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We show that a specific gauge choice comes extremely close to defining a frame whose preferred
observers see a dipole-free cosmic microwave background (CMB). In this gauge the metric is the product of
a scale factor depending on all spacetime coordinates, and a metric featuring an expansion-free geodesic
timelike vector field. This setup facilitates the computation of redshift and other distance measures and may
help to explain why we can have a highly isotropic CMB despite large inhomogeneities.

DOI: 10.1103/PhysRevD.102.123520

I. INTRODUCTION

The almost perfect isotropy of the cosmic microwave
background (CMB) is among the pillars of the cosmologi-
cal standard model according to which our universe can
be described, at large scales, as a Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe with small perturba-
tions. This isotropy comes at different levels (see [1] for
CMB data from Planck and [2] for the peculiar velocities,
or [3] for a useful summary): the actual observations
(terrestrial or from satellites) show deviations in temper-
ature of δT=T ≈ 0.12%, but once the dipole contribution is
subtracted, this improves to a value of δdf ≈ 10−5 (here and
in the following, we abbreviate δT=T by δ and use
subscripts such as “df” for “dipole-free” to indicate which
observer we are referring to). This means that an observer
passing through our solar system at a velocity of
370 km= sec (in the right direction) will see the latter
spectacularly small level; on the other hand, an observer
comoving with our local galaxy group sees an anisotropy
of δlg ≈ 0.2%.
According to the Copernican principle, the situation

should be similar at most locations in the present era. It is
important to note the difference between δdf and δlg, not
only in size (δdf ≈ 10−5 ≪ δlg ≈ 2 × 10−3), but also in
quality: whereas δdf is determined by a full celestial
sphere’s worth of observations, the value of δlg comes
from a single draw from a distribution with mean zero.
For these reasons, we would very much prefer the use of
δdf over that of δlg in an analysis of the structure of the
universe. In other words, we want to work in a frame
comoving with the CMB, not with the matter.
The wavelength of a CMB photon is the product of its

value at last scattering and the redshift factor picked up on
the way to the observer. Unless one believes in strange

nonlocal correlations between the two, one can only
conclude that neither the original wavelength nor the
redshift factor should feature deviations that are larger
than the ones seen by the observer. In the present work we
will be interested only in the extremely precise matching of
the redshifts in the different directions.
The celebrated Ehlers-Geren-Sachs (EGS) theorem [4]

states that the existence of a perfectly isotropic radiation
background combined with reasonable assumptions on
the matter content of the universe implies FLRW. There
is a number of generalizations to “almost EGS” theo-
rems (e.g., [5–8]) stating that small deviations from
isotropy should lead only to small deviations from
FLRW; see section 11.1 of Ref. [9] for a very clear
summary. These works usually (with an exception in
[7]) assume that the radiation 4-velocity (i.e., the
velocity field udf of the dipole-free observers) is
geodesic. This is an additional input which can be
argued for only if one does not distinguish the CMB
frame from the matter frame. Thus it holds only at the
level of δlg, not at the level of δdf .
In the present work we are interested in precision at

the level of δdf ≈ 10−5, so we do not take the radiation
velocity to be geodesic. Our analysis will rely on
redshift rather than distribution functions for the radi-
ation, which simplifies matters considerably. The time-
like vector field udf that determines a preferred observer
at every spacetime point can, in principle, be completed
to an orthonormal frame fe0 ¼ udf ; e1; e2; e3g which we
would call a CMB frame. In practice the requirement of
a vanishing dipole is highly nonlocal and therefore
analytically intractable. Instead, we are going to work
with a locally well-defined quantity which, as we shall
explicitly verify, comes very close to defining the level
of anisotropy. It turns out that this quantity can be
simplified by a conformal transformation, and that the
most important contributions to it can be eliminated by*skarke@hep.itp.tuwien.ac.at
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a gauge choice.1 The physical observable δdf is of
course gauge invariant and can therefore be computed
in any gauge. Choosing the one suggested here makes it
particularly transparent why δdf is so small despite the
fact that the actual universe shows a considerable
amount of inhomogeneity. Working in this gauge sig-
nificantly improves the tractability of light propagation
compared to the synchronous and the longitudinal
gauge, which are the ones that are used most frequently.
An explicit comparison in linear perturbation theory
shows that the metric perturbations in the new gauge are
not much larger than those in the longitudinal gauge,
which is usually considered to be optimal in that
respect.
In the next section we introduce a quantity that vanishes

if an isotropically redshifted CMB is observed everywhere,
and show how it simplifies under a conformal transforma-
tion. In Sec. III we formulate a gauge that eliminates two of
three contributions to this quantity and thereby comes close
to defining a CMB frame; we also give explicit conditions
on a metric implementing this gauge. Section IV contains
an analysis of this metric in linear perturbation theory and
comparisons with other gauges. In the final section we
argue that other distance measures are also well behaved in
the new gauge, make some remarks on the controversy
about the impact of inhomogeneities on the expansion of
the universe, and discuss open questions about our gauge.

II. REDSHIFT AND CONFORMAL
TRANSFORMATION

We consider a photon emitted at some point xe by a
source moving along a worldline with a tangent vector ue
normalized to u2e ¼ gμνu

μ
euνe ¼ −1, where gμν is the pseudo-

Riemannian spacetime metric of type −þþþ. This
photon propagates along a lightlike geodesic which we
describe by an affine parameter λ such that the tangent
vector to the geodesic is kμ ¼ dxμ=dλ. The redshift ze→o, as
seen by an observer at xo whose wordline has the tangent
vector uo (normalized to u2o ¼ −1), is determined by the
well-known formula

1þ ze→o ¼
ðu · kÞe
ðu · kÞo

: ð1Þ

In an idealized universe in which every spacetime point
admits a distinguished observer who sees a perfectly

isotropically redshifted last scattering surface, there would
exist a global vector field u characterizing such observers,
as well as a globally well-defined function

aðxÞ ¼ 1þ zlss→x ¼
ðu · kÞlss
ðu · kÞx

ð2Þ

that determines this redshift. We could then determine the
redshifts between preferred observers via

1þ ze→o ¼
aðxoÞ
aðxeÞ

ð3Þ

as a direct consequence of Eqs. (1) and (2). Along any
geodesic described with an affine parameter λ and tangent
vector k, the value of aðxÞðu · kÞðxÞ would remain constant
and therefore the quantity

dðx; kÞ ¼ d
dλ

½aðxÞðu · kÞðxÞ� ð4Þ

would have to vanish at every spacetime point x for every
lightlike tangent vector k at x.
For an arbitrary timelike vector field u and nonvanishing

scalar a, where dðx; kÞ need not vanish, a redshift formula
can still be obtained by noting that

ln½−aðxÞðu · kÞðxÞ�oe ¼
Z

o

e

dðx; kÞ
aðxÞðu · kÞðxÞ dλ ð5Þ

implies

1þ ze→o ¼
ðu · kÞe
ðu · kÞo

¼ aðxoÞ
aðxeÞ

exp

�
−
Z

o

e

dðx; kÞ
aðxÞðuρkρÞðxÞ

dλ

�
:

ð6Þ

In the following we would like to treat the requirement

hdðx; kÞi ¼ 0; hdðx; kÞ2i small; ð7Þ

where h� � �i should represent the average over the celestial
sphere,

h� � �i ¼ 1

4π

Z
� � � dΩ; ð8Þ

as a local proxy for the conditions defining the CMB frame.
Using the facts that differentiation by λ corresponds to
covariant differentiation along k and that kνkμ;ν ¼ 0 we get

dðx; kÞ ¼ kν½aðxÞðu · kÞðxÞ�;ν ¼ a;νkνðu · kÞ þ auμ;νkνkμ:

ð9Þ

Motivated by the FLRW case, we introduce the confor-
mally transformed quantities

1The expression “gauge choice” is often taken to define a
specific map between a physical spacetime and a background
FLRW model. Here we use it in the looser sense of imposing
conditions that can be satisfied by exploiting reparametrization
invariance; what we actually choose is a set of preferred world-
lines. Once we find a frame implementing these conditions
(as we will do at the end of Sec. III), we can construct a map
to a background geometry by identifying points with equal
coordinates.
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ĝμν ¼ a−2gμν; ûμ ¼ a−1uμ; ûμ ¼ ĝμνûν ¼ auμ

ð10Þ

with ûμûνĝμν ¼ uμuνgμν ¼ −1. Then a short calculation
gives

a2ûμ;̂ν ¼ auμ;ν þ a;μuν − a;ρuρgμν; ð11Þ

where ;̂ denotes covariant differentiation with respect to ĝ.
Contraction with kμkν shows that

dðx; kÞ ¼ ΔμνðxÞkμkν ¼ Δ̂μνðxÞk̂μk̂ν ð12Þ

with

Δμν ¼ auðμ;νÞ þ a;ðμuνÞ − a;ρuρgμν ¼ a2Δ̂μν;

Δ̂μν ¼ ûðμ;̂νÞ: ð13Þ

Thus Killing’s equation ûðμ;̂νÞ ¼ 0 implies dðx; kÞ ¼ 0, and
with a little work the converse can also be shown. This
corresponds to the well-known result [10] that a spacetime
admits a perfectly isotropic CMB background if and only if
its metric is conformal to a metric with a timelike Killing
vector; this fact is essential for the derivation of the EGS
theorem [4].
The standard decomposition (see e.g., chapter 4 of [9]) of

gμν ¼ −uμuν þ hμν ð14Þ

into projection operators −uμuν (timelike) and hμν (space-
like), with uμhμν ¼ 0 and hμνhμν ¼ 3, (or, equivalently,

ĝμν ¼ −ûμûν þ ĥμν etc.) affords a decomposition of any
symmetric tensor Δμν as

Δμν ¼ uμuνΔSt þ hμνΔSs − uμΔV
ν − uνΔV

μ þ ΔT
μν ð15Þ

in terms of scalars ΔSt and ΔSs (related to the time
and space projections, respectively), a vector ΔV

μ satisfy-
ing ΔV

μ uμ ¼ 0 and a symmetric tensor ΔT
μν satisfying

ΔT
μνuμ ¼ 0 and ΔT

μνhμν ¼ 0.
Assuming that we have parametrized the geodesic in

such a way that u · k ¼ −1 at the point xwhere we compute
dðx; kÞ, writing

kμ ¼ uμ þ eμ; ð16Þ

and using the conditions u2 ¼ −1 and k2 ¼ 0, we find that

u · e ¼ 0; e2 ¼ 1 and eμhμν ¼ eν; ð17Þ

i.e., e must be a spacelike unit vector orthogonal to u.
Applying this to Eq. (12) with the decomposition (15),
we find

dðx; kÞ ¼ ΔS þ 2ΔV
ν eν þΔT

μνeμeν with ΔS ¼ ΔSt þΔSs:

ð18Þ

In order to evaluate averages of the type (8) we introduce
spacelike unit vectors eμ1, e

μ
2, e

μ
3 that form a tetrad together

with uμ, and define eμðΩÞ ¼ cosφ sin ϑeμ1 þ � � � through
standard spherical coordinates Ω ¼ ðφ; ϑÞ; these quantities
satisfy

heμ1 � � � eμ2pþ1i ¼ 0; heμeνi ¼ 1

3
hμν;

heμeνeρeσi ¼ 1

15
ðhμνhρσ þ hμρhνσ þ hμσhνρÞ: ð19Þ

Note how Eq. (12) expresses the quantity dðx; kÞ, which
depends both on the spacetime coordinates xμ and the
tangent space coordinates kμ, in terms of the tensor quantity
Δμν (depending only on the xμ) and the bilinear kμkν.
Therefore ΔS, ΔV

ν , and ΔT
μν do not depend on eμ, and one

can directly apply (19) to find

hdðx; kÞi ¼ ΔS;

hdðx; kÞ2i ¼ ðΔSÞ2 þ 4

3
hμνΔV

μΔV
ν þ 2

15
ΔT

μνhνρΔT
ρσhσμ:

ð20Þ

Returning to the specific form (13) of Δμν, application of
the projection operators (in the ‘hatted’ version) gives
Δ̂St ¼ 0 (so that Δ̂S ¼ Δ̂Ss) and

Δ̂S ¼ 1

3
ĝμνûμ;̂ν; ð21Þ

Δ̂V
μ ¼ 1

2
ûμ;̂ρûρ; ð22Þ

Δ̂T
μν ¼ ûðμ;̂νÞ − ĥμνΔ̂S þ ûμΔ̂V

ν þ ûνΔ̂V
μ ; ð23Þ

i.e., these quantities correspond to the expansion, the
acceleration and the shear of the timelike vector field û
with respect to the metric ĝ.
This has the following effects on the redshift. In the

integral in Eq. (6) we can write ðΔ̂μν=ûρÞkμkν instead of
dðx; kÞ=ðauρÞ. Furthermore, since ðkμkν=kρÞdλ is invariant
under arbitrary reparametrizations of the geodesic, we can
replace it by ðk̃μk̃ν=k̃ρÞdλ̃ with k̃μ ¼ ûμ þ êμ chosen such
that ûρk̃

ρ ¼ −1 everywhere along the geodesic; the factor
Δ̂μν is unaffected because it depends only on x, not on k.
Thus the argument of the exponential in Eq. (6) becomesR
o
e Δ̂μνk̃

μk̃νdλ̃. Then, using the analog of Eq. (18) for the
metric ĝ, we get

REDSHIFT AND GAUGE CHOICE PHYS. REV. D 102, 123520 (2020)

123520-3



1þ ze→o ¼
aðxoÞ
aðxeÞ

exp

�Z
o

e
ðΔ̂S þ 2Δ̂V

ν êν þ Δ̂T
μνêμêνÞdλ̃

�

ð24Þ

for our preferred sources and observers whose worldlines
have tangent vectors uμ. If the actual emitter (“ae”) and
actual observer (“ao”) have different tangent vectors (but
the same positions), we must of course correct this via

1þ zae→ao ¼ ð1þ zae→eÞð1þ ze→oÞð1þ zo→aoÞ; ð25Þ

where 1þ zae→e and 1þ zo→ao are just the standard
special-relativistic Doppler factors coming from the relative
velocities between the actual and preferred sources and
observers, respectively.

III. GAUGE CHOICE AND METRIC

The actual universe features deviations from homo-
geneity, so we do not expect all components of Δμν to
vanish. Why can we nevertheless find a local frame in
which the CMB has almost exactly the same temperature in
all directions? We propose that this can be explained in the
following manner. Equations (24), (25) give the correct
redshift for arbitrary sources and observers and arbitrary
functions aðxÞ and vector fields uðxÞ. The result is of
course independent of the choice of a and u; for most
choices, several of the factors occurring in Eqs. (24), (25)
will get large or small, and the computation of the CMB
redshift will involve cancellations between these factors. If,
however, we choose our setup such that aðxÞ varies very
little on the last scattering surface, the relative velocities of
the CMB sources are very small, and the observer is the
preferred one, then the only factor that can still exhibit a
strong direction dependence is the exponential occurring in
Eq. (24). If we want to interpret the average of aðxoÞ=aðxeÞ,
with the source positions xe on the last scattering surface, as
“the” redshift, and every other factor as providing at most a
further small fluctuation, we need to ensure that the integral
in Eq. (24) is small. We suggest to achieve this by choosing
a and u in such a way that

ΔS ¼ 0; ΔV
μ ¼ 0; ð26Þ

which is an admissible set of gauge conditions. Indeed, ΔS

andΔV
μ correspond to 1þ 3 ¼ 4 degrees of freedom, which

is just the number of quantities that can be fixed by a gauge.
This choice, applied to Eq. (20), results in hdðx; ki ¼ 0

and two out of the three contributions to hdðx; ki2 vanish-
ing; cf. our original motivation as expressed in Eq. (7). The
equivalent (conformally transformed) version Δ̂S ¼ 0,
Δ̂V

μ ¼ 0 reduces the redshift formula (24) to

1þ ze→o ¼
aðxoÞ
aðxeÞ

exp

�Z
o

e
Δ̂T

μνêμêνdλ̃

�
: ð27Þ

The tracelessness of Δ̂T
μν together with statistical isotropy

ensures that the integrand Δ̂T
μνêμêν has vanishing expect-

ation value, and in the next section we shall also see that it
vanishes in linear perturbation theory. Thus it is not so
surprising that the integral is small.
In terms of the original timelike field u, the effects of this

choice on the expansion Θ ¼ hμνuμ;ν, the acceleration
_uμ ¼ uμ;ρuρ, the shear σμν ¼ uPSTFμ;ν (the projected symmet-
ric tracefree part of uμ;ν, i.e., what remains after sym-
metrizing, projecting with h and removing the h-trace) and
the vorticity ωμν ¼ hμρhνσu½ρ;σ� are easily found with the
help of Eq. (11):

_uμ ¼ hμν
a;ν
a
; Θ ¼ 3uρ

a;ρ
a
; σμν ¼ aûðμ;̂νÞ;

ωμν ¼ aû½μ;̂ν�: ð28Þ
In words, expansion and acceleration correspond to the
timelike and spacelike components of ðln aÞ;μ, respectively;
shear and vorticity are multiples of the corresponding
quantities in the conformally transformed frame.
Let us now find explicit coordinates that implement our

gauge (26). Choosing û to be the vector with components
û0 ¼ 1 and ûi ¼ 0, we get ĝ00 ¼ −1, ûμ ;̂ρ ¼ ûμ;ρ þ
Γ̂μ

ρνûν ¼ Γ̂μ
ρ0 and therefore

ûμ;̂ρ ¼ Γ̂μρ0: ð29Þ
Upon demanding 0 ¼ 2Δ̂V

μ ¼ ûμ;̂ρûρ ¼ Γ̂μ00 ¼ ĝμ0;0, the
metric takes the form ds2 ¼ a2dŝ2 with

dŝ2 ¼ −ðdx0 − VidxiÞ2 þ γijdxidxj; ð30Þ

where a and γij can depend on all coordinates xμ whereas
Vi depends only on the spatial coordinates xj. The inverse
metric ĝμν has the components

ĝ00 ¼ −1þ Viγ
ijVj; ĝ0j ¼ γjkVk; ĝij ¼ γij; ð31Þ

where γij is defined by the requirement γijγjk ¼ δik. Inmatrix
notation, the original metric and its inverse are given by

g ¼ a2
�
−1 VT

V γ − VVT

�

; g−1 ¼ a−2
�
−1þ VTγ−1V VTγ−1

γ−1V γ−1

�
: ð32Þ

Finally, 0¼ 6Δ̂S ¼ 2ĝμνûμ;̂ν ¼ 2ĝμνΓ̂μν0 ¼ ĝμνðĝμν;0 þ
ĝμ0;ν − ĝν0;μÞ ¼ ĝμνĝμν;0 ¼ ĝijγij;0 ¼ trðγ−1γ;0Þ ¼ ðtr lnγÞ;0 ¼
ðlndetγÞ;0 implies x0-independence of det γ.
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The conditions Vi;0 ¼ 0 and ðdet γÞ;0 ¼ 0 do not com-
pletely fix the form of our metric (30). For example, they
also hold in a transformed frame fx̃μg with

x̃0 ¼ x0 þ fðxjÞ; x̃i ¼ x̃iðxjÞ: ð33Þ

We can use parts of this freedom to assign a single time
coordinate to the initial singularity and to set det γ ¼ 1.

IV. LINEAR PERTURBATION THEORY

We would now like to consider the consequences of our
gauge choice (26) in the context of linear perturbation
theory [11]. Our notation will be similar to that of
Refs. [9,12] which we also recommend for further details.
A metric corresponding to a small perturbation of the
conformally flat case is given, before gauge fixing, by

ds2 ¼ a2hðx0Þf−ð1þ 2ϕÞðdx0Þ2 þ 2ðB;i − SiÞdxidx0
þ ½ð1 − 2ψÞδij þ 2E;ij þ 2Fði;jÞ þ hij�dxidxjg;

ð34Þ

here ahðx0Þ represents the scale factor for the correspond-
ing homogeneous case ðghÞμν ¼ a2hημν; ϕ, ψ , B and E are
scalars; Si and Fi are transverse vectors (i.e., they satisfy
δijSi;j ¼ 0 and δijFi;j ¼ 0); hij is a symmetric traceless
transverse tensor (hij ¼ hji, δijhij ¼ 0, δikhij;k ¼ 0). The
gauge freedom xμ → x̃μðxνÞ can be expressed at the
linearized level in terms of a transverse vector ξi and
scalars ξ0 and ξ; the corresponding transformations

ϕ̃ ¼ ϕ −
a0h
ah

ξ0 − ξ0;0; ψ̃ ¼ ψ þ a0h
ah

ξ0;

B̃ ¼ Bþ ξ0 − ξ;0; Ẽ ¼ E − ξ; ð35Þ

F̃i ¼ Fi − ξi; S̃i ¼ Si þ ξi;0; h̃ij ¼ hij ð36Þ

can then be used to eliminate two of the scalars and one of
the transverse vectors. The two most popular gauge choices
are longitudinal gauge with B ¼ E ¼ 0 (usually accom-
panied by neglecting vector and tensor modes), and
synchronous gauge, which manifests itself at the linearized
level as ϕ ¼ B ¼ 0, Si ¼ 0.
A well-known solution to the Einstein equations for

irrotational dust with Λ ¼ 0 (hence ah ¼ const × ðx0Þ2),
which is believed to give a good description of the early
matter dominated era of our universe, relies on a single
time-independent function ϕN which is just the Newtonian
potential. In the longitudinal gauge this solution is given by
ϕlong ¼ ψ long ¼ ϕN; it can be transformed to the synchro-
nous gauge via ξ0 ¼ x0ϕN=3, ξ ¼ ðx0Þ2ϕN=6, resulting in
Esync ¼ −ð1=6Þðx0Þ2ϕN, ψ sync ¼ ð5=3ÞϕN. In the latter
case, second derivatives of ϕN occur in the metric and

tend to make the perturbations large for moderate x0, which
is often used as an argument against employing the
synchronous gauge in situations other than the very early
universe.
What about the gauge (26) and the corresponding metric

(32)? If we assume that we have used some of our residual
gauge freedom to set det γ ¼ 1, then in the linearized
version γij − δij must be traceless. Writing a ¼ ð1þ ϕÞah,
this implies δijE;ij ¼ 3ðϕþ ψÞ. It turns out that without
violating our gauge conditions we can set B and Si to zero,
so that the metric becomes (up to quadratic and higher
terms)

ds2 ¼ a2hðx0Þð1þ 2ϕÞ
�
−ðdx0Þ2 þ

�
δij

þ 2

�
E;ij −

1

3
δklE;klδij

�
þ 2Fði;jÞ þ hij

�
dxidxj

�
:

ð37Þ
Comparing this with a recently compiled list of commonly
used gauges [13], we find that none of them matches the
one used here. Most gauges leave E [as used in (34)]
unrestricted or set E ¼ 0. The only exception is provided
by the N-body gauge [14] with a condition δijE;ij ¼ 3ψ
that is similar to ours; it corresponds to a vanishing scalar
deformation of the spatial volume after pulling out the time-
dependent FLRW scale factor ahðx0Þ, whereas our choice
implies unit spatial volume after the conformal trans-
formation with the spacetime-dependent factor aðxÞ.
Similar remarks apply to a variant called the N-boisson
gauge [15].
For the special solution considered above we can get to

the form (37) by applying a transformation with ξ0 ¼ 0,
ξi ¼ 0 and ξ satisfying ξ;0 ¼ 0 and δijξ;ij ¼ −6ϕN to the
metric in the longitudinal gauge. This results in ϕ ¼ ϕN and
E chosen such that δijE;ij ¼ 6ϕN. Thus we can interpret E
as a gravitational prepotential. In particular, the expressions
E;ij occurring in the metric should be roughly of the same
order of magnitude as ϕN.
It is instructive to apply our formalism to the metric

(34) that is not restricted by a gauge choice. This will
provide a very nontrivial consistency check on our general
framework [in particular, the redshift formulas (24) and
(25)] and will allow us to explicitly compare redshifts in
our gauge (26) and in other gauges. Considering the
preferred observer to be the comoving one, we get aðxÞ ¼
ahðx0Þð1þ ϕÞ and

dŝ2 ¼ −ðdx0Þ2 þ 2ðB;i − SiÞdxidx0 þ ½ð1 − 2ψ − 2ϕÞδij
þ 2E;ij þ 2Fði;jÞ þ hij�dxidxj: ð38Þ

Using Eq. (29), we find Δ̂μν ¼ ûðμ;̂νÞ ¼ Γ̂ðμνÞ0 ¼ 1
2
ĝμν;0 for a

general ĝμν. It is straightforward to compute and decom-
pose this expression for the metric (38), resulting in
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Δ̂S ¼ −ψ ;0 − ϕ;0 þ
1

3
δijE;ij0; ð39Þ

Δ̂V
i ¼ 1

2
ðB;i − SiÞ;0; ð40Þ

Δ̂T
ij ¼ E;ij0 −

1

3
δijδ

klE;kl0 þ Fði;jÞ0 þ
1

2
hij;0: ð41Þ

We see again how the metric (32) ensures the vanishing of
ΔS and ΔV. Expanding Eqs. (24), (25), with source and
observer velocities of vie and vio, respectively, to the linear
level, results in

1þ zae→ao ¼
ahðxoÞ
ahðxeÞ

�
1þ ½ϕþ viêi�oe

þ
Z

o

e

�
−ψ ;0 − ϕ;0 þ ðB;i − SiÞ;0êi

þ
�
E;ij0 þ Fði;jÞ0 þ

1

2
hij;0

�
êiêj

�
dλ̃

�
: ð42Þ

This expression is in full agreement with corresponding
results in the literature. (To get, for example, Eq. (11) of
Ref. [16], one has to note several different naming and sign
conventions including the directions of the unit vectors, and
to partially integrate the ðB;i − SiÞ-term.) As explained in
detail in Ref. [16], Eq. (42) contains all the standard
contributions to the redshift, such as, for example, the
Sachs-Wolfe effect [17].
For the dust solution considered above, neither the

longitudinal gauge nor the gauge advocated here lead to
corrections at the linearized level since the linearized fields
are x0-independent in these gauges; the redshift at leading
order comes exclusively from the Doppler contributions,
with a source velocity of vi ¼ ϕN;i=3x0 in both gauges.
(This is easily found via vi ¼ T0i=T00 ¼ G0i=G00.) In
contrast to this, the synchronous gauge features correc-
tions because Esync ¼ −ð1=6Þðx0Þ2ϕN, in consistency with
observations which show that the matter frame (the
preferred frame in the synchronous gauge) substantially
differs from the CMB frame. While linear perturbation
theory provides an excellent description of the early
universe, nonlinearities do play an important role in later
eras, and this is where we expect differences between the
gauge (26) and some nonlinearly consistent version of the
longitudinal gauge such as the Poisson gauge to manifest
themselves.
A complete analysis of the CMB fluctuations would

include an early, perturbative part in which many more
details are taken into account; this would include the
temperature variations, the actual source velocities taking
into account the incomplete alignment of dark and hadronic
matter, contributions of the radiation field to the energy-
momentum tensor, etc. This can be done with the pertur-
bative version (37) of the metric (32), or by transforming

results obtained in any other gauge to the present setup.
At a point in the history of the universe where linear
perturbation theory is still a good approximation but
radiation can already be neglected, one should then hand
over to a fully relativistic ΛCDM simulation in the
gauge (26).
Let us briefly summarize the results of this section.

The present formalism passes the consistency check of
providing the correct linearized redshift formula (42) in
a general gauge. Our metric is well behaved: in contrast to
the synchronous gauge, the linearized expressions do not
exhibit a time dependence that would quickly lead to
troubles. The integral occurring in the redshift formula (24),
which represents those deviations from the uniform case
that cannot be attributed to properties of the sources,
vanishes at first order of perturbation theory in a simple
matter-only model, both in longitudinal gauge and in the
gauge (26), but only in the latter the first two contributions
Δ̂S and Δ̂V

ν êν vanish at all orders. The remaining quantity
Δ̂T

μνeμeν has an expectation value of zero at all orders.
These facts make our formalism particularly useful for
understanding why we observe almost perfect isotropy of
the CMB despite the existence of severe inhomogeneities in
the nonlinear era.

V. CONCLUDING REMARKS

Observational cosmology relies not only on the redshift,
but also on other distance measures such as the angular
diameter distance and the luminosity distance. These
quantities can be computed via arguments based on fluxes.
For known redshift, one can use a comparison between the
total number of photons emitted per unit of time in a
specific frequency range, and the number of photons, in the
appropriately transformed frequency range, arriving in a
given area at the observer’s location. Because of the non-
acceleration and non-expansion of the vector field û with
respect to ĝ, the number of photons arriving per unit of x0

(the time coordinate related to û) on a suitable hypothetic
screen enveloping the source must be identical with the
number of photons emitted during the corresponding
x0-interval of the same duration (as measured with ĝ).
Therefore, on average the photon count with respect to ĝ
behaves like the photon count in a static universe. Upon
proper rescalings of the time and area values with the
corresponding powers of a one gets formulas for averaged
fluxes that are identical in form with those for a homo-
geneous universe, but with ah replaced by a. Thus the
overall expansion, as inferred from measured redshift-
distance relations, is given straightforwardly by the values
of a at the sources and at our spacetime position.
There have been suggestions (for a small subset, see e.g.,

[18–23]) that the perceived acceleration of the universe’s
expansion may not be due to a cosmological constant or
dark energy, but to some effect stemming from the
inhomogeneities of the actual universe. This possibility
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is rejected in papers such as [24,25], giving rise to further
rounds of controversy [26,27]. One of the points of [24,25]
is an attack on the choice of synchronous gauge on which
many attempts to explain the data without Λ are based;
instead the use of the longitudinal gauge is advocated.
From the present work it is clear that neither of these gauges
is as directly related to observations as the one presented
here in Eq. (26).
This makes a thorough investigation of the properties

and consequences of this gauge choice highly desirable.
Open questions include the following. What residual gauge
freedom is there beyond that indicated in (33)? Is the

possibility of setting ĝ0i ¼ Vi to zero general or specific to
linear perturbation theory? What are the Einstein equations
in linear and second order perturbation theory, for colli-
sionless dust and more generally? Can we reproduce
arguments along the lines of [24,25]? What can we say
beyond perturbation theory, either by analytic arguments or
numerically?
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