PHYSICAL REVIEW D 102, 123518 (2020)

Nonlocal self-healing of Higgs inflation

Alexey S. Koshelev' and Anna Tokareva®

lDepartamento de Fisica, Centro de Matemdtica e Aplicacoes (CMA-UBI), Universidade da Beira Interior,
6200 Covilhd, Portugal
*Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow, Russia

® (Received 28 September 2020; accepted 9 November 2020; published 7 December 2020)

Higgs inflation is known to be a minimal extension of the Standard Model allowing for the description of
the early Universe inflation. This model is considered an effective field theory since it has a relatively low
cutoff scale, thus requiring further extensions to be a valid description of the reheating phase. We present a
novel unified approach to the problem of unitarization and UV completion of the Higgs inflation model
without introducing new massive degrees of freedom. This approach is based on an Analytic Infinite
Derivative modification of the Higgs field kinetic term. We construct a unitary nonlocal UV completion of the
original Higgs inflation model, while the inflationary stage is kept stable with respect to quantum corrections.
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I. INTRODUCTION

The minimal realization of the inflationary stage in the
early Universe can be achieved by making use of a scalar
field which is already present in the Standard Model—the
Higgs field [1]. If the Higgs boson has a nonminimal
coupling to gravity as’

S= /d4x (;(M% +2EH'H)R—|D,H|? —%(HTH— v2)2> ,
(1)

it can successfully drive inflation. Notations are standard
and quite self-explanatory, but several comments are in
order here. In this model, the predictions for the cosmo-
logical perturbations are perfectly consistent with the recent
data [2]. However, the Higgs self-coupling is fixed by the
low-energy physics in such a way that at high energies it
cannot be too small. If no new physics enters at energies
between the Planck and electroweak scales, the value of 1 at
the scale of inflation should be of order 1072, This requires
a large value for the dimensionless coupling & ~ 10° + 10*
in order to obtain the observed amplitude of cosmological
perturbations. This leads to the problems of the theoretical
consistency of this inflationary model due to the low value

"We adopt the (—+++) signature convention for the metric in
the paper.
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of the cutoff scale Mp/& [3,4], which is higher than the
scale of inflation but is quite close to it. Although inflation
itself can still be consistently described [5], during the
reheating phase, the inflaton produces particles with
momenta higher than the cutoff scale [6]. This means that
the model enters a strongly coupled regime, and a UV
completion is required. In principle, the model could
contain a kind of self-healing mechanism and can still
work in a nonperturbative regime at high energies without
violating unitarity [7,8]. However, the renormalizability
problem remains in this model and, as a consequence, the
predictivity of such a model is lost, in the sense of obtaining
concrete predictions from the values of parameters mea-
sured at low energies.

Several models which complete Higgs inflation at
energies higher than Mp/& were suggested [9-14]. All
these models assume the presence of an extra scalar particle
with the mass of the order of M p/&. Moreover, in all these
models, inflation is actually driven by this extra field
instead of the Higgs boson. However, the background
energy density is dominated by the Higgs field, and the
amplitude of scalar perturbations is still defined by 4 and ¢.
Therefore, it is interesting to address a question of whether
we can build a UV completion for the Higgs inflation
mechanism without introducing new degrees of freedom.

The presence of gravity in this setup renders the Higgs
inflation model nonrenormalizable in its original formu-
lation. This means that the model contains an infinite
number of operators suppressed by the powers of the cutoff
scale. The coefficients standing in front of these operators
are to be defined from the experiment. Notice that, besides
corrections to the inflaton potential, in general, we expect
also operators with (infinitely) higher derivatives. The latter
observation gives us a hint that higher-derivative or even
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nonlocal effects can be relevant in this construction. One can
ask whether it is possible to tune all coefficients of the
effective Lagrangian in such a way that the model would be
still predictive at energies higher than the cutoff scale. In the
current paper, we show that the answer is positive and
formulate an Analytic Infinite Derivative (AID) Lagrangian,
leading to the finite loop corrections, which also might in
principle solve the strong coupling issue in Higgs inflation.
AID Lagrangians were widely studied in various con-
texts ranging from string field theory [15-18] and in
particular p-adic string theory [19-21] to the models aimed
at describing quantum gravity [22-27]. An interacting
scalar field theory can be rendered finite upon introducing
an appropriate modification to the quadratic in fields term.
Presenting sketchy, the Lagrangian of the form

L=3¢FO)p-V(p) )

with F(0O) = (O - m?)e*™) can lead to the exponential
suppression of the propagator at large momenta as long as a
suitable choice of function ¢(0J) in the exponent is made.
This yields all loop integrals becoming finite.

For the time being, the most robust motivation for
theories with an infinite number of higher derivatives in
the form of analytic form factors comes from the string field
theory. Namely, the kind of Lagrangians which arise in
such an approach looks like [17,18]

1
Lsrr =500 —m)p - V(eDg), (3)

where ¢([) is some polynomial of the d’Alembertian and
V is an interaction term, polynomial in its argument and
containing powers of field ¢ higher than 2. In other words,
V does not contain quadratic in ¢ terms. Technically, V is
not an interaction potential anymore since it has clear
momentum dependence. However, given ¢(0J) is a poly-
nomial, we have a well-defined IR limit, and the real
potential is extracted when all the momenta are zero. To
discriminate the regimes of low and high energies, it is
natural to set up a mass scale A of the higher-derivative
modification and write ¢([J) such that it depends on [1/A.
In string theory, this scale is the string mass, which is
theoretically bounded by the Planck mass Mp from above.

From the perspective of the latter Lagrangian, we have a
theory with AID vertices. One can, however, easily redefine
the field as ¢p = ¢~°(J) ¢ and move the AID operators to the
quadratic in fields term. This yields

L= %rﬁ(m —m?)e P —V(¢h), (4)

which is exactly Lagrangian (2).
In a well-defined scenario, one should avoid ghost fields,
and this is one of the guiding principles limiting our AID

theory construction. We know starting from the papers by
Ostrogradski [28] that higher derivatives generically intro-
duce ghosts. Since the number of degrees of freedom is
counted by the number of poles in the propagator, one may
try to keep only one pole even with extra derivatives in the
Lagrangian. Given the construction above, this can be made
only if the original operator ((J — m?) in the quadratic form
is multiplied by a function of the d’Alebertian, which has
no zeros on the whole complex plane. Mathematically, the
only possibility for such an extra factor is an exponent of an
entire function. This being said, as far as the ghost absence
question is concerned, we can consider ¢([1) to be a
generic entire function and not only a polynomial. The
presented construction can be trivially elevated to models in
a curved background by a simple replacement of the flat
space-time d’ Alembertian by its covariant counterpart. This
will not spoil the ghost-free condition in any way.

We stress, however, that the nonlocal function itself
depends on the particular vacuum of the potential in order
to guarantee the absence of ghosts. Namely, consider a
potential that has several vacua which moreover arrange
different masses to the scalar field. The presented above
construction allows having no ghosts only in a single
vacuum in which the mass of the field is given by m?. In all
vacua where the effective mass of the field is different from
m?, an infinite number of fields with complex masses
appear on top of the standard excitation. An interpretation
of these new fields is still unclear, while there are several
including reasonably old studies [29,30] claiming that they
do not spoil unitarity at least at scales below the scale of
higher-derivative modification A. Another approach des-
ignates such fields as totally virtual degrees of freedom, and
a term fakeon is used with respect to such excitations [31]
especially in describing certain aspects of Lee-Wick—type
models.

The simplest choice for an entire function is a poly-
nomial, and the minimal try would be o(C]) = —[1/A2.
This minimal choice, however, appears to lead to the
exponential growth of tree-level scattering amplitudes
given by the exchange diagrams which can be shown by
direct simple computation. On the other hand, the choice
o(00) = [?/A* does not result in such a problematic
behavior, providing us with a UV finite theory even if
the interaction potential is nonrenormalizable in the origi-
nal local model. The difference comes from the fact that in
the latter case the exponent is decaying along both the real
and complex axis, and the necessity of this was noted
already in Ref. [24]. Such a kind of theories can become
strongly coupled at energies higher than the nonlocality
scale. But because of UV finiteness, the predictivity would
still hold because only a finite number of parameters is
present, unlike the case of other self-healing mechanisms
[7]. To extract predictions, one may need nonperturbative
methods, resummation of diagrams, lattice computations,
etc. Nevertheless, the good point here that this is possible in
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principle, and this is why such analytic nonlocal models are
also considered as a possible approach to quantize gravity.

In this paper, we exploit this kind of analytic nonlocality
in order to heal the Higgs inflation model from the problem
of nonrenormalizability. We show that the nonlocal propa-
gator can be chosen in such a way that all loop diagrams
become convergent. We show that, at least at tree level, the
model can be made weakly coupled even for momenta
larger than the scale of nonlocality (the suppression scale of
higher derivatives). Nevertheless, we leave the rigorous
loop computations for future study, restricting ourselves
with the computation of the one-loop effective potential for
the real scalar field with nonlocal propagator. We show that
if the nonlocality scale is chosen to be of the order of the
cutoff scale of the initial local scalar field Lagrangian, the
one-loop correction given by the Coleman-Weinberg poten-
tial can be small for all values of the classical background
field. This provides a hint that the model can be still weakly
coupled also at the loop level.

The paper is organized as follows. In Sec. II, we setup a
nonminimally coupled scalar field model of inflation with
an AID propagator. We proceed with outlining the main
steps in constructing, so to say, good AID theories and give
a special account of the problem of extra modes effectively
appearing as long as the system leaves the vacuum. We
further show that inflation remains stable with respect to
quantum corrections. Having done this, we move on in
Sec. II by incorporating the model in the Standard Model
Higgs inflation scenario, paying special attention to the
issues of preserving the gauge invariance, unitarity of
amplitudes, and the problem of the Higgs mass naturalness.
The results are summarized in Sec. IV.

II. UV COMPLETION OF A TOY MODEL:
REAL SCALAR FIELD WITH NONMINIMAL
COUPLING TO GRAVITY

In this section, we demonstrate distinctive features of our
approach using a simple example of a single scalar field
nonminimally coupled to gravity. This field would resem-
ble the behavior of the radial Higgs mode. A way of
introducing nonlocality is presented and critically consid-
ered from several points of view.

A. Toy model

We start with the following action:
a (L 2 1 2 Ao

After the redefinition of the metric, we obtain an action in
the Einstein frame [1]

o= [ atxv=as (330 - 5002 - V). ©

where
AMbh($)*
V(g) = P and
=300+ e
dp _ Mpy/Mp + (1 + 68N o
dh M3 + En?
For h > Mp, the potential simplifies to
)'M4P —2¢
V(@) m 7 (1 - e/, (8)

which resembles the one of the Starobinsky models of
inflation [32-34].

We continue working in the Einstein frame Lagrangian
for the Higgs inflation model, and also at this point, we
introduce the nonlocal propagator yielding the following
Lagrangian:

1
L= MRy +30F(O)p=Vp). )

As explained in the Introduction, we choose the operator
function

F(O) = O/ (10)
as the simplest possibility which arranges at once the
absence of new degrees of freedom and suppression of all
loop integrals and does not lead to the growth of tree
amplitudes. For our purposes of constructing UV comple-
tion at the cutoff scale Mp /&, we need the nonlocality scale
to obey A~ Mp/E We leave the potential unmodified
compared to (7), in order to get the original model at the
scales below the scale of A.

We follow the canonical understanding that the number
of degrees of freedom is given by the number of finite poles
of the propagator. Our choice for F () does satisfy the
ghost-free condition as long as V” = 0. The latter condition
is indeed satisfied in both vacua of the potential in question
(7), namely, when ¢ tends to infinity and when ¢ = 0. In
some sense, it is a lucky situation that the desired potential
generates the same masses of a particle in all its vacua. In
our case, the particle is massless. Otherwise, given that
mass terms are different in different vacua, the form factor
would be able to arrange an absence of ghosts only in one
of the vacua. It follows from here that it is a good thing that
the field potential of our model has no other (otherwise
irrelevant) vacua. The existence of other such vacua and
most likely other nonzero values of mass terms for the
scalar field in them could lead to some nonperturbative
effects related to possible violations of the ghost-free
condition. We comment on this issue in more detail below.
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B. Number of physical excitations

As noted above, both existing scalar field vacua in our
model obey V" = 0, and therefore operator function (10)
generates only 1 degree of freedom. As long as V" # 0,
which is true almost everywhere apart from the vacua, an
attempt to linearize equations results in the following
operator in the quadratic form:

1 1
K,,(0) :EDeDZ/A“ —EmZ. (11)

Here, we use m?> = V"(¢) with ¢ being the classical
background value of the scalar field. This particular
operator results in infinitely many effective local scalar
fields with most of them having complex masses. We name
these new fields effective because they do not belong to any
vacuum of the model in a sense that they cannot be created
as states in any present vacuum of the theory. Still, there is
nothing wrong with linearizing around a nonvacuum point
of evolution especially if the effective mass is a slowly
varying quantity as it is during inflation.

To understand why many fields appear, it is useful
to represent the operator function of the d’Alembertian
utilizing the Weierstrass product decomposition for an
entire function, which tells us that any entire function
G(z) can be presented as

G(z) = [ [(z = z)mer, (12)

i

where z; are algebraic roots of the equation G(z) = 0, n; is
the root’s multiplicity, and g(z) is some entire function. In
the simplest case, all n; = 1. The operator I outlined above
is a manifestly entire function. A further justification to
make use of this formula in general comes from the fact that
at least the string field theory obtained models certainly
contain only entire functions of [J as operators in field
quadratic forms. Therefore, in a generic case for models
containing the quadratic in field term,

L:%¢Q(D)¢+..., (13)

with an entire operator function G([J), one can easily
achieve two things [35,36]:
(1) First, the free equation of motion can be easily
solved. Indeed, it would look like

GO =[O =mhel@g=0.  (14)

We assume here for simplicity that the root’s
multiplicity is always 1. Then, the solution will be

p=> ¢ where (O—m})p; =0. (15)

Moreover, since the original model provides a form
factor with real coefficients in its Taylor expansion
around zero, all roots are either real or come in
complex conjugate pairs.

For a pair of complex conjugate roots, numbered
say i and j, one should consider correlated initial
conditions on functions ¢; and ¢; such that the sum
of these functions is zero. This is a condition for a
consistent background solution for the original field
¢, which must be real.

We note here that more than one real m? will
definitely be a ghostlike excitation and is as such a
problematic configuration. However, pairs of com-
plex conjugate masses squared are not necessarily
bad and may lead to hassle-free models. Notice that
in this case one encounters somewhat noncanonical
complex field model, which has the Lagrangian

L= 5[0 )0 - m2)g
F G O -mi)p). (16)

which cannot be diagonalized in real fields. Factors
of G'(m?) appear upon computing the Weierstrass
decomposition.

The appearance of complex conjugate poles
and their interpretation was already discussed in
Ref. [29]. In a nutshell, such poles with masses m =
u + iv with v > 0 would imply causality violation at
distances less than 1/./v. Even generically an
alarming symptom, it can be safely ignored given
that the imaginary part which would cause troubles
is large enough compared to physically important
scales of the model. On top of this, the absence of
classical growing modes should be guaranteed to
claim safely that newly appeared particles do not
interfere with the rest of the model. It is important to
verify that this wishful expectation holds.

(i) Second, one can straightforwardly compute residues
at all poles of the propagator. The point is to figure
out by the use of formula (12) that a residue at the
point of m? is given by 1/G'(m?), which is not zero
by construction as long as all roots are assumed to be
the simple ones.

One technically important point here is that in
principle fields can be rescaled to a somewhat
arbitrary number. This implies that, unless we clearly
understand the field’s normalization, or unless there
are no eternal guiding principles for doing that, one
can always bring the real part of the residue value to
be £1.

The novel and an intuition breaking thing here is that the
very situation of changing the number of degrees of
freedom dynamically is extremely unusual and is met here
only due to higher derivatives. Moreover, the jump is
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FIG. 1.
Mp =1, &=1000, 1 = 0.01, and A = Mp/¢.

bizarre from a single excitation to effectively infinitely
many of them, and most of those extra “would-be”
excitations have complex masses which are totally alien
objects in canonical field theory. What is even more curious
is that neither vacuum of the presented theory can create
anything but one real massless particle.

Hence, in principle, we can say that those effective fields
are not excitations in any way and as such just stop
discussing them. However, since their appearance, even
though effective, is not a completely understood process,
we are going to follow a safer way and show that these
would-be degrees of freedom are screened by having huge
masses compared to real physical scales in the model. This
follows from the adjustment of the nonlocality scale A to be
heavier than the Hubble scale during inflation. Also, we
will formulate a condition allowing no classical growing
modes for these new modes.

Masses of effective particles are given by roots of an
algebraic equation [35],

Kn(m3) =0 or F(m?)=m> (17)
This has a solution in terms of the Lambert function W as
follows™:

A2
V2

The appearance of infinitely many roots follows from the
fact that W function has infinitely many branches. To see
that masses of effective particles my; are large we need to
dig into the details of function W [37]. First, we compute

2

m; W(2m*/AY). (18)

*The Lambert function W solves the equation xe® =y as
x=W(y).

0.000020
0.000015 A
207(9)°
A4 0.000010
0.000005
0

0 0.02 0.04 0.06 0.08 0.10
o

Here, we plot 2V""2/A* as function of the canonical field ¢ for larger and smaller ranges of the field for more details. Here,

the argument of W function. In Fig. 1, the argument in
question is plotted, and the main observation is that in our
case it is bounded roughly by 0.000021 from above. The
point where the curve touches zero corresponds to the
inflection point of the potential.

We thus need to study the behavior of the W function for
small arguments. Denoting W, the k-s branch of the W
function, we designate k = 0 to be the branch which gives a
real solution, which is in our case unique and corresponds
to the mode of interest, the inflaton. All other branches
provide the would-be particles with complex masses such
that masses are complex conjugate for branches k and —k.
Moreover, values of the W, function for k # O for small
non-negative arguments (which is clearly satisfied in our
case as we gain a strictly positive value) can be approxi-
mated as

Wi (x) = log(x) + 2zik — log(log(x) + 2zik).  (19)
Here, k takes discrete integer values, as it should. The
complex conjugation upon changing k — —k is obvious. In
Fig. 2, we plot the real and imaginary parts of the

W,(0.000021)/2, i.e., the real and imaginary parts of
m% for the maximum possible value of the argument of the
W function for our potential. The smaller the argument,
the greater the masses that will be generated. As such, the
largest argument provides the worst-case scenario. We see
that both real and imaginary parts of m7 are greater than
unity (with the exception of the real part of m? while still
|m3| > 1), and as such, m; describes a somewhat massive
field with a mass squared above the nonlocality scale.

To come to standard grounds and to bring an even more
intuitive picture, we can disband the two unusual complex
scalar fields into a pair of real but nondiagonalizable scalar
fields as follows [35]:
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FIG. 2. Real and imaginary parts of m% in units of A calculated using the approximation (19). The second row of plots depicts the

situation for small branch numbers.

L = %f/(m2)¢(|:| _ m2)¢ + %F’(mz*)(ﬁ*(lj _ m2*)¢*

= a(f0— fu* + g*)a— B(fO - fu? + g*)p

= 2a(g0 - gu* — f17)p. (20)
Here, we use F'(m?) = f +ig, m*> = y> + iv?, and ¢ =
a + i with all quantities used in the last line of the above
formula being real. Also, we omit the index k for my
because obviously expressions for each k are similar. In
these new notations, Fig. 2 depicts x* and 1.

The latter quadratic form is still not that illuminating,
though, because unusual complex fields with complex
masses are replaced with real quadratically coupled fields.
We cannot clearly designate them to be good or bad, but
thanks to the normalization freedom which was mentioned
earlier, we can diagonalize either the derivative or mass
quadratic form. The latter seems to be more informative
because doing so we will see what are the masses of these

would-be excitations. Diagonalization of the mass quad-
ratic form and the further canonical normalization of the
kinetic terms of the fields yields

1 ut+ v 1 ut+ vt

— kalp, (21)
where the factor 1/2 has been introduced for convenience
and

We have assumed that the factor in front of the kinetic term
of the field a, which has been absorbed in the fields to
achieve the canonical normalization, is positive. We have
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not lost the generality here because flipping this sign is
equivalent to exchanging a <> f.

What happens is that the masses of real fields are very
large compared to the cutoff scale. In Fig. 3, we see their
behavior for small and large values of the branch number.
The mixing factor k quickly stabilizes to unity (see Fig. 4)
and does not affect the interpretation that heavy masses
of new effective modes prevent their excitation during
evolution characterized by energy scales below the
parameter A.

Still, we want to see that it is possible to have no growing
classical solutions for these new effective modes. This
simply boils down to solving the free equations of motion
of the form

24
(O —-mp)¢p=0 (22)
18-
161
u4+v 14
2
u
124 .
o
o
<©
<
<©
101 Lo
o o °
<©
o
8 AR °
2 4 6 8 10 12 14 16 18 20
k
FIG. 3.
501
401
30
K
201
10
<©
° e O 9 6 6 6 o6 o o

2 4 6 8 10 12 14 16 18 20
k

for all modes enumerated by k when the background
d’ Alembertian operator is evaluated on the de Sitter back-
ground. Even though the equation looks familiar, it gets a
new twist because m3 is complex. Given that the Hubble
parameter is denoted as H for our background de Sitter

space-time, the solution to the latter equation is given by

, (23)

where J,, and Y, are Bessel functions of the first and second
kinds and a is the normalization of the scale factor in the
metric tensor at t = 0 and « and f are integration constants.

20 40 60 80 100 120 140 160 180 200
k

Mass of the real fields for small and large branch numbers, in units of A.

504

40

301

20

80 100 120 140 160 180 200
k

20 40 60

FIG. 4. Mixing coefficient « for small and large branch numbers, in units of A.
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The absence of growing solutions means that for large
times ¢t which correspond to small arguments of the Bessel
functions both branches with coefficients a and £ at most
freeze to constants or have nongrowing oscillations. This
results in the demand that both functions in the solution
grow at most as e37"/2. Series expansion of Bessel
functions with index p near the origin tells
J,(x) ~ x”, Y,~x7,

and it follows from here that we are good to go if
Re(p) < 3H/2. Upon some algebra, one can figure out
that this corresponds to

(Im(m2))? < 9H?Re(m2). (24)

This selects the interior of a parabola-shaped domain on
the complex plane. All solutions in (17) must satisfy this
condition. This condition prompts for a careful choice of an
entire function in the exponent of the infinite-derivative
operator, and we see that our simple choice of [1*> does not
fulfill the formulated requirement. However, known facts in
the complex analysis do not impose any restriction to have
such a function, and one can try to obtain the desired
behavior by combining the Cauchy integral representation
for holomorphic functions and the Weierstrass decompo-
sition valid for entire functions [38]. In particular, one can
deduce the following sufficient condition on the entire
function in the exponent of the infinite derivative operator:
the absolute value of this function should grow to infinity
only along the positive real ray and be bounded in any other
direction. It is important to mention that the interpretation
drawn from Eq. (21) absolutely holds as long as the
Re(m3) > A.

C. Classical background equations

Let us now proceed with constructing a model leading to
the early Universe inflation which (up to small corrections)
resembles the Higgs inflation model written in the unitary
gauge. Alternatively, one can look at this construction as
building a UV completion for the inflation driven by the
real scalar field with large nonminimal coupling. The only
modification required is the nonlocal kinetic term for the
scalar field in the Einstein frame. Here, we show that this
modification does not spoil the inflationary solution in the
slow-roll regime.

Freedman equations for nonlocal model (9) look
like [36]

3MiH? = p, (25)
F(0? +3HO,)h+ V), =0. (26)
If F(O)

= Yisof x5, the energy density is

1
I fuZi5 | 0,07 +3H8,)'hd, (97 +3HO,)" " h

P=3

1
+ (0 +3H0,)'h(0? +3HO,)"'h —EhF({?% +3H0,)h
+V(h). (27)

Looking for the first correction coming from the hlgher—
derivative modification, which is F([J) = +
one gets

= —h +V45 (ha (02 +3HO,)h + ((0? + 3HO,)h)?),

H+3<

In the slow-roll approximation, all higher-derivative terms
are suppressed even if the nonlocality scale is of order of
the Hubble scale. Indeed, since 23 ~n?H%h and h® ~
WH3h [7=V"/(M3V))], the leading-order slow-roll
approximation is not affected by the nonlocality. For this
reason, the inflationary solution is the same as in the
original Higgs inflation.

We see here that, even though one field is nominally
present in the Lagrangian, this field has a nonlocal higher-
derivative quadratic form leading to higher-derivative
corrections to any computed values as long as the next
orders in the slow-roll approximation are taken into
account. This should generically lead to violation of the
standard consistency relation for non-Gaussian corrections
present in single-field models [39—41]. The expectation is
to see this consistency relation altered in higher orders in
the slow-roll parameter by values of derivative of the form
factor F(0J) at zero (because the mass of the inflaton field,
i.e., the Higgs field, is zero in the inflationary vacuum).
Then, the picture will resemble the one gotten for non-
Gaussian correction in case of the Starobinsky inflation in
the framework of AID gravity [42].

(28)

H % 6H 6H +9H” ..
)h+vh+A2+A?M)+1Vh:0

(29)

D. Effective potential

In the next step, we explicitly compute the one-loop
correction to the inflaton potential in a model with a
nonlocal propagator. The one-loop correction to the effec-
tive action has the following general form:

o°L
S = —Elogdet<5¢2> (30)

Corresponding correction to action (2) can be computed
using
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$i= =5 [ d'x [ Soloa (F(=k) + V@) (1)

Here, k), is the physical momentum in Minkowski space.
The effective action is a functional of the only scalar
variable V" (¢), which means that the analytic continuation
of the momentum integral from FEuclidean to the
Minkowski space is straightforward.” The integral can be
computed for Euclidean momentum from the very begin-
ning, which would lead to the disappearance of the factor
—i in (31). Here, we assume F (k%) = k2e*'/A". Formally,
the integral is divergent, but it can be rewritten as

4
L(V'(¢)) = / %mg (KHIN 4 V()

d*k 47Ad
— 1 k2 k* /N
/ 2(2xn)* og (ke )

&k V//(¢)€_k4/A4

The first term on the last line is just an infinite contribution
to the normalization of the functional integral as it does not
depend on the background field. For this reason, we can
consider only the last term, which is convergent,

4 () ek N
= [ g (1 VO

If we start with the tree-level potential of the form
V = m3p?/2 + A¢p* /4, we obtain using V" = 31¢p* + m]
a large finite correction to the mass term,

1 2
Ve = —1(m3) = 3I'(m3) > + Emgtﬁz + 14)4. (34)

Since I'(m3}) ~ A%, we get a correction to the mass term of
order of the nonlocality scale. In a local theory, corrections
of such type correspond to quadratic divergences. In
nonlocal theory, on the contrary, this contribution is finite,
but it can still be large. If we want to keep the field
massless, we need to tune the initial mass m, in such a way
that the condition

3The transition from Minkowskian to Euclidean momenta can
be an issue in nonlocal theories for the amplitudes which depend on
external momenta. The familiar Wick rotation is not applicable in
this case. Here, we do not go deep into detail of this consideration
and follow the results of Ref. [43]. The crux of the new prescription
is to perform the internal loop integration assuming that all
momenta are Euclidean and do the analytic continuation of
the external momenta to the Minkowskian signature after all the
internal momenta integration has been carried out using the
Euclidean signature. The paper [43] proves that this approach
preserves the unitarity. Moreover, in the case of local theories, this
approach coincides with the Wick rotation prescription.

2
_"M

r(m) =2 (35)

is satisfied. It is an algebraic equation on the number m;
thus, it can be solved numerically. Upon this tuning,
the one-loop correction to the initial potential appears to
be small.

In a model of inflation with nonminimal coupling (9), the
potential is more complicated. But the same procedure can
still be performed there. Again, tuning of the mass of the
field is required. The point is that the simplest way of
the addition of a mass term would spoil the flatness of the
potential at large field values. Therefore, we should add a
term that behaves as a mass at small values of the field and
on top of this is suppressed for large fields. Surely, this can
be done in an infinite number of ways. Here, we present an
example that leads to small one-loop corrections to the
original (massless) potential. Namely, we take the bare
potential of the form:

AMph(¢)"
A(M} +Eh()?)?

i

2(1+&h(¢)*)

Vo(¢) = (36)

We can show numerically that, given the nonlocality scale
is smaller than Mp/&, the one-loop corrected potential
Vi(p) = Vol(gp) = I(V"(¢)) is very close to the original
one V(¢) (9). The result is presented in Fig. 5.

Thus, we have obtained that after tuning of the mass term
in the potential the one-loop correction can be made small.
This is possible only if the nonlocality scale is smaller than
the scale Mp/E. Otherwise, for higher nonlocality scales,
the one-loop correction becomes large; see Fig. 6. In this
situation, the one-loop result cannot be trusted anymore,
providing a sign of entering the strong coupling regime.
Still, in the case A <Mp/E we cannot immediately
conclude that the model can be treated perturbatively
because accurate computations of loop scattering ampli-
tudes are required. We leave this issue for future projects.

ITII. NONLOCALITY IN THE STANDARD MODEL

Although we have obtained that a single field model with
nonminimal coupling to gravity can be UV completed by
an appropriate nonlocal form factor, one would find that an
implementation of this mechanism in the Standard Model is
not straightforward. The Standard Model Higgs boson is a
complex doublet charged under the SU(2) group. This
makes the introduction of a form factor more tricky. We
suggest below a model in which the nonlocality is intro-
duced only for the radial Higgs component and show that it
can restore the tree-level unitarity at least for 2 — 2
scattering amplitudes.
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FIG.5. Relative deviation (V(¢) — V(¢))/V () between the one-loop corrected potential and the classical one for the two choices of

nonlocality scale.

3.x10°8F \A

25x10°8F
-8 [

2.x10 VO

1.5x10° 8 F

1.x10° 8

5.x10" 9 F

I R R
FIG. 6. Original and corrected potentials for A = SMp/&. For
A = Mp/é&, they are practically indistinguishable.

A. Restoring gauge invariance

The action (6) for nonminimally coupled scalar actually
resembles those for the Standard Model Higgs in a unitary
gauge H = (0, (r+v)v/2)T if the gauge bosons are
switched off. Now, we add the gauge bosons and restore
the full action invariant with respect to the Standard Model
gauge transformations.

A covariant derivative in action (1) in the unitary gauge
can be written as

2 2
g(v+r
o+ L0

(@ + 92w +r)

1
|Dﬂ}"|2 :E r)2 + W;W;
+ 2,2,

(37)

Here, v is the Higgs VEV, and g and ¢ are the SU(2) and
U(1) Standard Model gauge couplings, respectively. Note
that (9,r)? can be written in a covariant form,

(0u(H'H))?

2
Our) =357

(38)

Therefore, the part of the Lagrangian for Higgs inflation
which does not contain the radial mode is

2 _ (O (H'H))?
_ 2|D/4H| ~ T sHH

L =-M 39
! PoMR+28HTH (39)

Further, the covariant form of the action for the radial
mode is

. (0,(H'H))? ., (0,(H'H))?
> BHTH(M2 +28HTH) ~° (M3 +2EH'H)?
~V(H'H). (40)
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(c) (d)

FIG. 7. Diagrams for tree-level scattering hh — 06.

In the sequel, we propose to not introduce nonlocality to the
part L, of the action because extra gauge-covariant deriv-
atives will lead to infinitely many new couplings between
Standard Model gauge bosons. In such a complicated
framework, it would be hard to say whether this leads to
a self-consistent finite theory or not. We leave this question
open for now.

Hence, we suggest modifying only the sector of the
radial Higgs mode. However, one should be careful with
the introduction of a higher-derivative form factor because
it can lead to the fast growth of tree-level amplitudes at
energies higher than the cutoff scale. For example, the
Lagrangian

L= 200f(O)($ + ag?) (1)

leads to exchange diagrams which grow rapidly at large
momenta, since we would choose the sign in front of the
d’Alembertian operator such that loop integrals converge.

The way to proceed is to introduce nonlocality in the
same way as it was done in Sec. II, and this can be safely
accomplished. Namely, we canonically normalize the
kinetic term and modify the canonical propagator. This
would not lead to pathologies in the sector of the radial
Higgs mode. Still, we are going to show in the next section
that scattering of longitudinal modes of vector bosons
would grow with momenta starting from Mp/é&.

B. Issue of tree-level unitarity

Besides the strong coupling in the scattering amplitudes
of the radial Higgs mode, the Higgs inflation model suffers
from the problem of the tree-level unitarity in the sector of
gauge bosons [5,44]. Let us show the origin of these
problems in a somewhat simpler model of a U(1) field.
This model resembles the same issue that appears in the
non-Abelian case. The scattering amplitudes of longi-
tudinal polarizations of gauge bosons are known to grow
as Ep/Mp violates unitarity at Mp/E.

We work in the so-called R gauge [45], where
the longitudinal part of the Abelian vector field is

kept in a phase of the Higgs, H = he?/\/2.* In this

“The longitudinal part z can be written as H = (ho + iz)/ V2.
Because of the equivalence theorem [45], we study scatterings of
the Goldstone modes instead of the scatterings of gauge bosons.

case, in terms of the canonical variables, our Lagrangian
has the form

1 1

L= =3 (0,7 =3G(M)@,07 - V(). (42)
In the Standard Model, G(h) = h*. In general, G(h) =
G(v) + G'(v)h + G"(h)h*/2 + .... We are interested only
in the amplitudes, which grow with momentum. hh — hh
amplitude does not grow at tree level since there are no
derivative couplings. But 7k — 66 amplitude will grow
unless G(h) = h%. This growing is coming from three
diagrams, a, b, ¢ in Fig. 7, and it has the form

Mo s 2G”(v)_ G'(v)\?2 '
G(v)  \G(v)
The diagram d in Fig. 7 does not lead to an amplitude

which grows with momentum. In the case of Higgs
inflation, approximately finding potential (7), we get

(43)

2 2
¢(h)~h— —152 n (44)
P
This leads to
42 Es
N =h1-—=n? ~. 4
G(h) ( M% ) M M% (45)

Nonlocality, as it is introduced in Sec. II in the radial
sector, cannot treat this behavior since no changes are
incurred for these particular diagrams. However, the prob-
lem can be solved if a nonlocal form factor is added in
a more complicated way. To see this, we exploit the
freedom in splitting quadratic and interaction parts in the
Lagrangian. Namely, if we define a new field variable,

hM p
VM3 + En*

this would bring the coupling to the safe form y*(9,6)?.
Then, the kinetic term can be split as follows:

y(h) = (46)

Ev2(9,0)((2 + 66)M2 — &)
2(M3 — &y?)?

- V().
(47)

1
L= _5(8/4);)2 -
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If we designate y to be our canonical field variable and treat
the second term as an interaction, then in this case, we get
growing amplitude yy — 66 from the s-channel diagram
with y exchange [Fig. 7(d)]. Note that this diagram did not
give growing with momentum contribution in the original
variable . Besides this diagram, all other diagrams which
impact this scattering process (a, b, ¢) do not grow. Thus, in
these variables, we narrowed the problem of tree unitarity
breaking to the sector of radial the Higgs mode. This means
that once we introduce a nonlocal form factor in the first
term in (47) we arrive at the exponential suppression of this
diagram (due to nonlocal propagator), which solves the
problem under discussion.

Notice that the interaction term in (47) does not spoil
the nice features of the model such as convergent Higgs
loops and radial Higgs scattering amplitudes. Tree-level

|

scattering amplitude 2k — hh does not grow due to the
crossing symmetry. Indeed, the matrix element would scale
as s+ ¢+ u in Mandelstam variables, and the latter
combination is constant on shell. However, scattering
amplitudes of many particles can still suffer from the
unitarity breaking at scales lower than Planck mass. In
principle, this can be cured by appropriate nonlocal
modification of the second term of (47). In general, such
modifications are not expected to spoil the background
solution for Higgs inflation in the slow-roll regime since
they modify only terms with derivatives which are sup-
pressed in the slow-roll approximation.

Eventually, let us present a covariant form of a nonlocal
Higgs Lagrangian which provides Higgs inflation and is
safe from the strong coupling problem at tree level, which
originally appears at the scale Mp /¢,

T F )T - SOOI 1 00 M 5 (VHTHY)

L =
2

_ M2 |D/4H|2 - (8;4(H1H))2/<8H1H) _
d M3 +2¢HYH

Here, F([J) = (O —m%)e”™ with an entire function
o([J) in the exponent, and the potential is

s AMHH-2)? 1 ,
V(H’H)—m—im%ywmmz- (49)

The last term is written because the Higgs mass term is
already present in F(OJ).

C. Naturalness of Higgs mass

Here, we discuss the hierarchy problem in the Standard
Model related to the small mass given by Higgs vacuum
expectation value compared to both inflation and Planck
scales. In general, the tiny Higgs mass can be affected by
yet unknown high-energy physics. If there are new heavy
particles coupled to the Higgs, loop corrections to the
Higgs propagator would be large, starting from this new
energy scale. Thus, fine-tuning of constants at high
energies would be required in order to keep the Higgs
mass small at low energy. If there are no new particles
between the electroweak and Planck scales, then one could
hope that the Higgs mass can be kept small without extra
fine-tuning. In the considered framework, we do not add
extra particles. Instead of this, we modify the Higgs
propagator at high energies.

To address the influence of nonlocality on the natural-
ness issue, we start with the computation of the first loop

2(M} - &y(VHTH)?)?

V(HH). (48)

|
corrections to the propagator. We skip the diagrams that
lead to the corrections proportional to Higgs vacuum
expectation value and start with the diagram in Fig. 8§,
which is quadratically divergent in the canonical local
Standard Model.

Let us compute explicitly the diagram in Fig. 8 coming
from the interaction Ah*/4 and o(0J) = [J>/A%. The
corresponding expression is given by

d4ke—k4/A4

3il
M = .
(2r)* / K> —m3 + ie

(50)

We follow Ref. [43] in defining the relation between
Minkowskian and Euclidean amplitudes. The prescribed
definition is briefly outlined in our Footnote 3, and in short,
it states that performing the analytic continuation from
Euclidean external momenta to physical Minkowski ones
would provide unitary amplitudes. Technically, at least for
this diagram, we have a very simple case because the
answer does not depend on the external momentum. We
thus obtain

FIG. 8. Loop correction to the Higgs propagator.
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M 3] /Wk3dke"‘4/A4
0

827 k> + m?,

32 2
~ 82 (4 N2 4 T =/ (Bt / A%)
T

+ Ei(m‘},/A“))). (51)

The first term proportional to A? reflects the quadratic
divergence of the same diagram in a local theory. The
performed procedure resembles the higher-derivative regu-
larization [46], where, first, an infinite tower of derivatives
is used and, second, the regularization parameter is a part of
the original system and thus is kept finite, though large,
after all the computations are finished. We note here again
that the standard Wick rotation is not directly applicable in
the case of infinite powers of momenta but the result clearly
reduces to the one of a local theory once the limit A — oo is
performed, in which case one can use the Wick rotation
mechanism. This maintains the consistency between the
procedure constructed in Ref. [43] for nonlocal theories and
the Wick rotation valid in local theories as long as
corresponding parameter limits are considered. In particu-
lar, this implies that we should use the same prescription for
the mass pole as in a local theory.

Despite the efforts, however, some tuning of parameters
would be needed because the term quadratic in A would
lead to a large correction to the Higgs mass. To keep the
Higgs mass small, we need its finite renormalization.
Namely, if we set the bare mass to be

34 \/E A2
272

2 _ .2
Moy = My

(52)

then at one-loop level, we get the Standard Model value
of Higgs mass. The price we pay is the fine-tuning of
parameters at the scale on nonlocality A. This is the one-
loop correction which will get modified by higher loops,
while further corrections are suppressed by powers of 1 in
full analogy with the local case.

This outcome can be easily understood in our approach
since we do only modify the behavior of the propagator at
large momenta, larger than the nonlocality scale, while at
lower scales the propagator is kept intact. Technically, the
A? contribution has come from the part of integration from
zero to A, and this is not affected by the proposed higher-
derivative modifications in any way. Even more, it seems
unfeasible to achieve smallness of such a contribution by
adjusting the form factor because mathematically possible
modifications will most likely make the function in the
exponent of the form factor nonentire, which in turn will
lead to the problem of new excitations, probably ghosts.

Moreover, it is known to be difficult overall to avoid this
kind of fine-tuning. The most likely scenario is that the
Higgs mass can be naturally small only in the presence of

new symmetries, like supersymmetry [47] or scale invari-
ance without new heavy particles [48] or if, for example, it
is generated nonperturbatively [49]. Finding a symmetry
eliminating large quadratic corrections while keeping the
nonlocal framework presented in this paper that treats the
renormalizability issue could be an interesting open direc-
tion to study.

IV. CONCLUSIONS

The main game changer in the presented consideration
compared to previous studies of the Higgs inflation model
is the Analytic Infinite Derivative (AID) modification of the
scalar field propagator. Namely, an exponent of an entire
function of the covariant d’ Alembertian is introduced in the
kinetic term. Having deep motivations from different
perspectives including interacting string theories, such a
modification of the propagator will incur major conse-
quences for any model in which it is considered. One of the
most important is the ultimate suppression of the loop
integrals. To have the things computable, we specialize to
an exact form of the nonlocal form factor exp([1?>/A%).
Surely, any polynomial with an appropriate sign would
work, but to keep things tractable, one would stick to a
monomial. Moreover, a would-be simpler choice of just
exp(—[J/A?) does not satisfy our needs, as it makes tree-
level scattering amplitudes exponentially grow. The impor-
tant piece here is the mass scale parameter A, which can be
thought of as an effective cutoff. It is not fixed per se, but
we first would have it above the inflation scale H so that the
inflationary dynamics is preserved as in the original local
model, and, second, it is reasonable to have it of order
A~ Mp/E so that the UV completion by the exponential
suppression works at the cutoff scale Mp/& of the local
model. Section II has all the corresponding analysis, which
shows that the desired behavior of the model can be
achieved. In particular, we have demonstrated explicitly
by using the slow-roll approximation that the inflationary
dynamics is preserved.

Moreover, we have shown two important things related to
the AID model modification. First, we have computed
masses of effective heavy excitation which emerge as long
as the model is not in a vacuum and have shown that
corresponding masses can be easily made way heavier than
the nonlocality scale, which is in turn higher than the Hubble
scale. Also, upon some adjustments, one can achieve that no
classical growing solutions are present for these modes. This
keeps the setup safe from the influence of extra modes at least
at linear order. As a general expectation, we assume those
effective excitations may generate non-Gaussian corrections
measurably different from the original local setup [42].
A corresponding analysis in this regard would be a nice
forthcoming study. Second, we have computed numerically
the one-loop effective potential and have observed that it
introduces small corrections to the original potential as long
as a finite mass renormalization is performed. The latter can
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be taken as a parameter tuning, after which the loop
correction to the original potential remains small.

It seems natural to expect that the reheating phase will
get changed upon introducing the higher derivative modi-
fication to the propagator. On the other hand, the fact that
the masses of effective heavy excitations are always above
the nonlocality scale makes us thinking that incurred
changes will preserve the main features of the reheating
phase, keeping the main predictions modified mildly
compared to the local model. It is yet one more open
question to be investigated soon.

In Sec. III, we have shown that the AID modification of
the propagator can be adopted in the full Standard Model
Higgs inflation setup without problems. Even better, we
outline the ideas of how to introduce further modification in
the spirit of AID form factors such that the tree-level
unitarity in the sector of gauge bosons is improved.
However, the hierarchy problem or the problem of the
Higgs mass naturalness still seeks for a better resolution. In
our modification, we have achieved that a finite mass term
tuning is required, which is in a sense better than a quadratic
divergence in the original local model. However, finding a

symmetry that would preserve quadratic corrections as small
should be definitely addressed in future studies.

We can further contemplate that the construction pre-
sented in this work for the Higgs inflation model can be
merged as a part of a unique nonlocal UV-complete theory
that features AID gravity. Despite a number of open
questions, the AID gravity seems to be a good candidate
for the unitary and renormalizable description of gravity at
very high energies [25,27,50].
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