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We conduct a thorough Bayesian analysis of the possibility that the black hole merger events seen in
gravitational waves are primordial black hole (PBH) mergers. Using the latest merger rate models for PBH
binaries drawn from a log-normal mass function, we compute posterior parameter constraints and Bayesian
evidences using data from the first two observing runs of LIGO-Virgo. We account for theoretical
uncertainty due to possible disruption of the binary by surrounding PBHs, which can suppress the merger
rate significantly. We also consider simple astrophysically motivated models and find that these are favored
decisively over the PBH scenario, quantified by the Bayesian evidence ratio. Paying careful attention to the
influence of the parameter priors and the quality of the model fits, we show that the evidence ratios can be
understood by comparing the predicted chirp mass distribution to that of the data. We identify the posterior
predictive distribution of chirp mass as a vital tool for discriminating between models. A model in which all
mergers are PBH binaries is strongly disfavored compared with astrophysical models, in part due to the
overprediction of heavy systems havingMchirp ≳ 40 M⊙ and positive skewness over the range of observed
masses which does not match the observations. We find that the fit is not significantly improved by adding a
maximum mass cutoff or a bimodal mass function or imposing that PBH binaries form at late times. We
argue that a successful PBH model must either modify the log-normal shape of the initial mass function
significantly or abandon the hypothesis that all observed merging binaries are primordial. We develop and
apply techniques for analyzing PBH models with gravitational wave data, which will be necessary for
robust statistical inference as the gravitational wave source sample size increases.
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I. INTRODUCTION

Primordial black holes (PBHs) [1–4] have long been
recognized as a unique dark matter candidate that does not
require the existence of a new particle or modification to
gravity (see Refs. [5–8] for recent reviews). Interest in
PBHs has increased greatly due to the detection of black
hole (BH) mergers emitting gravitational waves (GWs) by
LIGO and Virgo [9], since it is possible that the merging
objects are primordial in origin [10–12].
Assuming that some fraction of the observed merger

events are primordial binaries, one can place bounds on the
fraction of the dark matter that should be in PBHs of the
relevant mass range to explain the observed merger rate
(see Ref. [13] for a review). If all of the confirmed LIGO-
Virgo events are PBH mergers, then the fraction of dark
matter in PBHs, fPBH, is typically found to be of order 10−3

depending on assumptions about the evolution and for-
mation mechanism of the binary (see Ref. [14] for a

comprehensive recent review), although fPBH ≈ 1 is still
permitted in certain models (e.g., Ref. [15]).
The increase in sample size to ten events [16] since the

first detection has allowed several groups to make fits of the
PBH initial mass function to the LIGO data, typically
concluding that a log-normal mass function with central
mass mc ∼ 10 M⊙ and a width of order unity is the best fit
[17–19]. Connecting the empirical distribution of black
hole source parameters to an initial mass function for PBHs
is in general nontrivial and involves modeling the formation
of the binary and its evolution through to the merger event
[20,21], but the reward for this is a direct constraint on the
conditions in the early Universe which gave rise to PBH
formation. The initial mass function can be predicted from
the spectrum of curvature fluctuations at the formation
epoch, implying that constraints on the mass function can
give unique information on a host of poorly understood
physics in the early Universe, including the small-scale
power spectrum, non-Gaussianity, phase transitions, and
inflation [22–25]. In general, the calculation is more
complicated for the extended mass functions required by
the LIGO data if more than one event is primordial, but,*ahall@roe.ac.uk
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encouragingly, recent simplified models for PBH binary
evolution tentatively give good agreement with the results
of N-body simulations [26].
What previous analyses have neglected, however, is

whether the best-fit PBH model is a good fit to the data
and, more specifically, whether the model is a good fit
compared to simple astrophysical BH merger models such
as those studied by the LIGO and Virgo collaborations.
With the event rate in the recent LIGO-Virgo O3 observing
run roughly double what it was in the O1 and O2 observing
runs, the importance of a rigorous statistical analysis of the
PBH formation scenario is becoming increasingly neces-
sary. The required analysis can be compared with more
conventional studies of stellar black hole binary popula-
tions using GW events [27–31] where techniques such as
Bayesian model comparison, tests of model consistency,
and goodness-of-fit tests are becoming commonplace.
These tests are in principle able to rule out whole classes
of PBHmass functions for any values of their parameters, if
those mass functions predict merger populations which do
not match the observations. The ability of Bayesian
methods to quantify this is one of several advantages to
pursuing this line of study.
In this paper, we perform Bayesian tests of the PBH

merger scenario using the binary black hole (BBH) merger
events in the first two observing runs of LIGO-Virgo. We
quantify how well the data fit the PBH merger scenario
compared with simple astrophysically motivated models
using the latest calculations for the formation of binaries
during radiation domination and their subsequent evolution
and possible disruption. The techniques we employ provide
a link between the methodology of the LIGO-Virgo and
GW community and that of the PBH community. We
consider individual source masses and redshifts in our
analysis, which provides more constraining power than
simply using the component spins (for which a Bayesian
analysis in the spirit of ours was performed recently
in Ref. [32]). By accounting for correlated parameter
uncertainties, the nonuniform selection probability of
LIGO-Virgo, and an accurate likelihood function for the
population parameters, we provide a comprehensive stat-
istical study of the PBH formation channel for merging
black hole binaries. We pay particular attention to how the
models are able to fit the data and why certain models are
favored over others.
As is well known, Bayesian tests using the model

posterior probability or evidence are sensitive to the priors
assigned to the parameters of each model, which often lack
a strong physical motivation when the models are phe-
nomenological. In this case, the best one can do is trans-
parently present the chosen priors and check the sensitivity
of the results to alternative choices. The sensitivity is
typically only logarithmic, but we will be careful to account
for uncertainty in the choice of prior when presenting our
results.

Unless otherwise stated, we adopt units where G ¼
c ¼ 1. When computing background quantities, we assume
a flat ΛCDM cosmological model with parameters fixed to
the best-fitting values of Planck 2015 [33]. We note that the
sources considered in this work are all at sufficiently low
redshift that our results are insensitive to the choice of
cosmological model.

II. DATA

To test PBH models of binary mergers, we use the
ten BH-BH merger events in the Gravitational-Wave
Transient Catalogue from the first two observing runs of
LIGO-Virgo (GWTC-1) [16].1 As we shall see, it is
sufficient for our population-level analysis to use only
samples from the posterior distribution of source param-
eters (masses, spins, etc.) for each source. In Fig. 1, we
show posterior samples in the plane of detector-frame
(i.e., redshifted) chirp mass Mz and mass ratio q, where
Mz ¼ ð1þ zÞðm1m2Þ3=5ðm1 þm2Þ−1=5 and q ¼ m2=m1.
Note that m2 < m1 has been enforced in the GWTC-1
posteriors.
The detector-frame chirp mass is a well-constrained

parameter for each source, being constrained with
typically less than or approximately equal to 10%
precision. Being closely related to measurable aspects
of the source waveforms (specifically the frequency
evolution of the GW strain), it is also practically
uncorrelated with other source parameters, as shown
for the case of q in Fig. 1. This is in contrast with other
descriptors of the absolute mass scale of the BBH; the
heavier mass m1 is typically only constrained at the
10%–50% level and is highly correlated with the lighter
mass m2, while the total mass is on average constrained
with greater than or approximately equal to 10%
precision and is often highly correlated with q. For
this reason, we will often present constraints in terms of
chirp mass rather than heaviest mass or total mass.2

Note that the redshifts of the sources in GWTC-1 are
sufficiently low that there is only a small difference
between source-frame and detector-frame masses.
Any inference of BBH populations must carefully

account for the selection function of LIGO-Virgo. We
adopt an accurate semianalytic approach to computing
pdetðλÞ, the probability of detecting a source given it has
source parameters λ, following the prescription in
Refs. [27,31]. We use the public code GWDET [35] to
compute pdetðm1; m2; zÞ on a grid of values for subsequent
interpolation. Following the procedure described in
Refs. [36,37] and approximating detection as coming from
a single interferometer, pdet is computed as

1We discuss the implications of recent BBH detections in the
O3a run in Sec. VII.

2This point has also been recognized in the recent Ref. [34].
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pdetðm1; m2; zÞ ¼
Z

1

ρ�=ρoptðm1;m2;zÞ
pðωÞdω; ð1Þ

where ρoptðm1; m2; zÞ is the signal-to-noise ratio (S=N) for
an optimally oriented source, face on directly above the
interferometer. The S=N threshold for detection is approxi-
mated as ρ� ¼ 8, ω encodes all the angular dependence of
the interferometer response, and the orientation and angular
position of the source have been marginalized over assum-
ing isotropy, encoded in the distribution pðωÞ. The signal-
to-noise ratio for an optimally oriented source is computed

using the routines in the PyCBC software package [38]. To
compute the noise power spectral density (PSD), we
assume the IMRPHENOMD waveform approximant assuming
nonspinning black holes,3 and we approximate the PSD of
each source in the GWTC-1 catalog with the PyCBC analytic
function aLIGOEarlyHighSensitivityP1200087 [42]; i.e., we
assume that each source is detected in a single aLIGO
detector. This is a sufficiently good approximation for our
purposes to the true PSD of each source, with the biggest
difference arising at the lowest frequencies between f ¼
10 Hz and f ¼ 20 Hz, a frequency range to which our final
results are insensitive.
In Fig. 2, we show contours of the detection probability

for a source at z ¼ 0.1 as a function of the source-frame
component masses (see, e.g., Ref. [43] for similar plots).
The S=N threshold results in a suppression of the detection
probability below about 5 M⊙. The figure makes it clear
that LIGO in the O1O2 observing runs was sensitive to
large mass ratios, with this increasingly true for the more
sensitive O3 run, which has yielded objects with q ≈ 0.3
[44] and q ≈ 0.1 [45]. Note that the sensitivity falls to
zero at very high (a few hundred solar) masses where
the waveforms have no support above the minimum
frequency flow.
In Fig. 3, we show the redshift dependence of pdet for a

range of total source-frame masses and mass ratios. This
dependence arises primarily from the d−1L dropoff in the
S=N, but there is also a dependence via the redshifted
(detector-frame) masses ð1þ zÞm1;2 at fixed source mass.

FIG. 2. Contours of constant detection probability at z ¼ 0.1 as
a function of the source-frame component masses, assuming the
O1O2 observing specifications defined in the text.

FIG. 1. Posterior samples from each of the sources in the O1O2 source catalog, indicated in each panel. We show samples in the plane
of redshifted chirp massMz and mass ratio q, marginalized over the other source parameters. Samples have been thinned by a factor of
16 for visual clarity.

3Note that the assumption of nonspinning black holes should
be a reasonable approximation in the case of PBH models, which
are expected to have negligible spin at formation [39,40],
although it is possible that subsequent accretion can lead to
nonzero spin for the higher mass objects detected by LIGO [41].
In the case of astrophysical merger models, we will see that this is
a reasonable approximation to the S=N.
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Sources with redshifts z≳ 0.7 are undetectable in the
O1O2 runs for any component masses, with this upper
limit quickly dropping as the total mass is lowered. For a
total mass M ¼ 20 M⊙, only sources with z≲ 0.2 are
detectable, and then only for equal mass components. For
comparison, the highest redshift in the GWTC-1 catalog is
z ≈ 0.49 (GW170729, total mass M ≈ 84 M⊙, albeit with
significantly nonzero spin), while the median redshift
source is z ≈ 0.16.
We close this section by noting that the methodology

we have adopted for computing pdet is a commonly
used approach in BBH population analyses (see, e.g.,
Refs. [29,30,37,46]). Nonetheless, as discussed in
Appendix A of Ref. [31], our approximate method for
computing the detection probability can overestimate the
sensitive volume hVTi by up to a factor of 2 compared to
the more accurate approach of injecting signals into the
source detection pipeline (see their Fig. 9). This means that
our constraints on overall merger rates are expected to be
underestimated by at most a factor of 2. This translates into
an underestimation of fPBH of at most 20% for the models
we consider.

III. BINARY MERGER RATE MODELS

In this section, we present the models of merging black
hole binaries which we confront with the GWTC-1 catalog.
The fundamental quantity we require for our statistical
analysis is the differential merger rate density in the source
frame as a function of masses and redshift.

A. PBH merger models

Many attempts have been made to model the merger rate
of PBH binaries (e.g., Refs. [10,11,17,18,20,47,48]). As in
Ref. [21], we use the formalism of Ref. [26], which itself
builds upon that in Ref. [20]. We will first give a brief

sketch of the calculation before presenting the resulting
PBH merger rate. Readers unconcerned with the derivation
may skip to Eqs. (8) and (9) where the differential merger
rate is presented.
The calculation of Ref. [26] follows a pair of PBHs

drawn from a mass function ψðmÞ (normalized to unity),
initially comoving with the cosmic expansion in radiation
domination. The PBH pair decouples from the expansion
and forms a high-eccentricity binary, with gravitational
torquing from other surrounding PBHs and a smoothly
distributed dark matter component with small Gaussian
fluctuations. The PBH binary forms with dimensionless
angular momentum j ≪ 1, emits GWs, and merges after a
time [49],

τ ¼ 3

85

r4a
ηM3

j7; ð2Þ

where ra is the semimajor axis of the binary, M is the total
mass, and η is the symmetric mass ratio defined by
η ¼ m1m2=ðm1 þm2Þ2. The ellipticity of the binary is
given by e ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
. The semimajor axis ra follows from

the dynamics of the system prior to binary formation and is
given by ra ≈ 0.1adcx0, where adc is the scale factor at
decoupling and x0 is an initial comoving separation.
Decoupling takes place at roughly adc ≈ aeq=δb, where
aeq is the scale factor at matter-radiation equality and
δb ≫ 1 is the effective density fluctuation generated by the
PBH pair, given by δb ¼ ðM=2Þ=ρMVðx0Þ with ρM the
background matter density and VðxÞ ¼ ð4π=3Þx3. We refer
the reader to Ref. [26] for further discussion.
The time taken for a newly formed PBH binary to merge

is a crucial factor in determining the rate of merging sources
in the LIGO-Virgo sensitive volume, and Eq. (2) makes
clear its high sensitivity to the angular momentum of the
binary. At formation, this angular momentum is imparted

FIG. 3. Detection probability as a function of redshift for equal component masses and a range of total masses (left panel) and total
mass M ¼ 60 M⊙ and a range of mass ratios q (right panel). Warmer colors (increasing from bottom to top in both panels) indicate
greater values of M or q.
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by gravitational torquing from other PBHs and fluctuations
in the surrounding dark matter density. In the model of
Refs. [20,26], these dark matter fluctuations are modeled as
Gaussian with variance hδ2Mi, with contributions from dark
matter mass scales greater than approximately 10−3M ≈
10−2 M⊙ for PBHs in the LIGO mass range. Following
Refs. [20,50], we assume a fixed value hδ2Mi1=2 ¼ 0.005
extrapolating the linear adiabatic power spectrum measured
on cosmic microwave background scales, although one
should note that models of PBH formation typically invoke
enhanced small-scale power or non-Gaussianity in the dark
matter distribution, which could boost hδ2Mi significantly.
The variance of angular momentum fluctuations in the
vicinity of the PBH binary is then

σ2j;M ¼ 6

5
j20

σ2M
f2PBH

; ð3Þ

where j0 is a characteristic angular momentum (with
j0 ≪ 1), fPBH ≡ ρPBH=ρDM is the ratio of the PBH
energy density to the dark matter energy density, and σ2M
is defined in Ref. [26] as a “rescaled variance” given by
σ2M ≡ ðΩM=ΩDMÞ2hδ2Mi. Since the PBH binary is assumed
to form deep in the radiation era when baryons are tightly
coupled to photons, only the dark matter contributes to
fluctuations in the local tidal field from the smooth matter
component, and hence hδ2Mi should appear on the right-
hand side of Eq. (3). The difference is negligible in
comparison to the uncertainty on the variance on these
small scales, however, so for consistency with Ref. [26], we
take σM ≈ 0.006.
The total variance of the angular momentum imparted to

the PBH binary consists of the dark matter fluctuations plus
those of the surrounding PBHs and is given by

σ2j ¼ σ2j;M þ σ2j;PBH ¼ 6

5
j20

�
1þ σ2m=hmi2

N̄ðyÞ þ σ2M
f2PBH

�
; ð4Þ

where σ2m is the variance of the PBH mass function, hmi is
the average PBH mass (angle brackets denote expectation
values over ψ=m), and N̄ðyÞ is the expected number of
PBHs within a comoving radius y of the binary. This latter
quantity is needed because the model of Ref. [26] assumes
that there is an exclusion zone around the binary of radius y,
inside of which no other PBH can reside, lest its close
proximity fatally disrupt the newly formed binary. The limit
N̄ðyÞ → 0 corresponds to no such exclusion.
The distribution of the angular momentum imparted to

the binary follows from assuming Gaussianity for the dark
matter and Poisson statistics for the surrounding PBHs. As
shown in Ref. [20], this results in a Holtsmark distribution
for the latter. The resulting probability density pj for the
angular momentum j is

jpjðjÞ ¼
Z

∞

0

du uJ0ðuÞ exp
�
−N̄ðyÞ

Z
dnðmÞ

n

× F

�
u

m
hmi

1

N̄ðyÞ
j0
j

�
− u2

3

10

σ2M
f2PBH

j20
j2

�
; ð5Þ

where the innermost integral is over the number density of
PBHs with

dn
dm

¼ ρPBH
ψðmÞ
m

; ð6Þ

and FðxÞ ¼ 1F2ð−1=2; 3=4; 5=4;−9x2=16Þ − 1 with 1F2 a
generalized hypergeometric function. In the limit N̄ðyÞ→0
and σM ≪ fPBH, we obtain the result of Ref. [20], and in
the limit N̄ðyÞ → ∞, we obtain a Rayleigh distribution for j
with width σj, i.e., torquing only by the Gaussian dark
matter fluctuations.
As in Refs. [14,21,26], we take

N̄ðyÞ ¼ M
hmi

fPBH
fPBH þ σM

; ð7Þ

which agrees well with the numerical simulations of
Ref. [26] for fPBH ≲ 10−1. To understand the form of this
expression, first note the limiting case of a monochromatic
mass function and σM ≪ fPBH. In this case, N̄ðyÞ ¼ 2; i.e.,
we expect two PBHs in the vicinity of the binary—the two
components black holes themselves. This agrees with the
discussion in Ref. [51] that y should be roughly the
interparticle distance of the PBH distribution. In the case
in which σM ≫ fPBH, we have N̄ðyÞ → 0; i.e., the exclu-
sion region around the binary is expected to hold very few
PBHs. Equation (7) extends this simple picture to the case
of a broad mass function, identifying the transition value of
fPBH as ∼σM. We note that there is considerable uncertainty
in the potential rate of disruption of newly formed binaries
by surrounding PBHs, and deviations from Eqs. (5) and (7)
may be expected in the case of broad mass functions.
The merger rate density at time τ of binaries in the model

of Ref. [26] is given by dR ¼ S × dR0, where

dR0 ¼
1.6 × 106

Gpc3 yr
f

53
37

PBHη
−34
37

�
M
M⊙

�
−32
37

�
τ

τ0

�
−34
37

× ψðm1Þψðm2Þdm1dm2 ð8Þ

is the rate in the limit N̄ðyÞ → 0 and σM=fPBH → 0, with
τ0 ¼ 13.8 × 109 yr, and S is the suppression factor
given by
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S ¼ e−N̄ðyÞ

Γð21=37Þ
Z

∞

0

dv v−
16
37 exp

�
−N̄ðyÞhmi

Z
∞

0

dm
m

× ψðmÞF
�

m
hmi

v
N̄ðyÞ

�
−

3σ2Mv
2

10f2PBH

�
: ð9Þ

The suppression factor S quantifies the effect of demand-
ing that no PBHs be present in a region of size y around the
binary [which would be expected to contain N̄ðyÞ PBHs]
and the effect of dark matter density fluctuations imparting
angular momentum to the binary. It is straightforward to
show that 0 ≤ S ≤ 1.
We will often present results for a PBH model having no

suppression factor, i.e., S ¼ 1, where the merger rate is
given by Eq. (8). Some of the uncertainty in the precise
formation mechanism is bracketed by the cases S ¼ 1 and
the full expressions of Eqs. (8) and (9). More precise
numerical simulations of PBH binary formation and
evolution will be required for a more quantitative inves-
tigation of the sensitivity of our results to the formation
model [15,52–55].
It is important to note that the PBH mass functions we

use are based on calculations of the primordial mass
function ψ . It is possible that ψ could evolve through
mergers and/or accretion. So-called second-generation
mergers, i.e., those involving one or more BHs which
have already undergone a previous merger, are expected to
be very rare compared with primary mergers [19,41]
(although also see Ref. [56]). Accretion is a highly non-
linear process which is hard to model, but recently Ref. [41]
has suggested this could play an important role on more
massive PBHs due to the dark matter halo which forms
around them at early times, and thereby acts as a significant
additional gravitational attraction to nearby baryons (note
that this only applies if fPBH ≪ 1, but that is the case we
consider in this paper). Reference [48] showed that the DM
halo which forms around PBHs [52,57] has minimal impact
on the merger rate and the estimate of fPBH. Accretion onto
a PBH can increase the initially negligible spin of a PBH,
provided that the PBH mass grows significantly [41]. The
most massive BH pair detected by LIGO is also the system
with nonzero spin detected at highest significance, which
may be consistent with a PBHmodel that includes a modest
amount of accretion. However, the second-lightest BH
merger event also has significant evidence for nonzero
spin, suggesting that not all events are primordial. We will
return to this issue in Sec. VII. We note that there exists a
window for which accretion has a non-negligible impact on
the spin of the most massive PBHs but has very little impact
on the PBH mass function [14], but the impact of accretion
is a highly nonlinear process which deserves further study;
see e.g., Ref. [58].
Recently, Jedamzik has argued that the LIGO and Virgo

results are consistent with fPBH ¼ 1 provided that PBHs
follow a broad mass function with a large spike at 1 M⊙

[15,53], as motivated by the softening of the equation-of-
state parameter during the Standard Model QCD phase
transition [23,59]. This result is based in numerical sim-
ulations of dense PBH clusters, and it does not appear to be
in contradiction with the constraints we derive of fPBH ≪ 1
based on a relatively narrow mass function; see, e.g.,
Refs. [24,26], which show that the analytic estimate for
the merger rate which we used may be unreliable if
fPBH ≳ 0.1. See also Refs. [52,54,55] for further numerical
studies of the PBH binary disruption rate.
Finally, our baseline results assume a log-normal mass

function for the PBHs, given by

ψðmÞ ¼ 1

m
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
ln2ðm=mcÞ

2σ2

�
; ð10Þ

where mc is the peak of the function mψðmÞ and σ is its
logarithmic width. This is a good approximation to the
PBH mass function in the case of formation from a smooth,
symmetric peak in the power spectrum [60,61], although
deviations are expected in the case of particularly narrow
power spectrum peaks [62]. We consider the case of non-
log-normal mass functions in Sec. VI.
One consideration when using the model of Ref. [26] for

log-normal mass functions is the oversuppression of the
merger rate for very broad mass functions. Physically, one
would expect a population of very light PBHs to have little
effect on the merger rate in the LIGO mass range, since this
light population does not contribute significantly to the
gravitational attraction between two heavier PBHs, leaving
negligible impact on the formation of the binary. However,
in the calculation of Ref. [26], a large population of light
black holes makes a large contribution to the expected
number of PBHs in the vicinity of the binary, N̄ðyÞ, and is
assumed to cause disruption to the heavier pair of PBHs
[21]. To ensure that this oversuppression does not affect the
constraint presented in this paper, we quantify the value of
σ for which the log-normal distribution becomes broad
enough that the suppression becomes significant. We do
this by considering the differential merger rate for an equal
mass merger in two cases: considering the full mass
function and a mass function with a low-mass cutoff, so
that the population of light black holes is removed. For
three different values of the PBH massm (the same for both
PBHs in the binary), the inclusion of the low-mass
population causes a significant suppression (greater than
10 orders of magnitude) for σ ≳ 2. As we shall see later, this
is well above the range that the data favor, and so we
assume that the model in Ref. [26] is valid for the
constraints we present. We note that a thorough inves-
tigation of this effect will require the running of N-body
simulations.
To compute the merger rate as a function of mass and

redshift, we use a fast and accurate approximation to the
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suppression factor valid for log-normal mass functions,
described in Appendix A.
In Fig. 4, we show the dependence of the source-frame

differential merger rate density dR=dm1dm2 on the com-
ponent masses, for several choices of the log-normal mass-
function parameters. The log-normal distribution has a
characteristic skewness toward large masses, giving rise to
a skewness toward large total mass. This also gives rise to a
broad range of mass ratios, as seen by the off-diagonal
extent of the merger rates, which increases with σ.
Importantly, for σ ≲ 1, the shape of the merger rate

distribution is primarily controlled by the mass function
terms ψðm1Þψðm2Þ, with only limited sensitivity to the
factors of M and η which multiply these terms in Eq. (8).
These factors primarily control the shape of the tails of the
distribution. When σ ≳ 1, the mass function is broad, and
ψðm1Þψðm2Þ varies more slowly over a fixed mass range,
such that factors of M and η can be relatively more
important.

This behavior is also seen in the importance of the
suppression factor S, indicated by the difference between
the solid and dashed lines in Fig. 4. The influence of S on
the shape of the merger rate distribution is weak for the
mass function parameters plotted (which we will see
correspond to those favored by the data), increasing in
importance for larger σ. The suppression factor depends
only on the total mass, via Eq. (7), with this dependence
weakening for small fPBH=σM.
Note also that the peak of the log-normal mass function

is at mce−σ
2

, its mean is at mceσ
2=2, and its median is at mc;

i.e., for large σ, the distribution is significantly skewed.
The rate of merger events observable today can be found

by integrating dR over mass and volume and is given by

β

Tobs
¼

Z
dz dm1dm2

1

ð1þ zÞ
dVc

dz
dR

dm1dm2

pdetðm1; m2; zÞ;

ð11Þ

FIG. 4. Source-frame differential merger rate density dR=dm1dm2 for log-normal PBH mass functions at z ¼ 0.1 and fPBH ¼ 10−3, as
a function of the individual source-frame masses. Solid and dashed contours are predictions with and without the suppression factor
accounting for three-body interactions, respectively, and contours are drawn at 25%, 50% and 75% of the peak value. The log-normal
mass-function parameters are indicated in the top-right corner of each panel.
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where dR ¼ S × dR0, with dR0 and S given by Eqs. (8) and
(9), and dVc is the comoving volume of a thin spherical
shell of width dz. The factor of ð1þ zÞ−1 accounts for the
difference between proper (source-frame) rate and observed
(detector-frame) rate. The total number of detectable
mergers is β, and Tobs is the observation time. Note that
Eq. (11) assumes that pdet, and hence the interferometer
PSD, is independent of time. We make this approximation
throughout our analysis.
In Fig. 5, we plot the detectable merger rate β=Tobs as a

function of fPBH, for representative values ofmc and σ, and
using the pdet described in Sec. II. For a six-month
observation period, the figure shows that ten binary merger
events would be expected for fPBH ∼ a few × 10−3, with
fPBH ∼ 10−2 possible for large σ and mc ∼ 10 M⊙. Note
that fPBH primarily controls the amplitude of the merger
rate, with only a minor impact on its mass dependence. This
will be important when testing these models against the
LIGO data.

B. LIGO empirical merger models

As well as PBH models of binary mergers, we also
consider two empirical distributions often used to model
BBH populations. These models, termed model A and
model B, were introduced in Refs. [27,63] and extended
in Refs. [28,43,64,65]. We use the forms as presented
in Ref. [31].
Both models can be described by an intrinsic merger rate

given by

dR
dm1dm2

¼
�
R0Cðm1Þm−α

1 qβq if mmin ≤m2 ≤m1 ≤mmax

0 otherwise;

ð12Þ

where R0 is a constant amplitude, q ¼ m2=m1, and Cðm1Þ
is such that the marginal distribution for the heavier mass is

m−α
1 . Model A fixes mmin ¼ 5 M⊙ and βq ¼ 0, allowing

mmax, R0, and α to vary. Model B allows all five parameters
to vary. When βq ¼ 0, we have Cðm1Þ ∝ 1=ðm1 −mminÞ.
In the default formulation of these models, the rate R0 is
assumed to be independent of redshift.
The two models considered here are not intended to be

detailed physical models of the merger rate of stellar black
holes; rather, they are empirical parametrizations that allow
for straightforward computation for comparison with data.
They do, however, have two important features, motivated
by astrophysics, which will prove crucial when comparing
with PBH models; the upper and lower cutoff in mass. The
lower mass cutoff is motivated by observations of x-ray
binaries [66] and appears to be roughly 5 M⊙, with a mass
gap expected between this and the predicted upper limit for
a neutron star of roughly 2 M⊙ (see, however, Ref. [45] for
a recent detection of a compact object in this mass gap).
The upper limit is more uncertain and is partly motivated
a posteriori from the GWTC-1 catalog. There is some
astrophysical motivation for an upper limit of roughly
50 M⊙ from pulsational pair-instability supernovae and
potentially a mass gap between 50 and 150 M⊙ due to the
combined effect of this with pair instability (see Ref. [16]
for relevant references). Importantly, the PBH models do
not require upper or lower limits for the black hole mass,
which will prove crucial for discriminating models. The
detailed power-law behavior of models A and B is less
physically motivated, so the LIGO models may be seen as a
combination of astrophysical and empirical considerations.
The models considered in Ref. [31] also specify dis-

tributions for the spin parameters [67]. To facilitate model
comparison with the PBH merger scenario, where there is
considerable uncertainty in the form of the spin distribu-
tion, we will neglect information from spin by marginal-
izing over it as discussed further in Sec. IV. We note in
passing that all but two of the sources (GW151226 and
GW170729) in the GWTC-1 catalog are consistent with

FIG. 5. Rate of detectable PBH mergers, per year as a function of fPBH with (solid) and without (dashed) the suppression factor, for
mc ¼ 10 M⊙ (blue) and mc ¼ 100 M⊙ (orange), and for σ ¼ 0.1 (left panel) and σ ¼ 1.0 (right panel).
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zero spin at 90% confidence. We refer the reader to
Ref. [32,68] for recent Bayesian analyses using spin in
the PBH context and Ref. [69] for a Bayesian study
including a zero-spin black hole population, which could
be considered a simplified proxy for a PBH model.
In Fig. 6, we show the mass dependence of the

merger rate for models A and B, analogous to Fig. 4 in
the case of PBHs, for representative values of the
models’ parameters. Note that for consistency with
the PBH models we have extended the definition of
m1 and m2 in Eq. (12) to the full mass plane, removing
the requirement that m2 ≤ m1. In the case of model A,
the contours are perfect squares, being independent
of the lighter mass for fixed heavier mass. For model
B with positive βq, the merger rate is strongest for q ≈ 1,
and the contours are hence more concentrated around
the diagonal. That the distributions in Fig. 6 appear
somewhat unphysical is a consequence of the explicit
symmetry breaking between m1 and m2 in Eq. (12). We
emphasize that these distributions are not intended to be
realistic models of astrophysical black hole binary
formation but rather capture broad features in the source
population distributions.
A more complex model, dubbed model C, is also

analysed in Ref. [31] and found to be superior fit to the
GWTC-1 sources, although it is not significantly preferred
over model B. Both model B and model C were found to be
better fits than model A, so for simplicity, we only consider
the two models A and B, noting that Bayesian evidence
ratios against model C can be easily deduced from Table 3
or Ref. [31]. A future extension of this work would be to
compare PBH source distributions with more realistic
models incorporating relevant astrophysical effects, in
the manner of Refs. [37,65].

IV. STATISTICAL FRAMEWORK

To assess the merger rate models described in Sec. III
against data from the BBH sources in the GWTC-1 catalog,
we must specify a likelihood function. As described in,
e.g., Refs. [29,70,71], the likelihood of the observed data
d ¼ fdigi¼1…Nobs

from Nobs sources given population
hyperparameters θ and a merger rate model M is

pðNobs;djθ;MÞ ∝
�YNobs

i¼1

Z
dm1dm2dzpðdijm1; m2; zÞ

×
dN

dm1dm2dz
ðm1; m2; zjθ;MÞ

�
e−βðθ;MÞ;

ð13Þ
where pðdijm1; m2; zÞ is the likelihood of each observed
dataset (i.e., GW strain data) given the source masses and
redshift (marginalizing over all other parameters), dN is the
number of mergers in a mass and redshift interval, and
βðθ;MÞ is defined in Eq. (11), i.e.,

dN
dm1dm2dz

ðm1; m2; zjθ;MÞ

¼ Tobs
1

ð1þ zÞ
dVc

dz
dR

dm1dm2

ðm1; m2; zjθ;MÞ: ð14Þ

This likelihood correctly accounts for the interferometer
selection function via pdet, which enters via the expected
number of detected mergers β, and the uncertainties on the
parameters of each source, which may be correlated. It
assumes each source is independent. Since our data cover
the O1 and O2 observing runs of LIGO, we take Tobs ¼
169.5 days.

FIG. 6. Source-frame differential detectable merger rate for LIGO model A (left panel) and model B (right panel), as a function of the
individual source-frame masses. The population parameters are indicated in the top left of each panel and correspond to the values
maximizing the posterior of the O1O2 data. Contours are drawn at 25%, 50%, and 75% of the peak value, and the dashed lines indicate
the boundaries of the distribution where the rates go to zero.
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As shown in Ref. [71], the likelihood in Eq. (13) is the
product of a Poisson likelihood for the observed number of
detections Nobs when βðθ;MÞ were expected with a
likelihood for observable data di, the result being an
inhomogeneous Poisson likelihood. Note that the selection
function pdet only enters via β, since the observed data are
observable by definition. The likelihood thus consistently
accounts for information on population models coming
from the observed distribution of source parameters and the
overall number of detections—these were considered
separately for PBH models in a frequentist approach
in Ref. [21].

We note that several works constraining PBH merger
models with GW data have used likelihoods differing
from Eq. (13), for example, Refs. [14,26]. We emphasize
that Eq. (13) correctly accounts for the source para-
meter correlations and selection effects, and its use
ensures that posteriors on the PBH model parameters are
unbiased.4

We approximate the integral over the source likelihoods
in Eq. (13) with a sum over Monte Carlo samples from the
source posteriors available from the GWTC-1 catalog
[16]. To do this, we need to first divide out the source
prior which was used in the LIGO inference; i.e., we have

pðNobs;djθ;MÞ ∝
�YNobs

i¼1

�
1

πðzi; mi
1; m

i
2Þ

dN
dm1dm2dz

ðmi
1; m

i
2; z

ijθ;MÞ
	

fzi;mi
1
;mi

2
g

�
e−βðθ;MÞ; ð15Þ

where πðzi; mi
1; m

i
2Þ is the prior on parameters for source i

and angle brackets denote an expectation value over
Markov-chain Monte Carlo (MCMC) samples from the
source posterior. The prior is uniform in the detector-frame
masses and scales as d2L in the space of luminosity distance
dL, i.e.,

πðz;m1; m2Þ ∝ ð1þ zÞ2d2LðzÞ
ddLðzÞ
dz

: ð16Þ

We ignore any information coming from the spin of the
black holes by marginalizing over spin parameters when
averaging over the MCMC samples—this is equivalent to
assuming that the merger rates are independent of spin.
Similarly, we assume all intrinsic merger rates are inde-
pendent of angular position and orientation and marginalize
over these parameters. This is also implemented in our
treatment of the detection probability pdet in Eq. (1), which
makes the implicit assumption that the signal-to-noise ratio
is not significantly impacted by the component spins.5

We use Bayes’s theorem to compute the posterior
of the population hyperparameters, pðθjd; Nobs;MÞ ∝
pðθjMÞpðd; Nobsjθ;MÞ. For our log-normal PBH mass
function, we have θ ¼ ½fPBH; mc; σ�. This requires us to
specify priors on the population hyperparameters. As is
common in Bayesian inference problems, the choice of

these priors is somewhat arbitrary. We will see that the data
are sufficiently constraining that the priors have negligible
impact on posterior parameter constraints but can signifi-
cantly impact Bayesian evidences. We will see later that
this latter prior dependence can be unpicked using a
suitable approximation to the evidence.
In Table I, we show the priors adopted in our inference

runs. In the case of the LIGO models A and B, we use the
priors adopted in Ref. [31]. In the case of the PBH models,
we take a uniform prior on log fPBH motivated by the fact
that fPBH primarily controls the amplitude of the merger
rate and its order of magnitude is unknown. We assume
uniform priors on logmc and log σ since their orders of
magnitude are similarly unconstrained a priori and for the
reason that these would be the Jeffreys priors on these
parameters if the likelihood were proportional to ψðmÞ.6
Finally, we assume that all the BBH sources in the

catalog are primordial in origin when performing inference
under a PBH model and that all sources are astrophysical
when using model A or model B. In principle, we should
account for the possibility that some binaries consist of
PBH pairs and some are astrophysical pairs (the merger rate
of mixed PBH-astrophysical black hole binaries [72,73] is
expected to be small compared with that of PBH-PBH
binaries for the values of fPBH we consider). This could be
implemented by introducing an extra parameter controlling
the proportion of sources in each formation channel
[32,74]. For simplicity, we do not take this approach,
and instead treat all ten sources as either primordial or

4Our approach is more similar to the recent Ref. [19], differing
in our self-consistent treatment of fPBH in the merger rate
amplitude and our use of a suppression factor accounting for
three-body effects.

5Alternatively, our neglect of spin can be phrased as the
imposition of zero spin in all source components plus the
assumption that the spin parameters are uncorrelated with
the inferred masses and redshifts. This latter assumption allows
us to include all the posterior samples when computing Eq. (15)
and not just those lying in the zero-spin hypersurface. This is a
reasonable approximation for the GWTC-1 sources.

6Note that the Jeffreys prior for a Poisson distribution with rate
parameter λ is πðλÞ ∝ λ−

1
2, i.e., uniform in

ffiffiffi
λ

p
. In the PBH model,

the amplitude of the merger rate scales roughly as f
53
37

PBH, so
an uninformative prior might be expected to scale roughly

as f
−53
74

PBH ≈ f−0.7PBH, i.e., uniform in f
21
74

PBH. Our prior, scaling like
f−1PBH, is therefore approximately uninformative.
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astrophysical, using Bayesian model selection to compare
how well the respective models fit the data. Our constraints
on fPBH should thus be interpreted as upper limits.

V. BAYESIAN INFERENCE FROM
THE GWTC-1 CATALOG

We use the likelihood in Eq. (15) with the models
described in Sec. III and priors listed in Table I to draw
samples from the posterior distribution of each model’s
parameters. We use the nested sampling algorithm [75,76]
withmultiellipsoidal bounded sampling [77] as implemented
in DYNESTY [78] to draw samples from the posterior.
The nested sampling algorithm also computes the

evidence for each model M, integrating over the prior as

pðMjd; NobsÞ ∝ pðMÞ
Z

dθpðd; Nobsjθ;MÞpðθjMÞ; ð17Þ

where pðMÞ is the prior on the model. We assume that
pðMÞ is uniform, such that Bayes factors are equivalent to
evidence ratios

ZM1

ZM2

≡
R
dθpðd; Nobsjθ;M1ÞpðθjM1ÞR
dθpðd; Nobsjθ;M2ÞpðθjM2Þ

: ð18Þ

We express all evidences relative to that of model B and
quote errors on the evidence using the default first-order
approximation produced by DYNESTY.7

In Table II, we present the marginalized parameter
constraints on the parameters of each model, as well as
the evidence relative to model B. We will first discuss

the parameter constraints on the baseline PBH models and
the empirical LIGO models A and B, before discussing the
evidences and model consistency tests. We will then
introduce the extensions to the baseline models, the results
of which are also listed in Table II for completeness.

A. Parameter constraints

1. PBH models

Our baseline PBH model uses the merger rate model of
Eq. (8) with a suppression factor given in Eq. (9). To study
the influence of the suppression factor, we also consider a
model with S ¼ 1. Differences between these two models
can be roughly interpreted as encapsulating the uncertainty
associated with PBH binary disruption.
In Fig. 7, we plot two-dimensional Bayesian credibility

intervals (68% and 95% weighted posterior quantiles) for
log10 fPBH and the log-normal mass function parameters
log10mc and log10 σ, along with the marginalized one-
dimensional posteriors. Note that the priors on these
parameters are uniform, with limits given in Table I.
Constraints on these, and the derived parameters mc and
σ, are given in Table II.
The posterior constraints (median and 95% credible

intervals) on these parameters are

log10fPBH ¼ −2.30þ1.16
−0.35

mc ¼ 24.23þ528.62
−6.31 M⊙

σ ¼ 0.82þ1.71
−0.35 : ð19Þ

Figure 7 demonstrates that the posterior is highly non-
Gaussian, with a pronounced curving degeneracy between
all three parameters. There is, however, a clear peak around
the median values quoted above, with a preferred value of
fPBH ≈ 0.005, assuming all the BBHs in GWTC-1 are
primordial. As hinted at in Sec. III, fPBH ¼ 1 is strongly
disfavored, with this model drastically overproducing BBH
mergers. The preferred mass function parameters roughly
correspond to the average mass of the components in the
catalog and the approximate spread in values.
The degeneracy tail in Fig. 7 skews the one-dimensional

posteriors to large values of mc, σ, and fPBH. This tail (also
visible in the likelihood plots in Ref. [26]) is a three-
parameter degeneracy caused by the suppression factor,
Eq. (9). We investigate its origin in detail in Appendix B.
Briefly, the suppression factor can allow for enhanced fPBH
without overproducing mergers by increasing N̄ðyÞ, since
S ≈ e−N̄ðyÞ. We compute this using Eq. (7), which depends
on the log-normal mass function parameters as N̄ðyÞ ∝
M=hmi ¼ ðM=mcÞeσ2=2. Large-σ mass functions are highly
skewed; the total mass M is typically approximately 2mc,
meaning a high proportion of masses in the integral
contributing to β, Eq. (11), have M ≫ hmi when σ ≳ 1,
giving large suppression factors. Models with high σ and

TABLE I. Priors used in this work. All priors are uniform
within the limits given in the right-hand column. Models sharing
parameters which vary have the same priors on those parameters.
See the main text for the definition of these parameters.

Parameter Prior

log10 fPBH ½−6; 0�
log10 mcðM⊙Þ [0, 4]
log10 σ ½−1; 0.7�
log10 R0 ½−1; 3�
mmaxðM⊙Þ [30, 100]
mminðM⊙Þ [5, 10]
α ½−4; 12�
βq ½−4; 12�
λ [0, 0.5]
log10 mc;1ðM⊙Þ ½−1; 3�
log10 mc;2ðM⊙Þ ½−1; 3�

7We verify that this approximation to the evidence agrees with
the more accurate simulate_run approximation in DYNESTY

to within 10% in all cases and also agrees well with resampled
and jittered approximations to the evidence.
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high fPBH also need high mc in order to give an acceptable
fit to the approximately 10 solar mass region occupied by
the LIGO sources. Fixing M to the LIGO mass scale
implies that mc must be increased when σ is increased to
keep mce−σ

2=2 fixed in order to keep the suppression factor
constant in the observed mass range. This results in a three-
parameter degeneracy allowing for fPBH as high as 0.07.
We note that this partly arises due to the ambiguity of
defining a “typical” mass scale in models with highly
skewed and broad mass functions, which raises concerns
about the validity of Eq. (7). We note that the peak of the
posterior is reasonably robust to the degeneracy tail and that
more accurate simulations will be needed to investigate the
formation and evolution of PBH binaries with these
extreme mass functions.
This explanation for the degeneracy tail is supported by

Fig. 8, which shows the posterior for the PBH model with
the suppression factor set to unity. In this case, there is no
mechanism available to suppress the merger rate when fPBH
is high, and the constraints are much more Gaussian and
confined in parameter space.
The constraints on the parameters for this S ¼ 1 model

are (median and 95% credible interval)

log10fPBH ¼ −2.76þ0.25
−0.24

mc ¼ 18.06þ5.72
−7.10M⊙

σ ¼ 0.61þ0.45
−0.19 : ð20Þ

These constraints arise from fitting the observed mass scale
and spread in observed masses (which effectively fix mc
and σ) and fitting fPBH to match the observed rate of
mergers. There is a slight tendency for the data to
simultaneously prefer low values of mc and high values
σ, as seen in the right-hand panel of Fig. 8. This combi-
nation keeps the merger rate roughly constant in the
observed mass region, although the degeneracy is weak.
The median values of the parameters are fairly stable to

switching on the suppression factor, with smaller values of
mc and σ now preferred due to the absence of the
degeneracy tail and the median fPBH now ≈0.0017, i.e.,
almost a factor of 3 smaller. Once again, fPBH ≈ 1 is highly
disfavored.
We note that for both PBH models the priors chosen are

sufficiently broad that they do not influence the posterior
constraints on the parameters, as shown by Fig. 7 and the
left panel of Fig. 8.

TABLE II. Median and 95% credible intervals for the parameters of each model considered. The bottom four rows display difference
in best-fit log likelihood between each model and LIGO model B, the log of the Occam factor defined in the text, the difference in log
evidence between the DYNESTY nested sampling estimate and the Laplace approximation defined in the text, and the Bayesian evidence
ratios computed from nested sampling along with uncertainties.

Model

Parameter PBH PBH, S ¼ 1 Model A Model B PBH, S ¼ 1, mmax ¼ 50 M⊙ PBH, S ¼ 1, skew-bimodal

log10 fPBH −2.30þ1.16
−0.35 −2.76þ0.25

−0.24 � � � � � � −2.72þ0.25
−0.25 −2.74þ0.23

−0.23
log10 mcðM⊙Þ 1.38þ1.36

−0.13 1.26þ0.12
−0.22 � � � � � � 1.91þ1.91

−0.76 � � �
log10 σ −0.09þ0.49

−0.24 −0.21þ0.24
−0.16 � � � � � � 0.27þ0.23

−0.47 � � �
mcðM⊙Þ 24.23þ528.62

−6.31 18.06þ5.72
−7.10 � � � � � � 81.28þ6525.7

−67.15 � � �
σ 0.82þ1.71

−0.35 0.61þ0.45
−0.19 � � � � � � 1.86þ1.30

−1.23 � � �
log10 R0 � � � � � � 1.63þ0.50

−0.45 1.55þ0.41
−0.43 � � � � � �

mmaxðM⊙Þ � � � � � � 42.65þ18.96
−5.99 42.73þ35.11

−6.31 50.0 � � �
mminðM⊙Þ � � � � � � 5.00 7.88þ1.30

−2.64 � � � � � �
α � � � � � � 0.94þ1.59

−2.38 1.93þ1.70
−1.96 � � � � � �

βq � � � � � � 0.00 6.62þ5.04
−6.62 � � � � � �

λ � � � � � � � � � � � � � � � 0.35þ0.14
−0.27

log10 mc;1ðM⊙Þ � � � � � � � � � � � � � � � 1.08þ0.57
−0.38

log10 mc;2ðM⊙Þ � � � � � � � � � � � � � � � 1.57þ0.08
−0.62

mc;1ðM⊙Þ � � � � � � � � � � � � � � � 12.02þ32.65
−10.82

mc;2ðM⊙Þ � � � � � � � � � � � � � � � 37.15þ7.52
−28.24

ln L�=L�
B −6.99 −7.14 −2.51 0.00 −5.44 −3.53

ln Occam −6.13 −8.21 −5.71 −6.74 −5.46 −7.73
ln ZLap=ZNS 1.60þ0.16

−0.16 0.26þ0.17
−0.17 0.77þ0.15

−0.15 0.63þ0.16
−0.16 0.54þ0.13

−0.13 1.92þ0.18
−0.18

lnZNS=ZNS;B −7.35þ0.23
−0.23 −8.25þ0.23

−0.23 −1.62þ0.22
−0.22 0.00 −4.01þ0.21

−0.21 −5.79þ0.24
−0.24
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2. LIGO model A and model B

In Fig. 9, we show the posterior constraints on the
parameters of the empirical LIGO models A and B, using
the priors listed in Table I. These posteriors are fully
consistent with those presented in Ref. [31], with only weak
constraints provided on the model B parameters mmin and
βq. In contrast, the constraints on the upper component
mass limit mmax and the power law slope in the distribution
of the heavier mass α are reasonably well constrained,
being determined by the maximum component mass in the
catalog and the typical spread in masses, respectively
(cf. the mc and σ parameters of the PBH model). The
amplitude of the merger rate simply fits the observed
number of mergers, analogous to fPBH in the PBH model.
The parameter constraints (median and 95% credible

intervals) for model A are

mmax ¼ 42.65þ18.96
−5.99 M⊙

α ¼ 0.94þ1.59
−2.38

R0 ¼ 42.66þ92.24
−27.52 Gpc−3 yr−1; ð21Þ

while those for model B are

mmax ¼ 42.73þ35.11
−6.31 M⊙

α ¼ 1.93þ1.70
−1.96

R0 ¼ 35.48þ55.72
−22.30 Gpc−3 yr−1

mmin ¼ 7.88þ1.30
−2.64 M⊙

βq ¼ 6.62þ5.04
−6.62 : ð22Þ

These constraints are consistent with those presented in
Ref. [31], with the exception of R0, which we find to be
typically smaller with RLIGO

0 =Rhere
0 ≈ 1.50 for both models.

This can be explained by the difference in pdet arising from
using the semianalytic approximation described in Sec. II
vs a more accurate method using pipeline injections, as
discussed in Appendix A of Ref. [31]. Our approximation
overestimates the LIGO sensitive volume by between a
factor of 1.4 and 1.9 depending on mmax and α (top left
panel of Fig. 11 in Ref. [31]), leading to an underestimate
of R0 by roughly the same factor in order to keep the total
number of observed events fixed.

FIG. 7. Off-diagonal panels: Two-dimensional 68% and 95% marginal posterior quantiles for the parameters of the log-normal PBH
model including the three-body suppression factor, given the GWTC-1 data. The plot boundaries correspond to the extent of the
(uniform) priors on the parameters shown. Diagonal panels: One-dimensional marginal posterior densities for the parameters. Above
each panel are the marginalized posterior median and 95% posterior quantiles for each parameter.
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We close this section by noting that the weak constraints
on the model B parameter βq reflect the weak constraints on
mass ratios in the GWTC-1 catalog (see Fig. 1). Recently,
the LIGO-Virgo Collaboration reported detections of BBH
mergers with significantly asymmetric masses having q ≈
0.3 [44] and q ≈ 0.1 [45]. Consequently, the constraints on

βq tighten significantly when these sources are included.
We only make use of the sources detected in the O1 and O2
observing runs in this work, but discuss the implications of
reported O3 detections in Sec. VII. In a future work, we
intend to repeat the analysis of this work with the Oð100Þ
detections expected in the final O3 catalog.

FIG. 8. Left, off-diagonal panels: Two-dimensional 68% and 95% marginal posterior quantiles for the parameters of the log-normal
PBH model without the three-body suppression factor, given the GWTC-1 data. The plot boundaries correspond to the extent of the
(uniform) priors on the parameters shown. Left, diagonal panels: One-dimensional marginal posterior densities for the parameters.
Above each panel are the marginalized posterior median and 95% posterior quantiles for each parameter. Right: Same as left panel for
the parameters ðlog10 fPBH; mc; σÞ.

FIG. 9. Posteriors of the parameters of LIGO model A (left panel) and model B (right panel) given the GWTC-1 data. The meaning of
the contours and quoted error significance are the same as in Fig. 7.
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B. Evidences, goodness-of-fit tests,
and model consistency

Having presented constraints on the parameters of the
two PBH models and the two empirical LIGO models, we
now examine the quality of model fits and compare the
models using the Bayesian evidence.

1. Posterior merger rate distributions

We first examine the preferred distributions of source
parameters in each model by computing the allowed values
of the differential detector-frame merger rate, plotted in
Fig. 10. These figures show the derivative of Nd ≡ β=Tobs
with respect to total massM, mass ratio q, and redshift z for
each model averaged over the posterior distributions of the
population hyperparameters. We show results for the PBH
model, the PBH model with S ¼ 1, and model A. The area
under each curve in Fig. 10 is fixed at roughly 10=Tobs,
since most of the posterior mass lies in a region where
β ≈ 10, matching the ten observed sources.
The preferred merger rates are similar among the three

models, with the suppression factor making very little
difference to the results. This is also evident from the
parameter posteriors of the two models which have most of
their mass in a similar region of parameter space, the
degeneracy tail in the suppression factor model having little
influence on the preferred differential merger rates. The
redshift dependence in all three cases is determined from
that of the selection probability pdet and the comoving
volume element, cf. Fig. 3.
The distributions in total mass for the PBH models

inherit the log-normal shape of the mass function ψðmÞ,
with a peak at roughly 40 M⊙ and a long tail to high
masses. Model A in contrast has both a minimum and
maximum cutoff in mass. Note that the median model A
merger rate is monotonically decreasing in its heavier mass
(α ≈ 0.4), but this is counteracted by the detection prob-
ability pdet which increases with mass (see Fig. 2). These
combined effects produce a peak in the merger rate around

M ≈ 60 M⊙ and a smaller peak around mmin where the
differential merger rate formally diverges (visible in the
90% confidence region). In the case of the PBH models,
the exponential falloff at high masses dominates over pdet
giving a single peak.
The most pronounced differences occur in the depend-

ence on mass ratio q (middle panel of Fig. 10). As pointed
out in Ref. [21], the broad PBH mass function allows for
mass ratios significantly different from unity. In contrast,
and as is evident from comparing Figs. 6 and 4, model A
merger rates typically have more symmetric masses.
Despite the visible difference in the q distribution in
Fig. 10, the errors on q in the GWTC-1 catalog are
typically large, and the mass ratio has little discriminatory
power between the PBH and LIGO models.8

2. Bayesian evidence ratios

In Table II, we present the Bayesian evidence for each
model relative to that of model B. These quantities indicate
the posterior preference for each model after marginalizing
over each of its parameters.
For the PBH model, we find a (natural log) evidence

ratio of −7.35� 0.23 compared to model B (errors here are
approximately standard deviations). On the Jeffreys scale
(e.g., Ref. [79]), this corresponds to “decisive” evidence
in favor of model B compared with the PBH model. For
the PBH model with S ¼ 1, the log-Bayes factor is
−8.25� 0.23; i.e., this model is even more disfavored
compared with model B. The evidence ratio between the
PBH models is 0.90� 0.23; i.e., the data do not show
evidence for a suppression factor given our choice of priors.
For model A, we find a log-evidence ratio of −1.62�

0.22, i.e., positive or substantial but not strong evidence in
favor of model B. This is consistent with the result reported

FIG. 10. Differential detector-frame merger rates with respect to total mass (left panel), mass ratio (middle panel), and redshift (right
panel) for LIGO model A (blue), the log-normal PBH model (orange), and the log-normal PBH model with suppression factor set to
unity (green). In each case, we plot the median and 90% quantiles over the posterior samples for each model given the GWTC-1 data
(solid lines and shaded bands) and the (weighted) mean over the samples (dashed lines).

8We note that a source with q ≈ 0.3 or q ≈ 0.1, as recently
detected in the O3 run, is predicted to be significantly more likely
in the PBH models than under model A.

BAYESIAN ANALYSIS OF LIGO-VIRGO MERGERS: … PHYS. REV. D 102, 123524 (2020)

123524-15



in Ref. [31] of −1.42. We note that Table 3 of Ref. [31]
implies that the LIGO model C is slightly (but not
significantly) preferred over model B. We find model A
is strongly preferred over the PBH models with log
evidences of −5.73� 0.23 and −6.63� 0.23 for the cases
with and without the suppression factor, respectively.
Taken at face value, these evidences suggest that both

PBH models are strongly disfavored compared with the
simple empirical models A and B. However, it is well
known that Bayesian evidences can be strongly influenced
by the choice of priors, so it is beneficial to delve a bit
deeper into the evidence ratios. We can make progress by
employing the Laplace approximation for the evidence,
discussed in Ref. [80]. This assumes that the posterior is
approximately Gaussian around its peak (which occurs at
the point θBF), such that the integral over parameters can be
approximated (for a uniform prior) as

pðdjMÞ ≈ pðdjθBF;MÞ ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCÞp
VolπðθÞ

; ð23Þ

where C is the covariance matrix of the posterior and
VolπðθÞ is the prior volume (i.e., the volume of the cube
defining our uniform priors). The first term on the right-
hand side of Eq. (23) is the likelihood value at of the best-
fitting model, a quantifier of model fit quality well known
from classical statistics. The second term is the “Occam
factor” expressing the ratio of the posterior volume to the
prior volume. The Occam factor quantifies the degree to
which the region of acceptable parameter values shrinks
upon arrival of the data and penalizes models for which this
shrinkage is large, i.e., models which require finely tuned
parameter values among those which were allowed a priori.
Since the posterior of both model B and the PBH model

with suppression are significantly non-Gaussian, the
Laplace approximation is expected to be only a coarse
model for the evidence. In Table II, we give the differences
between the Laplace-approximated evidence ZLap and the
nested sampling estimate ZNS. We find that ZLap provides a
remarkably good approximation to the true evidences, with
log ratios ranging from roughly 0.26 for the S ¼ 1 model
(which has the most Gaussian posterior) to 1.60 for the full
PBH model (which has a strongly non-Gaussian posterior).
In all cases, the discrepancy between ZLap and ZNS is
significantly smaller than the difference from the evidence
for model B.
With the Laplace-approximated evidences, we can start

to understand why some models are favored over others. In
Table II, we show the ratios of the terms in Eq. (23) with
those of model B. The ratio of first terms is just L�=L�

B, the
likelihood ratio of the best-fit model compared with that of
model B. In the case of the PBH models, we find that this
term dominates the evidence ratio. The Occam factor is
similar among the PBH model with suppression factor and
model B but is more penalizing for the S ¼ 1 PBH model

since the shrinkage in prior volume is much greater, as
evident from Fig. 8.
The log-Bayes factors depend on the prior volume, via

the Occam factor, as lnZ ∼ − lnVolπðθÞ. The evidence
ratios of the PBH models compared with the LIGO models
are thus sensitive to the prior range on fPBH and the mass
function parameters. If, for example, we reduced the prior
lower limit on fPBH from 10−6 to 10−16, we would reduce
the log-Bayes factor compared to model B by roughly 1.9

This prior range could be easily exceeded if instead we
placed a uniform-in-log prior on the primordial power
spectrum amplitude, to which fPBH is exponentially sensi-
tive, a point we discuss further in Sec. VII. Similarly,
increasing the ranges of mc and σ would also increase the
evidence against the PBH models compared with the LIGO
models.
Note that there is no freedom to reduce the prior range of

the PBH model parameters without being overly inform-
ative; i.e., we cannot attempt to boost the evidence of PBH
models by making the Occam factor less penalizing, unless
some other prior information or physical insight demands
it. Could we instead try to penalize the LIGO models to
restore the prior ambivalence between models? In the case
of model A, we would need to increase the prior volume by
a factor of roughly 300 to give an evidence ratio of unity
with the PBH model. This could be achieved by expanding
each side of the prior cube by a factor of roughly 6.7, i.e.,
with priors mmax½M⊙� ¼ ½30; 500�, log10R0 ¼ ½−12; 14�,
and α ¼ ½−50; 58�. A priori, this seems an extreme prior
range which is likely to be unphysical. Rather than change
the limits of the prior, we could also change its density such
that the prior volume contained more prior mass [note this
would require a modification to Eq. (23)]. In the absence of
a more fundamental astrophysical theory, there is no
obviously preferred choice of parameter combination on
which to impose a uniform prior. There is thus no well-
motivated way to make the data favor the PBH model over
the LIGO models by simply changing parameter priors.
We note that the prior volumes cancel in the evidence

ratio of the PBH model with and without a suppression
factor. We can therefore make the robust statement that the
GWTC-1 data are not sensitive to the suppression factor,
and inference of PBH models may proceed with S ¼ 1with
negligible loss of accuracy.

3. Posterior predictive distributions

Having seen that the likelihood ratio is primarily
responsible for the evidence against a log-normal PBH
model, and having argued that changing the prior on
parameters to restore model parity is challenging, we

9In reality, our posterior limits on fPBH are upper limits due to
our assumption that every source is a PBH-PBH merger, so the
Occam factor is probably not as penalizing as this example
suggests.
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now investigate the cause of the likelihood differences in
detail. Equation (23) tells us that it is sufficient to consider
only the likelihood at the best-fit model, but the same
conclusions can be reached by considering the likelihood
averaged over the model space allowed by the data—the
posterior predictive distribution (PPD), defined as

pðDjd;Nobs;MÞ ¼
Z

dθpðDjθ;MÞpðθjd;Nobs;MÞ; ð24Þ

where D is unseen data. Equation (24) is similar to the
Bayesian evidence, except it is now an integral of the
likelihood of new data over model parameters allowed by
the old data d and Nobs.
The PPD is a useful quantity to compute since it can be

used to approximate the part of the evidence ratio coming
from the likelihood ratio in the Laplace approximation (23).
It can also be used to assess the absolute quality of the
model fit in a more “Bayesian” way than a classical χ2

test [81].
We approximate the integral in Eq. (24) with an average

over posterior samples from our nested sampling runs.
The challenge in implementing the PPD is finding an
approximation for the likelihood of unseen data pðDjθ;MÞ,
as so far we have only needed the likelihood of the
GWTC-1 data as a function of parameters, which we
extracted indirectly via the GWTC-1 posterior samples.
In Appendix C, we present a detailed derivation of this
approximate likelihood. This results in a PPD for the
redshifted chirp mass given by

pðfcMzgjfdgÞ ¼
YNobs

i¼1

Z
dMzpðcMi

zjMzÞpðMzjfdgÞ;

ð25Þ

where

pðMzjfdgÞ ¼
Z

dθpðMzjθÞpðθjfdgÞ: ð26Þ

In these expressions, fcMzg denotes the set of “measured”

chirp masses, with members of the set denoted by cMi
z.

The PPD in Eq. (26) can be convolved with the
individual constraints on chirp mass from each source
to give a likelihood for new unseen chirp masses averaged
over population parameters allowed by existing data.
When evaluated at the actual chirp mass values in the
GWTC-1 catalog, this gives the likelihood function
marginalized over the absolute merger rate and the
population parameters—this is approximately equivalent
to the likelihood evaluated at the best-fitting popula-
tion model, which is the key quantity in determining
whether the Bayesian evidence favors PBH over the LIGO
models.

In Fig. 11, we show the PPD on source-frame chirp
mass10 given by Eq. (26), along with the central values and
90% confidence intervals for the sources in the GWTC-1
catalog—the best-fit likelihood for each model is approx-
imately the PPD plotted in the figure convolved with each
of the source posteriors and then evaluated at their central
values. Ignoring the uncertainties in observed chirp mass,
this simply amounts to recording the height of the PPD
curves where they intersect each of the observed values.
A model with a peak in its PPD located in the vicinity
of a large number of measured chirp masses will have a
higher likelihood than a model peaking away from where
the observations are. This directly translates into a higher
Bayesian evidence via the Laplace approximation (23).
Put even more coarsely, the likelihood ratio is effectively
comparing the coherence of the empirical histogram
of chirp masses with the predicted distribution for each
model.

FIG. 11. PPD of the source-frame chirp mass, given the data,
for LIGO model A (blue), LIGO model B (orange), the log-
normal PBH model (green), and the log-normal PBH model with
suppression factor set to unity (red). Note that there is a thin spike
with width approximately 10−3 M⊙ at Mchirp ≈ 4.35 M⊙ where
the PPD diverges in the case of model A, not visible on this plot
due to the resolution. This spike corresponds to m1 ≈m2 ≈mmin
and gives negligible contribution to the integrated PPD. We also
show the median (black vertical lines and points) and 90%
credible intervals (black horizontal bars) of the source-frame
chirp masses of the GWTC-1 BBH sources [16] (with an arbitrary
vertical offset for visual clarity).

10The detector-frame chirp mass PPD is very similar due to the
low redshifts of the sources, but is significantly more computa-
tionally expensive to generate due to the suppression factor of the
PBH model.
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The key features of the curves in Fig. 11 are similar to
those in the left panel of Fig. 10 where we plotted the
equivalent distribution for total mass. The suppression
factor makes little difference to the PBH model, which
demonstrates a log-normal shape in the chirp mass
distribution inherited from the mass function ψðmÞ.
Model A and model B both have sharp peaks around
m1 ≈m2 ≈mmin, with the peak in model A narrower than
the resolution of the plot, having width approximately
10−3 M⊙. These peaks are due to a formal divergence in the
merger rate caused by the Cðm1Þ term in Eq. (12), i.e., the
requirement that the marginal distribution in the heavier
mass be a power law. The secondary peak aroundMchirp ≈
30 M⊙ is due to the detection probability. No such peak is
seen in the PBH model due to its more extreme falloff with
increasing chirp mass.
The combined effect of the merger rate and the detection

probability is that the PPD of model B is able to peak
sharply at the location of the two well-measured light
binaries with Mchirp ≲ 10 M⊙, predicting fewer sources in
the range 10 M⊙–20 M⊙ in agreement with observations,
before peaking again in the region 20 M⊙–30 M⊙ just
where the majority of the measurements are. Model A can
also do this to a lesser extent, but is disfavored compared
with model B because it gives less likelihood to the two
light sources. This is simply a reflection of the fact that
model B has the freedom to fit the minimum component
mass mmin. Since there will always be a sharp peak in the
chirp mass distribution at the minimum chirp mass, it is
always advantageous for a model to place mmin as close to
the actual minimum mass as possible. The penalty incurred
from the Occam factor in this fine-tuning process is
substantially outweighed by the increase in likelihood.
Model A, in contrast, has a fixed mmin.
Turning now to the PBH models in Fig. 11, it is clear that

a log-normal distribution will struggle to fit the observed
distribution of chirp masses compared with models A and
B. The mass function parameters mc and σ are fit to ensure
the log-normal peaks in the correct mass range and has a
width encompassing the observed range of values, but the
detailed shape is a poor fit to the data even with only ten
points. The LIGO models are able to fit the key features of
the empirical distribution, namely the high density of chirp
masses in the 20 M⊙–30 M⊙ region; the relative dearth in
sources between 10 M⊙ and 20 M⊙; and, in the case of
model B, the two light sources with Mchirp ≲ 10 M⊙.
The actual likelihoods at the observed data points are

given approximately by the values of the curves where they
intersect the vertical dashed lines in Fig. 11. While the PBH
models intersect the sources at approximately 15 M⊙ and
35 M⊙ at higher values than both LIGO models, they both
fail to capture the cluster of sources in the 20 M⊙–30 M⊙
region. PBH models having a peak in this region are not as
favored as those having a peak around approximately
15 M⊙, since they typically overpredict sources at heavier

mass compared with lighter mass. The likelihood ratio (and
hence the evidence ratio under the Laplace approximation)
penalizes the PBH models precisely for this reason. If new
data populated Fig. 11 with many binaries having chirp
masses greater than 35 M⊙, we would expect the log-
normal PBH models to perform relatively better since they
naturally predict a long positive tail in the distribution. The
absence of sources above 35 M⊙, readily detectable in O1
and O2, penalizes PBH models which predict they should
be there.
An alternative way of looking at the differences between

the PPD and the measured chirp mass is in the cumulative
version of the PPD [posterior cumulative distribution
function (CDF)] found by integrating from zero mass up
to some specified value. The CDF for the LIGO models in
terms of heavier mass was also studied in the recent
Ref. [82]. In Fig. 12, we show this quantity for the PBH
models along with models A and B.
The CDF is constrained to lie between zero and unity,

and the model curves show significant overlap when
plotted in this way. All models overpredict the number
of mergers with chirp mass less than or approximately
equal to 20 M⊙, which can be seen as the relative dearth of
sources in the 10 − 20 M⊙ region of Fig. 11, with model B
clearly performing the best. Note that this behavior is not
evident in the CDF of the heavier mass plotted in Ref. [82].
We have argued that the chirp mass is the more appropriate
parameter to use since it is less correlated with other
parameters, is the best constrained source parameter to

FIG. 12. Posterior CDF of source-frame chirp mass, given the
data, along with the empirical CDF of the sources, for LIGO
model A (blue), LIGO model B (orange), the log-normal PBH
model (green), and the log-normal PBH model with suppression
factor set to unity (red).
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leading order, and has a PPD most directly related to the
likelihood and the evidence.
The CDF permits the use of a Kolmogorov-Smirnov

(KS) test using the empirical CDF (shown as the gray lines
and points in Fig. 12). However, this test looks only at the
maximum deviation of the predictions from the data
(occurring around 20 M⊙), and the p-values from a one-
sample KS test are all between 0.3 and 0.8, indicating that
all models are acceptable fits to the data. This is not as
powerful a test as the likelihood ratio or Bayesian evidence,
however, which uses the detailed shape of the chirp mass
distribution to assess its ability to fit the data.
To summarize the results of this section, we have seen that

the log-normal PBH models are significantly disfavored
compared with the empirical LIGOmodels, quantified by the
Bayesian evidence ratio. We have shown that the evidence
ratios between each model can be well approximated by
the product of a likelihood ratio and an Occam factor. The
Occam factor is sensitive to the prior volumes, and the
evidence ratio can be made to restore the prior ambivalence
toward all models by broadening the priors on the LIGO
models, but extreme values must be imposed to achieve this.
The likelihood ratios are the dominant source of evidence
against the PBHmodels, and we have shown how this can be
reduced to the ability of models to predict the empirical
distribution of chirp masses in the GWTC-1 catalog. One of
the main results of this work, Fig. 11, demonstrates that the
log-normal mass function struggles to match the detailed
distribution of observed chirp mass, predicting positive
skewness when the data appear to prefer negative skewness.
In contrast, model A can predict negatively skewed chirp
mass distributions and has consequently higher likelihood.
Model B can additionally predict the two low-mass events
and the relative dearth of objects at intermediate masses and
is favored over model A. We caution that the LIGO models
have some features which lack strong physical motivation
and hence we do not advocate that the log-normal PBH
model should be abandoned in favor of these models. We
have instead shown why models in which every source is a
PBH-PBH merger struggle in comparison, and identified the
features of the data that need to be explained if the log-normal
mass function is to become favorable. LIGOmodel C is both
more physical and a better fit to the data than models A and
B, and therefore by extension is significantly preferred (in
terms of the Bayes factor) over the PBH models. It thus
seems almost certain that successful PBH models will either
need to abandon the prediction that every merger detected by
LIGO and Virgo is a PBH merger or introduce a physical
mechanism that significantly modifies the primordial
log-normal mass function.

VI. EXTENSIONS TO THE LOG-NORMAL PBH
MASS FUNCTION

We have seen that PBH models with a log-normal mass
function do not provide as good a fit to the LIGO data as

simple empirical models. Since this family of mass func-
tions is highly constrained, having only two free parameters
in addition to an overall normalization, we now study
simple extensions to ψðmÞ to investigate whether a better fit
might be achieved with minimal modification.
We set the suppression factor equal to unity for all

extended models considered in this section. The results of
Sec. V showed that the suppression factor has only a
modest influence on the preferred models while greatly
increasing the run time of the likelihood calculation, so for
simplicity, we set S ¼ 1 henceforth.

A. Log-normal with a high mass cutoff

We argued in Sec. V that one of the reasons a log-normal
struggles to fit the observations is its long positive tail to
high chirp masses, not seen in the data. By comparison,
both the LIGO models we consider have explicit cutoffs at
high component masses. We therefore now consider a new
mass function ψ cut, defined by

ψ cutðmÞ ∝
�

1

m
ffiffiffiffiffiffiffi
2πσ2

p exp ½− ln2ðm=mcÞ
2σ2

� m ≤ mmax

0 m > mmax

ð27Þ

where the normalization is chosen such that ψ cut integrates
to unity. We note that such an upper mass cutoff is difficult
to construct in PBH formation models.
For simplicity, and in order to approximately maximize

the evidence for the PBH models without adding a penalty
for adding a new free parameter, we fix mmax ¼ 50 M⊙,
such that the maximum source-frame chirp mass is
Mchirp ≈ 44 M⊙. Figure 11 shows that this lies just beyond
the 90% upper chirp mass of the heaviest source, which
implies that this choice of cutoff is not too restrictive.
We rerun the parameter inference and evidence calcu-

lation on the GWTC-1 catalog data using this model, with
the suppression factor set to unity and the same priors on
fPBH, mc, and σ as the log-normal model (i.e., uniform in
the log of each parameter). The resulting parameter
posteriors are shown in Fig. 13.
The constraints on fPBH in this model are almost the

same as the no-cutoff case, with values preferred which
give β ≈ 10 events. The main difference comes in the
preferred values of mc and σ, with Fig. 13 revealing a long
degeneracy tail stretching to high values of mc and σ. This
is caused by the high-mass cutoff permitting values of
mc ≫ mmax if σ is sufficiently large that there is still a high
likelihood of mergers happening in the observed mass
range. When σ is small enough, mc corresponds to this
observed mass range and is constrained to similar values as
in the absence of a cutoff.
The log evidence of the cutoff model compared to model

B is given in Table II and is −4.01� 0.21. This model is
thus strongly preferred over the models without a cutoff.
Model A and model B are both still strongly preferred over
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this cutoff model. The Laplace-approximated evidence
ratio differs from the nested sampling estimate by only
0.54� 0.13, but due to the highly non-Gaussian posterior,
we do not expect this to be accurate. Nevertheless, this
approximation implies that the evidence ratio is dominated
by the likelihood ratio against model B, with the Occam
factor now less penalizing due to the larger posterior
volume permitted by the data (compare Fig. 13 with
Fig. 8). We note that had we allowed mmax to vary and
be constrained by the data this conclusion might change,
due to the large prior volume that could be assigned
to mmax. We note, however, that with fixed mmax the
evidence ratios compared to the no-cutoff models are
independent of the priors, which are the same among these
PBH models.
In Fig. 14, we show the PPD of the source-frame chirp

mass for this model (purple curve) along with that of LIGO
models A and B. With the preferred values ofmc skewed to
values much greater than mmax, the shape of the posterior-
averaged likelihood now looks quite different than the log-
normal case. In particular, the large positive skewness has

been suppressed by the cutoff, and the distribution is
approximately symmetric about its peak at roughly
23 M⊙. As in the log-normal case, the preferred values
of the parameters mc and σ are such that the overall
distribution has roughly the correct absolute mass scale and
a width incorporating the observed chirp masses. It is clear
from Fig. 14 that the broader distribution allowed by the
cutoff mass function is a better fit to the data and accounts
for the increased evidence for this model. Despite this, there
is thus no additional freedom to fit the detailed distribution
of the data beyond mc and σ, and model B still provides a
better fit. Model A is also preferred to the cutoff log-normal
model, due in part to its low-mass cutoff which allows the
likelihood of the two well-measured low-mass sources to
be higher.

B. Skew-log-normal

While a log-normal mass function for PBHs may be
shown to be an excellent approximation to a wide range
of peaklike features in the primordial power spectrum,
for very narrow peaks, a negatively skewed log-normal is

FIG. 13. Posteriors of the log-normal model without the suppression factor and imposing a maximum cutoff mass (source frame) of
mmax ¼ 50 M⊙. The meaning of the contours and quoted error significance are the same as in Fig. 7.
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a better approximation [62]. We thus consider a skewed
log-normal mass function given by

ψ skewðmÞ ¼ ½1þ erfðαΔÞ�ψðmÞ; ð28Þ

where ψðmÞ is a log-normal mass function and Δ≡
lnðm=mcÞ=ð

ffiffiffi
2

p
σÞ is the logarithmic mass deviation. The

skewness is parametrized by a parameter α controlling
the argument to the error function erfðxÞ. As shown in
Ref. [62], a delta function in the power spectrum corre-
sponds to α ≈ −2.6 and σ ≈ 0.56, which we impose here.
This leaves fPBH and mc as the only free parameters of
this model.
Running the nested sampling inference with the skew-

log-normal model, we find the best-fitting values of the
parameters are fPBH ¼ 1.4 × 10−3 and mc ¼ 34.0 M⊙,
comparable with the results found for the log-normal
model. The (log) likelihood ratio at the best-fit compared
to model B is −8.3, i.e., very similar to the full log-normal
(S ¼ 1) case. This is due to the relatively weak skewness of
the model and the fact that σ ¼ 0.56 is actually quite close
to the value preferred by the data.
The evidence for the model relative to model B is

−7.80� 0.23, i.e., slightly preferred compared with the
nonskewed PBH model with S ¼ 1 but still strongly
disfavored compared to both model A and model B. The
model provides a fit to the data comparable with the
unskewed log-normal mass function, i.e., not competitive
with the LIGO empirical models. A Laplace approximation

to the evidence is very accurate and shows that the
increased evidence for the model results from a less
penalizing Occam factor due to its reduced dimensionality
compared with the nonskewed model. However, this
change is not enough to overcome the big difference in
likelihood ratio which gives rise to strong evidence against
the model compared with the LIGO models.

C. Bimodal skew-log-normal

The distribution of measured chirp masses in the GWTC-
1 catalog has a cluster of sources with Mchirp ≈ 30 M⊙, a
relative dearth of sources between 10 M⊙ and 20 M⊙, and
two well-measured light sources with Mchirp < 10 M⊙.
Motivated by this, we consider a mixture of two skew-log-
normal mass functions for PBHs given by

ψ skew;biðm;mc;1; mc;2Þ ¼ λψ skewðm;mc;1Þ
þ ð1 − λÞψ skewðm;mc;2Þ; ð29Þ

where ψ skew is the skew-log-normal distribution introduced
in Sec. VI B; i.e., each component has fixed skewness
parameter α ¼ −2.6 and scale parameter σ ¼ 0.56. Such a
mass function could arise from two distinct narrow peaks in
the primordial power spectrum whose amplitudes must be
tuned if a comparable number of PBHs are to be generated
by each peak [22,83]. However, we note that very close
peaks will not produce the distribution (29) in detail due to
the two peaks “smearing” into each other.
We choose log-uniform priors in location parameters

mc;1 and mc;2 with limits given in Table I. To avoid
redundant likelihood calculations implied by the symmetry
of Eq. (29), we impose a uniform prior on λ in the range
[0, 0.5], such that mc;2 is defined as the location parameter
of the dominant component in the mixture.
In Fig. 15, we show the posterior constraints on the

parameters of the skew-bimodal model. As for the other
model extensions studied in this section, the preferred
values of fPBH are such that the total number of events is
roughly 10, the median value being fPBH ¼ 0.002 in this
model. The distribution in the ½mc;1; mc;2� plane is bimodal,
with a dominant peak at mc;1 ≈ 10 M⊙ and mc;2 ≈ 35 M⊙,
which matches our expectation given the observed chirp
masses; for q ¼ 1, this corresponds to a dominant compo-
nent in the mass function at Mchirp ≈ 30 M⊙ and a
subdominant component at Mchirp ≈ 9 M⊙. The subdomi-
nant peak in the mass posterior corresponds approximately
to swapping which of these mass function peaks is
dominant, preserving their location.
The mixture parameter λ is poorly constrained, with

values around λ ≈ 0.4 typically preferred. Bimodality in the
posterior appears when λ≳ 0.35, which is to be expected
since the data are not constraining enough to distinguish
which mass function peak is dominant when the difference

FIG. 14. PPD for two extensions to the log-normal PBH mass
function: the S ¼ 1 log-normal model with a cutoff mmax ¼
50 M⊙ (purple) and the bimodal skew-log-normal model with
S ¼ 1 (brown). We also show LIGO model A (blue) and model B
(orange), which are the same as in Fig. 11.
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is sufficiently small, i.e., when λ is sufficiently close to the
point of symmetry at λ ¼ 0.5.
The evidence for this model is reported in Table II and is

−5.79� 0.24 compared to model B. There is thus
“substantial” evidence (on the Jeffreys scale) for this model
compared with both the PBH log-normal models consid-
ered previously, although the Bayesian evidence in favor of
models A and B is still comparatively strong. The like-
lihood ratio to model B is much more favorable for the
skew-bimodal model compared with the other PBH models
and is only marginally smaller than model A. The Occam
factor is comparatively more penalizing than both the
LIGOmodels, although the highly non-Gaussian parameter
posterior makes the Laplace approximation a poor estimate
of the true evidence.
In Fig. 14, we show the PPD for the source-frame chirp

mass in this model (brown curve). The peak at small masses
has been skewed to heavier masses by the detection
probability, but the two components are still clearly
distinguishable in this plot. The comparable likelihood

ratio between the skew-bimodal mass function and model
A (blue curve) is clear from Fig. 14, with the additional
low-mass component matching model A’s ability to assign
high likelihood to the two well-measured light BBHs. The
PPD suggests that the skew-bimodal model performs less
well compared with model B due to its inability to predict a
sharp peak at low chirp masses. This could potentially be
remedied by allowing one or both of the variance param-
eters in the skew-log-normal components to vary, although
this would come at the price of a more penalizing Occam
factor (i.e., overfitting the data).
The skew-bimodal model is thus successful at matching

the fit of the observed distribution of chirp masses provided
by the LIGO models and is the most successful of the PBH
models we consider. We note that the two preferred central
values of the components are reasonably close, such that
this model might not be expected to be an accurate
approximation to two delta-function peaks in the primor-
dial power spectrum. We also note that constructing a
physical mechanism that could produce two such peaks of

FIG. 15. Posteriors of the bimodal skew-log-normal model without the suppression factor, fixing the shape parameter of each
component to σ ¼ 0.56 and the skewness parameter to α ¼ −2.6, roughly corresponding to delta functions in the power spectrum. The
meaning of the contours and quoted error significance are the same as in Fig. 7.
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comparable amplitude is not straightforward and the
a priori motivation for this is weak.
It is perfectly possible of course that the apparent peak at

low chirp masses is not a “real” feature of the population
but a consequence of the low-number statistics. The
Bayesian evidence accounts for this, but the likelihood
ratio does not, so we caution against attempting to construct
models to fit the detailed empirical distribution of chirp
masses in general. Nonetheless, we have seen that Bayesian
evidence favors the skew-bimodal model over a single
log-normal component.

D. Late-time PBH capture model

The final merger rate model we consider is a “late-time
capture” model in which PBH binaries form in the late
Universe via two-body encounters. We adopt the model
of Refs. [12,84] in which the differential merger rate is
given by

dR
dm1dm2

∝
ðm1 þm2Þ10=7
ðm1m2Þ5=7

ψðm1Þψðm2Þ: ð30Þ

This model follows from the analytical calculations of
Refs. [85,86] which model two compact objects on an
initially parabolic or hyperbolic trajectory which become
bound due to the radiation of gravitational waves, using an
accurate quasi-Newtonian approximation. Reference [12]
additionally assumes that the relative velocity of the two
objects is independent of their masses, an assumption
which may break down in detail due to mass segregation
in halos. The prefactor of Eq. (30) is a free parameter in this
model which can be high enough to give the observed
merger rate even for low fPBH, due to enhancements in the
merger rate within dense halos. We assume that the mass
functions in Eq. (30) are log-normals with parameters mc
and σ, having the same priors as in our baseline PBH
model.
The best-fit values for mc and σ were obtained with a

numerical optimization routine and are 16.5 M⊙ and 0.56,
respectively, i.e., almost identical to the baseline S ¼ 1
PBH model. The best-fit mass function has a shape in the
ðm1; m2Þ plane almost identical to that of the baseline early-
time formation model, differing only in the tails. This is due
to the low value of σ preferred by the data, which keeps the
mass function compact and suppresses the influences of
mass-dependent prefactors multiplying the log-normal
ψðm1Þψðm2Þ term in the merger rate. Given the similarity
with the early-time model, we chose not to run the full
nested sampling inference on the late-time capture model.
This model thus provides a very similar fit to the early-

time model, with the quality of the fit dominated by the log-
normal shape of the mass function. This may be compared
to the result that the suppression factor makes little differ-
ence to the best-fitting PBH model and its maximum
likelihood and suggests that radical mass-dependent

evolution of the initial PBH mass function is required to
give a good fit to the data when the mass function is
log-normal.

VII. CONCLUSIONS

In this work, we have confronted the latest PBH
binary merger models with the catalog of gravitational
wave merger events from the first two observing runs of
LIGO-Virgo. We have adopted a Bayesian formalism
throughout, which has allowed us to place posterior
probabilities on the parameters of the PBH model given
the data, accounting for the source parameter correlations
and the interferometer selection function. Assuming all the
observed black hole mergers are primordial and margin-
alizing over the mass function parameters, we find fPBH ¼
ð5.0þ67.4

−2.8 Þ × 10−3 (median and 95% confidence), with a
long positive tail allowed by the data due to a suppression
in the merger rate from demanding the binary is not
disrupted by other PBHs. Relaxing this requirement gives
the smaller value ð1.7þ1.4

−0.7Þ × 10−3. The preferred mass
function parameters are such that the observed black hole
mass scale and spread in masses is correctly predicted.
A log-normal fit gives a central value of approximately
20 M⊙ and a logarithmic width of order unity, consistent
with previous results [14,26,34].
Going beyond parameter constraints, we have studied the

quality of the model fits using several Bayesian tests. We
computed the Bayesian evidence for the PBH models and
popular astrophysically motivated models, finding in all
cases that the astrophysical models were favored decisively.
By making a Laplace approximation, we decomposed the
evidence ratio into a likelihood ratio (well known from
classical frequentist statistics) and an Occam factor quan-
tifying the sensitivity to the parameter priors. This exercise
showed that the evidence ratio was dominated by the
likelihood ratio, i.e., by the relative goodness of fit of
the best-fitting models in the PBH and astrophysical
scenarios. We were able to show that this may be under-
stood by comparing the predicted distributions of the chirp
mass with the observed values and identified the posterior
predictive distribution as a crucial descriptor of the relative
quality of the model fits.
Using the posterior predictive distribution, we were able

to show that PBH models struggle because they predict a
chirp mass distribution with a close-to-log-normal shape, in
marked contrast to the observations. The LIGO interfer-
ometers were sensitive enough in their first two observing
runs to detect black holes with chirp masses well beyond
the 40 M⊙ upper limit of the sources which were actually
detected. A log-normal distribution has a long positive tail
to high masses, overpredicting the abundance of high-mass
binaries. Likewise, the detailed distribution of the observed
sources is not well predicted compared with the empirical
astrophysical models. These empirical models are para-
metrized in terms of the heavier mass and the mass ratio,
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which gives rise to a detectable chirp mass distribution
much preferred by the data over a log-normal PBH model.
An explicit lower and upper mass cutoff in these models
also boosts their evidences significantly over the PBH
scenario. While such high- and low-mass cutoffs might
be expected in stellar-origin black holes, they are generally
not expected in PBH models, which are consequently
disfavored.
These statements hold true for almost any choices of the

black hole mass function parameters and fPBH, although
our modeling is expected to be inaccurate for high fPBH and
for very broad mass functions. We also studied simple
extensions to the log-normal model in an attempt to better
fit the data, finding that a bimodal mass function with
small negative skewness (as expected from narrow peaks in
the primordial power spectrum) provides a marginally
improved fit, although at the cost of a posteriori reasoning
and little physical motivation. At face value, our results
strongly disfavor the possibility that all the sources seen in
the first two LIGO-Virgo observing runs are merging PBH
binaries forming from a smooth, symmetric peak in the
primordial power spectrum. It is therefore worth discussing
how these conclusions might be relaxed or challenged.
First, we caution that the empirical astrophysical models

we have considered are really parametrizations and that we
limit our analysis to the case that all the black holes are
either astrophysical or primordial. A more sophisticated
analysis would consider a mixed model with both forms
of black holes. Our results are therefore not evidence
against the possibility that LIGO-Virgo have detected
PBHs but evidence against all of the detected black holes
being PBHs.
To test a concrete example of a mixed stellar-PBH

population of binary mergers, we computed the likelihoods
of the PBH (S ¼ 1) model and the LIGO models excluding
the two sources possessing significant nonzero spin,
GW151226 and GW170729. Since PBHs formed during
radiation domination are expected to have zero spin at
formation, these two sources are the most well motivated
for exclusion from the analysis. Restricting to the reduced
catalog of eight binary mergers, we find a slightly reduced
best-fit fPBH ≈ 1.4 × 10−3 and a smaller σ ≈ 0.48, reflect-
ing the fact that the two spinning sources lie near the
extremes of the chirp mass distribution (GW151226 is the
second-lightest system, and GW170729 is the heaviest).
The maximum likelihood value of the PBH model com-
pared to model B is slightly increased (−6.7, up from −7.1)
with that of model A approximately unchanged. It thus
appears that, even without the two spinning sources, we can
expect the LIGO models to have significantly higher
evidence compared with the PBH models, due to the
PBH model struggling to fit the truncated and negatively
skewed distribution of chirp masses.
Second, we have assumed that PBH binaries evolve from

formation through to merger without modification to their

dynamics from external astrophysical processes. In par-
ticular, we have neglected the possibility that matter
accretes onto the binary, a potentially important effect
influencing its angular momentum and mass [41,87].
Naively, one would expect accretion of material onto the
binary to effectively skew the mass function toward heavier
masses. As we have seen that the log-normal mass function
already has too much positive skewness, this is likely to
make the fit to the LIGO-Virgo data worse. It thus appears
that the possibility that all sources are PBH binaries is even
less likely with the inclusion of accretion.
Third, our results have sensitivity to the priors placed

upon the model parameters. We have argued that there is
little strong motivation for tightening the priors on the PBH
model, but alternative choices could broaden them signifi-
cantly. The abundance parameter fPBH is exponentially
sensitive to the amplitude of the peak in the primordial
power spectrum which produced the PBHs. If we chose to
impose a uniform prior on the order of magnitude of the
peak amplitude, this would translate to a prior uniform in
log log fPBH, which would potentially increase the prior
volume of the PBH model by many orders of magnitude.
However, this would only increase the degree to which the
Bayes factor disfavors the PBH model.
Alternatively, we could boost the Bayes factor in favor of

the PBH models by making alternative choices for the
priors of the astrophysical models. We have argued that, if
the functional form of this prior is left unmodified, this
cannot result in the PBH model being favored over
the astrophysical models without unphysical choices for
the prior range. Alternatively, one could make alternative
choices for the functional form of the astrophysical
parameter priors. One can make the Bayes factor arbitrarily
favorable toward the PBH model this way. It is possible
that future models will find relations between the model
parameters and more fundamental quantities related to the
physics of stellar black hole binaries, in which case well-
motivated choices for the priors of these fundamental
parameters could result in a significantly broadened prior
volume for the empirical parameters. It will therefore be
necessary to rerun our analysis if such model refinements
become available.
Is there a way to test the quality of the PBH model fit

without reference to an empirical astrophysical model?
Reference [21] found, using frequentist measures such as
the χ2 and KS test, that the LIGO-Virgo data are not an
unlikely realization for a reasonable range of PBH model
parameters. Our results are not in conflict with this
conclusion, since we have focused largely on the relative
quality of the model fits compared to astrophysically
motivated models. We found that the detailed distribution
of the chirp mass was the key discriminator in our tests.
Since the χ2 and KS tests do not make full use of this
distribution but instead compress it down to test statistics,
we do not expect these to be particularly powerful in

HALL, GOW, and BYRNES PHYS. REV. D 102, 123524 (2020)

123524-24



quantifying the quality of the PBH model fit. The Bayesian
methodology has the advantage of using all the information
available, which is one reason why we have focused on
Bayesian model evidence ratios rather than frequentist
statistical tests.
We have also neglected information coming from the

spins of the merging black holes in our model comparisons.
In reality, we expect the spin distributions of PBH and
astrophysical mergers to be different, and including spin
could impact our conclusions. A typical PBH spin dis-
tribution would have more weight in nonspinning objects,
due to the negligible spin that PBHs are expected to have
at formation. Given that all but two of the LIGO-Virgo
sources we consider are consistent with zero spin, we might
expect that including spin information boosts the relative
probability of PBH models. Reference [32] performed a
Bayesian comparison of PBH and astrophysical models
using their differing predictions for black hole spin, finding
that the data are not currently constraining enough to
discriminate between the models. There is also theoretical
uncertainty in how the initial spin distribution of PBHs
evolves in the presence of accretion [41]. Furthermore, we
have seen that excluding the two objects with nonzero spin
has little effect on our conclusions. These considerations
suggest that including spin in our analysis would not
change our results significantly; the chirp mass, being a
well-measured parameter for each system whose distribu-
tion is sensitive to model parameters, will likely remain the
discriminating observable. A future extension of this work
will be to include spin, with realistic astrophysical and PBH
population distributions.
In this work, we have tested a specific model for the

formation and subsequent evolution of a PBH binary. There
exist models with dramatically different behavior allowing
much larger fPBH, such as those of Refs. [15,53], which
could yield quite different Bayesian evidences. However,
there is no reason to expect that such models will provide
good fits to the full set of GW events evidenced by the fact
that the late-time capture model we studied does not
provide a significantly different fit to the data. The subject
of PBH binary evolution is an active and rapidly evolving
field of study, and testing a broader range of merger models
is a valuable extension of our formalism, which we defer to
a future work.
It therefore appears that our conclusions are robust to

including these added complications; both the full LIGO-
Virgo sample of merging black holes and the subset
consistent with zero spin are not well fit by PBH-PBH
binaries compared with simple astrophysically motivated
models.
Finally, it is interesting to consider how our results might

change with the inclusion of recent new detections in the
third observing run of LIGO-Virgo (O3). This has so far
yielded a system, GW190814, with low mass-ratio q ≈ 0.1
having one component in the lower mass gap with m ≈
2.6 M⊙ [45], the black hole binary merger GW190412 with

low reported mass ratio q ≈ 0.3 [44], the black hole merger
GW190521 with total mass 150 M⊙ and upper-mass gap
component black holes [88], as well as roughly 50 new
binary black hole detections. We caution that these three
named sources have been singled out for publication by
virtue of being “unusual,” and hence the conclusions we
can draw about population models are limited without
including the full unbiased sample. A repeat of our analysis
on the full sample of O3 events is forthcoming, so for now,
we focus on these three unusual systems. First, we note that
two low mass-ratio systems are more probable in PBH
models than astrophysical models due to the extended mass
function and lack of any mass correlation which might
arise from mass transfer. As pointed out in Ref. [89], the
constraint on the mass ratio of GW190412 is strongly
dependent on the priors assumed for the source parameters,
with q ≈ 1 an equally good fit to the data when a low-spin
prior (as might be expected for a PBH binary) is imposed.
Focusing on chirp mass, which we have argued is where
most of the constraining power comes from, GW190814
hasMchirp¼6.09�0.06M⊙ and GW190412 hasMchirp ¼
13.3� 0.4 M⊙, both in the source frame. Comparing the
posterior predictive distribution given the O1 and O2
samples shows that both sources lie at the lighter end of
the distribution, with GW190412 lying close to the peak of
the PBH distribution. GW190814 is in the light tail of all
the distributions we considered, although the constraining
power of this object comes more from the implications
of its low-mass component in the context of stellar black
hole formation models. We note that GW190412 has a
non-negligible spin parameter χeff ¼ 0.25þ0.08

−0.11 , while
GW190814 is consistent with zero spin, raising the
possibility that GW190412 is problematic for both PBH-
PBH and stellar-stellar merger channel (although see the
point above and Ref. [89]). GW190814, on the other hand,
appears consistent with both, with high probability in the
PBH model due to its low mass ratio. The source
GW190521 has a chirp mass of roughly 65 M⊙, with both
components having non-negligible spin. Comparison with
Fig. 11 shows that this source lies far in the high-mass tail
of the distribution implied by the O1O2 sample. It is
possible that the inclusion of this source in the sample
could reduce some of the negative skewness in the chirp
mass distribution and improve the PBH fit, although its
chirp mass is so large that a worsened fit is also a
possibility. Reference [90] discusses the possibility that
GW190521 is a PBH binary, concluding that accretion is
necessary to reconcile the implied merger rate with existing
bounds on fPBH. A full analysis including all sources will
shed more light on these intriguing issues.
With the sample size of black hole merger events

expected to grow significantly with the conclusion of the
third observing run of LIGO-Virgo and the newly online
KAGRA facility [91], a principled statistical framework for
analyzing the PBH merger scenario will prove increasingly
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valuable. In this work, we have demonstrated the kind of
analysis techniques that will be necessary to constrain the
physics of primordial black holes in the coming era of
gravitational wave astronomy.
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APPENDIX A: FAST NUMERICAL
IMPLEMENTATION OF THE

SUPPRESSION FACTOR

Bayesian inference of the posterior for PBH mergers
involves many computations of the likelihood, and fast
implementations are therefore crucial. The computational
bottleneck in the likelihood evaluation step is the compu-
tation of the suppression factor, given in Eq. (9) as

S ¼ e−N̄ðyÞ

Γð21=37Þ
Z

∞

0

dv v−
16
37 exp

�
−N̄ðyÞhmi

Z
∞

0

dm
m

ψðmÞF
�

m
hmi

v
N̄ðyÞ

�
−

3σ2Mv
2

10f2PBH

�
; ðA1Þ

where we remind the reader that FðxÞ ¼ 1F2ð−1=2; 3=4; 5=4;−9x2=16Þ − 1 with 1F2 a generalized hypergeometric
function.
Fast evaluation of Eq. (A1) is numerically challenging for general mass functions due to the double integral and potential

for large dynamic range in ψðmÞ.11 We can make progress, however, by using the Taylor expansion of FðxÞ at both high and
low values of its argument.

1. Switching approximation to FðxÞ
Around z ¼ 0, we can truncate the definition of the generalized hypergeometric function to obtain the Taylor series of

1F2 to order nmax,

1F2ða1; b2; b2; zÞ ≈
Xnmax

n¼0

ða1Þn
ðb1Þnðb2Þn

zn

n!
; ðA2Þ

where ðαÞn is a Pochhammer symbol given by

ðαÞn ¼ αðαþ 1Þðαþ 2Þ…ðαþ n − 1Þ ðA3Þ

for n ≥ 1, with ðαÞ0 ¼ 1. We choose nmax ¼ 3, additionally computing the next-order n ¼ 4 term to quantify the
perturbative error.
At large values of z, we use the asymptotic expansion available from Ref. [93], given by

1F2ða1; b1; b2; zÞ ≈
Γðb1ÞΓðb2Þ

Γðb1 − a1ÞΓðb2 − a2Þ
ð−zÞ−a1
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11Additionally, recently, there was no public implementation of the 1F2 hypergeometric function available in PYTHON.
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where

d1 ¼
i
16

½−3þ 12a21 − 4b21 þ 8b2 − 4b22 þ 8b1ð1þ b2Þ − 8a1ð1þ b1 þ b2Þ�; ðA5Þ

d2 ¼
1

512
f−15þ 144a41 þ 16b41 þ 16b2 þ 56b22 − 64b32 þ 16b42 − 64b31ð1þ b2Þ − 64a31ð7þ 3b1 þ 3b2Þ

þ 8b21ð7þ 8b2 þ 12b22Þ þ 16b1ð1þ 25b2 þ 4b22 − 4b32Þ − 8a21½−43þ 4b21 − 72b2 þ 4b22 − 8b1ð9þ 5b2Þ�
þ 16a1½−1þ 4b31 − 25b2 − 4b22 þ 4b32 − 4b21ð1þ b2Þ − b1ð25þ 40b2 þ 4b22Þ�g: ðA6Þ

The complex exponentials in this expansion give rise to
oscillating terms in FðxÞ at order Oðx−nÞ for n ≥ 2.
Neglecting these terms, FðxÞ has the asymptotic expansion
for x ≫ 1:

FðxÞ ≈ x − 1þ 1

6x
þ… ðA7Þ

At small values of x, we use Eq. (A2), keeping terms in

1F2 up to order z3 [i.e., terms of order x6 in FðxÞ]. We
additionally compute the error arising from neglect of the
x8 term. At some value x�, we switch to the asymptotic
expansion of Eq. (A4), keeping terms up to order x−3 and
using the neglected x−4 term to approximate the error (with
oscillating terms set to their maximal value). The switching
value x� is then chosen to minimize the relative error of the
approximation. This yields x� ¼ 2.72 in the case when all
x−4 terms are used and x� ¼ 2.74 when the approximation
equation (A7) is used.

In Fig. 16, we show the relative error of our approxi-
mation scheme compared to an exact calculation imple-
mented in MATLAB. The errors are generally subpercent,
reaching maximal values of less than or approximately
equal to 2% around x�. The error estimate derived from
neglected higher-order terms is generally an accurate
approximation to the true error, and we also see that
oscillating terms are generally negligible with Eq. (A7)
sufficient for x≳ x�. The maximum absolute error of our
approximation is also approximately Oð1%Þ.
The results of this section may be summarized as

follows: in our baseline PBH likelihood analysis, we use
the following approximation for FðxÞ, accurate at the
percent level:

FðxÞ ≈
(

3
10
x2 − 3

280
x4 þ 27

80080
x6 x ≤ 2.74

x − 1þ 1
6x x > 2.74:

ðA8Þ

2. Exact integration for log-normal mass functions

A polynomial expansion for FðxÞ is particularly useful
when ψðmÞ is a log-normal distribution, since the inner-
most integral in Eq. (A1) can be done analytically term by
term. For this, we need to neglect the small oscillating
terms in the large-x expansion of FðxÞ, which by Fig. 16 are
negligible at the percent level. We also need the results

Iþp ðmc; σ;m�Þ≡
Z

m�

0

dm
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
ln2ðm=mcÞ

2σ2

�
mp−2

¼ mp−1
c e

ð1−pÞ2σ2
2 Φ

�
1

σ
lnðm�=mcÞ þ ð1 − pÞσ

�
;

ðA9Þ

I−pðmc; σ;m�Þ

≡
Z

∞

m�
dm

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
ln2ðm=mcÞ

2σ2

�
mp−2

¼ mp−1
c e

ð1−pÞ2σ2
2

�
1 −Φ

�
1

σ
lnðm�=mcÞ þ ð1 − pÞσ

�

;

ðA10Þ

FIG. 16. Fractional difference of the approximation described
in the text to the function FðxÞ, defined after Eq. (A1), and its true
value with (solid) and without (dashed) oscillating terms. We also
show the estimate of the error of the approximation based on the
neglected higher-order terms (dot-dashed). We achieve better
than 2% accuracy across all values of the argument and addi-
tionally can accurately predict the error of the approximation.
Note that all curves are indistinguishable for small values of x.
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where ΦðxÞ is the cumulative distribution function of the
normal distribution (expressible in terms of the error
function). Substituting in the polynomial expansions for
FðxÞ at small x and large x, we can use Eq. (A10) to leave
only the outermost integral in Eq. (A1). We perform this
integral using numerical quadrature, which results in a fast
and accurate (to roughly 1%) approximation to the sup-
pression factor which can be used in likelihood evaluations.
Using that hmi ¼ mce−σ

2=2 for a log-normal mass
function,12 it is straightforward to verify that at fixed
N̄ðyÞ the suppression factor is independent of the absolute
mass scalemc and depends only on the width σ. Physically,
this is due to the assumption that the PBHs are distributed
in space in a way that is independent of their mass. In
reality, this assumption might be broken if PBHs cluster
significantly due to mass segregation, a complication which
we neglect here.
It is useful to consider a few limiting cases of the

suppression factor. First, for any mass function, in the limit
that FðxÞ is dominated by its leading-order quadratic part at
small x, the distribution of angular momentum tends to a
Gaussian, and the suppression factor is [17]

Smin ¼
π

Γð29=37Þ
�
σj
j0

�
−21
37

e−N̄ðyÞ; ðA11Þ

where

σ2j
j20

¼ 6

5

�
1þ σ2m=hmi2

N̄ðyÞ þ σ2M
f2PBH

�
; ðA12Þ

and σm ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hm2i − hmi2

p
is the width of the mass function.

It may be shown that S ≥ Smin. Physically, this limit is
realized when N̄ðyÞ → ∞; i.e., the spatial density of PBHs
becomes sufficiently large that the central limit theorem
Gaussianizes the distribution of torquing angular momenta
(which has already been assumed to have happened for the
dark matter component). The variance of this Gaussian is
σ2j , which has contributions from the PBHs and dark matter
adding in quadrature. The model of Ref. [17] imposes an
exponential suppression in this regime, realized via the
e−N̄ðyÞ term in Eq. (A11), which accounts for the fact that a
high spatial density of PBHs will increase the likelihood of
a PBH being sufficiently close to the binary as to prevent its
formation due to three-body effects. In our implementation,
we simply set the suppression factor to zero for N̄ðyÞ > 23,
where the exponential suppression ensures that S is practi-
cally zero.
In the opposite limit, the term linear in x dominates in

FðxÞ, and the suppression factor tends to

Smax ¼
�
5f2PBH
6σ2M

�21
74

U

�
21

74
;
1

2
;
5f2PBH
6σ2M

�
; ðA13Þ

where U is a confluent hypergeometric function. One can
show that S ≤ Smax. This limit is realized when N̄ðyÞ → 0,
although how quickly the limit is reached depends on
fPBH=σM. Reference [17] advocates N̄ðyÞ ≪ f2PBH=σ

2
M. We

find that Eq. (A13) is accurate to less than or approximately
equal to 2% for all fPBH > 10−6 when N̄ðyÞ < 0.01 and for
all σ we consider. We adopt this threshold for N̄ðyÞ when
switching to the asymptotic limit (A13). This gives percent-
level accuracy for the merger rate while maintaining a
reasonable run time.

APPENDIX B: SUPPRESSION-INDUCED
PARAMETER DEGENERACIES IN THE

PBH MODEL

When sampling from the posterior in the PBHmodel, we
find a pronounced degeneracy tail in each of the three
projected two-dimensional planes defined by fPBH,mc, and
σ; see Fig. 7. The feature allows for large values of all three
parameters and is not present when the model is analyzed
fixing the suppression factor to unity. In this section, we
discuss the origin of the degeneracy feature.
In Fig. 17, we show posterior samples in the parameter

space ðlog10mc; σ2Þ color coded by the value of fPBH. The
degeneracy feature appears linear in this space and roughly
corresponds to fixing hmi ¼ mce−σ

2=2 ≈ 20 M⊙, i.e., fixing
the average PBH mass to the observed mass scale of the
LIGO sources.
In the middle and right panels of Fig. 17, we split the

samples into a set with 10−2 < fPBH < 10−1 and a set with
10−4 < fPBH < 10−2, respectively. Samples in the degen-
eracy tail typically have higher fPBH, which indicates that
we are looking at the projection of a three-parameter
degeneracy.
In Fig. 18, we split the samples by the degree of

suppression, defined as the ratio between the total detect-
able number of mergers β in a model with suppression
factor set to unity to its value in a model with suppression
set by Eqs. (9) and (7). The degeneracy tail is clearly
characterized by higher degrees of suppression, which
compensate for the overproduction of mergers that large
values of fPBH would otherwise imply.
These plots suggest that the degeneracy tail is caused by

the dependence of the suppression factor on the mass
function parameters via Eq. (7), namely,

N̄ðyÞ ¼ M
hmi

fPBH
fPBH þ σM

; ðB1Þ

where σM ≈ 0.006 and M is the total binary mass. We
remind the reader that N̄ðyÞ is the expected number of

12We remind the reader that angle brackets denote expectation
values over dn=dm ∝ ψ=m, i.e., hmi≡ ½R dmmψðmÞ=m�=R
dmψðmÞ=m.
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PBHs in a spherical region of comoving radius y which
contains no other black holes except the binary pair and
that the suppression factor has a prefactor of e−N̄ðyÞ,
introduced in Ref. [17] to ensure that no other PBH gets
close enough to the binary to disrupt it prior to the
merger event.
The suppression factor enters the likelihood in two

places: in the average over source parameter MCMC
samples [the term in square brackets in Eq. (15)] and in
the e−β factor entering via the Poisson probability of
seeing Nobs events given β were expected. The former
essentially fixes the total mass in Eq. (B1) to the LIGO
mass scale, which implies that hmi is fixed to keep the
source likelihoods high and unsuppressed; note that in
the degeneracy tail fPBH ≫ σM such that the second term
in Eq. (B1) is irrelevant. Models with high σ have
contributions to β from a much broader range of masses;
the typical total masses contributing to β [Eq. (11)] are

approximately 2mc, meaning M ≫ hmi when σ is large.
This implies that N̄ðyÞ ≫ 1 for much of the integration
range in β, which in turn implies a high degree of
suppression in the total number of mergers and compen-
sates for the high fPBH.
We note that the degeneracy tail skews the one-

dimensional posteriors on the PBH model parameters
but has a relatively minor impact on their median and
best-fit values. Nevertheless, what we have uncovered is
a mechanism for generating high values of fPBH which
can still fit the LIGO data. Equation (B1) was arrived at
in Ref. [17] by a combination of simulation results and
analytic arguments, but since it was not tested for the
extreme mass function parameters favored in the degen-
eracy feature, the model could well be unreliable in this
regime. Further investigations with N-body simulations
will be required to rigorously test the degeneracy feature
seen in Fig. 7.

FIG. 18. Posterior samples in the ðlog10 mc; σ2Þ plane for the suppression factor PBH model and GWTC-1 data, color coded by
suppression factor, defined as βðS ¼ 1Þ=βðSÞ (warmer color corresponding to lower suppression). Left panel: sll samples, thinned by a
factor of 8 for visual clarity. Middle panel: samples with suppression in the lower 50% quantile. Right panel: samples with suppression
in the upper 50% quantile. Note that the color coding is the same across the three panels.

FIG. 17. Posterior samples in the ðlog10 mc; σ2Þ plane for the suppression factor PBH model and GWTC-1 data, color coded by fPBH
(warmer color corresponding to larger values). Left panel: samples having 10−4 < fPBH < 10−1, thinned by a factor of 4 for visual
clarity. Middle panel: samples with higher values of fPBH in the range 10−2 < fPBH < 10−1. Right panel: samples with lower values of
fPBH in the range 10−4 < fPBH < 10−2. Note that the color coding is the same across the three panels.
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APPENDIX C: THE POSTERIOR
PREDICTIVE DISTRIBUTION

In this section, we present a derivation of the PPD. This
quantity is sufficient to understand the differences in
Bayesian evidences between our BBH merger models.
Each model has the flexibility to fit the total number of

observed mergers by adjusting an amplitudelike parameter
(fPBH or R0), so the best-fitting β is roughly 10 for all
models. The factor of e−β in the likelihood equation (13)
thus cancels in the likelihood ratio and evidence ratio, and
we can approximate D with dnew, the new GW strain data.
Formally, the likelihood for d is that used to produce the
posterior samples for the source parameters. We will
instead simplify the analysis by compressing the data to
a set of estimators for the source parameters which best
constrain the population models. For both the PBH and
LIGO models, the relevant source parameters are the total
mass M, the mass ratio q, and the redshift z, or combi-
nations of these. We have seen from Fig. 10 that the redshift
distributions of the observable mergers in both models are
indistinguishable, so we can anticipate that the likelihood in
M and qwill be sufficient to explain the differing maximum
likelihood values of the models. Since it is the detector-
frame chirp mass Mz which is most closely related to the
signal measured in the data (as discussed in Sec. II), our

two estimators will be cMz and q̂, where the precise
expression of these in terms of the data is left unspecified
for now.
Although the preferred q-distributions are quite differ-

ent (middle panel of Fig. 10), the typical errors on q are
large for the GWTC-1 sources, so it is unclear how
powerful the mass ratio distribution is in discriminating
between models. To test this, we generated new source
parameter posteriors for each merger event by randomiz-
ing the q values at each sample point. Specifically, for
each sample λi, we recorded the chirp mass Mchirp,
replaced q with a random sample from a uniform
distribution between 0 and 1, and then set m1 and m2

using the saved Mchirp and the new q. We then reran the
inference of the PBH S ¼ 1 model and the LIGO models
A and B using these new source posteriors. This procedure
destroys all information on mass ratio in each source,
preserving that on redshift and detector-frame chirp mass.
The (natural log) evidence ratio of the PBH model to
model B with this new data is −7.30� 0.25. For the PBH
model to model A, the evidence ratio is −5.72� 0.23, and
for model A to model B, it is −1.59� 0.23. The S ¼ 1
PBH model is now slightly less disfavored compared with
model A and model B but is still heavily disfavored
compared with both these models. There is no significant
change in the evidence ratio between the two LIGO
models. This test strongly suggests that the distribution
of chirp masses preferred by the models is the key
discriminator between them. The mass ratio uncertainties

are too large in the GWTC-1 catalog for q to be effective at
constraining the space of allowed models.
These arguments strongly suggest that the source like-

lihood pðdjθ;MÞ needed for the PPD should be the

probability of an “observed chirp mass” cMz given source
parameters. An expression for pðdjθ;MÞ is given in
Ref. [71]. For a single source with detectable GW strain
d and source parameters λ, the likelihood is

pðdjθÞ ¼ IðdÞ R dλpðdjλÞpðλjθÞR
dλpdetðλÞpðλjθÞ

; ðC1Þ

where IðdÞ is unity if the data pass the detection threshold
and zero if it does not. We have also defined the detection
probability over the complete set of source parameters
pdetðλÞ as

pdetðλÞ ¼
Z

ddIðdÞpðdjλÞ; ðC2Þ

where pðdjλÞ is the probability of any dataset, not just
those observable by the detector. The joint likelihood of N
sources is simply the product of individual likelihoods each
given by Eq. (C1). The prior distribution of source
parameters given the population model pðλjθÞ is simply
proportional to the merger rate dN=dm1dm2dz appearing in
Eq. (13). Note that the overall normalization of the merger
rate drops out of Eq. (C1).
Equation (C1) is the likelihood for GW strain data, and

we wish to rewrite it as a one-dimensional likelihood for

observed chirp mass cMz. This will allow us to study the
origin of the large likelihood ratios between models, which
we have argued is primarily due to the relative ability of
models to fit the observed distribution of chirp masses. It
will also allow an assessment of the absolute quality of
model fits via the PPD. To do this, we will make a series of
well-motivated approximations to construct a likelihood for

the compressed data cMz.
First, we will assume that IðdÞ ¼ Θðρ̂ − ρ�Þ where Θ is

the Heaviside step function, ρ̂ is the S=N of the observed
waveform, and ρ� is a threshold S=N; i.e., we assume
the merger is detectable if its S=N is above a sharp
threshold. Second, we assume that ρ̂ is unaffected by
noise fluctuations, such that for source parameters λ we
have pðρ̂jλÞ ¼ δD½ρ̂ − ρðλÞ�, where δD is the Dirac delta
function and ρðλÞ is the S=N of a model template with
source parameters λ. This is a reasonable approximation
since ρ̂ is a stack across the whole waveform and is
typically well constrained. These two approximations
imply that pdetðλÞ ¼ Θ½ρðλÞ − ρ��. Since ρ̂ is assumed to
be nonstochastic, we can integrate it out of Eq. (C1) and
redefine the data vector d as having the overall amplitude
projected out.
Next, we assume that the S=N can be written in terms of

the orientation parameter ω introduced in Sec. II as
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ρðλÞ ¼ ωρoptðλ̃Þ, where λ̃ are the source parameters
excluding the orientation and angular position parameters
(which have been combined into ω) and ρopt is the S=N of
an optimally oriented binary. For isotropic sources, we have
pðλjθÞ ¼ pðλ̃jθÞpðωÞ, where pðωÞ is the distribution
discussed in Sec. II and produced by GWDET. With these
approximations, Eq. (C1) becomes

pðdjθÞ ∝
Z

dλ̃dωΘ½ωρoptðλ̃Þ − ρ��pðdjλ̃;ωÞpðωÞpðλ̃jθÞ

∝
Z

dλ̃pðλ̃jθÞ
Z

1

ρ�
ρoptðλ̃Þ

dωpðωÞpðdjλ̃;ωÞ: ðC3Þ

Now, we will assume that an estimator cMz for the chirp
mass can be constructed from the data using some form of

massive data compression. Writing d ¼ ðcMz; d̃Þ, we can
integrate out all other “modes” of the data d̃ which keepcMz fixed. This simply amounts to replacing d with cMz
everywhere in Eq. (C3).

Our next approximation sets pðcMzjλ̃;ωÞ ≈ pðcMzjλ̃Þ;
i.e., we assume the estimated chirp mass on its own
provides no information on the orientation or angular
position of the binary. With this, we have

pðcMzjθÞ ∝
Z

dλ̃pdetðλ̃ÞpðcMzjλ̃Þpðλ̃jθÞ; ðC4Þ

where we used Eq. (1) to substitute for the angle-averaged
detection probability.

We now assume that both pdetðλ̃Þ and pðcMzjλ̃Þ depend
only upon Mz, q, and z; i.e., we neglect any spin
dependence in the S=N. This allows us to integrate out
all other source parameters from Eq. (C4). This just leaves

pðcMzjMz; q; zÞ, the likelihood for the observed chirp
mass, to be specified.
At this point, we must make a choice for the form of

pðcMzjMz; q; zÞ, since so far we have only used it as a
function of model parameters and not of “observed”

parameters. Since the data compression producing cMz is
massive, we will assume that the sampling distribution of
the estimator is Gaussian with mean μ and variance σ2. An
unbiased estimator for the chirp mass would have μ ¼ Mz,
but the variance can have a general dependence on Mz, q,
and z. This could in principle be inferred from the source
parameter posterior given priors on the source parameters,
but we will make the ansatz that σ2 is roughly constant and
can be set equal to the marginalized posterior variances on
chirp mass from the MCMC samples—this is justified if

pðcMzjMzÞ really is Gaussian and the prior on chirp mass
is uniform (although recall that the chirp mass is measured
with approximately 15% precision with little sensitivity to
the choice of prior).
With these assumptions, we can write

pðcMzjθÞ ¼
Z

dMzpðcMzjMzÞpðMzjθÞ; ðC5Þ

pðMzjθÞ ¼
R
dqdzpdetðMz; q; zÞpðMz; q; zjθÞR

dMzdqdzpdetðMz; q; zÞpðMz; q; zjθÞ
:

ðC6Þ

Equation (C5) is simply the predicted distribution of
chirp mass averaged over all other source parameters
convolved with the observational uncertainty specified

by pðcMzjMzÞ. We immediately recognize Eq. (C6) as a
normalized version of the differential detectable merger
rate, i.e., ∂ ln β=∂Mz. Recall that in Fig. 10 we plotted
∂β=∂M, ∂β=∂q, and ∂β=∂z.
Finally, we can average over the posterior of the model

parameters θ for each source to get the PPD. This gives, for
the full catalog of sources,

pðfcMzgjfdgÞ ¼
YNobs

i¼1

Z
dMzpðcMi

zjMzÞpðMzjfdgÞ;

ðC7Þ

pðMzjfdgÞ ¼
Z

dθpðMzjθÞpðθjfdgÞ: ðC8Þ

In a slight abuse of terminology, we will also refer to
pðMzjfdgÞ as the PPD. This object quantifies the prob-
ability distribution of the detector-frame chirp mass given
the data and can be convolved with the observational errors
according to Eq. (C7) to give an equivalent predictive
distribution for the observed chirp mass.
It is straightforward to show that Eq. (C5) evaluated at

the locations of the observed strain data gives a likelihood
function equivalent to that specified in Eq. (13) and used
throughout this work for inference. Indeed, the above
derivation shows how this simplified likelihood may be
obtained from first principles and makes all approximations
transparent. The only difference with Eq. (13) is the
Poisson probability of observing Nobs sources when β
were expected—the likelihood equation (C5) only accounts
for the relative merger rate, which is sufficient to under-
stand the disparity in likelihood ratios since β ≈ 10 at the
best-fit point for all models.
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