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We use analytic covariance matrices to carry out a full-shape analysis of the galaxy power spectrum
multipoles from the Baryon Oscillation Spectroscopic Survey (BOSS). We obtain parameter estimates that
agree well with those based on the sample covariance from two thousand galaxy mock catalogs, thus
validating the analytic approach and providing substantial reduction in computational cost. We also
highlight a number of additional advantages of analytic covariances. First, the analysis does not suffer from
sampling noise, which biases the constraints and typically requires inflating parameter error bars. Second, it
allows us to study convergence of the cosmological constraints when recomputing the analytic covariances
to match the best-fit power spectrum, which can be done at a negligible computational cost, unlike when
using mock catalogs. These effects reduce the systematic error budget of cosmological constraints, which
suggests that the analytic approach may be an important tool for upcoming high-precision galaxy redshift
surveys such as DESI and Euclid. Finally, we study the impact of various ingredients in the power spectrum
covariance matrix and show that the non-Gaussian part, which includes the regular trispectrum and
supersample covariance, has a marginal effect (≲10%) on the cosmological parameter error bars. We also
suggest improvements to analytic covariances that are commonly used in Fisher forecasts.
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I. INTRODUCTION

The analytic calculation of the power spectrum covari-
ance matrices developed in [1] (hereafter WS19) is a
potential alternative to the covariance matrix estimation
frommock catalogs.Moreover, the analytic approach allows
one to address at least two issues that cannot be easily
tackled with mock catalog based covariances: (a) sampling
noise due to a finite number of the mocks, (b) the difference
between the extracted cosmology and the one used to create
the mocks.
The construction of the covariance matrix from

mock catalogs is a standard tool in redshift survey analyses.
The main advantage of this approach is that the mock
simulations capture the effects of the survey geometry
and gravitational clustering beyond perturbation theory.
However, running many full N-body simulations for
OðGpc3Þ volumes is computationally expensive, and in
order to produce a large amount of mock catalogs to reduce
sampling noise typically a number of approximations are
used instead [2–12]. Even with these simplifications,
however, mock catalog production for real surveys can
take millions of CPU hours [13,14]. There are also
proposed semianalytic methods for calculating the covari-
ance from small-volume simulations or from data [15–19],

but such methods do not clearly take into account all the
physical effects that affect galaxy clustering.
The difference between the fiducial cosmology used to

generate the mocks and the actual cosmology inferred from
the data is a potential source of systematic error. To
eliminate this error, in principle, one should iterate the
analysis using the new covariance matrix reevaluated for
the output cosmology [20–24]. However, this cannot be
done with the mock covariances because of their prohibi-
tive computational cost.
Another uncertainty present in the covariance matrix

estimated from a finite sample of mocks is sampling noise.
Its impact on parameter constraints has been thoroughly
studied in the literature [25–30]. Sampling noise is typi-
cally taken into account by the inflation of parameter
variances. However, due to the stochastic nature of this
noise, even the inflation of error bars, in principle, does not
guarantee that the parameter estimation is accurate and
unbiased when only one realization of the sample covari-
ance matrix is used.
The danger of sampling noise has already stimulated a

broad line of research devoted to noise reduction tech-
niques, e.g., tapering [31], shrinkage [32], sparsity-based
methods [33], singular-value decompositions [34–37] or
Taylor expanding the precision matrix about a smooth
fiducial model [38]. The systematic errors generated by the
sampling noise and the difference between fiducial and*jay.wadekar@nyu.edu
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best-fit cosmologies cannot be reliably estimated using a
single sample covariance constructed from a finite number
of mocks, which may compromise cosmological results
from a galaxy survey. In this paper, we show that both of
the aforementioned problems can be circumvented with the
use of analytic covariance matrices. We will follow the
approach of WS19, who has recently put forward the first
analytic model for the full (diagonal and nondiagonal)
covariance of the redshift-space galaxy power spectrum
multipoles. Their model is based on perturbation theory
(PT) and includes the effects of radial redshift space
distortions, arbitrary survey window, shot noise, nonlinear
gravitational evolution, and the effect of supersurvey
modes. Because of the dominance of shot noise and the
supersurvey modes over nonlinearities in the covariance at
small scales, their PT-based model was shown to have an
excellent agreement with mock simulations up to quasi-
linear scales (k ≃ 0.6 h Mpc−1). However, in the case when
the range of eigenvalues of a matrix is large (as is typically
the case for the covariance matrices of the power spectrum),
very similar looking matrices can have completely different
inverses. Consequently, the likelihood for cosmological
parameter estimation, which depends on the inverse of the
multipole covariance matrix, could be affected.
It is therefore important to validate the analytic covari-

ance approach in the likelihood analysis of the actual
galaxy survey data, which is the main goal of our work. To
that end we will redo the full-shape analysis of the Baryon
Oscillation Spectroscopic Survey (BOSS) galaxy power
spectrum [39–41] (see also [42–46]), following the meth-
odology of [39] (hereafter Iva19), using the analytic
covariance matrices of WS19 instead of those from mock
catalogs [13]. The main result of our study is that the
cosmological constraints obtained in the previous analyses
using the mock catalog covariances agree with the results
based on the analytic covariances to ∼0.1σ. We will show
that this residual shift is produced by sampling noise in the
mock covariance, and it cannot be fully captured by the
standard approach of inflating the error bars. Finally, we
will show that our cosmological constraints are also stable
with respect to updating the covariance matrix to match the
best-fit output cosmology.
The stability of the constraints under variations of the

covariance matrix is an important test, which is usually
done in the case of the CMB [47–49] and for some weak
lensing data analyses [50,51]. Thus, our work also validates
the results of the previous full-shape analyses of the galaxy
power spectrum ([39–41]) and removes the uncertainty
associated with the choice of covariance matrices.
Our analytic approach also provides insight into the

relevance of various physical effects that form the param-
eter constraints. The non-Gaussian contribution to the
covariance, especially the supersample covariance (SSC),
has been the subject of extensive studies (see [52–61] for
some examples). In this work we explicitly demonstrate the

effect of the non-Gaussian covariance on parameter con-
straints from a realistic spectroscopic survey. Our results
suggest that the bulk of the constraints is coming from the
Gaussian part of the covariance; the non-Gaussian con-
tributions affect the parameters error bars at ≲10% level up
to k ¼ 0.25h Mpc−1, with roughly equal contributions
from the regular trispectrum and SSC. This should be
contrasted with the commonly used signal-to-noise ratio,
which is significantly affected by the non-Gaussian covari-
ance [1,62–65]. Thus, our analysis demonstrates that the
signal-to-noise may be a misleading metric to illustrate the
effects of the covariance matrix.
It is useful to compare our work to the previous literature

[66–70] focused on the Gaussian/disconnected part of the
power spectrum covariance. Some of these works have
already pointed out three generic advantages of the analytic
covariance over the mock simulations: (i) negligible com-
putation cost, (ii) absence of sampling noise that requires
the inflation of error bars, (iii) the possibility to use the
best-fit power spectrum as an input. In our work we
demonstrate these points on the example of the full
covariance matrix calculation that includes the connected
part as well. Moreover, we will explicitly study the impact
of the analytic covariance on cosmological constraints,
focusing on the parameter inference from the BOSS data.
The outline of the paper is as follows. We first discuss

our analysis method in Sec. II. We give a brief overview of
the analytic covariance in Sec. III where we also compare
the effect of its non-Gaussian component on parameter
constraints using a Fisher forecast. We describe the mock
catalogs we use and discuss the effects of sampling noise on
parameter constraints in Sec. IV. We present our BOSS
analysis results in Sec. V. We discuss and conclude in
Sec. VI. Appendix A provides more details on analytic
covariance matrices including suggestions for improving
Fisher forecasts, while Appendix B characterizes the noise
in covariance matrices from mock catalogs. Finally,
Appendix C contains further tests of our bias treatment.

II. DATA AND METHODOLOGY

In what follows we will analyze monopole and quadru-
pole moments of the BOSS galaxy power spectra using the
full-shape method of Iva19. We measure the power
spectrum multipoles from the publicly available catalogs1

of BOSS DR12 [46] using the estimator in [71]. As a cross
check, we analyzed the same catalogs with the NBODYKIT

code [72] and found excellent agreement. The catalogs
contain four different data samples: high-z (effective red-
shift zeff ¼ 0.61) and low-z (zeff ¼ 0.38), north and south
galactic cap (NGC and SGC) data chunks. Note that for
each particular chunk we use the same data vector across all

1https://data.sdss.org/sas/dr12/boss/lss/
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the analyses. This means that only the covariance matrices
are varied, the data vectors are fixed for every chunk.
We fit the power spectrum data with the one-loop IR-

resummed perturbation theory prediction [41,73,74]. This
model was verified in a blind challenge to measure
cosmological parameters from the BOSS-like mock cata-
logs, whose cumulative volume is ∼100 times bigger than
the actual BOSS volume [75]. Our theoretical predictions
are evaluated with the CLASS-PT code [76] (based on the
FFTLog method [77]), and then convolved with the survey
window function as described in [41]. We use the data in
the wave number range ½0.01; 0.25�h Mpc−1, which is
robust with respect to survey systematics and two-loop
corrections omitted in our theoretical calculation [39].
We assume the minimal flat ΛCDM model that is

characterized by ωb;ωcdm; H0; As; ns.
2 The neutrino sector

is approximated by a single massive state with
mν ¼ 0.06 eV. This choice is made only for simplicity
and does not affect the conclusions of our paper. In general,
we believe that it is more appropriate to treat mν as a free
parameter in the fit, as it is done in Iva19. We also fix ωb
and ns to the Planck best-fit values [78],

ns ¼ 0.9649; ωb ¼ 0.02237: ð1Þ
Using these fixed values or imposing the tight Planck
Gaussian priors on these parameters produce identical
results. For convenience, we will use the primordial power
spectrum amplitude normalized to the Planck best-fit value,

A≡ As

As;Planck
: ð2Þ

All in all, our Markov-Chain-Monte-Carlo (MCMC) chains
will sample the following set of cosmological parameters:

fωcdm; H0; Ag; ð3Þ
for which we do not assume any priors.
As far as the nuisance parameters are concerned, we will

use the following physical priors3:

b1A1=2 ∈ ð1; 4Þ;
b2A1=2 ∼N ð0; 1Þ; bG2

A1=2 ∼N ð0; 1Þ;
c0; c2 ∼N ð0; 302Þ ½Mpc=h�2;

c̃ ∼N ð500; 5002Þ ½Mpc=h�4;
Pshot ∼N ð0; 50002Þ ½Mpc=h�3; ð4Þ

where b1 denotes linear bias, b2 & bG2
denote quadratic

bias parameters. As far as the quadratic and cubic tidal

biases bG2
and bΓ3

are concerned, the power spectrum data
cannot measure them separately. It can only constrain their
following combination:

b0G2
¼ bG2

þ 0.4bΓ3
: ð5Þ

If we scan over bG2
and bΓ3

separately, we find that they are
fully degenerate, and their 1D the marginalized distribu-
tions are flat even within very wide priors. This makes the
sampling of these posterior distributions significantly time-
consuming. In order to facilitate the convergence of our
MCMC chains, we follow [41,75] and scan only over the
principal component (5). This can be done by keeping bG2

in the fit and setting the cubic bias to zero,

bΓ3
¼ 0: ð6Þ

This choice does not affect the constraints for the cosmo-
logical parameter [41,75]; see Appendix C for more detail.
It should be kept in mind that the constraints on bG2

presented in our paper are, in fact, the constraints on b0G2
.

In addition, c0; c2; c̃ are counterterms that account for the
impact of small-scale velocity dispersion on the redshift-
space power spectrum. Note that even though the standard
Poissonian pair-counting shot noise contribution is already
removed by the power spectrum estimator [79], one still
needs to marginalize over a constant offset, Pshot, to
account for the residual contribution produced by fiber
collisions and exclusion effects. Note also that the priors on
the cosmological and nuisance parameters used in this
paper are somewhat different from the ones used in [41];
they have been used in the analysis presented in Ref. [76].
Our MCMC analysis is carried out using the

Montepython code [80,81]. We consider the chains to be
converged if they satisfy the Gelman-Rubin convergence
criterion R − 1 < 0.01 [82,83]. All plots with posterior
densities are produced with the GetDist package4 [84].

III. ANALYTIC COVARIANCES

In this section, we highlight some important aspects of
the perturbation theory (PT)-based covariance matrix of
WS19. We closely follow their notation and refer the
readers to WS19 for further details. We will use their
COVA-PT code5 for computing the analytic covariance
matrices corresponding to different BOSS samples. In
most of the paper we will focus on the high-z north
galactic cap (NGC) sample (0.5 < z < 0.75) of the
BOSS data (with the exception of Sec. V B which contains
the results for the full BOSS survey). The power spectrum
covariance can be represented as a combination of
two components: the Gaussian/disconnected part that

2ωb ¼ Ωbh2 and ωcdm ¼ Ωcdmh2 are the physical densities of
baryons and dark matter (DM), respectively; As and ns are the
amplitude and tilt of the primordial spectrum of scalar perturba-
tions; and H0 is the Hubble parameter.

3We denote flat priors as p ∈ ð1; 4Þ and Gaussian priors with
mean μ and variance σ2 as p ∼N ðμ; σ2Þ.

4https://getdist.readthedocs.io/en/latest/
5COVA-PT is publicly available at https://github.com/

JayWadekar/CovaPT.
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corresponds to the product of two power spectra,6 and the
non-Gaussian part described by the connected four-point
function, or trispectrum in Fourier space. The latter also
contains contributions from the supersurvey modes. Let us
now discuss these two parts in more detail.

A. Gaussian covariance

In order to understand the important aspects of the
Gaussian covariance, let us rewrite here the final results
from Eqs. (57) and (88) of WS19 for the case of the
continuous Gaussian covariance (G) and the shot noise
contribution to the Gaussian covariance (SN-G):

CG
l1l2

ðk1; k2Þ ≃
X
l0
1
;l0

2

Pl0
1
ðk1ÞPl0

2
ðk2ÞWð1Þ

l1;l2;l01;l
0
2
ðk1; k2Þ

CSN-G
l1l2

ðk1; k2Þ ≃
�X

l0
Pl0 ðk1ÞWð2Þ

l1;l2;l0
ðk1; k2Þ þ ðk1 ↔ k2Þ

�

þWð3Þ
l1;l2

ðk1; k2Þ; ð7Þ

where Pl corresponds to the power spectrum multipoles,
and W corresponds to different window kernels and
depends on the width of the k-bins; it includes the effect
of the survey geometry and of the changing line-of-sight
(LOS) over the volume of the survey. The explicit expres-
sions for W are given in Eq. (A3) and are evaluated using
fast fourier transforms (FFTs) of the survey random catalog
(see [17,18,70,85] for alternate methods using correlation
functions). One aspect of the Gaussian covariance in
Eq. (7), which makes it computationally very efficient, is
the factorization of the clustering and the survey geometry
terms. Such factorization is based on the assumption that
the convolution of the power spectrum with the survey
window can be ignored, as the convolution only affects the
scales close to the size of the survey window.7

One can immediately see from Eq. (7) that calculating the
Gaussian covariance for multiple sets of cosmology and
galaxy bias parameters is computationally cheap, as it
amounts tosimplycomputing thepowerspectrummultipoles
for that set of parameters. The factorization of geometry and
clustering also allows one to include velocity dispersion
effects and loop corrections in theGaussian covariance quite
easily through the theoreticalmodel forPlðkÞ. Therefore, the
analytic model for the Gaussian covariance is accurate up to
kmax where the theoretical power spectrummodel is accurate.
The Gaussian covariance in Eq. (7) is not exactly

diagonal because a few neighboring k-bins get correlated
due to the survey mask. In order to make forecasts for

future surveys in the literature, the Gaussian covariance is
typically assumed to be diagonal and the effects of FKP
weights [79], survey geometry, and changing LOS are
ignored. We discuss these approximations in detail and
their impact on cosmological parameter constraints in
Appendix A 1.

B. Non-Gaussian covariance and Fisher forecast

The non-Gaussian (NG) part of the covariance is
composed of two main contributions: the regular trispec-
trum [63,86–89] and the contribution due to supersurvey
modes called beat-coupling [53,55] or supersample covari-
ance (SSC) [57,58,61] (see Appendix A 2 for more detail
on the NG expressions we use). WS19 calculated the NG
covariance at tree order (which is formally of the same
order as one-loop in the Gaussian covariance). One of the
important conclusions of their analysis was that using the
FKP estimator leads to the impact of supersurvey modes on
the covariance being stronger than was previously assumed
in the literature. In this paper we will explicitly demonstrate
that even the stronger SSC effect only leads to a marginal
degradation of parameter constraints.
One of the motivations to study the NG covariance has

been an observed degradation of the signal-to-noise ratio
(S/N),

ðS=NÞ2 ¼
Xkmax

ij

PðkiÞC−1ðki; kjÞPðkjÞ ð8Þ

compared to the Gaussian case, both in real space [62,63]
and redshift space [1,64,65]. In our joint (monopoleþ
quadrupole) analysis, we also find that the S/N reduces by
∼33% for kmax ¼ 0.25 h Mpc−1 upon including the NG
covariance, which is consistent with previous results of
WS19. However, the S/N ratio is not directly related to
parameter constraints. Indeed, S/N is inversely proportional
to the variance of the real space power spectrum amplitude
in linear theory, provided that all other parameters are fixed.
However, even in redshift space linear theory, the velocity
fluctuation amplitude fσ8 measurements result from the
breaking of the degeneracy with the linear galaxy bias b1
in the joint analysis of the monopole and quadrupole
moments, and hence are not directly related to S/N (see
e.g., [90]). As we go to the nonlinear level, the measure-
ment of cosmological parameters becomes sensitive to the
marginalization over nuisance parameters, which obscures
the interpretation of S/N even further.
To gain some intuition into the effect of theNGcovariance

on cosmological constraints, we perform a simple Fisher
forecast using the full nonlinear model and two choices of
the analytic covariance: the full case and the Gaussian
part only. We focus on the cosmological parameters
ωcdm; H0; As. For each parameter and each choice of the
covariancematrixwe do two different analyses: compute the
error bars with other parameters fixed (“unmarginalized”) or

6Note that the Gaussian covariance does not assume that the
density field itself is Gaussian, but it includes contributions from
discreteness and nonlinearity.

7We have explicitly taken into account the leading corrections
beyond this approximation and checked that they do not affect the
parameter constraints in our analysis.
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marginalize over full set of other parameters. We calculate
the Fisher matrix given by [20],

Fαβ ¼
Xkmax

ij

∂PðkiÞ
∂pα

C−1ðki; kjÞ
∂PðkiÞ
∂pβ

; ð9Þ

for the same parameter set that we use in our BOSS analysis,

pα ¼ fωcdm; H0; As; b1A1=2; b2A1=2; bG2
A1=2;

c0; c2; c̃; Pshotg; ð10Þ

and also include the priors mentioned in Eq. (4). We show
the resulting parameter error bars as a function of the data cut
kmax in Fig. 1. The unmarginalized case is similar to the naive
S/N analysis and we indeed find that the NG covariance
affects the error bars significantly. However, the effect of the
NG part becomes much weaker after marginalization over
other parameters: the resulting constraints for H0 and ωcdm
are nearly unaffected by the NG part and there is a marginal
change in the resulting As constraints. To see the relative
effect of the nuisance parameters on the constraints, we also
show the case when the parameter marginalization is carried
out without including the nuisance parameters. Remarkably,
the marginalization over the cosmological parameters
already suppresses the effect of the NG covariance, even
if the nuisance parameters are fixed.
In our actual data analysis, we will use kmax ¼

0.25 h Mpc−1. However, it is instructive to push to higher
kmax as the ratio of the amplitude of the NG covariance to
that of the G covariance increases with k [1], and we indeed
find that the effect of NG part on the As error bar also
increases (the error bar degradation in the marginalized
case increases from ∼8% for kmax ¼ 0.25h Mpc−1 to
∼15% for kmax ¼ 0.4 h Mpc−1). However, in a realistic
case, one would need to include two-loop corrections with
additional nuisance parameters in this case, and hence the
marginalization effects can become stronger on these
scales. Thus, going to higher kmax with our one-loop theory
model is, of course, overly optimistic.
One other insight gained from the above discussion is

that S/N is a misleading metric to quantify the impact of the
NG covariance. We will also see in Sec. V that our Fisher
results are in good agreement with the full MCMC analysis
for kmax ¼ 0.25 h Mpc−1. See also [91] for an analysis with
a different methodology and performed at a higher kmax.
Finally, it is worth briefly discussing the effect of higher-

order nonlinearities like loop and fingers-of-god (FoG)
corrections, which have not been included in NG covari-
ance model of WS19. For the autocovariance of monopole
and quadrupole, the contribution from supersurvey modes
and shot noise is expected to dominate over the loops
and fingers-of-god even at high-k [WS19]. For the cross-
covariance, however, the effect of long modes and shot
noise is subdominant, while the effect of FoG is particularly

important. The NG cross-covariance is thus expected to be
smaller than our calculation at high-k and likewise its effect
on the parameter constraints, so our analysis can be treated
as a first conservative approximation.

IV. COVARIANCE FROM MOCK CATALOGS

In this section we provide details of the mocks that we
use and a brief overview of the sampling noise due to a
finite number of mocks. We use the V6CMultiDark-Patchy

GaussianG aG i

Full MatrixaFull Matrix

(
)

( )

(( ++ ))

(
)

( )

(
)

FIG. 1. Forecasted error on the cosmological parameters
upon using two different cases of the covariance matrix. In the
unmarginalized scenario for a particular parameter in blue, all
other cosmology and bias parameters are fixed. The green curves
display the effect of marginalization over the cosmological
parameters fωcdm; H0; Asg only. The red curves show the effect
of marginalizing over all 10 parameters given in Eq. (10). The NG
covariance affects the unmarginalized constraints significantly
(similar to what a naive S/N analysis would suggest), but the
effect of the NG covariance on the marginalized parameters is
much weaker. Note that our actual MCMC analysis will be
limited to kmax ¼ 0.25 h=Mpc; the results for higher kmax are
displayed only for illustration purposes.
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mock galaxy catalogs [13] (hereafter referred to as Patchy
mocks), which were also used in SDSS-BOSS parameter
constraints papers by the collaboration [42–46]. These
catalogs were generated by using the PATCHY code [7]
and calibrated using the BigMultiDark N-body simulation
[92,93]. The work in [13] gives a rough estimate of the
computations involved in generating the 2048 mocks to be
0.5 million CPU hours (for the same volume, full N-body
simulations would have required ∼9 billion CPU hours).
For comparison, the analytic covariance of WS19 requires
∼100 CPU hours to compute the Monte-Carlo integrals for
evaluating the window kernels in Eq. (A3) for a given
survey random catalog; the rest of the steps are computa-
tionally trivial.
We measure the power spectrum from mocks using the

estimator of [71]; in particular, we use the best (lower
variance) of the two estimators presented for the quadrupole.
We have included the veto mask which excludes the
unobservable regions on the sky, e.g., near bright stars.
We choose not to use the standard fiber collision weights in
the Patchy catalogs because they are based on the nearest
neighbor approximation, which is not entirely accurate [94].
Amore accurate way of accounting for fiber collisions is the
effective window method, supplemented with the margin-
alization of appropriate nuisance parameters (Pshot and c̃ in
our case). However, it has been shown in Refs. [39,40] that
this marginalization accounts for fiber collisions even if the
effectivewindowmethod is not applied, i.e., thewhole effect
of the effective window can be absorbed into the nuisance
parameters. Given this reason, we do not explicitly imple-
ment the effectivewindow in our analysis, but allow forwide
priors on the nuisance parameters instead (we also checked
that including the fiber collision weights in the Patchy
mocks does not affect our results).
To estimate the multipoles power spectrum covariance

from a sample of Nm mocks, we use the standard empiric
estimator,

Ĉl1l2ðki; kjÞ

≡ 1

Nm − 1

�XNm

n

½PðnÞ
l1
ðkiÞ− P̄l1ðkiÞ�½PðnÞ

l2
ðkjÞ− P̄l2ðkjÞ�

�
;

ð11Þ

where the sample mean power spectrum is given by

P̄lðkiÞ ¼
PNm

n PðnÞ
l ðkiÞ=Nm. We will use Nm ¼ 2048

throughout this paper, just like the previous BOSS analyses
[42–46]. In order to get the unbiased inverse covariance in
the ensemble-averaged limit, the estimator of the inverse
covariance (precision) matrix needs to be rescaled by a
prefactor as shown in the following equation:

Ĉ−1 ¼ Nm − nb − 2

Nm − 1
ðĈ−1Þmeasured; ð12Þ

which is called the “Hartlap factor” [25,95] (originally
derived by Wishart in Ref. [96]) and has an almost
negligible difference from unity (¼0.95) in our case of
nb ¼ 96 bins and Nm ¼ 2048.

A. Sampling noise

When a finite sample of mocks is used to estimate the
covariance matrix, sampling noise is introduced in the
matrix. If one assumes that the variations in the power
spectra measured from the mock catalogs are Gaussian
distributed, the error in the elements of the estimated
covariance matrix is given by8 [26,95]

ΔCl1l2ðki; kjÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nm − 1
p ½C2

l1l2
ðki; kjÞ

þCl1l1ðki; kiÞCl2l2ðkj; kjÞ�1=2: ð13Þ

Substituting the values of the matrix elements obtained
from Patchy in the RHS of the above equation, we show
in Fig. 2 the resultant error on individual elements of
the Patchy multipoles covariance matrix (we also checked
that the estimates are roughly consistent with the error
estimated using bootstrapping). The effect of sampling
noise from Fig. 2 is quite significant, especially for the
cross-covariance elements. The elements for which error
is larger than their absolute value are labeled as 100%.
The relative error in the diagonal and off-diagonal ele-
ments is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=2047

p
≃ 3.1% and ≳30%, respectively. This

happens because the diagonal elements are larger than the

20

40

60

80

100

FIG. 2. Percentage error in the elements of the power spectrum
multipoles covariance matrix from 2048 Patchy mocks due to
sampling noise, calculated using Eq. (13).

8See Appendix E of WS19 for a justification of the non-
Gaussian contribution to the error on the covariance being
subdominant for k ≲ 10 h Mpc−1.
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off-diagonal ones, and dominate the variance of the
covariance in Eq. (13) for all elements,

ΔCl1l2
ðki; kjÞ

Cl1l2ðki; kjÞ
∼
�
1

Nm

Cl1l1ðki; kiÞCl2l2ðkj; kjÞ
C2

l1l2
ðki; kjÞ

�
1=2

: ð14Þ

We can see that the relative noise has a quite weak scaling
with the number of mocks, ∝ Nm

−1=2, and hence reducing
the noise on the off-diagonal elements from, e.g., ∼50%
down to a level of 10% requires increasing the number of
mocks by more than an order of magnitude.
Let us now consider the effects of sampling noise on

parameter constraints; it leads to: (a) stochastic inflation/
deflation of parameter error bars and (b) stochastic shifts of
the best-fit values of parameters. Averaging over ensembles
of the estimated covariance matrices, Ref. [27] derived a
general formula for the RMS value of the shifts in the best-
fit parameters as

hΔp2i1=2 ¼ σp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðnb − npÞ

q
; ð15Þ

where σp is the (unknown) true parameter error. Using B
from Eq. (17), the RMS in our case is 0.2σp. The
stochasticity due to the shifts can be included in the total
error budget by adding the RMS value in quadrature to the
usual statistical error. This, along with including the effect
of (a), leads to rescaling the parameter error bars by the
widely used M1 factor [28],

M1 ≡ ffiffiffiffiffiffi
m1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bðnb − npÞ

1þ Aþ Bðnp þ 1Þ

s
; ð16Þ

where the embedded terms are given by [26],

A ¼ 2

ðNm − nb − 1ÞðNm − nb − 4Þ ;

B ¼ Nm − nb − 2

ðNm − nb − 1ÞðNm − nb − 4Þ : ð17Þ

Multiplying by M1 is a common practice in the
analyses based on the sample covariance (see e.g.,
[97]). In our setup np ¼ 10, nb ¼ 96, and Nm ¼ 2048,
which gives M1 ¼ 1.02, and, hence, this factor is only a
small correction to the typically reported ∼10% precision
on the error bars. Naively, given a small difference of
M1 from unity, one might conclude that the sampling
noise can be ignored. But rescaling by M1 only ensures
that the constraints are unbiased if we could average
the covariance matrix over an ensemble of noise real-
izations. It does not guarantee that the constraints ob-
tained with a single realization of the sample covariance

are unbiased.9 It is also important to note that even when
the bias of the best-fits due to sampling noise is taken
into account by the M1 factor at the level of the error
bars, the mean of the posterior distribution from a single
realization of the covariance could still have ∼0.2σ shifts
with respect to true values obtained in the absence of
sampling noise. This will be important for the interpre-
tation of the results from our BOSS analysis in the next
section.
There is another important caveat in using the M1 factor

and in Eq. (15), the derivation of both is based on the
assumption of Gaussian parameter likelihood in a Fisher
analysis. This assumption can be inaccurate in practice;
a classic example is the sum of neutrino masses, whose
distribution is peaked at the boundary of the sharp priorP

mν > 0, as is found in the analysis of the CMB Planck
data and also of spectroscopic surveys [98]. Other examples
of highly non-Gaussian distributions are given by the
posteriors for the nuisance parameters (like b2) [39].
Such deviation from Gaussianity is expected to exacerbate
the effects of sampling noise as compared to a naive Fisher
analysis. Therefore, it is imperative to validate the cosmo-
logical constraints with different choices of the covariance
matrix, which is one of the goals of this paper.
Apart from sampling noise, the covariance matrix is also

sensitive to noise due to various numerical approximations
involved in its computation. One way to roughly estimate
the impact of such numerical noise on the inversion of a
matrix is to calculate its conditional number (which is
defined as the ratio of the largest eigenvalue to the smallest
eigenvalue). The conditional number for the Patchy multi-
pole covariance matrix is quite large (1.2 × 106), which
implies that the matrix is sensitive to numerical instabilities
during inversion. Various approximate techniques used in
the generation of mock simulations could therefore further
degrade the parameter constraints.

V. RESULTS

In this section we compare the parameter constraints
obtained using the covariance matrix from Patchy mocks
with those using the analytic covariance. We will first focus
on the NGC high-z data chunk (zeff ¼ 0.61) and discuss the
results for the other samples in the end of this section.

A. Case study: High-z NGC BOSS sample

Let us discuss the constraints obtained from the high-z
NGC sample, which has the largest volume among all the
BOSS samples. We will use this case to illustrate three key

9To test this, we performed a MCMC analysis using a set of 50
synthetic sample covariance matrices (see Appendix B 1 for
details). We indeed found that the error bars on cosmological
parameters in some cases shrank by a much larger amount than
what theM1ð¼ 1.02Þ factor corrects for (see Fig. 9 where the H0

error bars shrink by ∼18% for “Sample 1”).
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aspects of our analytic covariance analyses: the comparison
with the mock covariance for the same fiducial cosmology,
effect of the update to match the best-fit output cosmology,
and the contribution of the non-Gaussian covariance.

1. Comparison for the same fiducial cosmology

As a first step, we analyze the data with the analytic
covariance evaluated for the fiducial cosmology used in the
Patchy mocks. This direct comparison will later allow us to
isolate the effects due to cosmology-dependence of the
covariance matrix, which will be discussed in the next
subsection. We show the posterior distribution of the
inferred cosmological parameters in Fig. 3; the correspond-
ing 1d marginalized limits are in Table I. Note that we
display only the bias parameters b1A1=2 and bG2

A1=2

because their limits are substantially narrower than the
priors, unlike the posteriors for other nuisance parameters.
The only noticeable difference between the two cases is a

FIG. 3. Cosmological parameters inferred from the BOSS NGC high-z data chunk using different covariance matrices; corresponding
tabulated values are in Table I. The constraints from the analytic covariance of WS19 are quite similar to the ones from 2048 Patchy
mocks, except for small ∼0.2σ shifts which are generated by sampling noise (see the cross-checks shown in Figs. 9 and 11). The
constraints are stable under the change of cosmology of covariance matrix by comparing the cases of the fiducial cosmology used in
Patchy and the best-fit output cosmology.

TABLE I. Mean values and 68% CLminimum credible intervals
for the parameters of the base ΛCDM model fitted to the high-z
NGC chunks of the BOSS data. The upper part of the table displays
the parameters that were sampled directly. The lower group lists
derivedparameters.We showonly those nuisance parameterswhose
posteriors are noticeably narrower than the priors.

Covariance

Parameter
Patchy
mocks

Analytic
(fiducial cosmo)

Analytic
(best-fit cosmo)

H0 (km=s=Mpc) 71.44þ2.0
−2.2 71.19þ2.1

−2.3 71.15þ2.2
−2.3

A1=2 0.8135þ0.077
−0.093 0.8194þ0.08

−0.098 0.8276þ0.078
−0.094

ωcdm 0.1364þ0.0091
−0.01 0.1345þ0.0092

−0.011 0.1336þ0.0089
−0.01

b1A1=2 1.905þ0.063
−0.056 1.915þ0.062

−0.056 1.916þ0.062
−0.055

bG2
A1=2 0.1627þ0.2

−0.23 0.1468þ0.2
−0.23 0.1345þ0.19

−0.23

Ωm 0.3126þ0.018
−0.02 0.3111þ0.019

−0.021 0.3098þ0.018
−0.02

σ8 0.721þ0.064
−0.074 0.719þ0.065

−0.076 0.724þ0.063
−0.072
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0.2σ shift in ωcdm. The shift also propagates into a derived
parameter Ωm. Apart from this, the means in the posterior
distributions are very similar and the sizes of error bars
agree to 5%. Even though the difference is quite insignifi-
cant, it is somewhat larger than the ensemble-averaged
expectation value M1 ¼ 1.02.
The observed shift of 0.2σ in ωcdm is consistent with the

theoretical estimate of the shift due to sampling noise in
Eq. (15). Nevertheless, we perform two additional tests to
show that the shift resulted due to sampling noise. We give
an overview of the tests below and leave the details to
Appendices B 1 and B 2. In the first test, we constructed
synthetic sample covariance matrices using the analytic co-
variance as reference. Having analyzed the data with these
synthetic covariances, we found very similar ∼0.2σ shifts
in different parameters, which indicates that these shifts are
indeed to be expected due to sampling noise from ∼2000
mocks.
Our second test is based on the singular value decom-

position technique (SVD) to reduce the sampling noise in a

sample covariance matrix (see Appendix B 2 for details).
We find that the slight tension between the analytic and
Patchy results is removed once we apply the denoising
method to the Patchy covariance.

2. Updating the covariance matrix
for the best-fit cosmology

The cosmological and bias parameters found in our
likelihood analysis turned out to be different from the ones
used to generate the Patchy covariance (see Fig. 8 for the
difference between the power spectra obtained using the
best-fit parameters and the mean of the Patchy mocks). In
such a case, one should redo the analysis with the updated
covariance evaluated for the best-fit cosmological and
nuisance parameters. In principle, one should iterate this
procedure until the obtained best-fit cosmology matches the
one used to generate the covariance. The analytic covari-
ance method allows one to follow this procedure at a
negligible computational cost, unlike the case of mock-
derived covariance matrices.

FIG. 4. Same as Fig. 3 but including different variations of the analytic covariance matrix: using only its Gaussian/disconnected part
and using the Gaussian part supplemented with the supersample covariance (SSC); corresponding tabulated values are in Table II. We
also show the constraints obtained with the approximate diagonal limit version of the Gaussian covariance, which is discussed in detail
in Appendix A 1 and further compared in Fig. 7. All contours other than the gray ones are very similar to each other, which shows that
the non-Gaussian contributions to the covariance affect the parameter constraints marginally.
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We redo our analysis using the covariance matrix
recomputed using the best-fit output cosmology obtained
from the first run; we substitute the best-fit power spectrum
in Eq. (7) to derive the new Gaussian covariance and use the
posterior cosmological and bias parameters to resimulate
the non-Gaussian terms in Eq. (A12). The results are shown

in Fig. 3. The updated more accurate covariance causes
some changes to constraints as seen in Table I, but the
changes are quite minor: the error bars agree within 10%
and means are shifted by ≲0.1σ. As the changes are not
statistically significant enough to warrant another run, our
iterative procedure has converged already after one step.

TABLE II. Same as Table I but for different variations of the analytic covariance matrix. See the text for more
detail.

Covariance

Parameter Full analytic Gaussian Gaussianþ SSC Diagonal limit Forecast approx.

H0 71.15þ2.2
−2.3 71.16þ2.1

−2.2 71.15þ2.1
−2.3 71.25þ2.4

−2.7 71.18þ2.1
−2.3

A1=2 0.8276þ0.078
−0.094 0.8218þ0.074

−0.089 0.8223þ0.075
−0.091 0.8115þ0.076

−0.097 0.8244þ0.071
−0.086

ωcdm 0.1336þ0.0089
−0.01 0.1339þ0.009

−0.011 0.1339þ0.009
−0.01 0.1341þ0.0096

−0.011 0.1338þ0.0088
−0.01

b1A1=2 1.916þ0.062
−0.055 1.914þ0.065

−0.057 1.915þ0.065
−0.057 1.914þ0.072

−0.064 1.913þ0.065
−0.056

bG2
A1=2 0.1345þ0.19

−0.23 0.1295þ0.2
−0.22 0.1291þ0.2

−0.22 0.1513þ0.22
−0.24 0.1338þ0.2

−0.22

Ωm 0.3098þ0.018
−0.02 0.3101þ0.018

−0.02 0.3102þ0.018
−0.02 0.31þ0.02

−0.023 0.3098þ0.018
−0.02

σ8 0.724þ0.063
−0.072 0.719þ0.060

−0.069 0.720þ0.062
−0.070 0.711þ0.064

−0.076 0.722þ0.057
−0.066

FIG. 5. Same as Fig. 3 but for the different BOSS data chunks; the lined (filled) contours are for the Patchy (analytic) covariance. The
behavior for each chunk is similar to that in Fig. 3: the parameter constraints are almost identical modulo small stochastic parameter
shifts at the 0.1σ − 0.2σ level.
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3. Impact of the non-Gaussian covariance

An analytic calculation of the covariance matrix enables
one to investigate the effects of various physical contribu-
tions on the parameter constraints. To illustrate this, we
rerun our analysis for two more cases: using only the
disconnected (Gaussian) part, and including the super-
sample covariance (SSC). Figure 4 compares the parameter
constraints with ones from the full [Gaussianþ
non-Gaussian (NG)] analytic covariance. We see that the
NG covariance (both with and without SSC) affects the
parameter constraints marginally10 and this effect is also
consistent with the Fisher analysis estimates in Fig. 1. It is
worthwhile to note that the effect of the NG covariance
increases as the shot noise in the survey decreases and also
as we go to smaller scales [1]. Because the analytic
formalism of WS19 currently allows for a cheap compu-
tation of the NG part to tree-order, it should be included in
the analysis in order to keep the systematic error budget
within the desired 0.1σ limit.
We have only considered spectroscopic surveys in this

work but it is worth contrasting the effect of NG covariance
on parameter constraints from the photometric surveys, for
which the analysis is typically done to much smaller scales
at which the NG contribution to the total covariance is
larger. More importantly, there is a damping of long modes
in spectroscopic surveys, because the FKP estimator
normalizes the density fluctuations by the total number
of galaxies in the survey [1]. There is no analogous
damping in the photometric surveys and therefore the
NG covariance is expected to have a relatively larger effect
on the parameter constraints [99,100].
Finally, we also repeated our analysis using approximate

diagonal versions of the Gaussian covariance matrix used
in the literature (see Appendix A 1 for details), where the
effects of the survey geometry and changing LOS are

neglected. We first use the diagonal version of the Gaussian
covariance written in Eq. (A4), which was referred to as
“diagonal limit” by [70]. We also use an even cruder form
written in Eq. (A6), which is typically used in Fisher
forecasts and we label it as “forecast approximation”. Quite
surprisingly, these very crude choices yielded parameter
constraints that are quantitatively very similar to the ones
obtained in the full analysis as seen in Fig. 4 and Table II. It
is important to note that the two cases mentioned above are
not at all controlled assumptions and produce drastically
different precision matrices as seen in Fig. 7. For these
reasons we do not recommend these for any practical
application to data. We leave the further discussion to
Appendix A 1.

B. Results for the full BOSS survey

We use the same procedure as the previous section to
analyze each of the BOSS data chunks: we first analyze the
data using the Patchy covariance matrices and find the best-
fit cosmological and nuisance parameters. We use those
best-fit parameters to compute the analytic covariance and
use it to reanalyze the BOSS data. Our results, displayed in
Fig. 5 and in Table III, are qualitatively similar to the ones
obtained for the NGC high-z case: the parameter con-
straints are almost identical modulo some insignificant
parameter shifts.
Importantly, we do not see any significant difference in

the behavior of low-z and high-z bins. This suggests that
the higher-order perturbation theory corrections omitted in
the calculation of the NG covariance have no sizeable
impact on parameter inference, in agreement with the
arguments given in WS19. Indeed, if these corrections
had impact on the final result, it would be more pronounced
in the low-z bin for two reasons: the nonlinear clustering
becomes stronger at lower z, and the impact of shot noise
for the low-z bin is less dominant,11 which further increases
the relative importance of nonlinearities.

TABLE III. Same as Table I but for different BOSS data chunks and two choices of the covariance matrix: Patchy mocks (M) and
analytic (A) computed for the best-fit cosmologies from the Patchy covariance runs.

Chunk (Cov.) High-z SGC (M) High-z SGC (A) Low-z NGC (M) Low-z NGC (A) Low-z SGC (P) Low-z SGC (A)

H0 (km=s=Mpc) 66.68þ2.2
−4.0 67.57þ2.3

−4.3 67.22þ1.5
−1.7 67.36þ1.6

−1.8 70.55þ2.6
−4.7 70.51þ2.6

−4.2
A1=2 0.899þ0.12

−0.16 0.9067þ0.12
−0.17 1.041þ0.11

−0.12 1.047þ0.11
−0.12 0.7881þ0.12

−0.19 0.8343þ0.13
−0.19

ωcdm 0.1133þ0.01
−0.014 0.1136þ0.01

−0.014 0.1111þ0.0087
−0.01 0.1127þ0.0092

−0.011 0.1165þ0.011
−0.016 0.1168þ0.011

−0.015
b1A1=2 2.064þ0.13

−0.093 2.04þ0.13
−0.093 1.864þ0.061

−0.058 1.865þ0.059
−0.056 1.854þ0.13

−0.093 1.848þ0.12
−0.088

bG2
A1=2 0.02241þ0.34

−0.33 −0.02387þ0.35
−0.34 −0.215þ0.17

−0.16 −0.1775þ0.16
−0.15 0.2599þ0.29

−0.35 0.2535þ0.25
−0.33

Ωm 0.3079þ0.031
−0.03 0.3007þ0.032

−0.031 0.2966þ0.015
−0.017 0.299þ0.016

−0.017 0.2822þ0.028
−0.027 0.2824þ0.027

−0.026
σ8 0.698þ0.087

−0.13 0.705þ0.089
−0.13 0.799þ0.075

−0.075 0.811þ0.076
−0.076 0.630þ0.09

−0.15 0.667þ0.1
−0.15

10Note that, contrary to what one might naively expect, there
are cases where including the NG covariance can improve
constraints (e.g., b1A1=2 and bG2

A1=2 in Table II and sections
of the green curves in Fig. 1). This is similar to the behavior seen
for bispectrum constraints in [55]; see their Sec. 5.C for an
explanation.

11The low-z bin has nearly twice the galaxy number density as
the high-z bin.
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Overall, we do not see any pattern that would hint at a
systematic error induced by the analytic covariance. The
parameters from the four chunks are in good agreement
with each other, and therefore can be combined. Since
different chunks represent nonoverlapping patches of the
sky and redshift bins, their data are independent and we can
simply multiply the corresponding likelihoods.12 The
results are shown in Fig. 6, where, for reference, we also
display the baseline Planck 2018 TTTEEEþ lowEþ
lensing results obtained for the same base ΛCDM model
[78]; the 1d marginalized limits are given in Table IV. The
posteriors for any of the parameters are not significantly
affected by the choice of the covariance matrix. The
difference between the constraints is 0.14σ for σ8 and less
than 0.1σ for the other parameters, in particular, for ωcdm.

Recall that the individual chunks exhibited somewhat
bigger ∼0.2σ tensions between the analytic and Patchy
results. The observed reduction of these tensions is yet
another confirmation that they were produced by stochastic
fluctuations in the Patchy covariance, which average out
when independent samples are combined.
Finally, it is worth commenting on the differences of our

constraints with respect to the previous analysis of
Ref. [76], which used similar priors on cosmological and
nuisance parameters. This analysis was based on the
publicly available measurements of the BOSS power
spectra and Patchy covariance matrices,13 and yielded
H0 lower by 0.5σ and ωcdm lower by 1σ compared to
our present results for the Patchy covariance. Using the
same public data products, we have found that these shifts
are generated by the difference between the public power
spectra and our measurements from the BOSS galaxy
catalogs. As a cross-check, we performed our power
spectra measurements with two independent codes (see

FIG. 6. Cosmological parameters inferred from the combination of all BOSS data chunks using different covariance matrices;
corresponding tabulated values in Table IV. The combination of different chunks leads to cancellation of the stochastic shifts seen in
Fig. 5, and the resulting constraints are in excellent agreement. We also show the Planck 2018 results for comparison.

12It should be mentioned that the contiguous galaxies located
at the boundaries of the redshift bins are, in fact, correlated, but
the number of these galaxies is small compared to the full
samples, such that the independence of different z-bins is a
reasonable approximation. 13https://fbeutler.github.io/hub/hub.html
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Sec. II) and found identical results, which still slightly
differ from the public spectra. Since the difference in the
eventual constraints is not very significant and it is not
caused by the covariance matrix, its thorough investigation
goes beyond the scope of this paper.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented a new analysis of the
BOSS full-shape data using the perturbation-theory
(PT) based covariance matrices of WS19. This approach
is a well-controlled and an extremely cheap complement to
the usually adopted way of estimating the sample covari-
ance from large sets of mock catalogs. The key advantages
of the analytic approach over the mock simulations are that
the analytic covariance matrix (i) can be easily recomputed
for any input cosmology and (ii) it does not contain any
finite sampling noise, which is the main source of bias in
the likelihood analyses based on the mock covariances.
The noise in the covariance matrix constructed from

mock catalogs biases means and variances of inferred
cosmological parameters. Most of the studies account for
these effects by inflating the resulting error bars by the so-
called factor M1 [28]. This practice, however, is not
perfectly accurate: it does not guarantee that the constraints
obtained with a particular realization of the sample covari-
ance matrix would be unbiased. Besides, it assumes that the
likelihood in the space of parameters is Gaussian, which is
not the case for realistic large-scale structure likelihoods.
To illustrate these arguments, we have performed a

detailed study of the sampling noise in the covariancematrix
and its impact on the actual BOSS likelihood, presented in
Appendix B. We have found that indeed the sampling noise
canproducebias on themeans andvariancesof cosmological
parameters, which cannot be fully taken into account by
multiplying the errors with a factorM1 (equal to 1.02 in our
case). This result can be contrasted with the previous studies
based on toy Gaussian likelihoods [27,28], which do not
fully capture all features of the real data.
We have explicitly demonstrated that the analytic cova-

riance matrices give accurate and unbiased constraints,
and, moreover, took advantage of the property that
they can be easily updated to match the output cosmology.

In particular, we have reanalyzed the BOSS data using
the analytic covariance matrices based on the cosmo-
logy preferred by the data itself. Modulo small shifts
discussed above, we found constraints statistically con-
sistent with the ones based on the Patchy mock covari-
ance. This test also validates the previous full-shape
results obtained in the literature and removes the uncer-
tainty of the BOSS cosmological constraints based on the
covariance matrix.
Finally, we have discussed the effect of various compo-

nents of the covariance matrix on the parameter constraints.
Specifically, we have found that the non-Gaussian covari-
ance, which includes the regular trispectrum and super-
sample covariance, affects the parameter error bars at a
marginal level (≲10%) and the effect is expected to only
mildly increase at a higher kmax. This is welcome news for a
perturbative calculation of the covariance because the
treatment of nonlinearities in the trispectrum becomes
difficult at high-k. Additionally, we have suggested an
improvement to Fisher forecasts, which typically use a very
crude version of the Gaussian covariance matrix. Namely,
we have provided explicit expressions for the covariance
matrix that take into account the nontrivial radial selection
function of the survey, see Appendix A.
Overall, our results demonstrate the utility of the

perturbation theory approach to covariance matrices. We
believe that it is an important tool for the upcoming high-
precision galaxy redshift surveys such as Euclid [101,102]
and DESI [103].
The analytic approach to covariance can be extended in

various ways. The current calculation of the analytic non-
Gaussian covariance does not include higher-order non-
linearities (i.e., loop corrections and “fingers-of-God”).
Although we did not find evidence that these corrections
are important for the BOSS parameter constraints, they
can be consistently included within the PT framework
along the lines of Refs. [63,86,87]. The impact of non-
linearities relative to shot noise can be roughly compared
for upcoming surveys like DESI and Euclid using the
signal to noise ratio (n̄P) at the baryon acoustic oscillation
(BAO) scale (see Fig. 2 of [104]). The value of n̄P is
largely similar to that of BOSS (the largest deviation
being for the bright galaxy sample (BGS) sample of DESI
where the value is only ≲2.5 larger), so we expect
roughly similar impact of nonlinearities as seen in
BOSS. Also, including a better treatment of the window
convolution in the analytic covariance at low-k would be
required in an analysis aimed at constraining primordial
non-Gaussianity of local type. Another interesting
research direction is the calculation and consequence
validation of the covariance matrices between the power
spectrum multipoles and the anisotropic BAO parameters
extracted from the postreconstructed power spectra, along
the lines of [105]. We leave these questions for future
investigation.

TABLE IV. Same as Table I but for BOSS data combined from
all chunks.

Covariance

Parameter Patchy mocks Analytic (best-fit cosmo)

H0 (km=s=Mpc) 68.59þ1.1
−1.1 68.66þ1.1

−1.1
A1=2 0.8942þ0.057

−0.063 0.9018þ0.057
−0.064

ωcdm 0.1204þ0.0051
−0.0057 0.1203þ0.0052

−0.0056

Ωm 0.3048þ0.0096
−0.011 0.3039þ0.0097

−0.01
σ8 0.728þ0.044

−0.044 0.734þ0.043
−0.043
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APPENDIX A: MORE DETAILS
ON ANALYTIC COVARIANCES

In Sec. VA 3 we discussed the effects of different
components of the covariance matrix and of different
approximations on the parameter constraints. In this
Appendix we present some of the theoretical expressions
we used for analytic covariance and describe the connec-
tions to various versions of the covariance used in the
literature.

We adopt the following notation from WS19:

WijðxÞ≡ n̄iðxÞwjðxÞ; ðA1aÞ

Iij ≡
Z
x
n̄iðxÞwjðxÞ; ðA1bÞ

where i, j are some (integer) power exponents, n̄ðxÞ is the
redshift distribution of objects in the survey (also called the
radial selection function), and

wðxÞ≡ 1

1þ n̄ðxÞP0

ðA2Þ

is the well-known FKP weight [79] and we adopt P0 ¼
10000h−3 Mpc−3 [44].

1. Gaussian covariance and its diagonal limit

Let us start with the Gaussian covariance and write the
explicit expressions of the window kernels mentioned in
Eq. (7) [WS19]:

Wð1Þ
l1;l2;l01;l

0
2
ðk1; k2Þ≡ ð2l1 þ 1Þð2l2 þ 1Þ

I222

Z
k̂1;k̂2;x1;x2

W22ðx1ÞW22ðx2Þe−iðx1−x2Þ·ðk1−k2Þ

× Ll1ðx̂1 · k̂1ÞLl0
1
ðx̂2 · k̂1ÞLl0

2
ðx̂1 · k̂2Þ½Ll2ðx̂2 · k̂2Þ þ Ll2ðx̂1 · k̂2Þ�;

Wð2Þ
l1;l2;l0

ðk1; k2Þ≡ ð1þ ᾱÞ
2

ð2l1 þ 1Þð2l2 þ 1Þ
I222

Z
k̂1;k̂2;x1;x2

e−iðk1−k2Þ·ðx1−x2ÞW22ðx1ÞW12ðx2ÞLl0 ðx̂1 · k̂1Þ

× ½Ll1ðx̂1 · k̂1ÞLl2ðx̂2 · k̂2Þ þ Ll1ðx̂2 · k̂1ÞLl2ðx̂1 · k̂2Þ

þ Ll1ðx̂1 · k̂1ÞLl2ðx̂1 · k̂2Þ þ Ll1ðx̂2 · k̂1ÞLl2ðx̂2 · k̂2Þ�
�

Wð3Þ
l1;l2

ðk1; k2Þ≡ ð1þ ᾱÞ2 ð2l1 þ 1Þð2l2 þ 1Þ
I222

Z
k̂1;k̂2;x1;x2

W12ðx1ÞW12ðx2Þe−iðk1−k2Þ·ðx1−x2Þ

× Ll1ðx̂1 · k̂1Þ½Ll2ðx̂1 · k̂2Þ þ Ll2ðx̂2 · k̂2Þ�; ðA3Þ

where ᾱ is the ratio of number of objects in the galaxy and random catalogs (≡Ng=Nr ≪ 1), and
R
k̂i

represents an
integral over the volume of the ki bin. Note that the Gaussian covariance in Eq. (7) is not exactly diagonal due to the leakage
into the neighboring bins introduced by the survey window which has a finite width in k-space. If one uses the
approximations that the width of the survey window in k-space is much smaller than the width of the k-bins then the
Gaussian covariance becomes diagonal. If one further assumes that the LOS along the survey volume is fixed to a particular
direction n̂, i.e k̂ · x̂i → k̂ · n̂, one gets vast simplifications in the kernels in Eq. (A3). By using identities likeR
k W22ðkÞW22ð−kÞ ¼

R
xW

2
22ðxÞ ¼ I44, the Gaussian covariance in Eq. (7) simplifies as:

C00ðki;kjÞ¼
2

Vk

δKij
I222

�
I44

�
P2
0þ

1

5
P2
2þ

1

9
P2
4

�
þ2I34P0þ I24

�

C02ðki;kjÞ¼
2

Vk

δKij
I222

�
I44

�
2P0P2þ

2

7
P2
2þ

4

7
P2P4þ

100

693
P2
4

�
þ2I34P2

�

C22ðki;kjÞ¼
2

Vk

δKij
I222

�
I44

�
5P2

0þ
20

7
P0P2þ

20

7
P0P4þ

15

7
P2
2þ

120

77
P2P4þ

8945

9000
P2
4

�
þ I34

�
10P0þ

20

7
P2þ

20

7
P4

�
þ5I24

�
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C04ðki; kjÞ ¼
2

Vk

δKij
I222

�
I44

�
18

35
P2
2 þ 2P0P4 þ

40

77
P2P4 þ

162

1001
P2
4

�
þ 2I34P4

�

C24ðki; kjÞ ¼
2

Vk

δKij
I222

�
I44

�
36

7
P0P2 þ

108

77
P2
2 þ

200

77
P0P4 þ

3578

1001
P2P4 þ

900

1001
P2
4

�
þ I34

�
36

7
P2 þ

200

77
P4

��

C44ðki; kjÞ ¼
2

Vk

δKij
I222

�
I44

�
9P2

0 þ
360

77
P0P2 þ

16101

5005
P2
2 þ

2916

1001
P0P4 þ

3240

1001
P2P4 þ

42849

17017
P2
4

�

þ I34

�
18P0 þ

360

77
P2 þ

2916

1001
P4

�
þ 9I24

�
; ðA4Þ

where Vk ≡ 4πk2dk
ð2πÞ3 is proportional to the volume of the k-bin

with width dk and PlðkÞ are the typical Kaiser multipoles
given by PlðkÞ≡ R dμ

2
ð1þ βμ2Þ2PlinðkÞ and μ≡ k̂ · n̂. We

have not used the hexadecapole in our BOSS analysis but
we write its expressions here for completeness.
We compare the parameter constraints obtained using the

diagonal limit covariance in Fig. 4. We also compare
elements of the covariance and the inverse covariance
matrix for different cases in Fig. 7. Although the diagonal
limit covariance is seen to produce qualitatively similar
constraints in Fig. 4, it is clear from the comparison of
diagonals of the precision matrix that the diagonal limit is

not a controlled approximation as the elements differ by
almost an order of magnitude. Further checks are needed to
quantify the cases where the approximations involved in
the diagonal limit are controlled. Note also in Fig. 7 that the
cross-covariance for the Gaussian case has a nontrivial
shape because the survey window is not isotropic but itself
has a quadrupole (see also Fig. 2 of WS19) but such effects
due to shape of the survey window are neglected in the
diagonal limit case. Furthermore, the effects of the chang-
ing LOS along the survey volume are also neglected in the
diagonal limit case but these should affect low redshift bins
the most. The full Gaussian covariance in Eq. (7) therefore
should be preferred.

FIG. 7. Top: A row of the multipole covariance matrix corresponding to k00 ¼ 0.147 h Mpc−1. Bottom: Diagonals of the multipole
precision matrix. Along with the full analytic covariance and its Gaussian part, we also compare two crude approximations of the
Gaussian covariance: the diagonal limit form of the covariance given in Eq. (A4), and an even cruder form which is typically used in
Fisher forecasts of surveys given in Eq. (A5). Even though the two crude approximations give comparable constraints on cosmological
parameters in our case, they are not controlled approximations as suggested by the comparison in the bottom panel.
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a. Approximations used in Fisher forecasts

Let us now compare the diagonal limit case in Eq. (A4)
to the often-used expression of Gaussian covariance in
Fisher and MCMC forecasts for future surveys, e.g.,
[80,103,106–109] (labeled as “forecast approximation”
hereafter) which is given by

Cl1l2ðki; kjÞ ¼ δKij
2

Nki

ð2l1 þ 1Þð2l2 þ 1Þ

×
Z

1

−1

dμ
2
Ll1ðμÞLl2

ðμÞ

×

�X
l0
1

Pl0
1
ðkiÞLl0

1
ðμÞ þ 1

n̄survey
δKl0

1
0

�

×

�X
l0
2

Pl0
2
ðkjÞLl0

2
ðμÞ þ 1

n̄survey
δKl0

2
0

�
; ðA5Þ

where Nk ¼ VsurveyVk is interpreted as total number of
k-modes in a bin of width dk and n̄survey is calculated as the
ratio of total number of galaxies to the volume of the
survey (≡Nsurvey=Vsurvey).
If one neglects the FKP weights (which amounts to

ignoring the radial selection function and assuming that the
survey has a uniform number density throughout) and uses
the following approximations in Eq. (A4):

I34
I44

→
1

n̄survey
;

I24
I44

→

�
1

n̄survey

�
2

;
I222
I44

→Vsurvey; ðA6Þ

one gets the forecast approximation expression in Eq. (A5).
It is important to note that the approximations in Eq. (A6)
can be particularly inaccurate for realistic galaxy surveys.
For example, the NGC high-z chunk gives the following
values for the shot noise-like terms:

f1=n̄survey; I34=I44;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I24=I44

p
g

¼ f6.38; 4.17; 5.21g × 103 ðh Mpc−1Þ3; ðA7Þ

and for the survey volume-like terms ([46,110]):

fVsurvey; I222=I44g ¼ f2.78; 1.91g ðGpc=hÞ3: ðA8Þ

In the case when the redshift distribution of the survey is
known, but one has no knowledge of the survey geometry,
we recommend the use of the diagonal limit expressions in
Eq. (A4) instead of Eq. (A5). Note that terms of the form Iij
given in Eq. (A1b) are straightforward to calculate: one
only needs to perform a one-dimensional integral by using
the survey redshift distribution n̄ðzÞ. If one has information
of the survey geometry, we recommend using the full
Gaussian covariance in Eq. (7). We also show a comparison
of the forecast approximation case in Fig. 7.

2. Non-Gaussian covariance

We give a very brief introduction of the terms in the non-
Gaussian covariance in this section and refer the reader to
WS19 for further details. Using their notation, let us start by
writing the FKP estimator for the galaxy overdensity as

δ̂FKPðxÞ ¼ 1ffiffiffiffiffiffi
I22

p δWðxÞ
ð1þ δNg

Þ1=2 ; ðA9Þ

where δNg
is the long-wavelength fluctuation in the number

of galaxies in the survey ðδNg
≡ ½Rx δðxÞW10ðxÞ�=I10Þ.

Ignoring the constant prefactors, the covariance of the
3D power spectrum can be written as�jδWðk1Þj2jδWðk2Þj2Þ

ð1þ δNg
Þ2

	
−
�jδWðk1Þj2
ð1þ δNg

Þ
	�jδWðk2Þj2

ð1þ δNg
Þ
	
;

ðA10Þ
which can be decomposed into a Gaussian/disconnected
part

CGðk1;k2Þ ¼ hδWðk1ÞδWðk2ÞihδWð−k1ÞδWð−k2Þi
þ hδWðk1ÞδWð−k2ÞihδWð−k1ÞδWðk2Þi;

ðA11Þ
and all the remaining terms make up the non-Gaussian part:

CNGðk1;k2Þ ¼ hjδWðk1Þj2jδWðk2Þj2ic
− hjδWðk1Þj2δNg

ihjδWðk2Þj2i
− hjδWðk1Þj2ihjδWðk2Þj2δNg

i
þ hjδWðk1Þj2ihjδWðk2Þj2ihδNg

2i: ðA12Þ
If we break the connected four-point function into a regular
trispectrum part (T0), and a beat-coupling (BC) part which
includes the contribution of the long modes to the trispec-
trum [53], the NG part can be written as

CNG ¼ CT0 þ CBC þ CLA; ðA13Þ
where the three terms in Eq. (A12) containing the δNg

variables are given the label “local average” (LA) [56].
Note that the CLA expressions we use correspond to the
FKP estimator and are different from those of Ref. [56].
The total contribution of the supersurvey modes is often
referred to as the supersample covariance (SSC) in the
literature: CSSC ¼ CBC þ CLA. Due to the modification to
theCLA terms as mentioned earlier, the SSC effect becomes
stronger than previously assumed for spectroscopic surveys
in the literature (five times stronger for the case of real-
space matter covariance [1]). It is straightforward to
account for the supersurvey modes in the analytic calcu-
lation as they are typically in the linear regime. We compute
the trispectrum terms up to tree order in PT in this paper.
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Finally, it is important to note that there is a significant shot
noise contribution to the terms CT0 and CLA at high-k and
we have used the corresponding terms in the Poisson
approximation using the formulas of WS19.
Having discussed all the components of the analytic

covariance, let us now continue our discussion on reeval-
uation of the covariance for the best-fit cosmology from
Sec. VA 2. The simulations of mocks is started before the
data collection in the survey is complete and the mocks are
therefore simulated for a fiducial set of cosmological
parameters. Parameters corresponding to the bias and
velocity dispersion are later adjusted to fit the two and three
point clustering measurements of the survey data [111].

However, in the Patchymocks, there is some deviation in the
mean power spectrum from mocks and the BOSS data as
seen in the middle and lower panels of Fig. 8. We also
compare the best-fit power spectrum from our model. We
show in the top panel the change in autocovariance diagonal
elements on using the best-fit output cosmology as com-
pared to the fiducial cosmology. We had however found in
Fig. 3 that this change in the covariance has a quite minor
effect on the parameter constraints.

APPENDIX B: TESTS FOR NOISE IN SAMPLE
COVARIANCE MATRICES

In our results in Sec. V, we found∼0.2σ shifts in parameter
constraints between the analyses based on the analytic and
Patchy mock covariance matrices. In this Appendix we show
that these shifts result from the noise in the sample covariance
on the basis of two tests: showing the variation in parameter
constraints upon using synthetic sample covariance matrices
and undoing the tension caused due to parameter shifts by
denoising the covariance matrix from Patchy mocks.

1. Generating synthetic sample covariance matrices

In this section we verify that the sampling noise in a
covariance matrix constructed from Nm ¼ 2048 mocks can
indeed cause ∼0.2σ shifts in parameter posteriors. To this
end, we generate synthetic sample covariance matrices
using the method outlined below. We want to sample 2048
power spectra from a Gaussian distribution with a given
population mean Ptrue and covariance matrix Ctrue. If the
covariance matrix was diagonal, one could simply sample a
realization of the power spectra P̂iðkÞ from a Gaussian with
mean PtrueðkÞ and variance Ctrueðk; kÞ. In the general case
of a nondiagonal covariance matrix, we first need to
perform the Cholesky decomposition of the population
covariance matrix C into a lower triangular matrix L as

Ctrue ¼ LLT: ðB1Þ
We can use this to sample individual power spectrum

vectors as

P̂i ¼ Lzi þ Ptrue; ðB2Þ
where zi is a d dimensional column vector with each
element being a standard normal vector (mean ¼ 0,
variance ¼ 1) and d ¼ 96 is the total number of k-bins
in our analysis. We can then create a sample covariance
matrix Ĉ using the standard estimator in Eq. (11). One can
verify that Ĉ → C in the large Nm limit using the relation
hzi · zTj i ¼ δKijI, where I is the d × d identity vector.
Adopting Ptrue to be our best-fit NGC high-z power

spectrum and Ctrue to be the analytic covariance matrix for
the NGC high-z case, we generate fifty realizations of the
sample covariance matrix. We then calculate the χ2 using
our best-fit power spectrum model and label the realization

FIG. 8. Top panel shows the change in the diagonal elements of
the analytic autocovariance matrix on using our best-fit output
cosmology as compared to the fiducial cosmology used in Patchy
mocks [13]. The relative difference in the monopole (quadrupole)
power spectrum compared to the BOSS NGC high-z measure-
ments is shown in the middle (bottom) panel; the mean of the
power spectra from Patchy mocks is in red and our best-fit power
spectrum model is in blue.
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with the largest (smallest) best-fit χ2 as “Sample 1”
(“Sample 3”) and the realization with the best-fit χ2 similar
to the analytic matrix case as “Sample 2”. We then perform
our likelihood analyses of the high-z NGC BOSS data on
the three samples. The corner plot is shown in Fig. 9,
whereas the 1d marginalized limits are given in Table V. For
compactness, we show only the cosmological parameters.
The posterior distributions clearly perform a random walk

compatible with the expected stochasticity due to sampling
noise. Both the mean values and the size of error bars
of the inferred parameters are affected. In particular, the
“Sample 3” exhibits a shift in ωcdm which is similar to the
one observed when using Patchy mocks in Fig. 3. It is
important to note that the error-bars can also get spuriously
smaller as a result of noise in the covariance, as seen in the
case of H0 for “Sample 1” where the error bars shrink by

FIG. 9. Same as Fig. 3 but also including three realizations of synthetic sample covariance matrices, each made by sampling 2048
power spectra from the analytic covariance. The samples were selected in a set of 50 based on their best-fit χ2 values; see the text for
details. The tabulated values are in Table V. The sampling noise in covariance leads to stochastic shifts in the parameter means and the
error bars are both inflated and deflated in some cases. The most noticeable changes are for “Sample 1” where theH0 error bar contracts
by ∼18% and mean of ωcdm shifts by 0.3σ.

TABLE V. Same as Table I but for synthetic sampled versions of the analytic covariance matrix.

Covariance

Parameter Analytic Sample 1 Sample 2 Sample 3

H0 71.15þ2.2
−2.3 70.92þ1.8

−1.9 71.09þ2
−2.2 71.41þ2.1

−2.2
A1=2 0.8276þ0.078

−0.094 0.8505þ0.076
−0.09 0.8418þ0.08

−0.096 0.799þ0.075
−0.091

ωcdm 0.1336þ0.0089
−0.01 0.1307þ0.0083

−0.0091 0.1327þ0.0085
−0.0097 0.1359þ0.0087

−0.0097

Ωm 0.3098þ0.018
−0.02 0.3058þ0.017

−0.018 0.3084þ0.018
−0.02 0.312þ0.017

−0.019
σ8 0.723þ0.063

−0.072 0.733þ0.062
−0.068 0.733þ0.065

−0.072 0.707þ0.061
−0.071
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FIG. 10. Upper-left panel: A row of the residuals of the Patchy multipole covariance matrix as defined in Eq. (B3). Upper-right panel:
Eigenvalues of the residuals matrix. Only including the eigenmodes with eigenvalues larger than ∼0.5 gives the smoothed residuals in
black the upper-left panel. Bottom panels compare diagonals of the precision matrix where the denoised version of the Patchy
covariance is constructed using the smoothed residuals by inverting Eq. (B3) and it agrees well with the analytic covariance.

FIG. 11. Same as Fig. 3 but also comparing the denoised versions of two cases of sample covariance matrices. Left panel shows a
validation test of our denoising procedure, where we first construct a synthetic sample covariance and then denoise it which indeed
undoes the small tension caused due to sampling noise. In the right panel, we apply denoising procedure to the covariance from Patchy
mocks, which eliminates the small tension with the analytic covariance. Corresponding tabulated values are in Tables VI and VII.
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∼20%. This hints at the dangers of sampling noise as it can
lead to spurious tensions between different surveys.
Overall, the results we obtained in this section suggest

that the error bar rescaling factor M1 (¼1.02 in our case),
which was derived for the ensemble-averaged case [27,28],
can underestimate the effect of sampling noise in the case
of a realistic parameter likelihood. This gives strong
motivation to use the analytic covariance matrix. We also
see that ∼0.2σ shifts in cosmological parameters are likely
to be observed when using ∼2000 mock catalogs for
calculating power spectrum covariances.

2. Denoising the sample covariance matrix from mocks

In this section we show that we can undo the tension
caused due to parameter shifts if we denoise the covariance
matrix using the procedure which we now outline. We use
the technique of singular-value decomposition (SVD)which
is commonly used in the literature to denoise an estimated
covariance matrix and has already been used in the analysis
of both power spectra and bispectra [26,34,36,37,112].
As we discussed in Sec. III A, the Gaussian part (G) of

the covariance can be well modeled analytically. We will
therefore use our knowledge of the analytic Gaussian
covariance to help denoise the Patchy mock covariance
matrix. We perform the following transformation on the
Patchy covariance matrix to get the residuals corresponding
to the non-Gaussian part:

rl;l0 ðk; k0Þ ¼
Cmock
l;l0 ðk; k0Þ − CG

l;l0 ðk; k0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CG
l;lðk; kÞCG

l0;l0 ðk0; k0Þ
q : ðB3Þ

Note that we also have normalized the covariance matrix by
diagonals of the Gaussian part in order to remove the
k-dependence. We show the residuals in the top-left panel
of Fig. 10. We also show the normalized full matrix (which
includes the Gaussian part) as the dotted blue line. One can
immediately see that the residuals are heavily affected by
sampling noise, similar to what we have already seen in
Fig. 2. We therefore perform a SVD decomposition of the
residuals and the corresponding eigenvalues are shown in
top-right of Fig. 10. The eigenmodes with low eigenvalues
are expected to be the most affected by sampling noise and
upon discarding the modes with eigenvalues smaller than
0.6, we obtain the result shown as the black dashed line in
upper-left panel of Fig. 10, which is relatively less noisy.
We then reverse the transform in Eq. (B3) on the smoothed
residuals to obtain a denoised version of the estimated
covariance matrix, the diagonals of which are shown in the
lower panels of Fig. 10.
It is worth commenting on some of the assumptions used

in the aforementioned procedure. The first is the choice of
cutoff in the eigenvalues of the residual matrix. The noise in
the individual elements of the residual matrix is ∼1=

ffiffiffiffiffiffiffi
Nm

p
,

but it is not immediately clear how to translate that into the

cutoff in the eigenvalues. Secondly, we have assumed an
accurate theoretical Gaussian part and it is not clear if the
denoising procedure would work in case the Gaussian
covariance model is inaccurate.
We try to validate our procedure and also gauge the value

of the eigenvalue cutoff by using our procedure on the
synthetic sampled covariance matrices described in
Appendix B 1, where the corresponding true covariance
matrix is known. We have chosen one sample realization of
the covariance matrix that yields ≈0.2σ shift of Ωm just like
what we have found in the analysis based on the Patchy
covariance. Moreover, the noise in the chosen realization of
the covariance matrix leads to systematically underesti-
mated error bars on H0 and Ωm. Then, we have applied our
denoising procedure on the chosen sampled covariance and
reran the analysis. We find that using the eigenvalue cutoff
of 0.6 helps reducing the shifts such that the new results are
not in tension with the full analytic calculation as shown in
the left panel of Fig. 11 and in Table VI (we also show the
case of the full analytic covariance for ease of comparison).
The denoised covariance matrix although slightly inflates
the error bars and we believe that our denoising procedure
can be improved even further to make the results based on

TABLE VI. Same as Table I but for the various choices of the
covariance matrix: analytic, synthetic sample covariance con-
structed from realizations of the data with the analytic covariance,
and its denoised version.

Covariance

Parameter Analytic
Sampled
analytic

Sampled
analytic
denoised

H0 71.15þ2.2
−2.3 71.27þ2

−2.1 71.25þ2.1
−2.3

A1=2 0.8276þ0.078
−0.094 0.8339þ0.076

−0.092 0.824þ0.076
−0.092

ωcdm 0.1336þ0.0089
−0.01 0.1354þ0.0087

−0.0098 0.1344þ0.0086
−0.0099

Ωm 0.3098þ0.018
−0.02 0.3121þ0.018

−0.019 0.3105þ0.018
−0.02

σ8 0.723þ0.065
−0.072 0.736þ0.062

−0.070 0.723þ0.062
−0.072

TABLE VII. Same as Table I but for the various choices of the
covariance matrix: analytic covariance computed for the fiducial
Patchy cosmology, the sample covariance of Patchy mocks, and
its denoised version.

Covariance

Parameter

Analytic
(fiducial
cosmo.) Patchy

Patchy,
denoised

H0 71.19þ2.1
−2.3 71.44þ2.0

−2.2 71.33þ2.1
−2.3

A1=2 0.8194þ0.08
−0.098 0.8135þ0.077

−0.093 0.8069þ0.078
−0.097

ωcdm 0.1345þ0.0092
−0.011 0.1364þ0.0091

−0.01 0.1351þ0.0094
−0.011

Ωm 0.3111þ0.019
−0.021 0.3126þ0.018

−0.02 0.3110þ0.018
−0.021

σ8 0.719þ0.065
−0.076 0.721þ0.064

−0.074 0.710þ0.065
−0.076
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the sample covariance agree better with the analytic case
and also a theoretically motivated estimate of the cutoff in
the eigenvalue space can in principle be derived. However,
the current implementation is already enough for our goal
which is to reduce the tension between the two results.
As a next step, we applied the denoising procedure to the

Patchy mock covariance. The results of all these analyses,
along with the one based on the full analytic covariance

computed for the fiducial Patchy cosmology, are shown in the
right panel of Fig. 11 and the parameter limits are presented in
Table VII (for compactness, we show only the cosmological
parameters).One can see that thedenoisingprocedure leads to
an increase in the error bars, such that the new probability
distributions enclose the one from the analytic covariance.
Overall, the upshot of thisAppendix is that the (small) tension
between the results based on the Patchy and the analytic

FIG. 12. Cosmological parameters inferred from the high-zNGC data chunk with three different priors on the cubic bias: the Gaussian
prior centered at the prediction of the local Lagrangian approximation bΓ3

¼ 23
42
ðb1 − 1Þ, as well as infinitely strong priors bΓ3

¼ 0 (our
baseline choice), and bΓ3

¼ 23
42
ðb1 − 1Þ. Corresponding tabulated values are in Table VIII.
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covariance can be removed by denoising the Patchy covari-
ance. Finally, it is worth mentioning that another way to
dramatically reduce the noise in a sample covariancematrix is
by projecting the power spectra to a lower-dimensional
subspace constructed using SVD, as is shown by Ref. [35].

APPENDIX C: TESTS OF THE
CUBIC BIAS TREATMENT

In our baseline analysis we have set bΓ3
¼ 0 and varied

only bG2
in our MCMC chains. In this section we present

additional tests to show that this choice does not bias our
cosmological constraints. We focus on the high-z NGC
sample. We use the best-fit analytic covariance in all
analyses presented in this section.
First, we have run the analysis having reset bΓ3

to the
prediction of the local Lagrangian approximation (LLA)
within the coevolution model [113],

bΓ3
¼ bðLLAÞΓ3

¼ 23

42
ðb1 − 1Þ: ðC1Þ

As a second test, we marginalized over bΓ3
using the

following Gaussian prior with the mean equal to the LLA
prediction evaluated for the best-fit b1,

bΓ3
jhigh-z NGC ¼ 0.71; ðC2Þ

and variance equal to 1,

bΓ3
∼N ðbðLLAÞΓ3

; 12Þ: ðC3Þ

The results of our analyses are shown in Fig. 12 and
Table VIII. For illustration purposes we also show the
posteriors for bias parameters b1 × A1=2, bG2

× A1=2 and
b2 × A1=2, although the posterior for the latter is not
appreciably narrower than the prior. These are the param-
eters mostly affected by the bΓ3

prior. We can see that the
prior on bΓ3

has noticeable impact only on the bG2
posterior.

The posterior distributions of other bias and cosmological
parameters are largely unaffected.
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