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Generic features of models of inflation obtained from string compactifications are the correlations
between the model parameters and the postinflationary evolution of the universe. Thus, the postinflationary
evolution depends on the inflationary model parameters, and accurate inflationary predictions require that
this be incorporated in the evolution of the primordial spectrum. The fibre inflation model is a promising
model of inflation constructed in type IIB string theory. This model has two interesting features in its
postinflationary evolution. The reheating temperature of the model is directly correlated with the
model parameters. The model also necessarily predicts some dark radiation, which can be sizable for
certain choices of discrete parameters in the model. We analyze this model in detail using publicly available
codes—ModeChord and CosmoMC with the latest Planck+BICEP2/Keck array data to constrain the model
parameters and Npivot (the number of e-foldings between the horizon exit of the CMB pivot mode and the
end of inflation). We also carry out the same analysis using the publicly available code Cobaya. We find the
results of both the analysis to be in agreement. Our analysis provides the basic methods necessary to extract
precise inflationary prediction in string models incorporating correlations between model parameters and
postinflationary evolution.
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I. INTRODUCTION

The inflationary paradigm provides an extremely attrac-
tive explanation for the observed spectrum and inhomo-
geneities in the cosmic microwave background (CMB) [1].
Since observations in the future are likely to minutely probe
the CMB [2], it is important to develop a systematic
understanding of the methodology for extracting highly
accurate predictions for inflationary models. The simplest
method is to parametrize primordial perturbations with a set
of empirical variables such as As (the strength of the power
spectrum), ns (the scalar tilt), r (the tensor-to-scalar ratio),
fNL (parametrizing the non-Gaussianity), etc. The best-fit
values of these are obtained by evolving the primordial
fluctuations and comparing with observations of the CMB.
Given a model of inflation, one can also compute the
functional form of the primordial fluctuations in terms of
the parameters of the model. One then requires that the
predictions for the empirical parameters are in the best-fit
regions, determined by the evolution of the initial

perturbations. Note that this is intrinsically a two-step
process where the empirical parameters characterizing
the primordial perturbations act as the matching points
between observation and theory.
On the other hand, if one wants to confront a particular

model of inflation with data, a more comprehensive method
is to treat the model parameters as inputs for the cosmo-
logical evolution and directly determine the best-fit regions
for these parameters [3,4] (see also [5]). This approach is
particularly well suited if one is considering models which
arise from a fundamental theory (such as string theory). In
this case, one naturally expects various correlations
between the model parameters and the postinflationary
evolution of the universe. Thus, the postinflationary
evolution depends on the model parameters, and accurate
inflationary predictions require that this be incorporated in
the evolution of the primordial spectrum. Inflationary
predictions of any model are sensitive to higher derivative
corrections in the effective action. Hence, theories of
quantum gravity are the appropriate setting to carry
out inflationary model building. In this light, one can
expect to use precision cosmology to confront models
of quantum gravity with observations. Work in this
direction, to explicitly constrain model parameters incor-
porating the correlations between model parameters and
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the postinflationary history, was initiated in [6] in the
context of the Kähler moduli inflation model [7].
Fibre inflation [8] is a promising model of inflation set in

IIB string theory. Phenomenologically, the model is inter-
esting as it predicts a value of the tensor-to-scalar ratio
(r > 0.005), which can be observationally verified with
experiments planned in the near future. Thus, it is timely to
carry out a detailed study of the model predictions. As we
will discuss in detail in the next section, the model has two
interesting features in its postinflationary evolution. The
reheating temperature of the model is directly correlated
with the model parameters. The model also necessarily
predicts some dark radiation, which can be sizable for
certain choices of discrete parameters in the model. In this
paper, we use ModeChord [4] and CosmoMC [9] (and also give
an independent analysis using Cobaya [10]) to incorporate
these features in the postinflationary evolution and thereby
perform a detailed analysis of the model predictions.1 The
basic philosophy of constraining the model parameter
space using precision cosmology is the same as that in [6].
These two features are also expected to be generic in

string constructions.2 For a discussion of dark radiation in
string models, see e.g., [12]. Thus, our analysis can serve as
a template for the analysis of most string models. The
effects of the presence of dark radiation on cosmological
observations are studied in [13].
Recently, the predictions of fibre inflation and their

relationship to postinflationary dynamics have been ana-
lyzed in3 [15]. Our work develops this analysis, system-
atically incorporating the relationship between the model
parameters and the postinflationary dynamics, making use
of the above-mentioned publicly available packages. This
allows us to obtain a detailed understanding of the model
predictions.
This paper is structured as follows. In Sec. II, we review

some basic aspects of fibre inflation; in Sec. III, we discuss
our methodology and perform our analysis; and in Sec. IV,
we discuss our results and conclude.

II. REVIEW OF FIBRE INFLATION

The fibre inflation model is set in the large volume
scenario [16] for moduli stabilization of IIB flux com-
pactifications. Here, we briefly review the aspects of the
model that will be needed for our analysis and refer the
reader to [8,15,17] for further details.4 The relevant
dynamics during the inflationary epoch is that of the

Kähler moduli fields5 of the Calabi-Yau manifold asso-
ciated with the compactification. The Kähler moduli are
flat at tree level but acquire a potential as a result of
nonperturbative corrections to the superpotential, loop,
and α0 corrections to the Kähler potential. The construc-
tion of fibre inflation models involves Calabi-Yau mani-
folds with at least three Kähler moduli6:

(i) T1 ¼ τ1 þ iθ1. For this field, the geometric modulus
τ1 corresponds to the volume of a T4 or K3 fibred
over a P1 base. The field τ1 plays the role of the
inflaton in the model.

(ii) T2 ¼ τ2 þ iθ2. Here, the geometric modulus corre-
sponds to the volume of the base.

(iii) T3 ¼ τ3 þ iθ3. Here, the geometric modulus corre-
sponds to the blow-up of a pointlike singularity.
Nonperturbative effects on this cycle play an im-
portant role in moduli stabilization.

The volume of the compactification can be expressed in
terms of the volumes of the geometric moduli as

V ¼ αð ffiffiffiffi
τ1

p
τ2 − γτ3=23 Þ; ð2:1Þ

where α and γ are order one constants determined by the
intersection numbers of the four cycles.
The potential developed as a result of the effects

described above can be expanded in an inverse volume
expansion. At order V−3, the geometric moduli τ2 and τ3
and the axion θ3 are stabilized. Loop effects at order V−10=3

provide a potential for the field τ1. This takes the form (in
Planck units)

Vðτ1Þ ¼
�
g2s

A
τ21

−
Bffiffiffiffi
τ1

p þ g2s
Cτ1
V2

�
W2

0

V2
; ð2:2Þ

where W0 is the vacuum expectation value of the Gukov-
Vafa-Witten superpotential and

A ¼ ðcKK1 Þ2 B ¼ 2αcW C ¼ 2ðαcKK2 Þ2 ð2:3Þ

with cKK1 , cKK2 , and cW depending on the underlying
compactification and fluxes. After incorporation of effects
so that the minimum is a Minkowski one, canonical
normalization of τ1, and shifting the zero of the field to
its minimum, the potential for the canonically normalized
inflaton field ðϕ̂Þ is

V ¼ V0ð3 − 4e−kϕ̂ þ e−4kϕ̂ þ Rðe2kϕ̂ − 1ÞÞ;

where

1The two independent analyses give results which are in
agreement.

2Another generic feature is the epochs in the postinflationary
history in which the energy density is dominated by cold moduli
particles. Its effect on inflationary predictions has been studied in
detail in [11].

3For a complimentary approach see [14].
4We follow the conventions and notation of [15].

5The complex structure moduli are fixed by fluxes [18].
6We denote the Kähler moduli as Ti ¼ τi þ θi, with τi being a

geometric modulus and θi its axionic partner.
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k ¼ 1ffiffiffi
3

p ; V0 ¼
g1=3s W2

0A
4πλ2

with

λ ¼
�
4A
B

�
2=3

; and R ¼ 16g4s
AC
B2

: ð2:4Þ

The inflationary trajectory is such that ϕ̂ rolls from positive
values towards its minimum at zero. Note that R ∝ g4s and
hence is naturally small. The potential has two inflection

points: ϕ̂ð1Þ
ip ∼ k ln 4 and ϕ̂ð2Þ

ip ∼ −k lnR. The second inflec-
tion point occurs as a result of competition between the
positive exponential and the negative ones. Inflation occurs
when the field lies between the two inflection points. If
the value of R is small, R < 2 × 10−6, then the horizon exit
of the CMB modes takes place at a field value ðϕ̂�Þ, which
is much less than the second inflection point ϕ̂� ≪ ϕ̂ð2Þ

ip ,
and the positive exponential term can be neglected. In
this regime, a robust prediction of the model is a relation-
ship between the spectral tilt ðnsÞ and the tensor-to-scalar
ratio (r)

r ¼ 6ðns − 1Þ2: ð2:5Þ

On the other hand, for higher values of R, the horizon
exit of CMB modes takes place at a point which is
closer to the second inflection point; the positive
exponential term has to be incorporated in the analysis.
With an increase in the value of R, the model predicts
higher values of ns and r. Also, the relationship (2.5) is
broken.
The reheating epoch in fibre inflation models has been

examined in detail in [15]. After the end of inflation, the
inflaton oscillates about its minimum and decays pertur-
batively, which is supported by the full numerical
analysis of the evolution of the scalar field after inflation
[19] (a semianalytic approach [20] has suggested the
possibility of a preheating epoch, but the evidence from
the full numerical study is that the process is perturba-
tive). The dominant decay channels are visible sector
gauge bosons, visible sector Higgs, and ultralight bulk
hidden axionic fields (which act as dark radiation). The
total visible sector and the hidden sector decay widths are
given by

Γvis
ϕ̂

¼ 12γ2Γ0 and Γhid
ϕ̂

¼ 5

2
Γ0; ð2:6Þ

where Γ0 ¼ 1
48π

m3

ϕ̂

M2
pl
, and

γ ¼ 1þ αvis
hðF1Þ
gs

; ð2:7Þ

where αvis is the high-scale visible sector gauge coupling
ðα−1vis ∼ 25Þ, and hðF1Þ depends on the Uð1Þ flux thread-
ing of the D7 brane on which matter fields are localized.

It vanishes for zero flux and is an order one quantity as
the flux quanta is increased.7

Given the widths in (2.6), the prediction for dark
radiation is easily computed. One finds

ΔNeff ¼
0.6
γ2

:

Thus, the model necessarily predicts some dark radiation.
The prediction is high in the absence of any gauge flux and
can be sizable for small values of the flux quanta. Recall
that the analysis of Planck prefers higher values of ns in the
presence of dark radiation. As we have discussed earlier,
this can be obtained with higher values of the parameter R
in the inflationary potential (2.3).
Finally, we come to the number of e-foldings before

horizon exit. This is given by (see e.g., [22,23])

Npivot ¼ 57þ 1

4
ln rþ 1

4
ln

�
ρ�
ρend

�

þ 1 − 3wrh

12ð1þ 3wrhÞ
ln

�
π2

45
g�ðTrhÞ

�

−
1

3

1 − 3wrh

ð1þ 3wrhÞ
ln

�
Minf

Trh

�
; ð2:8Þ

where ρ� and ρend are the energy densities of the universe at
the time of horizon exit of the pivot scale k−1� and at the end
of inflation. Here, wrh is the average equation of state
during the reheating epoch, g�ðTrhÞ is the number of
relativistic degrees of freedom at the end of reheating,
and Trh is the reheating temperature. The reheating temper-
ature can be obtained from Eq. (2.6) as

Trh ¼ 0.12γmϕ̂

ffiffiffiffiffiffiffiffi
mϕ̂

Mpl

s
; ð2:9Þ

where mϕ̂ is the mass of ϕ̂ about the minimum at ϕ̂ ¼ 0 in
(2.3). Note that this implies that the number of e-foldings
before horizon exit in the model is correlated with
parameters in the potential and the amount of dark radiation
(although the dependence on the amount of dark radiation
is very mild as γ is an order one quantity). Since the
inflaton decays perturbatively and has a long lifetime, we
take wrh ¼ 0.
Before closing this section, we would like to emphasize

that, as in many string models, in fibre inflation there is a
direct correlation between Npivot and the parameters in the
inflationary potential. The model has the interesting feature
that for certain discrete choices in the parameter space, a

7More precisely, hðF1Þ ¼ 1
2
k112n22, where k112 is a triple

intersection number involving the two-cycles dual to the three
four-cycles of the Calabi-Yau and ni the integral coefficients of
the expansion of the gauge flux in terms of these dual cycles [21].
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considerable amount of dark radiation is predicted.
Furthermore, the model’s prediction for the tensor-to-scalar
ratio r is in the right ballpark to be probed by upcoming
CMB B-mode observations. Given this, a detailed analysis
of the model which takes into account the above consid-
erations is very well motivated, and it is the primary goal of
this paper.

III. METHODOLOGY AND RESULTS

In this section, we discuss our methodology for param-
eter estimation and report our results. First, we note that the
potential in Eq. (2.3) has two parameters V0 and R, which
themselves depend on some fundamental parameters (such
as the volume of the compactification andW0). Thus, these
two parameters broadly control the inflationary perturba-
tions. But, these two parameters also control the postinfla-
tionary history via Eq. (2.9). On the other hand, the
parameter γ controls the amount of dark radiation ΔNeff .
For given values of the model parameters R and V0, and

Npivot, we have evaluated the cosmological perturbations by
using ModeChord [4] (together with CosmoMC through Multinest

[24]) without assuming slow-roll conditions. Along with
these parameters, we have also varied γ, which controls the
amount of dark radiation produced.As usual, the Boltzmann
solver CAMB [25] is used to evaluate the two-point corre-
lation functions for temperature and polarization, and then
themodel parameters are estimated and the goodness of fit is
determined using CosmoMC [9]. The likelihoods used here are
fromPlanck 2018 TT+TE+EE+lowP+lensing andPlanck+
BICEP2/Keck array array joint analysis [26]. The model
parameters are then inferred from the chains of the simu-
lation using the code in [27].
In Fig. 1, the dark radiation allowed by Planck’18 data is

plotted with respect to the Hubble constant (the contours

correspond to the 1σ and 2σ C.L.). Note that ΔNeff
represents the extra presence of radiation with respect to
the theoretically expected Neff ∼ 3.046 from the Standard
Model (SM) of particle physics. We see that ΔNeff ¼ 0 is
fully consistent with the data. In Fig. 2, model parameters R
and V0 are plotted against each other. We note that similar
constraints of the model parameter space in the context of
Kähler moduli inflation were obtained in [6].
In Fig. 3, the posterior probability distribution of the

number of e-foldings is plotted, and the central value is
found to be around 53, which is quite close to the estimate
in [15]. Finally, in Fig. 4, we have plotted the posterior
probability distribution for the reheating temperature, and
the most probable value is around 1011 GeV. A summary of
the results for the main simulation is given in Table I.
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FIG. 2. Favored region of the model parameter R with respect
to the scale of inflation, V0 (in reduced Planck units).
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FIG. 1. Marginalized posterior distributions in the ΔNeff and
the H0 plane [the contours correspond to the 1σ and 2σ
confidence limits (C.L.)]. Here, H0 is plotted in units of
kms−1 Mpc−1.
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FIG. 4. 1D probability distribution of the reheating temperature
Trh (in reduced Planck units).
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Interestingly, the central value of ns here has a small shift,
ns ≃ 0.9691, as compared to the one obtained from the
Planck analysis, ns ¼ 0.9649.
A rough check of our results can be done as follows. One

can take the central values of the R; V0 in Table I and
consider the model potential (2.3) with these values for the
parameters. Taking derivatives of this potential at the point
in field space corresponding to the central value of Npivot in
Table I, one finds ncens ¼ 0.986 and rcen ¼ 0.0092 (where
the superscript “cen” indicates that these quantities are
computed from a potential function constructed with the
central values obtained from our analysis). We note that
these central values are close to ns and r obtained from our
simulations (which involves a full statistical sampling over
the model parameters): rcen is very close to the value of r in
Table I, while ncens and ns agree approximately at the 1σ
level. We take these agreements as consistency checks of
our numerics.
Note that our results point to a very small amount of dark

radiation. To compare with the case with sizable dark
radiation, a run for a fixed value of ΔNeff ¼ 0.6, corre-
sponding to the theoretically well-motivated case of γ ¼ 1,
was carried out [here, Npivot was sampled as a function of
the model parameters as given by (2.8), with the reheating
temperature taken to be as in (2.9) with γ ¼ 1]. The best-fit
Δχ2 for the results in Table I and for the γ ¼ 1 case are,
respectively, 2 and 18. This is expected because Table I
points to the best-fit value ΔNeff ¼ 0.00041, which corre-
sponds to large γ. Overall, a small ΔNeff is preferred.
To check if there is any systematic error due to the

simulation procedure adopted up to now, we have inves-
tigated fibre inflation using another independently devel-
oped, publicly available Markov Chain Monte Carlo
(MCMC) tool named Cobaya [10]. Cobaya implements the
BOBYQA algorithm [28]. It is interfaced with the
POLYCHORD nested sampler; thus, coupling ModeChord with

Cobaya becomes much easier to implement. Along with the
standard Monte Carlo samples, Cobaya uses an importance-
reweighting method, which makes the computation much
faster and more efficient. In the end, both MCMC simu-
lation techniques give self-consistent results, but we found
it to be a good addition in the analysis, keeping in mind the
sensitivity of the results quoted here. We conclude that the
end results from the two independent simulations are
almost independent of the MCMC sampler adopted. This
indicates the robustness of our results. The results obtained
using Cobaya are very consistent with the results quoted in
Table I. For the sake of completeness, we have quoted the
results obtained using Cobaya in Table III.

IV. DISCUSSION AND CONCLUSIONS

In the present work, we focused on the phenomenology
of fibre inflation. We would like to begin this section by
noting some issues related to the construction of the model
in string compactifications. First, there is the possibility of
the presence of certain α0 corrections [29,30] in the

TABLE I. Constraints on the model parameters and the cos-
mological parameters. We used the data combination Planck’18
TT+TE+EE+ low P+lensing + BKPlanck15. All dimensionful
quantities are in reduced Planck units.

Parameters Central value 1σ

Rð=10−5Þ 2.1451 þ0.0979
−0.0678

V0ð=10−11Þ 5.66 þ4.51
−1.01

ΔNeff 0.00041 þ0.21
−0.20

Asð=10−9Þ 1.300 þ0.950
−0.350

H0 68.01 þ1.81
−3.27

ns 0.9691 þ0.0128
−0.0108

r 0.0093 þ0.0005
−0.0006

Npivot 53.26 þ1.58
−0.51

Trhð=10−7Þ 1.91 þ0.74
−0.08

TABLE III. Constraints on the model parameters and the
cosmological parameters using Cobaya. We used the data combi-
nation Planck’18 TT+TE+EE+ low P+lensing + BKPlanck15.
All dimensionful quantities are in reduced Planck units.

Parameters Central value 1σ

Rð=10−5Þ 2.13 þ0.091
−0.051

V0ð=10−11Þ 5.70 þ4.10
−0.95

ΔNeff 0.0004 þ0.22
−0.19

Asð=10−9Þ 1.21 þ0.881
−0.250

H0 68.20 þ1.90
−3.10

ns 0.9701 þ0.0120
−0.0141

r 0.0094 þ0.0004
−0.0005

Npivot 53.00 þ1.60
−0.50

Trhð=10−7Þ 2.00 þ0.65
−0.15

TABLE II. Constraints on the model parameters and the
cosmological parameters. We used the data combination
Planck’18 TT+TE+EE+ low P+lensing + BKPlanck15. All
dimensionful quantities are in reduced Planck units. In this case,
ΔNeff ¼ 0.6.

Parameters Central value 1σ

Rð=10−5Þ <3.05 …

V0ð=10−11Þ 7.03 þ3.98
−1.52

Asð=10−9Þ 1.065 þ0.840
−0.230

H0 69.02 þ1.11
−1.12

ns 0.9830 þ0.0160
−0.0080

r 0.0096 þ0.0002
−0.0004
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effective action (which are still not completely understood)
that might contribute to the positive exponential term in
(2.3). One consequence of this might be that the coefficient
of the positive exponential term can be pushed to higher
values. In this case, our analysis would have to be redone,
taking into account the appropriate range for R. A similar
issue is the geometric instability that can arise as a result of
the ultralight field in the model [31]. At this stage, it is
unclear how relevant the instability is for fibre inflation, but
it could have implications on the parameter space of the
model. Apart from the above issues, we also note that the
model is in tension with some quantum gravity conjectures
which recently gained attention: the Swampland conjec-
tures [32] and the Trans-Planckian Censorship conjecture
[33]. However, the methods in the paper are general enough
to be easily modified if there is better understanding of the
parameter space of the model and its consistency with such
conjectures.
Our results are interesting from the point of view of

phenomenology. As reported in Table I, the central value of
the tensor-to-scalar ratio is r ∼ 0.00932, which is in the
observably verifiable range for the next generation of CMB
B-mode surveys. More generally, the results for fibre
inflation in the present article and our earlier work [6] in
the context of Kähler moduli inflation show that precision
cosmology can be a powerful tool to constrain string
compactifications. As emphasized in Sec. III, we have
carried out our analysis using two different MCMC
simulators, the results of which are consistent. This
validates the robustness of the numerically computed
best-fit values of the model parameters and inflationary
observables quoted as our main results in Tables I–III.
As future directions, it will be interesting to look for top-

down constructions of string models, with the model
parameters in ranges obtained from our analysis. It will

also be interesting to compare with the preferred ranges
from the point of view of particle physics [34]. Another
phenomenologically exciting avenue is to carry out a
similar analysis for closely related models, including the
α-attractor class [35].
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