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We introduce a new approach for cosmological parameter estimation based on the information-
theoretical Jensen-Shannon divergence (DJS), calculating it for models in the restricted parameter space
fH0; w0; wag, where H0 is the value of the Hubble constant today, and w0 and wa are dark energy
parameters, with the other parameters held fixed at their best-fit values from the Planck 2018 data. As an
application, we investigate the H0 tension between the Planck temperature power spectrum data (TT) and
the local astronomical data by comparing the ΛCDM model with the wCDM and the w0waCDM dynamic
dark energy models. We find agreement with other works using the standard Bayesian inference for
parameter estimation; in addition, we show that while the DJS is equally minimized for both values of H0

along the ðw0; waÞ plane, the lines of degeneracy are different for each value of H0. This allows for
distinguishing between the two, once the value of either w0 or wa is known.
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I. INTRODUCTION

The concordance cosmological model, ΛCDM, is in
excellent agreement with data spanning a broad range of
redshifts, including the temperature anisotropies of the
cosmic microwave background (CMB) [1], the large-scale
galaxy clustering feature of baryon acoustic oscillations
(BAO) [2], and the luminosity-redshift relation of local
sources, calibrated primarily with type-Ia supernovae data
(SNeIa) [3]. The model has six independent parameters,
assuming the dark energy (DE) equation of state is a
constant w ¼ −1, and a flat universe: the amplitude and
spectral index of the primordial density perturbations, As
and ns, respectively; the reionization optical depth τ; the
present-day Hubble parameter H0; and the present-day
physical baryon and dark matter densities Ωbh2 and Ωch2,
respectively, where h ¼ H0=100.
The Friedmann equation for a spatially flat universe with

a cosmological constant Λ, in the matter-dominated era
(z ≪ 3200), can be written as Ωb þ Ωc þΩΛ ¼ 1, where
H0 determines the critical density normalization on ΩX.
Thus, the cosmic expansion history and structure formation
in the universe is sensitive to the relative contributions of
Ωm ¼ Ωb þ Ωc and DE. Despite the overall success of
ΛCDM, statistically significant tensions exist between
early-universe parameter inference and direct local meas-
urement, most notably in the value of the Hubble parameter
today, H0 [4–6]. Recent results indicate that the discrep-
ancy does not appear to be dependent on the use of any one

method of measuring H0 in the late universe, yielding a
persistent tension with early-universe measurements
between 4.0σ and 5.8σ [7].
Measurements of the CMB anisotropies at z ≈ 1100 by

the Planck [8] and WMAP [9] missions constrain the
combinations Ωbh2 and Ωch2, but degeneracies prevent
constraints of H0 alone [10–12]. Local measurements can
probe HðzÞ directly through the luminosity-redshift rela-
tion, but distances to sources must be carefully calibrated to
avoid systematic error. Uncertainties have been reduced to
the subpercent level in the case of the Planck analysis
and to the 1% level with recent advances in the local
distance-ladder determinations [13,14]. Excluding an
as-yet unknown source of error in either of these analyses,
the discrepancy may point to new early-universe physics
beyond the standard cosmological model.
Several possible resolutions to the Hubble tension have

been proposed, including evolving DE with a phantom-like
equation of state [15], additional neutrinos [16,17], local
voids [18], and prerecombination modifications to DE
(early dark energy) [19], among many others [17,20–22].
Given the many data sets, extending the cosmological
parameter space and performing a Markov chain
Monte Carlo (MCMC) analysis to determine the most
likely parameters is a computationally expensive problem
[23] and involves many complications in constructing the
likelihood function arising from particular instrumentation,
data-set considerations, and prior choices [24–26].
Here, we propose an alternative approach to cosmologi-

cal parameter estimation based on a measurement from
information theory known as the Jensen-Shannon diver-
gence (DJS). We apply it to a one-parameter extension of
the ΛCDM model, the ðw0; waÞ parametrization of an
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evolving dark energy component. In Sec. II, we review the
standard maximum likelihood method before introducing
the DJS and the information theory needed for its inter-
pretation, with a toy example. In Sec. III, we provide
motivation for using the DJS to examine linearly evolving
DE models and detail the numerical approach. Results are
presented in Sec. IV. In Sec. V, we highlight prospects for
extending this study in future work.

II. PARAMETER ESTIMATION

A. Maximum likelihood estimation

The standard approach for cosmological parameter
estimation is a problem of Bayesian inference: We begin
with a data set D, which we wish to accurately represent
with a model parametrized by θ. We assume a prior
distribution over the parameters, pðθÞ. The prior ideally
represents our best knowledge of the parameters, but in
practice, it is commonly taken to be uniform. The model
is specified by the form of the likelihood function,
LðθÞ≡ pðDjθÞ—the probability that the data are observed,
given the model. The posterior probability pðθjDÞ is, by
Bayes’ rule, proportional to pðDjθÞpðθÞ. The best param-
eters are inferred by maximizing the likelihood function.
Details of this method applied to cosmology can be

found in Refs. [27–29]. The MCMC code CosmoMC [30] can
incorporate the likelihoods for various data sets as well as
prior specifications; it is well validated and the most
commonly used code for cosmological parameter estima-
tion. In this work, we allow w0 and wa to vary while setting
H0 to its value, first from early-universe parameter infer-
ence and then from local direct measurement. In future
work we will extend the analysis using DJS to the full
parameter space. Parameter estimates with confidence
intervals can then be directly compared to maximum like-
lihood results.

B. Jensen-Shannon divergence

Shannon’s seminal paper [31] provides the foundation
for the definition and interpretation of theDJS. We typically
think of describing a message or event in terms of a distinct
encoding scheme—a set of symbols N ¼ n1; n2;…; nL.
For instance, in English we encode words with the 26
letters of the alphabet and full messages with additional
characters for punctuation. The information content of a
particular symbol is IðnÞ ¼ − log2 pðnÞ, where pðnÞ is the
probability distribution over symbols in N determined
from some collection of events encoded by N . The
expected value of information in a particular event is then

hIi ¼ −
X
n∈N

pðnÞ log2 pðnÞ: ð1Þ

The DJS is a measure of the difference between two
probability distributions, based on the Kullback-Leibler

divergence (DKL) between two distributions pðnÞ and
qðnÞ, defined as [32]

DKLðpjjqÞ ¼
X
n

pn log

�
pn

qn

�
: ð2Þ

If q is treated as a model for some “true” distribution p,
DKL is a measure of the information lost in using q rather
than p. DKL is positive definite, and it is zero only if the
two distributions are the same (known as the identity of
indiscernables). However, it is not symmetric and does not
satisfy the triangle inequality: while we picture it as a
“distance” between two distributions, it is not a metric.
The DJS is a symmetrized extension of DKL that can be
treated as a true metric on the space of probability
distributions [33]. It is defined as

DJS ¼
1

2
DKLðpjjrÞ þ

1

2
DKLðqjjrÞ; ð3Þ

where r ¼ 1
2
ðpþ qÞ. Here, 0 ≤ DJS ≤ 1 if the logarithm

used in the DKL is base 2. In this case, information is
measured in bits. With the exception of the next example,
we use the natural logarithm, so that 0 ≤ DJS ≤ lnð2Þ.
As a simple illustration of the DJS, consider a collection

of short messages in English. Suppose we eliminate the
spaces, capitalization, punctuation, etc., so that the set of
symbols from which each message is drawn is simply the
26-character English alphabet. Using the DJS, we can find
out how well each of these messages models the phrase
“Cosmology Rocks.”
It is clear that only the relative frequency of letters in

each of the phrases determines the DJS to the reference
message—variables such as ordering of the letters and
overall length are irrelevant. Model messages in which
none of the letters appear in the reference message are
maximally divergent, and those with letter frequencies
close to the reference message have low divergence.
These results are shown in Fig. 1.
The more interesting examples come from comparing

the DJS for model messages like “lgy,” “cos,” and
“ccooooss.” In the first model, the entire message appears
in the reference with the appropriate letter frequency. In the
second, the model is comprised of the three most common
letters from the reference but with incorrect frequencies. In
the final model, the most common letters from the reference
appear with the correct frequency. We conclude, then, that
the DJS is sensitive to the most salient features of a given
distribution.
It is this property that makes it a good candidate for

examining the divergence between the measured angular
power spectrum of the microwave background and a
model’s prediction for it. If we replace the alphabet with
the multipole moment l, and the frequency with Cl, it is the
location and relative scaling of the acoustic peaks that

STEPHENS, VANNAH, and GLEISER PHYS. REV. D 102, 123514 (2020)

123514-2



provides the bulk of the CMB’s sensitivity to cosmological
parameters. Finally, we note that if qn ¼ pn � δpn, with
δpn ≪ pn, expanding the DJS to first order in δpn gives a
measure proportional to the chi square.

III. METHODS

A. Dark energy and the H0 tension

The H0 tension can be stated in this way: late-time scale
factor expansion is occurring faster than we would expect
from ΛCDM, with parameter constraints inferred from
early-universe data. Framed this way, it is easy to see why
most of the proposed resolutions involve modifying DE in
some way. Prerecombination modifications to DE can alter
the sound horizon rs and thus change the inferredH0, while
minute shifts in other parameters maintain the agreement
with CMB anisotropies [19]. Late-time modifications are
an obvious mechanism to alter the expansion history and
galaxy clustering, but are constrained by other measure-
ments, notably BAO [34–36]. Constraining the DE equa-
tion of state is challenging because density parameters and
HðzÞ are sensitive to a function of its integral over redshift.
Observational surveys like the DESI probe [37] will be

able to provide direct constraints on wðzÞ. Until then,
phenomenological models have been introduced to capture
what the general behavior of w ≠ −1 might look like and
its influence on cosmological observables. A common

parametrization for evolving DE is the linear evolution
model w ¼ w0 þ wað1 − aÞ, where w0 is the value today
and wa ¼ −dw=da [38]. In this framework, ΛCDM cor-
responds to w0 ¼ −1; wa ¼ 0, and other constant-wmodels
can be considered by setting wa ¼ 0.
Several studies have extended the ΛCDM basic six-

parameter model to include these parameters, constraining
them in the extended space via standard MCMC max-
likelihoodmethods. References [15,23,39,40] are an incom-
plete list.

B. Data and numerical approach

We compare a model’s prediction for the angular power
spectrum to the Planck 2018 data by computing
DJSðFmod

l jjFplk
l Þ as in Eq. (3), where Fmod

l and Fplk
l are

determined from the model-predicted and Planck data-
calculated angular power spectra, respectively. That is,

Fl ¼
DlP
l
Dl

; ð4Þ

where Dl ¼ lðlþ 1ÞCl=2π. Here, Fl, which we call the
modal fraction (see Refs. [41,42] for more details), mea-
sures the relative probability for a given angular mode over
the full data set, playing a similar role to the probability of
occurrence in a message of a letter belonging to a given
alphabet in Shannon’s information entropy. Each data set
is normalized to unity so that we can interpret Fl as a
probability distribution. We use Dl to compute the DJS
since it more clearly distinguishes the acoustic features.
The unbinned Cl computed from the temperature fluc-

tuations observed by Planck can be found on the Planck
Legacy Archive [43]; we use the high-l TT power spectrum
in Planck’s third release. (In future work, we plan to include
polarization and temperature-polarization cross-correlation
power spectra.) The cosmological Boltzmann code CAMB

[44] is used to compute the angular power spectrum for a
given model. The base set of cosmological parameters and
their best-fit values as determined by the Planck 2018
analysis are summarized in Table I. All parameters except
H0 are left fixed at their best-fit values; H0 is then set to be
either 67.32 or 74.03 km=s=Mpc, the values reported by

TABLE I. Planck 2018 best-fit parameter values [8]. Future
work will allow all of these parameters to vary. Note that H0 is an
inferred value from the fitted 100Θ�; they may be used inter-
changeably in the base parameter set.

Parameter Best fit

H0 (km=s=Mpc) 67.32
Ωch2 0.12011
Ωbh2 0.022383
τ 0.0543
lnð1010AsÞ 3.0448
ns 0.96605

FIG. 1. DJS between the model messages and the reference
message is shown, where the messages are case insensitive and
drawn from the English alphabet of 26 letters. This illustrates that
theDJS is sensitive only to the identity and relative frequencies of
letters in a message. It is maximal for distributions with nothing
in common and minimal (at zero) for identical distributions.
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Planck 2018 (hereafter P18) and Riess et al. 2019 (hereafter
R19) [14], respectively.
For eachH0, we allow the DE equation of state to vary in

the linear parametrization w ¼ w0 þ wað1 − aÞ. The dis-
tance, in terms of the DJS, from each model to the Planck
data can be summarized by two surfaces: DJSðw0; wajh ¼
0.6732Þ and DJSðw0; wajh ¼ 0.7403Þ. Our goal here is not

to determine which value of H0 is the “correct” one, but to
investigate whether a model with a modified DE equation
of state can shift the inferred H0 closer to R19. Such a
model would have a shorter distance (in the sense of the
DJS) to the Planck data and provide an alternative method
of parameter estimation. A forthcoming full analysis will
allowH0 to vary along with the other parameters in Table I.

IV. RESULTS

Figure 2 shows theDJS as a function ofw0 andwa for both
the P18 (right surface) and R19 (left surface) values of H0.
Both surfaces display a valley running along a degenerate
minimum curve where DJS ≃ 8.442 × 10−4. Given the
interpretation of DJS as a metric between the two distribu-
tions, its minimum represents the preferred parameter data
set. On the H0 ¼ 67.32 surface, the ΛCDM model is
identified with a larger blue point. Figure 3 shows the
degenerate curves along the DJS valley projected onto the
ðw0; waÞ plane and fitted with a second-order polynomial.
The dashed lines represent the error of the DJS minima,
produced using the high and low errors in the measured
values of the CMB TT acoustic power spectrum. Since the
errors for each value of H0 are small, the two curves are
clearly distinguishable and do not overlap. Therefore, once
one of the two parameters in the DE equation of state for this
model is known, this approach allows for the determination
of the other, thus breaking the degeneracy in a predictive

FIG. 2. DJS surfaces for ΛCDM and R19 values of H0 in red
and green, respectively. Here, w0 and wa are allowed to vary, but
the other parameters are fixed at their best-fit values from Planck
2018 (see Table I). The red and green lines denote degeneracy in
the model space; their distance from the Planck data is very nearly
the same. The blue dot represents the ΛCDM model.

FIG. 3. Lines of degeneracy from Fig. 2 projected into thew0−wa

plane and fit with a second-order polynomial, wa ¼ c0w2
0þ

c1w0 þ c2. Here, ½c0; c1; c2� ¼ ½−1.061;−5.792;−4.750� and
½−1.013;−6.518;−6.467� for P18 (right curve) and R19 (left
curve) values of H0, respectively. The solid lines represent the
best fit to the acoustic power spectrum of the CMB, while the
dashed lines represent fits to the high and low errors of the CMB
acoustic power spectrum. The finite lengths of these lines indicate a
finitew0 − wa parameter space. The blue x represents the location of
the Λ-CDM model.

FIG. 4. For models along the curves of degeneracy found in
Fig. 2, the χ2 is plotted as a function of w0 for (top) the model’s
prediction of the BAODVðzÞ=rsðzdecÞ and the measured data, and
(bottom) the model’s prediction for HðzÞ and the measured data.
The red and green curves come from using the P18 value and R19
value of H0, respectively.
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way. In future work, we plan to apply a modified Fisher
information matrix approach, adapted to DJS used here and
applicable to many variables, in order to address the issue of
correlated data points and potential errors in parameter
prediction. In the Appendix, we sketch the initial steps
toward this formalism for a single variable.
We also consider that data for the Hubble parameter as a

function of redshift, HðzÞ—along with the BAO volume-
averaged effective distance ratio DVðzÞ=rsðzdecÞ—could
break the degeneracy in this model space compared to
using the CMB data only. While in future work we will
include these data sets a priori in the minimization of the
DJS for a model, we use them here to examine their effect
on the degeneracy found using only the Planck data. Taking
pairs of values of ω0 and ωa along the degenerate curves,
we use χ2 to fit 38 measurements of HðzÞ, compiled from
[45] and references therein, and 12 measurements of the
BAO data, compiled from [35,36]. The results for χ2ðw0Þ
for each H0 and both data sets are shown in Fig. 4.
We find that including the additional late-time data sets

does not reduce the degeneracy in a clear way. Table II
reports the values of w0 and wa that minimize the χ2 for the
BAO and HðzÞ data, for both the P18 and R19 H0. Neither
the BAO nor the HðzÞ data show a significant difference
between the χ2 for each H0, indicating that the addition of
these data sets would allow either H0 value.

V. CONCLUDING REMARKS

In this work, we introduced a new method to estimate
cosmological parameters based on the Jensen-Shannon
divergence DJS of information theory, inspired by the
configurational entropy approach proposed in Ref. [41].
As a first application, we examined here the current tension
in the value of the expansion rate H0, comparing the
extended ΛCDM temperature anisotropy spectrum for
models with dynamic DE parametrized in ðw0; waÞ space
with the Planck 2018 temperature anisotropy data. For both
values of H0, we found that there are curves of degeneracy
in the ðw0; waÞ plane, characterized as nearly indistinguish-
able minima of the DJSðw0; waÞ surface. However, the two
curves are along different values of the model parameter
pair ðω0;ωaÞ, allowing for degeneracy breaking, indicating
how our method could be used for the potential resolution
of theH0 tension, once one of the two parameters is known.
(We expect that similar degeneracy lines would be found

using the Bayesian approach.) Extending our analysis to
include HðzÞ and BAO at different redshifts, we found that
the extended data do not lift the degeneracy. Taking our
limited parameter exploration of this work at face value, our
results indicate that a possible resolution may indeed come
from early-universe modifications of the standard cosmo-
logical model.
In a forthcoming paper, we plan to extend this analysis by

running a MCMC to minimize the DJS in the full seven-
parameter space, and to include data fromBAO,HðzÞ, and the
Planck polarization and temperature-polarization cross-cor-
relation power spectra in our analysis. We expect this more
complete approach to change the results plotted in Fig. 3,
which should be considered our method’s first illustrative
example. Our current results warrant further investigation of
DJS as an alternative and transparent method of cosmological
parameter estimation. Amore complete studywill allow us to
directly compare parameter confidence intervals from our
information-based analysis to others reported in the literature.
Work along these lines is currently in progress.
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APPENDIX: ERROR ESTIMATION USING
AN ADAPTED INVERSE FISHER

INFORMATION MATRIX

Traditional model parameter estimation techniques use
the inverse Fisher information matrix (FIM) to bound errors
on the parameters from the Cramer-Rao inequality. We
propose adapting the FIM approach to our DJS approach.
First, recall that for a set of M model parameters Λ ¼
ðλ1; λ2;…; λMÞ and a likelihood function Lðxa;ΛÞ, where
xa is a data point belonging to a set of O observables
O ¼ ðx1; x2;…; xOÞ, the M ×M FIM is

F αβ ¼
� ∂2L
∂λα∂λβ

�
; ðA1Þ

where L≡ − lnL. Simplifying to a single model parameter
λ, the Fisher matrix F is given by

F ¼ 1

2

∂2L
∂λ2

����
λ¼λ̄

; ðA2Þ

evaluated at the fiducial value λ̄ (the best guess). We may
evaluate similarly for DJSðλÞ, by expanding about λ − λ̄,

DJS ≃DJSðλ̄Þ þ
∂DJS

∂λ
����
λ¼λ̄

ðλ − λ̄Þ þ 1

2

∂2DJS

∂λ2
����
λ¼λ̄

ðλ − λ̄Þ2;

ðA3Þ

TABLE II. Values of w0 and wa along the curves of degeneracy
from Fig. 2 that minimize the χ2 to the BAO and HðzÞ data sets.
Data H0 (km=s=Mpc) w0 wa χ2

BAO P18 −0.87 −0.51 0.139
BAO R19 −1.41 0.73 0.134
HðzÞ P18 −0.90 −0.38 38.2
HðzÞ R19 −1.37 0.55 40.3
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where we identify

F ≡ 1

2

∂2DJS

∂λ2
����
λ¼λ̄

: ðA4Þ

The zeroth-order term vanishes, as does the first-order term,
since the slope of the DJS curve at λ̄ vanishes.
Using the definition of DJS in Eq. (3), we write DJS as a

function of the data, Cobs
l , and the parameter-dependent

model spectrum ClðλÞ as

DJSðfλgÞ ¼ −
1

2

X
l

Cobs
l ln

�1
2
ðCobs

l þ ClðλÞÞ
Cobs
l

�

−
1

2

X
l

ClðλÞ ln
�1

2
ðCobs

l þ ClðλÞÞ
ClðλÞ

�
: ðA5Þ

Taking the derivatives, we obtain

F ¼ −
1

2

X
l

∂2Cl

∂λ2 log

�1
2
ðCobs

l þ ClÞ
Cl

�
: ðA6Þ

Generalizing to include many parameters fλαg gives

F αβ ¼ −
1

2

X
l

∂2Cl

∂λα∂λβ ln
�1

2
ðCobs

l þ ClÞ
Cl

�
: ðA7Þ

Since F is a symmetric matrix, the 1σ error on the
parameters is

σα ≥
1ffiffiffiffiffiffiffiffiffiffiffi
1
2
F αα

q : ðA8Þ
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