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Being free of the initial singularity, bouncing cosmology serves as a promising alternative to inflation.
However, how entropy production occurs during the postbounce phase is still unclear. In this work, we use
a newly identified dark matter (DM) candidate called thermal equilibrium freeze-in DM (EQFIDM), which
can directly freeze into thermal equilibrium shortly after a bounce, to trace the entropy-producing decay
process of the residual bouncing field (RBF). Specifically, we present a model-independent formalism
to obtain all nine possible types of entropy-producing RBF decay within a generic bouncing universe.
We show that due to the different types of entropy production, the particle mass of this new DM candidate
can range from the sub-keV scale to the super-TeV scale. From current Lyman-α forest observations,
we find that although four of the possible types of entropy-producing processes have been excluded, five
types remain, suggesting both warm and cold EQFIDM candidates with efficient entropy production
mechanisms that are accommodated by the current observations. Then, we illustrate how the nature of
the RBF can be constrained by current observations and investigate the potential of EQFIDM to alleviate
the small-scale crisis.
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I. INTRODUCTION

As the leading scenario for the early Universe, the theory
of inflation solves the horizon and flatness problems and
can generate a nearly scale-invariant curvature perturbation
that agrees well with current observations of the cosmic
microwave background (CMB) [1–4]. However, this theory
also inevitably suffers from the initial singularity problem
[5]. Due to this concern, bouncing cosmology, which
addresses this issue with a nonzero minimum size of the
universe, has been extensively studied, such as in [6–23].
As a promising alternative to inflation, bouncing cosmol-
ogy can also resolve the horizon and flatness problems
and generate a nearly scale-invariant curvature spectrum
[24–26]. Moreover, a duality has been established between
inflation and bounce, indicating that for each inflation
model, the corresponding bouncing universe model can
generate a curvature perturbation with the same spectral
index ns [27–30]. Therefore, many efforts have been made
to concretely distinguish between inflation and bounce
based on evidence beyond the CMB spectrum [31–41].
One promising proposal is “big-bounce genesis” [42].

A thermally produced bosonic dark matter (DM) candidate
is considered a novel probe for a bouncing universe. It has
been shown that in addition to a weakly interacting massive
particle (WIMP) candidate [43,44], a nonequilibrium
DM (NEQDM) candidate, which belongs to the class of

freeze-in DM (FIDM) [45–52], can also be produced in a
generic bouncing universe. Due to its tiny cross section, the
abundance of NEQDM never reaches thermal equilibrium;
consequently, the relic abundance, which is sensitive to
cosmic evolution and encodes primordial information, can
be used to distinguish the bouncing scenario from inflation.
Encouraged by this finding, the concept of big-bounce

genesis has also been applied to fermionic DM candidates
[53]. In this context, the WIMP and NEQDM avenues also
exist for fermionic candidates. However, there has been
no quantitative analysis of a fermionic candidate’s thermal
decoupling conditions in a bouncing universe, resulting in
the omission of the new DM candidate addressed in this
paper. More specifically, as demonstrated in [42], the (non)
equilibrium conditions and the freeze-out/freeze-in con-
ditions are coincident for bosonic DM candidates, such that
only two different thermal production avenues are allowed,
i.e., WIMPs and NEQDM. However, for other candidates,
such a coincidence may not exist. For instance, by con-
sidering a DM candidate with a temperature-independent
thermally averaged cross section, a novel avenue between
WIMPs and NEQDM has been revealed [54]. Inspired by
this, we are motivated to investigate such an avenue for
fermionic DM candidates within the bouncing scenario.
Encouragingly, by carefully examining the production

and thermal decoupling conditions for fermionic DM
candidates within a generic bouncing universe, we reveal
such a novel avenue in this paper. Through this avenue,
thermal equilibrium freeze-in DM (EQFIDM) particles are*changhongli@ynu.edu.cn
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thermally produced and reach equilibrium at an early
time. Shortly after the bounce, these particles directly
freeze into equilibrium, with no decrease in abundance.
The cross section of EQFIDM can range from the upper
bound for NEQDM to the lower bound for WIMPs. As a
result, its energy density fraction is proportional to the
particle mass, Ωχ ∝ hσvi0mχ , in contrast to the well-
known predictions for WIMPs, ΩWIMP

χ ∝ hσvi−1m0
χ [43],

and NEQDM, ΩNEQDM
χ ∝ hσvim2

χ [42].
Furthermore, we show that due to its tiny cross section,

EQFIDM can freeze into thermal equilibrium at a very
early time. In this case, the post-freeze-in entropy produc-
tion from the residual bouncing field (RBF), which may not
be negligible, will eventually affect the relic abundance of
EQFIDM. Therefore, we propose to employ EQFIDM to
trace such entropy production during the postbounce phase.
By presenting a model-independent formalism, we inves-
tigate all nine possible types of entropy-producing decay
processes of the RBF within a generic bouncing universe
and characterize their effects on the EQFIDM abundance.
Our results indicate that with different entropy production
strengths, the EQFIDM particle mass can range from the
sub-keV scale to the super-TeV scale.
From current Lyman-α forest observations of the (non)

linear matter spectra [55,56], we find that four of the
nine types of entropy-producing processes have already
been excluded because of their low entropy production.
However, the remaining five types, which suggest warm
and cold EQFIDM candidates with more efficient entropy
production mechanisms, are accommodated by the current
observations. In particular, for one of the five available
types, we find that if such an RBF redominates after some
duration of freeze-in, the entropy production depends
solely on its fundamental nature. Furthermore, we use this
case to illustrate how the nature of the RBF can be
constrained by current Lyman-α forest observations.
Finally, we investigate the potential of EQFIDM to alleviate
the well-known small-scale crisis (SSC) [57].
The remainder of this paper consists of four sections. In

Sec. II, we demonstrate the EQFIDM avenue by analytically
solving theBoltzmann equation for fermionicDMcandidates
within a generic bouncing universe. Section III presents a
model-independent formalism to investigate all nine possible
types of entropy production from the RBF and characterize
their effects on the EQFIDM abundance. In Sec. IV, we use
current Lyman-α forest observations to constrain our results
and investigate the potential of EQFIDM to alleviate the SSC.
We conclude in the last section.

II. THERMAL EQUILIBRIUM FREEZE-IN
DARK MATTER CANDIDATE
IN A BOUNCING UNIVERSE

For a thermally produced DM candidate, the evolution of
its abundance is governed by the Boltzmann equation,

dðnχa3Þ
a3dt

¼ ghσvi½ðneqχ Þ2 − n2χ �; ð1Þ

where a is the scale factor of the universe; nχ and ghσvi are
the number density and thermally averaged cross section,
respectively, of the DM particles; and the superscript eq

denotes thermal equilibrium.
To analytically solve Eq. (1), we divide the evolution of a

generic bouncing universe into five stages, as illustrated
in Fig. 1.

(i) The preproduction phase (T < mχ & H < 0). From
the initial low-temperature Bunch-Davies vacuum
(T ≃ 0), the universe collapses, becoming hotter
and, eventually, radiation-dominated [58]. We take
T ≃mχ as the end of this phase, thus ensuring that
no effective DM production occurs in this phase.

(ii) The contraction phase (mχ ≤ T ≤ Tb & H < 0).
During this phase, dominated by a cosmic bath,
the universe continues to contract. With T ≥ mχ ,
DM particles are effectively produced (WIMPs and
EQFIDM immediately reach thermal equilibrium
with a large hσvi, and NEQDM continues to be
produced with a small hσvi). With further contrac-
tion, the universe’s background temperature contin-
ues to increase until it finally reaches the critical
value, T ¼ Tb ≫ mχ , at the end of this phase.
Thereafter, the nonstandard-physics-inspired bounc-
ing field becomes dominant and gives rise to bounce.

(iii) The bounce phase (T ≥ Tb & −jHðTbÞj < H <
jHðTbÞj). In this phase, the dominant bouncing field
drives the universe to bounce from contraction ( −)
to expansion ( þ). Specifically, after the Universe
has contracted to its minimum size, it starts to
expand. When the background temperature reaches
T ¼ Tb during expansion, the cosmic bath becomes

FIG. 1. Hubble parameter vs time. Five stages of DM evolution
in a generic bouncing universe, from left to right: I. the prepro-
duction phase (green), II. the contraction phase (orange), III. the
bounce phase (purple), IV. the expansion phase (red), and V. the
freeze-out/freeze-in phase (blue).
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dominant again, and this phase ends. Note that for
a robust bounce, the bouncing field is restored.
No entropy-producing decay occurs during this
phase [58], leading to the matching condition
YþðTbÞ ¼ Y−ðTbÞ for WIMPs and EQFIDM [59],
where Y ≡ nχ=T3 is the DM abundance.

(iv) The expansion phase (Tb ≥ T ≥ mχ & H > 0).
After the bounce phase, the universe becomes
radiation-dominated and continues to expand. As
the background temperature falls, the EQFIDM,
which has a very tiny cross section, relativistically
freezes into thermal equilibrium at a very early time.
Meanwhile, the RBF also starts to decay at the
beginning of this phase and slightly heats the cosmic
bath. If the RBF is depleted after the EQFIDM
freezes in, part of its entropy-producing decay will
affect the relic abundance of the EQFIDM; there-
fore, we can use the EQFIDM to trace the RBF. This
phase ends at T ¼ mχ , at which time nonrelativistic
thermal decoupling occurs.

(v) The freeze-out/freeze-in phase (mχ > T & H > 0).
In this phase, with nonrelativistic thermal decou-
pling, WIMPs start to freeze out, and NEQDM starts
to freeze in. Note that such nonrelativistic thermal
decoupling cannot affect the EQFIDM because the
EQFIDM has already relativistically frozen into
thermal equilibrium earlier.

According to the above analysis, DM particles are
mainly produced in Phase II and Phase IV. In these two
phases, we have two scaling relations, H ¼ �Hmy2 for the

Hubble parameter and ghσvi ¼ hσviy−n for the thermally
averaged cross section, which can significantly simplify
Eq. (1):

dY
dy

¼∓κy−n−2ð1 − π4g−2χ Y2Þ; ð2Þ

where y≡mχ=T; κ ≡ g2χhσvim3
χπ

−4H−1
m is a newly intro-

duced dimensionless constant, with gχ being the number of
degrees of freedom of the DM particle and Hm and hσvi
being constants; and n ¼ �2, corresponding to fermions
and bosons, respectively [60]. Note that for a bosonic
candidate, n ¼ −2 leads to coincidence of the equilibrium
and freeze-out conditions, so there is no other candidate
between WIMPs and NEQDM. This is the reason why
EQFIDM has not been identified in the original literature
on big-bounce genesis [42]. However, as we will show
in this paper, for a fermionic candidate with n ¼ 2, there
is no such coincidence. Between WIMPs and NEQDM, an
EQFIDM avenue exists for fermionic DM candidates in the
bouncing universe.
By solving Eq. (2) with the initial condition Y−ðy ¼ 1Þ ¼

0 [61] and using the matching condition Y−ðTbÞ ¼ YþðTbÞ,
we can obtain the DM abundance at the end of Phase IV:

Yþðy ¼ 1Þ ¼ Ȳeq
χ tanh

�
π2

gχ

2κ

3

�
1

y3b
− 1

��
; ð3Þ

where Ȳeq
χ ¼ gχπ−2 is the thermal equilibrium abundance in

the radiation-dominated phase. The factor of 2 in front of κ
reflects that nonequilibriumDM particles can be produced in
both the contraction and expansion phases.
By checking whether the DM abundance reaches thermal

equilibrium at y ¼ 1, we can divide Eq. (3) into two cases:

Yþ ¼
�
Ȳeq
χ ; κ̃ ≫ 1; Equilibrium

Ȳeq
χ κ̃; κ̃ ≪ 1; Nonequilibrium

; ð4Þ

where κ̃ ≡ π2

gχ
2κ
3
y−3b ∝ hσviT3

b. This result indicates that for

a given value of Tb, only large-cross section DM candidates
can reach thermal equilibrium.
As the background temperature falls, nonrelativistic

thermal decoupling occurs at y ¼ 1. Using ghσvi → hσvi
and Yeq → 0 in this transition, Eq. (1) can be simplified to

dY
dy

¼ −κ
π4

g2χ

Y2

y2
; ð5Þ

for which the solution takes the form

Yðy → ∞Þ ¼
�
3

2

π2

gχ
y3bκ̃ þ Y−1þ

�−1
: ð6Þ

Again, this complete solution can be divided into two
cases:

Yf ¼
8<
:

κ̃−1
2gχ

3π2y3b
; κ̃ ≫ Y−1þ

2gχ
3π2y3b

; Freeze-out

Yþ; κ̃ ≪ Y−1þ
2gχ

3π2y3b
; Freeze-in

: ð7Þ

Note that these two sets of conditions for (non)equilib-
rium and freeze-out/freeze-in, Eq. (4) and Eq. (7), are not
coincident for fermionic DM candidates, in contrast to the
case of bosonic DM candidates [42]. This new observation
thus implies that between WIMPs and NEQDM (1 ≪
κ̃ ≪ 2

3
y−3b ), there is a new fermionic candidate (EQFIDM)

that undergoes equilibrium production and freeze-in proc-
esses, as shown in Fig. 2. To compare all of these three
avenues, we use the characteristic relation of the relic
energy density fraction, Ωχ ∝ mχYf; our results are pre-
sented in Table I. As this table shows, WIMPs have a large
cross section, causing them to reach thermal equilibrium
and eventually freeze out. NEQDM has such a small cross
section that it does not reach thermal equilibrium and,
consequently, cannot freeze out. The novel feature of
EQFIDM is that its cross section is large enough for it
to reach thermal equilibrium but too small for it to freeze
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out. Hence, it represents an intermediate avenue between
WIMPs and NEQDM.
For EQFIDM, by inserting the explicit prefactor into its

characteristic relation, we obtain

Ωχ ¼
32.4
h2

�
gχ
2

��
afiTfi

a0T0

�
3
�

mχ

1 keV

�
; ð8Þ

where the subscripts fi and 0 denote freeze-in and the
present day, respectively. In addition, by applying the
condition 1 ≪ κ̃ ≪ 2

3
y−3b , we obtain

3

2

π2

gχ

Hm

T3
b

≪ hσvi ≪ π2

gχ

Hm

m3
χ
; ð9Þ

which indicates that the EQFIDM cross section can range
from the upper bound for NEQDM to the lower bound
for WIMPs.

According to Eq. (8), Ωχ is determined not only by mχ

but also by the factor ðafiTfi=a0T0Þ3. Therefore, EQFIDM
candidates with different hσvi may have different Ωχ . The
reason is that the value of ðafiTfi=a0T0Þ3 depends on the
magnitude of the post-freeze-in entropy production.
Because EQFIDM candidates with different hσvi freeze
into thermal equilibrium at different times, they may have
different ðafiTfi=a0T0Þ3, resulting in different Ωχ . For

instance, in the large hσvi limit, hσvi → π2

gχ
Hm
m3

χ
, the EQFIDM

can track thermal equilibrium for a very long time and
finally freeze into thermal equilibrium at very late time,
Tfi ≃mχ ; consequently, only very little entropy can be
produced after freeze-in, and ðafiTfi=a0T0Þ3 ≃ 1. On the

other hand, in the small hσvi limit, hσvi → 3
2
π2

gχ
Hm
T3
b
, the

EQFIDM will track thermal equilibrium for only a very
short time and then freeze into thermal equilibrium much
earlier, at Tfi ≃ Tb. In this case, the post-freeze-in entropy
production could be very large, and ðafiTfi=a0T0Þ3 ≪ 1.
In this paper, we mainly consider two general entropy-

producing processes, one from the annihilation of Standard
Model (SM) particles and one from RBF decay. Without
loss of generality, we can take Tr ∼ 100 GeV to separate
these two entropy-producing processes [62]:

�
afiTfi

a0T0

�
3

¼
�
afiTfi

arTr

�
3
�
arTr

a0T0

�
3

: ð10Þ

FIG. 2. DM abundance vs time. A schematic plot of the three allowed evolution avenues of thermally produced DM candidates in a

generic bouncing universe: WIMPs (κ̃ ≫ Y−1þ
2gχ

3π2y3b
, dot-dashed lines), NEQDM (κ̃ ≪ 1, solid lines) and EQFIDM (1 ≪ κ̃ ≪ Y−1þ

2gχ
3π2y3b

,

dotted lines), where the value of the dimensionless parameter κ̃ ∝ hσviT3
b is determined by the nature of the DM particles and the cosmic

background.

TABLE I. Three avenues in the thermal DM scenario.

Equilibrium
production ðκ̃ ≫ 1Þ

Nonequilibrium
production ðκ̃ ≪ 1Þ

Freeze-out A: WIMP candidate …

κ̃ ≫ Y−1þ
2gχ

3π2y3b
Ωχ ∝ hσvi−1m0

χ

Freeze-in C: EQFIDM candidate B: NEQDM candidate

κ̃ ≪ Y−1þ
2gχ

3π2y3b
Ωχ ∝ hσvi0mχ Ωχ ∝ hσvim2

χ
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By doing so, we can divide EQFIDM candidates into three
categories:

(i) Large hσvi. For a large cross section (Tfi ≪ Tr),
the EQFIDM will freeze into thermal equilibrium
at a very late time, so no entropy is produced after
freeze-in, ðafiTfi=a0T0Þ3 ≃ 1. By substituting this
relation into Eq. (8), we obtain

mχ ¼ 0.004 keV; ð11Þ

where we have used Ωχ ≃ 0.26 and gχ ¼ 2. Obvi-
ously, such a hot DM candidate is not favored by
current astrophysical observations [63].

(ii) Moderate hσvi. For a moderate cross section
(Tfi ∼ Tr), the EQFIDM will freeze into thermal
equilibrium after the entropy-producing decay
of the RBF but before SM particle annihilations.
Therefore, we have ðafiTfi=arTrÞ3 ¼ 1 and
ðarTr=a0T0Þ3 ≃ 1=30 [63], yielding

mχ ¼ ðΩχ=2.2Þ keV: ð12Þ

Note that this prediction is degenerate with the
prediction in the case of inflation. The reason is
that without the entropy-producing decay of the
RBF, the EQFIDM will freeze into the same equi-
librium background in both the bouncing and
inflation scenarios. In particular, for Ωχ ¼ 0.26,
we have mχ ≃ 0.1 keV, which is still not a good
fermionic DM candidate because it is incompatible
with the condition for forming fermionic DM halos
(mχ ≥ 0.48 keV) [64].

(iii) Small hσvi. For a small cross section (Tfi ≫ Tr), the
EQFIDM will freeze into thermal equilibrium in
a very early epoch and thus can trace part of the
entropy-producing decay of the RBF; accordingly,
we have

mχ ¼ ξ−1 × ðΩχ=2.2Þ keV; ð13Þ

where ξ≡ ða3fisfi=a3rsrÞ ¼ ðafiTfi=arTrÞ3 is intro-

duced, with s ¼ 2π2

45
g⋆T3 being the background

entropy density and g⋆ being the number of back-
ground degrees of freedom. As shown in the next
section, for an effective entropy-producing RBF
decay, ξ can be much smaller than 1, and the particle
mass of the EQFIDM can be several orders of
magnitude higher than 0.1 keV, thereby resolving
the aforementioned tensions.

In the next section, we will focus on the small hσvi case
to compute ξ for all possible entropy-producing decay
processes of the RBF.

III. THE ENTROPY-PRODUCING DECAY OF
THE RESIDUAL BOUNCING FIELD

After bounce, the residual part of the bouncing field,
such as quintom matter [65], starts to decay and slightly
heats the cosmic bath. Without loss of generality, we take
Γ⋆ to be the effective dissipative constant for such a decay.
Thus, the equations of motion governing the entropy-
producing decay of the RBF take the following forms:

dρb
dt

þ 3ð1þ wbÞHρb ¼ −Γ⋆ρb; ð14Þ

dðsa3Þ43
dt

¼ 4

3

�
2π2

45
g⋆
�1

3

Γ⋆ρba4; ð15Þ

and

H2 ¼ 1

3M2
p
ðρb þ ργÞ; ð16Þ

where ργ is the total energy density of the cosmic bath, ρb is
the energy density of the RBF, and wb ≡ pb=ρb is the
equation of state (EoS). Following [66], we have used
a−4dðργa4Þ=dt ¼ Γ⋆ρb with s ¼ 2π2

45
g⋆T3 and have ignored

the variation in g⋆ during the process of interest (i.e., we
have assumed dg⋆=dt ¼ 0) to derive Eq. (15).
Substituting the solution of Eq. (14), ρbðtÞ ¼

ρbðtfiÞð aðtÞ
aðtfiÞÞ

−3ð1þwbÞe−Γ⋆ðt−tfiÞ, into Eq. (15) and integrating
it, we obtain

ξ ¼ ½I þ 1�−3
4; ð17Þ

where the newly introduced dimensionless parameter takes
the form

I ¼ ϵ

Z
tr

tfi

Γ⋆e−Γ⋆ðt−tfiÞ
�

aðtÞ
aðtfiÞ

�ð1−3wbÞ
dt; ð18Þ

with ϵ≡ ρbðtfiÞ=ργðtfiÞ being the ratio of the energy
density of the RBF to that of the cosmic bath at T¼Tfi.
By substituting Eq. (17) into Eq. (13), we obtain

mχ ¼ ½I þ 1�34 × ðΩχ=2.2Þ keV; ð19Þ

which implies that for a given value ofΩχ , an effective post-
freeze-in entropy production process (I ≫ 1) can result in a
large mχ for EQFIDM.
Γ⋆ and wb, which reflect the fundamental nature of the

RBF, and ϵ are all model-dependent quantities in various
realizations of the bouncing cosmos. Therefore, in this
paper, we are motivated to perform a model-independent
analysis to include all possibilities. As follows, using ϵ
and I, the entropy-producing decay processes of the RBF
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within a generic bouncing universe can be categorized into
three cases: A. subdominant entropy production (ϵ ≪ 1 and
I ≪ 1), B. dominant entropy production (ϵ ≫ 1), and C.
redominant entropy production (ϵ ≪ 1 and I ≥ 1).

A. Subdominant entropy production
(ϵ ≪ 1 and I ≪ 1)

For the subdominant case, ϵ ≪ 1, and the RBF is
assumed to always be subdominant (ρb ≪ ργ) since
T ¼ Tfi. Thus, entropy production occurs against a purely
radiation-dominated background, and the solution to
Eq. (16) takes the form

a ¼ aðtfiÞ½2HðtfiÞðt − tfiÞ þ 1�12: ð20Þ

By substituting this expression into Eq. (18), we obtain

I¼ ϵ

Z
tr

tfi

Γ⋆e−Γ⋆ðt−tfiÞ½2HðtfiÞðt− tfiÞþ1�12ð1−3wbÞdt: ð21Þ

As listed in Table II, using the condition Γ⋆ ¼ 2HðtfiÞ
and wb ¼ 1

3
, this integral can be further divided into four

subcases, corresponding to four types of subdominant
entropy-producing decay processes. In particular, for the
types with large Γ⋆ (Type 3 and Type 4), the decay process
is so swift that the redshift can be neglected. Thus, we
obtain I ¼ ϵ, which is independent of wb and Γ⋆, and find
that the entropy production for Type 3 and Type 4 is
negligible because ϵ ≪ 1. On the other hand, for the types
with small Γ⋆ (Type 1 and Type 2), the entropy production
occurs over a longer period and the redshift should be taken
into account, leading to

I ¼

8>><
>>:

ϵ ×
�
2HðtfiÞ

Γ⋆

�1
2
ð1−3wbÞe

Γ⋆
2HðtfiÞΓ

h
3
2
ð1 − wbÞ; Γ⋆

2HðtfiÞ
i
≥ ϵ; wb ≤ 1

3

ϵ ×
R
∞
0

�
2HðtfiÞ

Γ⋆ xþ 1
�1

2
ð1−3wbÞe−xdx < ϵ; wb >

1
3

; ð22Þ

where Γ½a; x�≡ R∞
x ta−1e−tdt is the incomplete Gamma

function. For Type 2, the RBF with wb >
1
3
is strongly

redshifted, so its entropy production is negligible, I≪
ϵ≪1. For Type 1, because wb ≤ 1

3
, entropy production

occurs over a longer time, such that I ≥ ϵ. However, the

subdominant condition requires Γ⋆≫2HðtfiÞ½ϵ−
2

1−3wb −1�−1,
which implies that I ≪ 1 (see the Appendix). Consequently,
the entropy production for Type 1 is also negligible. In short,
we can conclude that in the subdominant case, regardless of
the values of Γ⋆ and wb, the entropy production is always
negligible. In particular, for Ωχ ¼ 0.26, the EQFIDM
particle mass is mχ ≃ 0.1 keV for these four decay types.

B. Dominant entropy production (ϵ ≫ 1)

Although the cosmic bath dominates at the end of the
bounce phase (T ¼ Tb), as the expansion phase pro-
ceeds, an RBF with a smaller wb has the possibility
of becoming dominant again for some time. If the
EQFIDM freezes into thermal equilibrium in such an
RBF-dominated era, we have ϵ > 1, and the solution to
Eq. (16) takes the form

aðtÞ ¼ aðtfiÞ
�
3ð1þwbÞ

2

2HðtfiÞ
Γ⋆

ð1− e−
Γ⋆
2
ðt−tfiÞÞ þ 1

� 2
3ð1þwbÞ:

ð23Þ

By substituting this expression into Eq. (18), we obtain

I ¼ ϵ

Z
tr

tfi

Γ⋆
�
3ð1þwbÞ

2

2HðtfiÞ
Γ⋆

ð1− e−
Γ⋆
2
ðt−tfiÞÞ þ 1

�2ð1−3wbÞ
3ð1þwbÞ

× e−Γ⋆ðt−tfiÞdt: ð24Þ

As listed in Table III, using Γ⋆ ¼ 2HðtfiÞ and wb ¼ 1
3
, such

dominant entropy-producing decay processes can also be
categorized into four types. For Type 7 and Type 8, a large
Γ⋆ makes the redshift effect negligible, leading to I ¼ ϵ.
Because ϵ ≫ 1 in this case, efficient entropy production
occurs in processes of Type 7 and Type 8. On the other
hand, for the types with small Γ⋆ (Type 5 and Type 6), by
considering the redshift effect, we obtain

TABLE II. Subdominant entropy production (ϵ ≪ 1 and I ≪ 1).

Small
wb ð−1 ≤ wb ≤ 1

3
Þ

Large wb

ð1
3
≤ wb ≤ 1Þ

Small Γ⋆ Type 1:

ðΓ⋆ ≫ 2HðtfiÞ½ϵ−
2

1−3wb − 1�−1Þ
Type 2

Γ⋆ < 2HðtfiÞ ϵ ≤ I ≪ 1 I < ϵ ≪ 1

Large Γ⋆ Type 3 Type 4
Γ⋆ > 2HðtfiÞ I ¼ ϵ ≪ 1 I ¼ ϵ ≪ 1
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I ¼ ϵ

�
Γ⋆

2HðtfiÞ þ
3ð1þwbÞ

2

�
2

ð5 − 3wbÞ
�
1þ 3ð1þ wbÞ

2

2HðtfiÞ
Γ⋆

�2ð1−3wbÞ
3ð1þwbÞ :

ð25Þ

For Type 5, because wb ≤ 1
3
, the RBF is redshifted more

slowly than the cosmic bath, so the entropy production is
very efficient, I ≥ ϵ ≫ 1. However, for Type 6 with
wb > 1

3
, the RBF is redshifted faster than the cosmic

bath, so the entropy production is diluted, I ≤ ϵ. In
summary, the entropy production in decays of Type 7,
Type 8, and Type 5 is very efficient, and we have
mχ ≫ 0.1 keV for these decay types. By contrast, for
Type 6, because 0 ≤ I ≤ ϵ, mχ ranges from 0.1 keV to

ϵ
3
4 × 0.1 keV for different values of wb and Γ⋆.

C. Redominant entropy production (ϵ ≪ 1 and I ≥ 1)

In the redominant case, we again have ϵ ≪ 1 and
Γ⋆ < 2HðtfiÞ, the same as for Type 1 decays in the sub-
dominant case. However, we will now investigate the other

part of the parameter region, Γ⋆ ≪ 2HðtfiÞ½ϵ−
2

1−3wb − 1�−1,
which allows the RBF to become redominant after the
EQFIDM freezes in. To facilitate our analysis, we divide
the history for this kind of process into three phases:
(1) The pre-redominant phase (tfi ≤ t ≤ trd). The

RBF is subdominant, so the entropy production is
negligible.

(2) The redominant phase (trd ≤ t ≤ trsd). The RBF
becomes redominant, resulting in efficient entropy
production.

(3) The post-redominant phase (t > trsd). As the
RBF is depleted, the cosmic bath becomes
dominant again, so the entropy production is again
negligible.

Here, trd ¼ ½2HðtfiÞ�−1ðϵ−
2

1−3wb − 1Þ can be obtained from
ργðtrdÞ ¼ ρbðtrdÞ, and trsd → ∞ can be assumed for
simplicity.
Because the main contribution to entropy production

occurs in the redominant phase, we have

I¼ ϵ
ρbðtrdÞ
ρbðtfiÞ

�
aðtrdÞ
aðtfiÞ

�
4
Z

trsd

trd

Γ⋆
ρb

ρbðtrdÞ
�

a
aðtrdÞ

�
4

dt:

ð26Þ

By calculating the integral with the background solution,

aðtÞ¼ aðtrdÞ
�
3ð1þwbÞ

2

2HðtfiÞ
Γ⋆

ð1−e−
Γ⋆
2
ðt−tfiÞÞþ1

� 2
3ð1þwbÞ;

ð27Þ

and using ρbðtrdÞ
ρbðtfiÞ ð

aðtrdÞ
aðtfiÞÞ

4 ¼ ϵ−1 (see the Appendix), we

obtain

I ¼
ð Γ⋆
2HðtfiÞ þ

3ð1þwbÞ
2

Þ2

ð5 − 3wbÞ
�
1þ 3ð1þ wbÞ

2

2HðtfiÞ
Γ⋆

�2ð1−3wbÞ
3ð1þwbÞ ;

ð28Þ

which is independent of ϵ (note that this result is different
from that for Type 5 by a factor of ϵ). Notably, this
result implies that if the RBF can become redominant, its
entropy production depends solely on its fundamental
nature, as reflected by Γ⋆=2HðtfiÞ and wb. This is because
the main contribution to entropy production occurs
during the redominant phase (trd ≤ t ≤ trsd), for which
the duration and other details depend only on Γ⋆=2HðtfiÞ
and wb. In other words, for a sufficiently small Γ⋆, Γ⋆ ≪
2HðtfiÞ½ϵ−

2
1−3wb − 1�−1, the decay of the RBF can still lead to

a significant contribution to the post-freeze-in entropy
production even if the RBF contributes only a very small
portion of the total energy density at freeze-in.
In Table IV, we list the characteristics of Type 9 entropy-

producing decay. As we will show, for different values of
Γ⋆=2HðtfiÞ and wb, the EQFIDM particle mass corre-
sponding to this decay type can range from the sub-keV
scale to the super-TeV scale.
In summary, by performing a model-independent analy-

sis of the entropy-producing decay of the RBF within a
generic bouncing universe, we have identified all three
general cases of entropy production, which can be sub-
divided into nine different types. Specifically, the entropy

TABLE III. Dominant entropy production (ϵ ≫ 1).

Small wb ð−1 < wb ≤ 1
3
Þ Large wb ð1

3
< wb ≤ 1Þ

Small Γ⋆ Type 5 Type 6
Γ⋆ < 2HðtfiÞ

I ¼ ϵ

�
Γ⋆

2HðtfiÞþ
3ð1þwbÞ

2

�
2

ð5−3wbÞ
�
1þ 3ð1þwbÞ

2

2HðtfiÞ
Γ⋆

�2ð1−3wbÞ
3ð1þwbÞ I ¼ ϵ

�
Γ⋆

2HðtfiÞþ
3ð1þwbÞ

2

�
2

ð5−3wbÞ
�
1þ 3ð1þwbÞ

2

2HðtfiÞ
Γ⋆

�2ð1−3wbÞ
3ð1þwbÞ

≥ ϵ ≫ 1 < ϵ

Large Γ⋆ Type 7 Type 8
Γ⋆ > 2HðtfiÞ I ¼ ϵ ≫ 1 I ¼ ϵ ≫ 1
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production in processes of Type 5, Type 7, and Type 8 is
very efficient, leading to mχ ≫ 0.1 keV. In processes of
Type 1, Type 2, Type 3, and Type 4, the entropy production
is inefficient, so mχ ≃ 0.1 keV. For Type 6, because the
entropy production can be diluted by the redshift effect,
0.1 keV ≤ mχ ≪ ϵ

3
4 × 0.1 keV. Finally, in the most inter-

esting case, Type 9, the entropy production is determined
solely by the fundamental nature of the RBF, as reflected by
Γ⋆=2HðtfiÞ and wb, and is independent of ϵ. With different
values of Γ⋆=2HðtfiÞ and wb, the EQFIDM particle mass
can range from the sub-keV scale to the super-TeV scale. In
the next section, we will investigate how current astro-
physical observations can constrain the possible types of
entropy production.

IV. ASTROPHYSICAL IMPLICATIONS

Because EQFIDM consists of collisionless particles, its
motion can smooth out inhomogeneities of spacetime and
matter during late-time evolution and induce a suppression
of the linear matter spectrum at a scale comparable to its
free-streaming length [67],

Lfs ≃ 0.11

�
Ωχh2

0.15

�1
3

�
mχ

keV

�
−4
3

Mpc ¼ 1.8ðI þ 1Þ−1 Mpc;

ð29Þ

where Eq. (13) and Eq. (17) have been used in the last step.
According to this equation, with inefficient entropy pro-
duction (I ≤ 1), this suppression occurs on a scale of
approximately Lfs ≃ 1.8 Mpc, which is too large to be
compatible with the current Lyman-α forest observations of
the (non)linear matter spectrum—as we will show. Only if
the entropy production from the RBF is efficient (I ≫ 1)
can the suppression scale be as small as desired.
To explicitly plot the linear matter spectrum in the

presence of EQFIDM, we adopt the numerical simulation
results presented in Ref. [56]. Due to the free streaming of
the EQFIDM, the linear matter spectrum takes the form

PðkÞ ¼ PcdmðkÞT 2ðkÞ; ð30Þ

where PcdmðkÞ is the spectrum corresponding to the
extreme cold DM (CDM) candidate and T ¼
½1þ ðαkÞ2ν�−5

ν is a transfer function with ν ¼ 1.12 and

α ¼ 0.57ð Ωχ

0.26ÞðI þ 1Þ−0.83.
In Fig. 3, we plot the linear matter spectrum for EQFIDM

with I ¼ f10−2; 10; 50; 300g (the dotted lines from left to
right), a warm DM candidate with mχ ¼ 5.3 keV (the
dashed line), and the fiducial CDM candidate (mχ → ∞,
the solid line) to illustrate how the cut in the spectrum
depends on the value of I. The results show that for a
larger I, the suppression of the spectrum occurs on a

0.01 0.10 1 10 100

0.001

0.100

10

1000

k (h–1Mpc–1)

P
(k

)
(M

p
c

h
–1

)3

CDM Spectrum

m =5.3 keV

I=10–2 10 50 300

FIG. 3. Power spectra of linear matter perturbations for EQFIDM with I ¼ f10−2; 10; 50; 300g (the dotted lines from left to right), a
warm DM candidate with mχ ¼ 5.3 keV (the dashed line), and the fiducial CDM candidate (the solid line).

TABLE IV. Redominant entropy production (ϵ ≪ 1 and I ≥ 1).

Small wb ð−1 < wb ≤ 1
3
Þ Large wb ð1

3
≤ wb ≤ 1Þ

Small Γ⋆ Type 9: ðΓ⋆ ≪ 2HðtfiÞ½ϵ−
2

1−3wb − 1�−1Þ …
Γ⋆ < 2HðtfiÞ

I ¼
�

Γ⋆
2HðtfiÞþ

3ð1þwbÞ
2

�
2

ð5−3wbÞ
�
1þ 3ð1þwbÞ

2

2HðtfiÞ
Γ⋆

�2ð1−3wbÞ
3ð1þwbÞ

Large Γ⋆ … …
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smaller scale because a heavier EQFIDMmass corresponds
to a shorter free-streaming length. Note that these are only
the theoretical curves of the linear matter spectrum. In
astrophysical observations, at low redshifts (z ≃ 0), the
linear matter spectrum is not valid for k ≥ 0.1h Mpc−1

because nonlinear clustering effects are no longer negli-
gible (see [68] for a review). Consequently, the Lyman-α
probe measures more detail on nonlinear scales and can
better constrain the DM particle mass (for example, see
Refs. [69–73]). In particular, the current Lyman-α forest
observations have excluded DM candidates with particle
masses smaller than 5.3 keV [55] (we thank the anonymous
referee for informing us of these new data), as their free-
streaming lengths are too great. Explicitly, using Eq. (19),
we find that EQFIDM candidates of types corresponding to
negligible entropy production (I ≪ 1: Type 1, Type 2, Type
3, and Type 4) have been excluded (one can also gain some
intuition about how the Lyman-α observations can exclude
certain cases from Fig. 3). On the other hand, EQFIDM
candidates of types corresponding to significant entropy
production (I ≫ 102: Type 5, Type 7, and Type 8) are cold
enough to be compatible with these observations.
Meanwhile, Type 6 (0 ≤ I ≪ ϵ, ϵ ≫ 1) requires ϵ ≫ I ≫
102 to be compatible with the current observations. Type 9,

for which the EQFIDM particle mass is independent of ϵ,
can also be compatible with the current observations in a
sizeable parameter space of Γ⋆=2HðtfiÞ and wb, as we
will show.
In Fig. 4, we plot the exclusion region (mχ ≤ 5.3 keV)

for Type 9 with respect to wb and Γ⋆=2HðtfiÞ. As this
figure shows, there is a sizeable region in which EQFIDM
can be compatible with the current Lyman-α forest
observations [55]. Specifically, in the outermost region
(5.3 keV ≤ mχ ≤ 100 keV), the EQFIDM is warm because
the entropy production from the RBF is mild. However,
in the inner regions, with very effective entropy production,
the EQFIDM particle mass is very large and can even
exceed the TeV scale. In these regions, the EQFIDM can
be considered a CDM candidate, which is worthy of
further study.
Furthermore, according to the above analysis, both Type

9 (for the outermost region) and Type 6 (with large ϵ) can
serve as warm DM candidates. Therefore, we are motivated
to investigate their potential to alleviate the well-known
small-scale crisis (SSC). As one of the most critical
outstanding puzzles in modern astrophysics, the SSC refers
to an underlying discrepancy between cosmological pre-
dictions and astrophysical observations, which manifests in

FIG. 4. Contour plot for the mass of EQFIDM particles of Type 9 with respect to the fundamental nature of the RBF, as characterized
by wb and Γ⋆=2HðtfiÞ. The blank region is excluded by the current Lyman-α forest observations.

WARM AND COLD DARK MATTER IN A BOUNCING UNIVERSE PHYS. REV. D 102, 123530 (2020)

123530-9



three main aspects: the missing satellites problem, the cusp
vs core problem, and the too-big-to-fail problem [57]. More
specifically, current observations on the subgalactic scale
indicate that fewer satellites are observed than are predicted
from N-body numerical simulations based on standard
ΛCDM cosmology. Additionally, the observed satellites are
less concentrated than theoretically predicted. Although
this crisis may be alleviated by the further elucidation
of subtle baryonic physics and/or better interpretation of the
observational data [74–80], it may also imply a suppression
of the matter density perturbations at small scales
(10 kpc ≤ l ≤ 200 kpc) [56]. To realize such suppression,
many salient mechanisms beyond simple inflation and
CDM have been proposed, mainly including nonsimple-
inflation-inspired models such as broken-scale-invariance
inflation [81–84] and nonsimple-DM-inspired models such
those presented in [85–92]. Warm DM candidates can also
induce the desired suppression, as their motion can smooth
out anisotropies and inhomogeneities at scales comparable
to their free-streaming lengths [93–99].
In Fig. 5, we illustrate the parameter regions for Type 9

and Type 6 (with ϵ ¼ 104) for 5.3 keV ≤ mχ ≤ 32.6 keV.
These candidates can alleviate the SSC by inducing a
suppression of the linear matter spectrum at 10 kpc ≤
10Lfs ≤ 115 kpc in ðΓ⋆=2HðtfiÞ; wbÞ space. As this figure
shows, both types have sizeable parameter regions in which
they can alleviate the SSC. The results for Type 9 imply that
even though the RBF may contribute only a tiny portion of
the total energy density at freeze-in and have only a very

tiny decay rate, it can still alleviate the SSC. However, the
remaining seven types of candidates cannot alleviate the
SSC because their entropy production is either too efficient
or too inefficient.

V. SUMMARY

In this paper, by carefully examining the thermal
decoupling conditions within a generic bouncing universe,
we reveal a new fermionic DM candidate called thermal
equilibrium freeze-in DM (EQFIDM), which can freeze
into thermal equilibrium shortly after a bounce. Because
the relic abundance of EQFIDM depends on the post-
freeze-in entropy production, we use it as a novel probe to
trace the entropy production from the residual bouncing
field (RBF). Specifically, we present a model-independent
formalism to obtain all nine possible types of entropy-
producing RBF decay processes within a generic bouncing
cosmos (Type 1—Type 9). We find that due to the
magnitudes of entropy production from these different
types of processes, the EQFIDM particle mass can range
from the sub-keV scale to the super-TeV scale.
Using current Lyman-α forest observations, we find

that although four types of RBF decay processes
(Type 1—Type 4) have already been excluded because
of their low entropy production, the remaining five types,
which suggest warm and cold EQFIDM candidates with
efficient entropy production, are accommodated by the
current observations, in either the whole parameter region
(Type 5, Type 7, and Type 8) or some part of it (Type 6 and
Type 9). In particular, for redominant entropy-producing
RBF decay (Type 9), the entropy production is independent
of the energy density ratio at freeze-in, ϵ, which implies
that the EQFIDM particle mass in this case is determined
solely by the fundamental nature of the RBF (Γ⋆=2HðtfiÞ
and wb). Then, we illustrate how the nature of the RBF can
be constrained by the current observations.
Furthermore, because both Type 9 and Type 6 admit

warm DM candidates within certain parts of their parameter
regions, we also investigate their potential to alleviate the
small-scale crisis (SSC). It turns out that both types of
candidates have a sizeable parameter region that can
alleviate the SSC. In particular, the results for Type 9
indicate that even though the RBF may contribute only a
tiny portion of the total energy density at freeze-in and have
only a very tiny decay rate, the SSC can still be alleviated.
In summary, our model-independent analysis may shed

light on model building in bouncing cosmology. Through
optimization based on future astrophysical observations,
the entropy-producing decay processes of the RBF and the
properties of different types of EQFIDM may be further
constrained. In addition, it is hoped that the results for
Type 9 may help us better understand the SSC in regard to
postbounce entropy production. Finally, we wish to high-
light that a similar analysis can also be applied to the

FIG. 5. Parameter regions for Type 9 and Type 6 (with ϵ ¼ 104)
for 5.3 keV ≤ mχ ≤ 32.6 keV in which the corresponding EQ-
FIDM candidates can alleviate the SSC by inducing a suppression
of the linear matter spectrum at 10 kpc ≤ 10Lfs ≤ 115 kpc.
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NEQDM candidate, as its abundance is also sensitive to the
entropy-producing decay of the RBF.
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APPENDIX: REDOMINANCE CONDITION

To ensure that the RBF is always subdominant for
Type 1, we have ργðtfi þ ΔtÞ ≫ ρbðtfi þ ΔtÞ, with
Δt ¼ Γ−1⋆ being the half-life of the RBF, which leads to�

aðtfiÞ
aðtfi þ Γ−1⋆ Þ

�
1−3wb

≫ ϵ; ðA1Þ

where ϵ≡ ρbðtfiÞ=ργðtfiÞ ≪ 1 for the subdominant case
and the redominant case. By substituting Eq. (20) into this
expression, we obtain

Γ⋆ ≫ 2HðtfiÞ½ϵ−
2

1−3wb − 1�−1; ðA2Þ

which is the subdominance condition for the RBF.
Additionally, by applying this condition to Type I (Γ⋆ <
2HðtfiÞ, −1 ≤ wb ≤ 1

3
and ϵ < 1), we can obtain

I ≪ ϵ × ϵ−1e
Γ⋆

2HðtfiÞΓ
�
3

2
ð1 − wbÞ;

Γ⋆
2HðtfiÞ

�

≃ Γ
�
3

2
ð1 − wbÞ

�
≃ 1; ðA3Þ

where Γ½n� is the Gamma function, which indicates that the
entropy production for Type I is also negligible.
Accordingly, we can obtain the redominance condition

for Type 9,

Γ⋆ ≪ 2HðtfiÞ½ϵ−
2

1−3wb − 1�−1; ðA4Þ

which straightforwardly leads to the following useful
relation for Type 9:

ρbðtrdÞ
ρbðtfiÞ

�
aðtrdÞ
aðtfiÞ

�
4

¼ e
− Γ⋆
2Hðtf iÞðϵ

− 2
1−3wb−1Þ

ϵ−
2

1−3wb
·
1−3wb

2 ¼ ϵ−1:

ðA5Þ
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