the Universe. In addition to satisfying
the DM abundance, there are a few requisites—either
observational constraints or consistency conditions specific
to our scenario—that constrain the model, and we begin by
listing them here.

A. Constraints on the scenario

First, the maximum Hubble scale during inflation is

Hinf ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
π2rPζ

2

s
MP ≲ 6 × 1013

ffiffiffiffiffiffiffiffiffi
r

0.06

r
; ð5:1Þ

which follows from the definition of the tensor-to-scalar
ratio r and the usual slow-roll approximation; see, e.g.,
Ref. [87]. Here we have normalized r to the largest value
allowed by observations, r ≤ 0.06 [78]. In all our results,
we assume that the field’s fluctuation spectrum is not
suppressed during inflation, V 00 < 9H2

inf=4, which provides
an upper limit on the parameter that characterizes the shape
of the potential in each case λ or m, whereas the iso-
curvature constraint (4.18) imposes additional constraints
on them.7 The maximum reheating temperature for a given
Hubble scale during inflation is

Treh ≤
�

90

π2g�ðTrehÞ
�

1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HinfMP

p
; ð5:2Þ

which for the SM degrees of freedom g�ðTrehÞ ¼ 106.75
gives the absolute maximum reheating temperature as
Tmax
reh ¼ 6.7 × 1015ðr=0.06Þ1=4 GeV, which follows from

Eq. (5.1). However, the condition (5.2) is more general

FIG. 5. The DM isocurvature power spectrum PSðkÞ as a
function of k=k� in the quartic case in three different scenarios,
from top to bottom: w ¼ 0; 1=3; 1. The horizontal dashed line
shows the CMB isocurvature constraint PSðk�Þ < 1.3 × 10−9 at
the CMB pivot scale k� ¼ 0.05 Mpc−1 [78]. In this figure,
Hinf ¼ 1013 GeV, Treh ¼ 108 GeV, λ ¼ 0.4. The figure shows
that for the above parameters, the case w ¼ 0 is not allowed by
the CMB observations, whereas the cases with w ¼ 1=3 or w ¼ 1
are viable.

6In the presence of a stiff era w > 1=3, gravitational waves
become enhanced compared to the case with w ≤ 1=3 and
can contribute to the Neff parameter in a significant way, allowing
one to constrain such scenarios. For recent works, see, e.g.,
Refs. [83–85].

7For completeness, we note that there is also another branch of
solutions to Eq. (4.18), which in the quartic case requires a very
small value of the self-coupling λ≲Oð10−19Þ. As this regime is
phenomenologically less interesting, here we neglect this pos-
sibility. For m=Hinf, the solutions corresponding to the other
branch are shown in Figs. 6 and 7.
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and should be applied for eachHinf separately. On the other
hand, to not interfere with the formation of light elements,
the nonstandard phase has to end early enough so that the
Universe gets reheated to a sufficiently high temperature. In
the following, we will use the requirement Treh ≥ 10 MeV
to account for this aspect.
In the quartic case, observations of collisions between

galaxy clusters (including the Bullet Cluster) can be used to
place an upper bound on the self-interaction cross section
over DM mass σ=m≤1 cm2=g≈4.6×103 GeV−3 [88–92].
For our theory [14],

σ

m
¼ 9λ2

32πm3
; ð5:3Þ

so the galaxy collisions impose a constraint

m
GeV

> 0.027

�
σ=m
cm2=g

�
−1=3

λ2=3; ð5:4Þ

which limits the quartic scenario at sub-GeV masses for
detectable values of σ=m.
Finally, in deriving the results for DM abundance,

Eq. (3.12) in the quadratic case and Eq. (3.22) or (3.29)
in the quartic case (depending on whether the condensate
fragments or not), we made the assumption that the
postinflationary oscillations of the χ field always began
prior to reheating8 aosc=areh < 1, which amounts to requir-
ing Eq. (3.11) in the quadratic case and Eq. (3.23) in the
quartic case. We also assumed that the possible decay of
the oscillating condensate always occurs prior to reheating,
which imposes the conditions given by Eqs. (3.25) and
(3.26). In addition to the observational constraints dis-
cussed above, these consistency conditions provide con-
straints on the model parameter space. They are all
accounted for in the results shown in the next subsection.

B. Model parameter space

Next, we present the results by assuming in all cases
that the DM abundance is given by the typical field value
χ2end ¼ hχ2endi as in Eq. (2.9).
First, Figs. 6 and 7 show the region of the model

parameter space where the quadratic scenario
(m2 > λχ2end) explains all DM (solid colored lines) and
satisfies the constraints discussed in the beginning of this
section (within the shaded regions) for the cases w ¼ 0
(Fig. 6) and w ¼ 1 (Fig. 7). We emphasize that as the
shaded regions represent the part of the parameter space

where the constraints are satisfied, the regions where the χ
field can successfully explain all DM are those where the
solid colored lines overlap with the shaded regions.
As a few benchmark scenarios, we have considered four

reheating temperatures Treh ¼ 1013; 1011; 105; 10−2 GeV
(shown in blue, yellow, green, and red, respectively),
and assumed g�ðTrehÞ ¼ 100 for all reheating temperatures
except for Treh ¼ 10−2 GeV, for which we used the more
correct value g�ðTrehÞ ¼ 10. The axis in each figure has
been adjusted for each case to show only the part of the
parameter space which is allowed by the constraints
discussed in Sec. VA. The dotted purple line corresponds
to the DM abundance in the usual cosmological scenario
with w ¼ 1=3 [27], which is shown here for comparison.
Note, however, that this line shows only the DM abun-
dance, and the constraints shown in the plot do not apply to
the scenario with w ¼ 1=3 as such but should be computed
separately. Also, note that in all cases the DM isocurvature
constraints have been computed assuming that the field
constitutes all dark matter, and hence, are applicable only
along the solid lines.
We see that for fixed DM mass and reheating temper-

ature, in the w ¼ 0 (w ¼ 1) case, a higher (lower) value of
Hinf than in the usual radiation-dominated scenario with
w ¼ 1=3 is required to obtain the observed DM abundance
today. This is naturally understood by the fact that the
initial energy density stored in the spectator field is ρχ ∝
H4

inf [see Eq. (2.9)], and the more the scalar field energy
density becomes diluted compared to the background
energy density after inflation, the higher the initial energy
density of the scalar field (the value of Hinf ) has to be to
obtain the correct DM abundance today. Note, however,
that not all values of w; Treh give the correct relic abundance
for each set ofm;Hinf shown in Figs. 6 and 7. For example,
for Treh ¼ 1013 GeV there is essentially no available
parameter space where the χ field has the correct DM
abundance today and simultaneously satisfies both the
observational constraints and also the consistency condi-
tions discussed in the previous subsection, neither for
w ¼ 0 nor w ¼ 1. Here this scenario is shown as a limiting
example to highlight the volume of the allowed
(w; Treh; m;Hinf ) parameter space.
In Figs. 8 and 9, we present the allowed parameter space

for the quartic scenario (m2 < λχ2end) in the ðλ; mÞ plane by
fixing Hinf and varying Treh for both w ¼ 0 and w ¼ 1. For
the same reason as in the quadratic case, for fixed values
of other parameters, in the w ¼ 0 (w ¼ 1) case a higher
(lower) value of Hinf than in the usual radiation-dominated
scenario with w ¼ 1=3 is required to obtain the observed
DM abundance today. However, as the dimension of the
parameter space is now greater than in the quadratic case,
there are more combinations of parameters that allow the
spectator field to successfully constitute all DM, as visu-
alized in Figs. 8 and 9. Note again that not all values
of parameters shown there allow the field to constitute all

8While relaxing this assumption does not change the results for
the DM abundance found in Refs. [22,27], an early phase of
nonstandard expansion would change the isocurvature limit
through the altered number of e-folds, Eq. (4.24). In this paper,
however, we do not account for this possibility in our figures for
simplicity.
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DM; for example, in the right panel of Fig. 8, the case with
Treh ¼ 1011 GeV is ruled out. Another example is given
in the right panel of Fig. 9, where the case with Treh ¼
106 GeV is in tension with the constraints on our scenario.
Note that in that figure, we also show the constraints on
DM self-interactions. The purple dash-dotted curve at
the bottom of the figure is a hard limit depicting
σ=m ¼ 1 cm2 g−1, whereas the blue curve assumes σ=m ¼
10−2 cm2g−1 and is shown here as a target for future
observations (see Sec. V C).

C. Testability of the scenario

Finally, we discuss how the scenarios we have studied in
this paper could be further constrained—or supported—by
future observations.

The fact that the DM perturbations in our scenario are
genuinely of isocurvature type provides probably the best
avenue for testing the scenario. First, the DM isocurvature
perturbations generically enhance the perturbations in the
SM matter density and can lead to a sizeable enhancement
in the CMB temperature and/or matter power spectrum
compared to the adiabatic case [8,19,27]. This is due to
the fact that in the presence of isocurvature, the total
curvature perturbation at superhorizon scales is given by
(see, e.g., Ref. [93])

ζ ¼ ζr þ
zeq=z

4þ 3zeq=z
Srχ ; ð5:5Þ

where ζr is the contribution of the SM radiation to the
curvature perturbation, and z (zeq) is the redshift (to the

FIG. 6. Parameter space of the model where the scalar constitutes all DM in the Universe (colored solid lines) and satisfies all
constraints described in the beginning of Sec. V (inside the shaded regions), assuming a quadratic potential and an equation-of-state
parameter w ¼ 0. The DM abundance was computed for four different reheating temperatures as shown above each panel. The
axis has been adjusted for each case to show only the part of the parameter space which is allowed by the constraints discussed in
Sec. VA. The dotted purple line corresponds to the DM abundance in the usual cosmological scenario with w ¼ 1=3 shown here
for comparison. Note that the constraints shown here are for cases with w ¼ 0 and do not apply to the scenario with w ¼ 1=3
as such.
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FIG. 8. The parameter space of the model where the scalar constitutes all DM (colored solid lines) and simultaneously satisfies
all constraints (inside the shaded regions), assuming a quartic potential and an equation-of-state parameter w ¼ 0. The DM abundance
was computed for different reheating temperatures, as indicated in the plots. As two benchmark scenarios, we present those with
Hinf ¼ 1013 GeV and Hinf ¼ 109 GeV. Above the black dashed line the condensate remains coherent, while for masses below the
dashed line the condensate evaporates. The axis has been adjusted for each case to show only the part of the parameter space which is
allowed by the constraints discussed in Sec. VA.

FIG. 7. The same as Fig. 6 but for w ¼ 1.
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matter-radiation equality), so that at late times the prefactor
of the second term is ∼1=3. In our scenario, deviations
from the adiabatic case can be large especially at smaller
physical distance scales, which is due to the fact that in our
scenario the DM isocurvature spectrum is always blue-
tilted (see Fig. 5). At subhorizon scales, the simple picture
of Eq. (5.5) does not hold, but one can nevertheless show
that also at those scales the effect of DM isocurvature is to
increase the curvature perturbation at the linear level (see,
e.g., Ref. [94]). Furthermore, because in, e.g., the usual
axion DM models the corresponding power spectrum is
typically nearly scale invariant [38,95], the spectator DM
model may be distinguishable from this type of model if
observations of the matter power spectrum can be extended
to large enough k where the data may show evidence
for (scale-dependent) DM isocurvature; a potentially
promising new avenue in this respect is the forthcoming
Euclid satellite mission [96,97]. It is worth noting here that
some recent analyses of the CMB temperature fluctuations
have actually shown hints of a blue-tilted DM isocurvature
contribution [78,94,98], although some of these results are
still preliminary, and the effects of isocurvature are degen-
erate with the effect of other cosmological parameters.
Second, the isocurvature nature of DM in our scenario

provides also an additional way to both distinguish our
scenario from other models and also further test the
properties of DM. That is, due to the stochastic behavior
of the χ field during inflation, in all cases studied in this
paper the DM isocurvature is non-Gaussian, which in
practice shows not only in the form of the three-point
correlation function of the DM isocurvature perturbation
hSrχðx̄1ÞSrχðx̄2ÞSrχðx̄3Þi [where Srχ is given by Eq. (4.4)],
but also in the three-point correlator of the total curvature
perturbation hζðx̄1Þζðx̄2Þζðx̄3Þi, which is partly determined
by the former [see Eq. (5.5)]. Because the perturbations are
uncorrelated, we have

hζðx̄1Þζðx̄2Þζðx̄3Þi
¼ hζrðx̄1Þζrðx̄2Þζrðx̄3Þi

þ
�

zeq=z

4þ 3zeq=z

�
3

hSrχðx̄1ÞSrχðx̄2ÞSrχðx̄3Þi; ð5:6Þ

where the prefactor of the second term is ∼1=27 at the time
of last scattering, and the three-point correlator for ζr
depends on the inflationary model [99] (and possibly also
the fluctuations the SM Higgs acquired during inflation
[82]). Therefore, even if the non-Gaussianity generated
during inflation was negligible, DM isocurvature perturba-
tions can generate sizeable non-Gaussianity at late times. In
the spectator DM scenario, the effect is again different from
the usual axion DM scenario and also many other models
where non-Gaussianity can be generated, such as curvaton
models (see, e.g., Refs. [100–105]), as the non-Gaussianity
in the present scenario is of nonlocal type.9 While computing
the above three-point correlation functions is beyond the
scope of this paper, doing so would certainly be worthwhile
if primordial DM isocurvature or non-Gaussianity were
discovered, as they may provide a powerful way to test
the spectator DM scenario and distinguish it from other
models, such as those where axions constitute the DM.10

Finally, we comment on the prospects for detecting DM
self-interactions. While in the quadratic scenario studied in

FIG. 9. The same as Fig. 8 but for w ¼ 1, Hinf ¼ 108 GeV, and Hinf ¼ 106 GeV. The dash-dotted lines on the right panel correspond
to constraints on the DM self-interactions that can be inferred from galaxy clusters, Eq. (5.4). The purple dash-dotted curve corresponds
to σ=m ¼ 1 cm2 g−1, while the light blue one assumes σ=m ¼ 10−2 cm2 g−1 shown here as a target for future observations.

9Local non-Gaussianity is defined as ζðx̄Þ ¼ ζGðx̄Þ þ
3
5
fNLðζ2Gðx̄Þ − hζ2Gðx̄ÞiÞ, where fNL is the first order non-Gaus-

sianity parameter and ζG denotes the Gaussian part of the
curvature perturbation (see, e.g., Ref. [106]). In our scenario,
the curvature perturbation does not take the local form and is
hence, “nonlocal.”

10For an early work that computed the three-point correlator of
a stochastic scalar field in the special case of equilateral triangles,
see Ref. [37]. It would be interesting to generalize this calculation
to other shapes as well.
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this paper the DM self-interactions are by definition negli-
gible, in the opposite case where the quartic term dominated
the scalar field potential already during inflation, the DM
self-interactions can be sizeable. Currently, observations of
dynamics of celestial bodies at the galactic and galaxy
cluster scales place an upper bound on the DM self-
interaction cross section over DM mass which is of the
order σ=m ≤ 1 cm2=g; however, in the future this limit may
be possible to become tightened to σ=m≲Oð0.01Þ cm2=g
[107]. As our results show (see Fig. 9), this will further
constrain the model parameter space in the quartic case. In
case of a positive detection, the quartic case can accom-
modate these interactions for suitable m and λ (as well as
TrehHinf; w), while the quadratic case would obviously be
ruled out. It should be noted that this is in contrast to the case
with standard cosmology, where the spectator DM model
can never account for DM self-interactions of observable
size [22]. As we have shown in this paper, however, with a
modified cosmological history this is not a problem.

VI. CONCLUSIONS

In this paper, we have studied the spectator dark matter
scenario, where the observed DM abundance is produced
by amplification of quantum fluctuations of an energeti-
cally subdominant scalar field during inflation. We have
showed that the scenario is robust to changes in the
expansion history of the early Universe in a sense that
also in this case the scenario works for a wide range of DM
masses and coupling values, although even relatively
modest changes to the standard cosmological history can
impose notable quantitative differences to the usual sce-
nario. This is because in the presence of a nonstandard
expansion phase the DM energy density evolves differently
as a function of time, and also the DM isocurvature
perturbation spectrum turns out to be different from the
result in the radiation-dominated case. We have quantified
these differences in both free and self-interacting DM cases
and presented the refined model parameter space which
allows the scalar field to constitute all DM while simulta-
neously satisfying all observational constraints.
While we have discussed only a few example cases (early

matter domination and kination domination encountered in,
e.g., quintessence models), further modifications to the early
cosmological history can also be imagined. Likewise, it
would be interesting to see how a nonstandard phase of
expansion in the early Universe can change the allowed
model parameter space in scenarios where the DM field
couples nonminimally to gravity, to the inflaton field, and/or
to another spectator field, for instance, the SM Higgs.
Finally, we have discussed the prospects for testing the

scenario with future observations. In particular, if primor-
dial DM isocurvature or non-Gaussianity is ever discov-
ered, this may provide a powerful way to test the spectator
DM scenario and distinguish it from other models, such as
those where axions constitute the DM. Indeed, it is worth

emphasizing that despite the fact that in these models the
DM field interacts with ordinary matter only via gravity,
these scenarios are testable with both current and future
observations of the CMB and the large-scale structure of
the Universe, as well as the dynamics of celestial bodies at
galactic and galaxy cluster scales, as discussed in this
paper. If observations ever show any deviation from the
adiabatic, noninteracting cold DM paradigm, it would be
interesting to see what that tells about DM candidates
which are only gravitationally interacting. After all, for all
we know about dark matter, this minimal scenario seems to
be the one preferred by observations.
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APPENDIX: THE KLEIN-GORDON EQUATION
WITH NONSTANDARD EXPANSION

AT EARLY TIMES

Here we present the equation of motion for a homo-
geneous, conformal scalar field [VðχÞ ¼ λ=4χ4] in the
general case (−1=3 < w ≤ 1).
The Klein-Gordon equation for the scalar field is

χ̈ þ 3HðtÞ_χ þ λχ3 ¼ 0; ðA1Þ
where HðtÞ is determined by the background energy
density and its time dependence, which in turn is deter-
mined by the equation-of-state parameter w. Upon chang-
ing to conformal time dη ¼ dt=a and defining z≡ a

ffiffiffi
λ

p
χ,

Eq. (A1) becomes

z00 þ
�
1

2
ð1þ 3wÞ − 1

	
H2zþ z3 ¼ 0; ðA2Þ

where H≡ a0=a is the conformal Hubble parameter, the
prime denotes a derivative with respect to η, and we used
the well-known result H0 ¼ − 1

2
ð1þ 3wÞH2.

In conformal time, the Friedmann equation reads

3H2M2
P ¼ ρbga2; ðA3Þ

where “bg” stands for background. Here, ρbg ∝ a−3ð1þwÞ as
usual. Thus, we obtain

H ¼ H�
1þ3w
2

H�ðη − η�Þ þ 1
; ðA4Þ

where H� ≡Hðη ¼ η�Þ, where the subscripts denote the
initial time. Thus, the general form for the scalar field
equation of motion (A2) is
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z00 þ Fðη; wÞzþ z3 ¼ 0; ðA5Þ

where

Fðη; wÞ≡ ½1
2
ð1þ 3wÞ − 1�H2�

½1þ3w
2

H�ðη − η�Þ þ 1�2 : ðA6Þ

Clearly, when w ¼ 1=3, Eq. (A5) reduces to

z00 þ z3 ¼ 0; ðA7Þ

whose solution is a well-known oscillating function: the
elliptic (Jacobi) cosine, whose exact form can be found
analytically (see, e.g., Refs. [12,79]) and which, besides the
oscillations, has no further time dependence in terms of η
(see Fig. 10). Because χ ∝ z=a, this means that when the
background energy density is radiation dominated, the

oscillation amplitude decays simply as χ ∝ 1=a, i.e., as
that of (dark) radiation.
The above conclusion applies to the other cases as well.

Upon rescaling τ≡ ð1þ 3wÞ=2H�ðη − η�Þ and Δ≡ z=H�,
we obtain

Δ00 þ p
ð1þ τÞ2Δþ qΔ3 ¼ 0; ðA8Þ

where the primes now denote a derivative with respect to τ,
and p, q are numbers which depend on w and the normali-
zation of H�; η� and whose exact expressions are irrelevant
here. The formof Eq. (A8) is particularly useful for numerical
analysis, as all quantities are dimensionless and expressed in
Hubble units (units ofH�). The numerical analysis shows that
the F-term (A6) dies off quickly, and thus, in all cases we
retain the usual χ ∝ 1=a scaling, which validates the treat-
ment of the scalar field energy density in Sec. III C.
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