
 

Dynamical model for primordial black holes

F. Ruiz*

Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, 05315-970, São Paulo-SP, Brazil

C. Molina †

Universidade de São Paulo, Escola de Artes, Ciências e Humanidades,
Avenida Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP, Brazil

J. A. S. Lima‡

Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas,
Rua do Matão 1226, CEP 05508-090, São Paulo-SP, Brazil

(Received 8 September 2020; accepted 11 November 2020; published 4 December 2020)

Primordial black holes are analytically and numerically discussed based on the extended McVittie
spacetime solution. By assuming that dark matter and radiation are the only sources of energy accreted by
the forming central object, it is found that the black-hole mass evolution depends on the initial mass of the
seed, the time in which the black hole emerges, and also on the average peculiar velocity of dark matter
particles. Constraints on the initial conditions of the primordial black holes are derived from profiles of the
black-hole accretion mechanism and cosmological environment. A large range of masses is compatible
with our approach. In particular, masses of the order of 1010 M⊙ today may also be generated from small
seeds. An incubation time for the emerging horizons is observed when the initial masses of the seeds are
close to the particle-horizon mass. It is also argued that the McVittie-type description is consistent with the
Schwarzschild solution as long as other astrophysical processes near the central object are neglected.
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I. INTRODUCTION

The possible formation and evolution of compact objects
in the primeval universe has been extensively studied and
reformulated in the last decades. Long ago Ambartsumian
suggested that stellar clusters and galaxies would be formed
from the expansion of dense objects named protostars [1,2].
Novikov’s calculations also showed that fluctuations on the
metric as well as on the primordial density field would
generate inhomogeneities in scales of the order of 100 Mpc
today [3]. In addition, by assuming a closed Friedmann-
Lemaître-Robertson-Walker (FLRW) spacetime region
after the initial singularity, which initially did not expand
with the rest of the Universe (considered a flat FLRW
geometry), an exact solution of Einstein’s equations was
also derived [4]. Many versions of Novikov’s model were
also suggested. In general, the compact inner region is
described by a perturbed Friedmann metric smoothly
connected with the FLRW flat model using a transition
region (see, for instance, [5]). By that time, the term
“primordial black hole” (PBH) was already in use.

The detection of gravitational waves by the LIGO/
VIRGO Collaboration [6] and the first image of a black
hole in the nearby radio galaxy M87 recently obtained
by the Event Horizon Telescope [7] opened a remarkable
observational window for the understanding of the
Universe and the possible existence of PBHs. As suggested
by Nakamura, Thorne et al. [8], or more recently by Raidal
et al. [9], PBH mergers would be relevant sources of
gravitational waves. In fact, the most probable scenario to
explain the LIGO detection GW150914 [6] corresponds to
the coalescence of a PBH binary system [10].
Moreover, the hypothesis that PBHs may account

for either a part or even the whole dark matter is still
disputed, with recent proposals for PBH mass spectra
which would solve this and other problems [11]. In
particular, PBHs with masses of the order of Earth mass,
MPBH ≈M⊕ð125 GeV=T2Þ2, may also be generated in the
radiation phase during a first-order phase transition in the
vicinity of the electroweak scale [12]. More recently, it was
also suggested that the excess in microlensing events in
the 5-year Optical Gravitational Lensing Experiment data
together with the anomalous orbits trans-Newtonian objects
can be interpreted as a new population of dark objects
(presumed to be PBHs) captured by the solar system
instead of the free-floating Planet 9 hypothesis [13].
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The timescale for the evolution of PBHs that could exist
until today is roughly of the order of 1=H0 (whereH0 is the
Hubble constant) since they are supposed to be formed in
the radiation dominated era [14,15]. In principle, such
objects leave traces that eventually can be observed and
used for identifying them in different mass scales. For
instance, promising observational windows involve gravi-
tational lensing, interaction with the baryonic matter and
the emitted radiation by the infalling matter during the
accretion process [16]. Within this timescale, accretion
processes could play an important role in the spacetime
geometry. Hawking and Carr [17] developed a similarity
solution in which a PBH grows at the same rate as the
particle horizon but it fails to satisfy the boundary condition
expected physically. Accretion dynamics were also treated
as a quasistationary process in [18–20]. In particular,
accretion of dark matter and dark energy were considered
in [21].
There are exact solutions of Einstein’s equations which

can be interpreted as spacetimes supported by a compact
object immersed in a cosmological background. Some of
them are the solutions first obtained by Kottler [22] (also
known as Schwarzschild-de Sitter/anti–de Sitter), McVittie
[23] and Thakurta [24]. Several other candidates describing
cosmological black holes were also discussed in the
literature [25–32]. In particular, the McVittie spacetime
assumes the existence of a central and spherical inhomo-
geneity immersed in a perfect fluid. It has an asymptotically
FLRW behavior and a spacelike big bang singularity,
and, as such, it lacks a global timelike Killing vector field.
The physical interpretation of the McVittie solution has
been widely debated since it was proposed and some
controversy has also been generated [26,30–33]. Neverthe-
less, it was shown that in a cosmological Einstein-de Sitter
background, the McVittie solution is reduced to the
Schwarzschild-de Sitter metric, and the central object effec-
tively describes a black hole.
The Einstein’s equations for the McVittie geometries

can be solved by specifying two functions aðtÞ and μðtÞ and
it should be given some information of the energy-
momentum tensor as suggested in [34]. The original
McVittie’s work has μðtÞ ¼ m=aðtÞ where m is a constant,
but it was extended and the properties of the generalized
McVittie metric were explored by several authors [34–38].
The general McVittie-type solution [34,35] describes a
compact object with a time-varying mass (dm=dt ≠ 0) so
that the associated spacetime can be adopted to model the
accretion of mass by a black hole.
In the present work, primordial black holes are described

through an extended McVittie spacetime, by imposing a
simple accretion mechanism driving the black-hole mass in
a FLRW background along the lines developed in [18–20].
Our main goal is to examine a dynamical model for the
PBH evolution immersed in a cosmological environment.
The generalized McVittie metric is used as an interpolation

tool, linking local accretion physics with the large-scale
cosmology. The black-hole evolution is obtained through
the behavior of its apparent horizons. The large scale
cosmological environment is characterized here by the
scale factor of the FLRW metric far from the central
inhomogeneity. The short-scale accretion dynamics is fully
dependent on the mass function of the central object mðtÞ.
As we shall see, the different scales of the PBH system are
interpolated by the adopted McVittie-type metric.
The paper is organized as follows. In Sec. II, the general

characteristics of the generalized McVittie spacetimes are
reviewed. By assuming suitable mass and scale functions,
the specific model for the primordial black holes is
proposed in Sec. III. The model is analyzed with more
detail in Sec. IV, where the relevant parameter space is
constrained and the possible horizon dynamics is dis-
cussed. The paper is closed with the final remarks in Sec. V.

II. EXTENDED McVITTIE SPACETIME

A local accretion model for primordial black holes in a
cosmological setting may be constructed by interpolating
the local geometry (close to the compact object) and the
large scale cosmological description. In the present work,
this interpolation will be carried out with the generalized
McVittie spacetime. One may assume that the large
scale structure of the Universe is well described by the
Λ cold dark matter standard cosmological model. It is well
known that the combination of independent observations
including supernovas, baryon acoustic oscillations, gravi-
tational lensing, and the angular power spectrum of the
cosmic microwave background suggest a spatially flat
universe [39].
In this context, our starting point is that PBHs are formed

during the radiation dominated era and evolve capturing
radiation and dark matter from their vicinity in virtue of
some accretion mechanism. To model this physical sce-
nario, let us now consider the extended McVittie-type
metric [34]

ds2 ¼ −
�1 − mðtÞG

2c2aðtÞr
1þ mðtÞG

2c2aðtÞr

�2
c2dt2

þ
�
1þ mðtÞG

2c2aðtÞr
�
4

aðtÞ2ðdr2 þ r2dΩ2Þ; ð1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2. It describes a compact
object with a time-varying mass mðtÞ immersed in a
cosmological background characterized by aðtÞ, the cosmic
scale function [34,35]. The r coordinate is the isotropic
radius, with r > m=2a. Note also the existence of a
curvature singularity in the limit r → m=2a, as can be
shown calculating the Ricci scalar [40].
In passing, at the level of the metric description, the time

dependence of the black-hole mass could be formally
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incorporated in the time-varying gravitational constant G
as mðtÞG → mGðtÞ and the same happens with a possible
time dependence of the speed of light c. However, the
variation of the fundamental constants like GðtÞ, cðtÞ (or
both) modify the field equations [41–43]. Such a possibility
is not being discussed here.
It should be noticed that the Weyl contribution to the

Misner-Sharp energy based on the line element (1) reads

Ew ¼ mðtÞc2; ð2Þ

thereby showing that the total black-hole energy is also a
time-dependent quantity.
It is convenient to express the line element (1) in

terms of the areal radius r̂. To that end, the coordinate
transformation

r̂ ¼ aðtÞr
�
1þ mðtÞG

2c2aðtÞr
�
2

ð3Þ

allows us to write the generalized McVittie metric (1) in the
form [35]

ds2¼−Rðt; r̂Þ2c2dt2þ
�

dr̂
Rðt; r̂Þ

−
�
HðtÞþMðtÞ

�
1

Rðt; r̂Þ−1

��
r̂dt

�
2

þ r̂2dΩ2: ð4Þ

The functions Rðt; r̂Þ, HðtÞ and MðtÞ are defined as

Rðt; r̂Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2mðtÞG
c2r̂

r
; HðtÞ≡ _aðtÞ

aðtÞ ; MðtÞ≡ _mðtÞ
mðtÞ ;

ð5Þ

where a dot indicates time derivative. Moreover, restric-
tions on the metric functions must be guaranteed to ensure
that the McVittie-type geometry is a physically acceptable
model for an accreting PBH in the FLRW environment.
In this case, reasonable conditions are [38,44]

mðtÞ > 0; ∀ t > 0; ð6Þ

lim
t→∞

HðtÞ → Hasym; Hasym > 0; ð7Þ

MðtÞ ≥ 0; ∀ t > 0; ð8Þ

HðtÞ > 0; ∀ t > 0; ð9Þ

G
c3

m0HðtÞ < 1=3
ffiffiffi
3

p
: ð10Þ

In Eq. (7), Hasym is a positive constant representing the
asymptotic value of the Hubble constant. In Eq. (10), m0 is
a positive constant denoting the asymptotic mass of the

black hole. Such a condition applies in regions in which the
black-hole mass does not change (M ¼ 0) and it should be
satisfied to guarantee the existence of both horizons [44].
One way to describe black-hole geometries is through

their horizon structure. In the framework of McVittie-type
metrics, the proper description of a black-hole horizon is
not straightforward because of the spacetime dynamics
[45]. In what follows we will characterize black holes
through their apparent horizons. Such structures are defined
as the closure of a 3-surface which can be foliated by
marginal 2-surfaces. These closed marginal surfaces are
defined in such a way that the expansion of the surface
geodesic vector null fields vanishes [46]. In this case, it
should be emphasized that the spacetime does not need to
be asymptotically flat.
The expansion of a null vector field V is defined by the

following relation:

θðVÞ ¼
1ffiffiffi
h

p LV

ffiffiffi
h

p
¼ 1ffiffiffi

h
p d

dλV

ffiffiffi
h

p
; ð11Þ

where h is the determinant of the induced metric on the
hypersurface normal to the null vector field V, andLV is the
Lie derivative throughout the field V. It can be expressed
equivalently in terms of a derivative with respect to the
parameter λV that generates the null geodesic. A future
apparent horizon is defined by the following conditions
over constant-time slices:

θðlÞ ¼ 0; θðnÞ < 0; ð12Þ

with the subscripts l and n denoting outgoing and ingoing
null vector fields, respectively.
The apparent horizons are quasilocal structures, imply-

ing that their existence can be probed by finite time
measurements without previous knowledge of the causal
structure of the whole spacetime [46]. Considering the
generalized McVittie metric written in the form (4), two
past apparent horizons appear and can be determined by

�
HðtÞ þ 2mðtÞGMðtÞ

c2r̂Rðt; r̂Þð1þ Rðt; r̂ÞÞ
�
r̂ − cRðt; r̂Þ ¼ 0: ð13Þ

It is worth noticing that the Schwarzschild-de Sitter case
shows a similar behavior in these coordinates. However, the
analytic extension can reveal the future apparent horizons
at the same values of the radial coordinate. Though the
analytic extension for the generalized McVittie spacetime is
not at our disposal we expect a similar structure [38]. By
using the definition of Rðt; r̂Þ presented in Eq. (5) and
rearranging terms, a polynomial equation in r̂ for each
value of t is obtained,
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H
c2

ðH − 2MÞr̂4 − 2

�
Gm
c4

ðH −MÞ2 −M
c

�
r̂3

−
�
4
Gm
c3

M þ 1

�
r̂2 þ 4

Gm
c2

r̂ − 4
G2m2

c4
¼ 0: ð14Þ

In order to characterize the spacetime, the next step is to
calculate explicit solutions for the apparent horizons.
Hence, it is necessary to set the metric functions HðtÞ
and mðtÞ, fixing the local accretion mechanism and
cosmological environment. This issue will be explored in
the next section.

III. MODELING PRIMORDIAL BLACK HOLES

Primordial black holes are expected to be formed in the
radiation dominated era. The absorption cross section of
dark matter particles and radiation by black holes suggests
that such components are the most important to the PBH
formation process. Actually, the photon accretion rate
cannot be neglected because the energy density of radiation
is very large at high redshifts. For large values of r, the
inflowing energy can be calculated for a Schwarzschild
black hole [19]. We consider this result as an approximation
for the dynamical situation and it is expected to be an
overestimation of the accretion rate because the expansion
of the Universe limits the region in causal contact with the
black hole. Far from the black hole, we simplify our
analysis of accretion by taking into account two perfect
fluids: a dust of noninteracting massive particles with an
equation of state p∞m ¼ 0 representing dark matter, and a
thermal bath of massless particles with p∞r ¼ c2ρ∞r=3 for
photons (see also [47]).
For short timescales compared with the age of the

Universe, the accretion process can be assumed to be
stationary. In this way, the phase space distribution function
of the massive particles fðr; v; tÞ is a time-independent
quantity. Due to the spherical symmetry, it depends only
on the constants of motion of the problem, that is, the
magnitude of the angular momentum and the energy of the
particles [19].
In the case of a stationary accretion process the

unbounded particles whose energy at r → ∞ is positive
far from the black hole provides the primary contribution to
the growth rate of the PBH. In the case of a monoenergetic
particle distribution at r → ∞, the solution of the
Boltzmann equation is proportional to a Dirac’s delta of
the particle energy which peaks for E∞ [19]. The accretion
rate for photons can be separately calculated by using the
absorption cross section associated with them. The black-
hole mass mðtÞ will be composed by both contributions,
and the evolution equation becomes

_m ¼ _mm þ _mr ¼
16πG2ρ∞m

v∞c2
m2 þ 27πG2ρ∞r

c3
m2; ð15Þ

where the quantities ρ∞m and ρ∞r are the energy densities
at infinity of particles of mass μ0 and massless particles,
respectively. The quantity v∞ is the mean value of the
magnitude of the particles velocities far apart from the
black hole and m is the mass of the central object. Those
quantities are functions of the time coordinate t which
coincides with the cosmological time for large r.
From the observational viewpoint, it is more convenient

to express the cosmological time t in terms of a “Friedmann
redshift” z, defined as

zðtÞ ¼ 1

aðtÞ − 1: ð16Þ

There is a map between z and the coordinate t, and hence z
can be used as the time parameter. Strictly speaking, the
Friedmann redshift and the redshift Z constructed from
the generalized McVitte metric do not exactly coincide.
The redshift Z depends on both t and r coordinates, and
therefore there is no one-to-one relation between Z and t
(reflecting the fact that the McVittie spacetime is not
homogeneous). However, the Friedmann redshift z approx-
imates the optical redshift if the light emission is not too
close to the horizon, and from a practical point of view is
more convenient than t to label the cosmological time.
The Einstein’s equations for the generalized McVittie

metric (1) far from the black hole have the usual Friedmann
form,

H2 ¼ 8πG
3

ρ∞; ð17Þ

_ρ∞ þ 3H

�
ρ∞ þ p∞

c2

�
¼ 0: ð18Þ

The density and pressure can be decomposed in the usual
components: matter, radiation, and cosmological constant
(considering a zero-curvature cosmology). Each component
has an equation of state,

ρ∞ ¼ ρ∞r þ ρ∞m þ ρ∞Λ; ð19Þ
p∞ ¼ p∞r þ p∞m þ p∞Λ; ð20Þ

with

p∞r ¼ c2ρ∞r=3; ð21Þ
p∞m ¼ 0; ð22Þ

p∞Λ ¼ −c2ρ∞Λ: ð23Þ

Since the fluid components are noninteracting,we are able to
solve Eqs. (17) and (18) to obtain the densities and the
Hubble function H in the three different epochs in which
each fluid dominates. In terms of the Friedmann redshift,

ρ∞r ¼
3H2

0Ωr0

8πG
ð1þ zÞ4; ð24Þ
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ρ∞m ¼ 3H2
0Ωm0

8πG
ð1þ zÞ3; ð25Þ

HðzÞ ¼

8>><
>>:

H0

ffiffiffiffiffiffiffi
Ωr0

p ð1þ zÞ2; z ≥ zeq;

H0

ffiffiffiffiffiffiffiffiffi
Ωm0

p ð1þ zÞ3=2; z̄eq ≤ z < zeq;

H0

ffiffiffiffiffiffiffiffi
ΩΛ0

p
; z < z̄eq;

ð26Þ

whereΩr0,Ωm0 andΩΛ0 are the density parameters today for
radiation, matter, and cosmological constant respectively.
The quantities zeq and z̄eq denote the Friedmann redshift for
the matter-radiation equality and the matter-cosmological
constant equality moments.
On the other hand, the mean value of the magnitude of

the peculiar velocity of particles in the comoving frame in a
FLRW geometry should be matched with the mean value of
the magnitude of the velocity of the particles at infinity in
Eq. (15), given by

vk∞ ¼ a
uk

u0
; ð27Þ

where uν is the four-velocity of the particle in a comoving
frame at the FLRW geometry. As a consequence of the
spatial translations invariance, we can write

μaðtÞ vk∞ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2∞ðtÞ

c2

q ¼ bk; ð28Þ

with bk being a constant with respect to the time coordinate.
Considering the constant bk today,

bk ¼ μ
vk∞0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2∞0

c2

q : ð29Þ

Combining Eqs. (28) and (29), the magnitude of the
peculiar velocity of the particles in terms of the scale
factor a is obtained:

v∞ðaÞ ¼
v∞0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2∞0

c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ v2∞0

=c2

1−v2∞0
=c2

r : ð30Þ

The velocity of dark-matter particles today is an
unknown quantity, but assuming the cold dark matter
scenario it is expected to be much smaller than the speed
of light. For example, the typical velocity of a galaxy in a
cluster of galaxies is v∞0 ≈ 10−6 pc=yr, which is a small
fraction of c. The expected mean velocity we are interested
in must be at most of the order of that velocity (we will
return to that point in the next section). Then, we can use
the result (30) in its nonrelativistic approximation, that also
can be expressed in terms of the Friedmann redshift z as

v∞ðzÞ ¼ v∞0ð1þ zÞ: ð31Þ
The integration of (15) can be performed replacing the

results (24), (25), (26) and (31) in (15). We have,1 in terms
of z,

mðzÞ ¼

8>>>>>>>><
>>>>>>>>:

mI

1 − α1 ln

				 1þzI
1þz

				 − β1½ð1þ zIÞ2 − ð1þ zÞ2�
; z ≥ zeq;

mI

1 − α2½ð1þ zeqÞ1=2 − ð1þ zÞ1=2� − β2½ð1þ zeqÞ5=2 − ð1þ zÞ5=2� − K1mI
; z̄eq ≤ z < zeq;

mI

1 − α3½ð1þ z̄eqÞ2 − ð1þ zÞ2� − β3½ð1þ z̄eqÞ4 − ð1þ zÞ4� − K2mI
; z < z̄eq:

ð32Þ

The constant of integrationmI represents the initial mass of
the seed, which forms at z ¼ zI . The term “seed” is used
here to denote a background fluctuation that eventually
generates the black hole. The terms fαjg, fβjg and fKjg
are constants which depend on the Hubble constant, the

TABLE I. Constants fαjg, fβjg, fKjg in the mass function mðzÞ, according to Eq. (32).

j αj=mI βj=mI KjmI

1 6GH0Ωm0ffiffiffiffiffi
Ωr0

p
c2v∞0

81GH0

ffiffiffiffiffi
Ωr0

p
16c3

α1 ln j 1þzI
1þzeq

j þ β1½ð1þ zIÞ2 − ð1þ zeqÞ2�
2 12GH0

ffiffiffiffiffiffi
Ωm0

p
c2v∞0

81GH0Ωr0

20
ffiffiffiffiffiffi
Ωm0

p
c3

α2½ð1þ zeqÞ1=2 − ð1þ z̄eqÞ1=2� þ β2½ð1þ zeqÞ5=2 − ð1þ z̄eqÞ5=2� þ K1mI

3 3GH0Ωm0ffiffiffiffiffiffi
ΩΛ0

p
c2v∞0

81GH0Ωr0

32
ffiffiffiffiffiffi
ΩΛ0

p
c3

0

1A previous work [21] considered the accretion rate function
due to Babichev [48] to study accretion of dark matter and dark
energy.
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density parameters today and the mean value of the velocity
of dark-matter particles far from the black hole. These
quantities are explicitly presented in Table I. The values
used for the density parameters and the Hubble constant are
presented in Table II.
As it will be seen in next section, the seed formation does

not necessarily coincide with the emergence of the apparent
horizons defining the black hole. With the Hubble function
and mass function given by Eqs. (26)–(32), the conditions
(6) to (10) are satisfied. In particular, requirement (10)
depends on the time of the formation of the seed tI and the
initial mass of the black hole mI because those initial
conditions determine the value for the asymptotic massm0.
As a matter of fact, those parameters can lead to a
divergence of the mass function for some z. In such cases,
the condition (10) is not obeyed. However, in the present
work, for nondivergent values of the mass function at z ¼ 0
the condition is satisfied.

IV. ANALYZING THE PRIMORDIAL
BLACK-HOLE MODEL

A. Constraining the parameter space

Given the derived mass functionmðzÞ, one may ask about
its regularity since a divergence will appear when the
denominator vanishes, according to Eq. (32). The existence
of three different epochs leads us to consider separately the
cases in which such divergence may occur. For a fixed
velocity v∞0, they establish together a constraint on the
possible values of mI and also on the time tI demarking the
emergence of the black hole. Actually, once the value of v∞0

is fixed, the analysis of the allowedvalues ofmI is immediate.
In Fig. 1 we illustrate the limits ofmI for the radiation era.

All curves except the red one (solid curve) correspond to the
pairs ðzI; mIÞ generating divergences on the mass function
(32) today. Thus, every point under each curve is a valid
choice to get finite results. Also in this figurewe compare the
limits ofmI with the particle-horizonmassmh. The quantity
mh denotes themasswithin the particle horizon of the FLRW
metric surrounding the black hole, being given by

mh ¼
c3t
G

¼ c3

2GH0

ffiffiffiffiffiffiffi
Ωr0

p ð1þ zÞ2 : ð33Þ

For each time t,mh provides an upper limit for the black-hole
mass. It should be noticed thatmh is greater than the limit for
mI . Consequently, there are no black holes with masses of
the order of the particle cosmological horizon mass. This
result is compatible with a previous analysis made by
Hawking and Carr based on different arguments [17].
The curve for the divergence can be scaled when other
velocities of dark-matter particles are chosen, but the
particle-horizon mass curve is not crossed regardless of
thevalue ofv∞0 adopted. The higher thevelocity, the smaller
the accretion rate, and consequently, the greater the con-
straint curves will be. The overall picture proposed here
presents some similarity with the scenario where intermedi-
ate-mass PBHs are the seeds for the supermassive black
holes in galactic nuclei [11]. However, the velocity of dark-
matter particles v∞0 is not easy to estimate.
It is possible to rethink the question concerning the

evolution of the black-hole mass if we rely on the fact that
there is no evidence yet for black holes greater than 1010 M⊙
today and demand a positive velocity for dark-matter
particles. By using the mass function mðzÞ in Eq. (32),
we obtain an implicit relation for the velocity v∞0. This
expression is written in terms of the initial mass mI , the
current mass value mðz ¼ 0Þ and the redshift of seed
creation, of matter-radiation equivalence and radiation-dark
energy equivalence zI, zeq, and z̄eq, respectively, as

α3½ð1þ z̄eqÞ2 − 1� þ α2½ð1þ zeqÞ1=2 − ð1þ z̄eqÞ1=2� þ α1 ln

				 1þ zI
1þ zeq

				
¼ 1 −

mI

mð0Þ − β3½ð1þ z̄eqÞ4 − 1� − β2½ð1þ zeqÞ5=2 − ð1þ z̄eqÞ5=2� − β1½ð1þ zIÞ2 − ð1þ zeqÞ2�: ð34Þ

FIG. 1. Constraints on mI and zI . The colored region under
each curve is the permitted region for the initial conditionsmI and
zI for the black hole in the radiation dominated era with v∞0 ¼
10−7 pc=yr in orange (dotted), v∞0 ¼ 10−10 pc=yr in blue (short
dashed) and v∞0 ¼ 10−13 pc=yr in green (large dashed). That
three curves establish the set of initial conditions that lead to
divergence of mass function at z ¼ 0. The red curve is the
particle-horizon mass as a reference. The results for other values
of v∞0 are qualitatively similar.

TABLE II. Assumed values for the density parameters and
Hubble constant.

H0 Ωm0 ΩΛ0
Ωr0

72 km s−1 Mpc−1 0.3 0.7 0.415
H2

0

km2 s−2 Mpc−2
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The implicit dependence of fαjg on v∞0 allows us to obtain
the velocity in terms of the other parameters.
Figure 2 shows the dependence of the velocity v∞0 as a

function of mI for different initial times. Note that each
curve diverges when the initial mass is big enough with any
velocity producing masses greater than 1010 M⊙ today. In
the next section, a pair ðmI; v∞0Þwill be taken for modeling
the horizons for which the restrictions derived here must be
considered. Note also that since the velocity v∞0 must be a
positive number, the denominator of Eq. (34) provides an
upper limit for the possible initial seed masses mI . Unlike
the restriction posed by the positivity of the mass function
(see Fig. 1), the velocity does not need to be specified in
this case, up to a constraint. More concretely,

mI < mð0Þ
�
1þmð0Þ

�
β3
mI

�
½ð1þ z̄eqÞ4 − 1�

þmð0Þ
�
β2
mI

�
½ð1þ zeqÞ5=2 − ð1þ z̄eqÞ5=2�

þmð0Þ
�
β1
mI

�
½ð1þ zIÞ2 − ð1þ zeqÞ2�

�
−1
; ð35Þ

where the factors βj=mI only depend on fundamental
constants and cosmological parameters, as can be seen
in Table I. Chosing mð0Þ ¼ 1010 M⊙ we have an accept-
able relation mIðzIÞ.
Furthermore, we assume that any PBH was originated by

an overdensity in the cosmic fluid. The evolution of such a
region was found, as well as the initial size of the over-
density [49]. In the present work, the overdensity is
considered at the time of the black-hole formation. The
condition for a spherical region of a fluid to collapse into a
black hole is that its radius should be smaller than the

Schwarzschild radius, r < rs ≡ 2Gm=c2 and, as such, its
volume as seen by an external observer far apart in the
cosmological background is nearly V < 4πr3s=3, while its
density is greater than a critical value

ρ̄ ¼ ρþ δρ >
3c6

32πG3m2
I
: ð36Þ

In previous expression, ρ denotes the background density
[17]. Now, defining the relative density contrast δ as

δ≡ Δρ
ρ

¼ ρ̄ − ρ

ρ
; ð37Þ

the following inequalities should be respected:

δ >
3c6

32πG3m2
Iρ

− 1 > 0: ð38Þ

The left-hand side inequality takes into account the con-
dition for the formation and the right-hand side guarantees
that the density contrast is in fact an overdensity. Both
relations lead to

mI <
c3

2GH0

ffiffiffiffiffiffiffi
Ωr0

p ð1þ zIÞ2
¼ mhðzIÞ; ð39Þ

mI >
c3

2GH0

ffiffiffiffiffiffiffi
Ωr0

p ffiffiffiffiffiffiffiffiffiffiffi
1þ δ

p ð1þ zÞ2 ; ð40Þ

which means that black hole with the cosmological horizon
mass formed through overdensities are forbidden. The
previous inequalities set a region in the ðmI; zIÞ space in
which the black-hole formation is possible.

FIG. 2. Velocity v∞0 as a function of the mass mI . For four
different initial times, namely 10−2 s (blue/thick), 10−1 s (orange/
dotted), 100 s (green/dashed) and 101 s (red/dot-dashed), a mass
1010 M⊙ is produced at z ¼ 0. The region under each curve
generates greater masses than 1010 M⊙ today, whereas the
colored region produces the whole range of masses below.

FIG. 3. Formation and finitude constraint. The straight stripe in
red indicates the black-hole formation having the upper limit the
particle-horizon mass. The blue region under the thick curve
indicates initial conditions that generate black holes compatible
with the observations today. The overlapping of them represents
initial conditions allowing the PBH formation and its growth to
1010 M⊙ (at most), simultaneously. In this plot, the δ ¼ 105 has
been assumed.
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In Fig. 3 we show the resulting constraint by taking into
account the accretion limitations and the PBH formation by
overdensities. It should be noted that the region under the
thick curve indicates those PBHs accreting mass until
1010 M⊙ today. The region enclosed by the straight lines
allows a PBH formation depending on the value of the
density contrast at the time of the formation. For δ ≈ 5 and
up the overlapping blue-red region allowing PBHs with
masses under 1010 M⊙ today is not an empty set.

B. Evolution of the horizons

Let us now discuss the expected horizon evolution in the
framework of the present model. Apparent horizons can be
represented as curves in the ðr̂; zÞ space. To obtain the
solutions is necessary to fix the redshift for the black-hole
creation zI (or the initial time tI), the initial mass mI, and
the velocity of the accreted particles v∞0 far from the black
hole. Choosing tI ¼ 10−2 s (zI ≈ 5 × 1010) as the time for
the initial seed (overdensity fluctuation), the constraints
presented in Figs. 3 and 2 allow us to select a mass value in
the range ð5.8 M⊙; 713.9 M⊙Þ.
In Fig. 4, by assuming mI ¼ 140 M⊙ ≪ mhðzIÞ ≈

1800 M⊙ and velocity v∞0 ¼ 10−10 pc=yr, the typical
horizon structure is displayed. The plot starts with the
creation of the seed time. There are two marginal surfaces
corresponding to the two horizons. Note that the black-hole
horizon radius (first curve from bottom to top) is smaller
than the cosmological horizon radius and it evolves at a
similar rate to that of the singularity r̂ ¼ 2Gm=c2.
In Fig. 5, the singularity (first curve from bottom to

top) and the horizon have the same asymptotic behavior
as the accretion rate decreases, but the horizon is always
over the singularity. The expansion of null inner vector
fields orthogonal to the spheres ðt0; r0; θ;ϕÞ is null in the
apparent horizon, and different from zero into the inner
spheres containing the singularity.

A different qualitative behavior appears when the initial
mass approaches the particle cosmological horizon mass
at the time of formation. As an illustration, we consider
mI ¼ 700 M⊙ ⪅ mhðzIÞ and v∞0 ¼ 10−10 pc=yr. These
parameters are indicated in the permitted region of
Fig. 2. The solutions are shown in Fig. 6, and for
completeness the corresponding singularity curve has
been added. One important point to be noticed is that
the time in which the real and non-negative solutions
emerge at t ¼ 0.3 s is different from the time of the
black-hole formation, ti ¼ 10−2 s. Such a delay defines
a kind of incubation time, tinc. Initially, the two space-
like regions beyond the corresponding horizons are
joined before t ≈ 0.30 s.
Actually, as the expansion proceeds and overcomes the

accretion on the black hole, the timelike region appears.
Thus the incubation time is the necessary time to produce a

FIG. 5. A more detailed view of the black-hole horizon
structure of the Fig. 4 in blue (upper curve) and the singularity
as a reference in orange (lower curve). Both curves have the same
asymptotic behavior at low redshifts.

FIG. 6. From the bottom curve to the upper curve: the singularity
as a reference (green), the black-hole horizon (blue), and the
cosmological horizon (orange). The horizons originate at
t ≈ 0.30 s. For this graph, mI ¼ 700 M⊙, tI ¼ 10−2 sðzI ≈
5.2 × 1010Þ, v∞0 ¼ 10−10 pc=yr. The singularity approaches the
black-hole horizon asymptotically as z decreases (t grows).

FIG. 4. Apparent-horizon radius as a function of (zþ 1).
The cosmological horizon is the upper curve in orange,
while the lower curve in blue is the black-hole horizon.
For this graph, mI ¼ 140 M⊙, tI ¼ 10−2 sðzI ≈ 5.2 × 1010Þ,
v∞0 ¼ 10−10 pc=yr.
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timelike region in the causal structure.2 The condition to
obtain a non-null incubation time is roughly that the
particle-horizon mass mh in the pure FLRW cosmology
at zI is close to 4mI and its magnitude depends on the initial
mass. The black-hole influence on the spacetime in the
vicinity of the cosmological horizon is to pull it, so the
cosmological horizon is slightly modified when compared
with the pure FLRW case at times of the order of tI þ tinc.
In Fig. 7(a) more detailed view of the black-hole horizon

and the singularity is presented. The interaction between
the horizons produces the unexpected local decreasing in
size of the black-hole horizon and its separation from the
singularity.
The dynamical behavior of the horizons can be analyzed

throughout the whole interval z ≤ zI but it is remarkably
stronger for higher redshifts. In fact, at cosmological
timescales, the two solutions look as shown in Fig. 8.
The black-hole horizon is approximately constant though
the accretion mechanism does not stop ever, while the
cosmological horizon is a piecewise function, reflecting the
fact that the Hubble function was also piecewise defined.
The cosmological horizon, the black-hole horizon, and

black-hole mass today are

r̂h ¼ 4.98Gpc; r̂bh ¼ 1.0564×105 km;

mbh ¼ 35850.8M⊙: ð41Þ
The cosmological horizon radius presented in (41) is
compatible with the accepted value for the size of the

observable Universe today. In fact, considering typical
values for the initial mass of the seed, the large-scale
structure is not affected by the local physics. If the mass of
the black hole today is 1010 M⊙, the cosmological horizon
does not suffer any appreciable change, maintaining its
value r̂h. This implies that there is no way to detect the
influence of the super massive black holes known today by
means of the behavior of the cosmological horizon.
Keeping in mind the several choices of initial times of

black-hole creation, the same qualitative behavior as shown
in Figs. 4 to 8 is observed. One interesting feature of the
accretion dynamics discussed here is that the photon
accretion in the radiation era is considerably relevant.
Higher zI implies that the black hole can grow more
efficiently during the radiation era. In this way, the
PBHs can be big enough in the matter-dominated era
thereby reaching the intermediate and higher masses now
observed. The impact of the velocity parameter v∞0 is also
important. It is more difficult for the black hole to accrete
matter for higher initial particle velocities.

V. FINAL REMARKS

Formation and evolution of primordial black holes
are dynamically discussed based on a class of McVittie-
type solutions. Such models are compatible with the
Schwarzschild and FLRW geometries thereby interpolating
the extremely local and large-scale cosmological structures.
Dark matter and radiation are considered as the primary
components contributing for the accretion process. The
former is described as a pressureless fluid of noninteracting
particles.
In the present work, it is assumed that the origin of the

primordial black hole is an overdensity in the primeval
cosmic fluid, considering constraints associated with the
initial perturbation. The relevant parameters of our model

FIG. 7. From the bottom curve to the upper curve: the singularity
(green), the black-hole horizon (blue), and the cosmological
horizon (orange). The influence of the cosmological horizon
on the local dynamics near to the black hole is noted by the
distancing between the singularity and the horizon for high
redshift. For this graph,mI ¼ 700 M⊙, tI¼10−2 sðzI≈5.2×1010Þ,
v∞0 ¼ 10−10 pc=yr.

FIG. 8. The large scale horizon structure, the black-hole
horizon (blue curve) at bottom and cosmological horizon
(orange curve) is the upper curve. At large scales, the dynamical
black hole looks approximately as a Schwarzschild black hole.
For this graph, mI ¼ 700 M⊙, tI ¼ 10−2 sðzI ≈ 5.2 × 1010Þ,
v∞0 ¼ 10−10 pc=yr.

2In the theory of galaxy formation, there is also an incubation
time, τinc. It is defined as an estimate of the amount of time
interval from the beginning of structure formation process in the
universe until the formation time [50,51]. Here it is related with
the time needed to the formation of a primordial black hole.
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are the mass of the initial perturbation at the moment of
collapse, the time of formation and the velocity of dark-
matter particles away from the central core. Limits on those
parameters were derived. Two different scenarios are
treated, with small and large mass seed compared to the
particle cosmological horizon mass. An incubation time for
the emergence of the horizons is identified when the initial
mass of the seed is close to the particle-horizon mass.
It is observed that the evolution of the apparent horizons

in McVittie-type spacetimes plays an important role in
regimes where the dynamics cannot be neglected thereby
resulting a complex causal structure. Nevertheless, the
geometry can be well described by the Schwarzschild-
de Sitter solution in regions where dynamical processes are
negligible. Furthermore, the expansion of the Universe at
high redshifts can be influenced by the evolution of the
black hole, although being fully neglected today. The
Schwarzschild description for the black hole is justified
locally since its horizon structure is very similar to the
Schwarzschild case.

We conclude that, by taking into account what is
currently known about the primordial universe phenom-
enology, generalized McVittie spacetimes are plausible
candidates for describing primordial black holes. A more
complete and realistic scenario it will be discussed in a
forthcoming communication.
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