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The weak lensing magnification of type Ia supernovae (SNe Ia) is sensitive to the clustering of matter and
provides an independent cosmological probe complementary to SN Ia distance measurements. The Nancy
Grace Roman Space Telescope is uniquely sensitive to this measurement as it can discover high redshift
SNe Ia and measure them with high precision. We present a methodology for reconstructing the probability
distribution of the weak lensing magnification μ of SNe Ia, pðμÞ, from observational data, and using it to
constrain cosmological parameters. We find that the reconstructed pðμÞ can be fitted accurately by a
stretched Gaussian distribution and used to measure the variance of μ, ξμ, which can be compared to
theoretical predictions in a likelihood analysis. Applying our methodology to a set of realistically simulated
SNe Ia expected from the Roman Space Telescope, we find that using the weak lensing magnification of the
SNe Ia constrains a combination of matter density Ωm and matter clustering amplitude σ8. SN Ia distances
alone lead to a better than 1% measurement of Ωm. The combination of SN Ia weak lensing magnification
and distance measurements result in a ∼10%measurement on σ8. The SNe Ia from Roman will be powerful
in constraining the cosmological model.
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I. INTRODUCTION

As a key cosmological probe, type Ia supernovae (SNe
Ia) provided the first direct evidence of the acceleration of
the expansion of the Universe [1,2], also known as “dark
energy”, via their observed luminosity distance-redshift
relation as calibrated “standard candles”. This method falls
into the category of geometrical probes, i.e., sensitive to the
background expansion of the Universe. This type of probe
also includes the “standard ruler” which can measure the
cosmic distance scales through baryon acoustic oscillations
(e.g., [3–6]). Various surveys over the past several decades
have obtained data for thousands of SNe Ia events [7–15].
The latest compilation of the SN Ia data set can measure the
dark energy equation of state w to 3%–4%, when combined
with constraints from the cosmic microwave background
[16–18].
SN Ia observations also contain information beyond the

measurement of cosmic expansion. This possibility has
been investigated by several authors in the recent years,
through the weak gravitational lensing effect. Since the
matter in the Universe is not distributed with perfect
homogeneity, the light received by the observer from a

distant object is bent along the line of sight. Therefore the
observed brightness of SNe Ia can have a distribution
different from the intrinsic brightness, i.e., magnification.
Early investigation such as [19] reports a detection of this
weak lensing magnification effect in a high-redshift SNe Ia
sample. Recent analysis in [20] with the latest Pantheon
sample reports a 2σ signal. These studies are based on the
assumption that the weak lensing effect can be expressed
in terms of a probability function of the magnification
[21–25], and the resulting distribution of the observed
SNe Ia brightness is a convolution of this magnification
distribution and the intrinsic brightness distribution. The
limited size of the current SNe Ia data set severely hampers
the reconstruction of the weak lensing magnification signal
to constrain cosmology. In this paper, we employ realistic
simulations of SNe Ia from the Nancy Grace Roman Space
Telescope to explore the implications of SN Ia magnifica-
tion distributions for probing cosmology.
The weak lensing signature is subdominant compared

with the intrinsic brightness distribution of SNe Ia, but its
amplitude grows with increasing redshift. Future surveys,
such as those planned for Roman Space Telescope [26] and
Rubin Observatory [27], will collect high quality data of at
least tens of thousands of high-redshift SNe Ia. Rubin will
discover SNe out to z ∼ 1.2, whereas Roman will discover*zhai@ipac.caltech.edu
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SNe to z ∼ 2.5, which makes lensing measurement much
easier. SNe Ia from Roman will enable a detailed inves-
tigation of the weak lensing magnification effect. This will
enhance the power of SNe Ia as a cosmological probe
beyond that of a geometrical probe, by providing con-
straints based on the growth of large scale structure in the
Universe, which will lead to improvements on the con-
straints on the dark energy models and modified gravity
theories. This approach has been visited in the literature,
e.g., [28–35] and references therein. This includes utilizing
the observed SN Ia magnitude residuals in a Hubble
diagram [28,33], the “MeMo” likelihood methodology to
characterize the non-Gaussian distribution of the SNe Ia
magnitude residuals [29,30], the magnitude angular corre-
lation function [34], the impact on the neutrino property
constraints [36,37] and so on. We refer the readers to the
above references for more details.
In our earlier work [20], we developed a method to

extract the distribution function of the lensing magnifica-
tion pðμÞ from the latest SN Ia data compilation. We extend
that earlier analysis by utilizing a realistically simulated
SN Ia data set from Roman Space Telescope in this work.
We adopt the method from [20] to model the underlying
magnification distribution function pðμÞ from observatio-
nal data and compress the results into physically intuitive
quantities to enable a likelihood analysis to extract cos-
mological constraints. This enhances the cosmological
constraints from SNe Ia beyond that of a geometrical
probe only and helps break the degeneracy between
cosmological parameters. This will eventually help shed
light on the apparent tensions between different observa-
tions at present [38,39].
Our paper is organized as follows. In Sec. II, we present

the modeling of the weak lensing signature in SNe Ia
observations. In Sec. III, we introduce the simulated data,
the pðμÞ reconstruction method and its cosmological
implications. Section IV presents our analysis results.
We conclude in Sec. V with a summary and discussions.

II. WEAK LENSING SIGNATURE OF SNe Ia

The weak lensing magnification of SNe Ia has been
discussed extensively in literature, e.g., [21–23,40–42].
Here we summarize the key results relevant for the analysis
from [19].
The observed flux from a SN Ia can be written as

f ¼ μLint; ð1Þ

where Lint is the intrinsic brightness of the SN Ia, and μ is
the magnification due to weak lensing, which can be
modeled by a universal probability distribution function
based on the measured matter power spectrum [23]. The
two variables Lint and μ are assumed to be statistically
independent; therefore the distribution of their product f
can be modeled explicitly with the probability distribution

function (PDF) of the variables. The resulting distribution
can be written as

pðfÞ ¼
Z

Lmax
int

0

dLint

Lint
gðLintÞp

�
f
Lint

�
; ð2Þ

where pðf=LintÞ ¼ pðμÞ is the PDF of the magnification μ,
and gðLintÞ is the PDF of the intrinsic brightness of SNe Ia.
The integral is from 0 to an upper limit Lmax

int ¼ f=μmin, due
to the requirement μ ¼ f=Lint ≥ μmin, where μmin is the
minimum value of the magnification due to lensing and can
be computed for a given cosmological model. We adopt the
same assumption as in [19,20] that gðLintÞ is a Gaussian
distribution with dispersion σ. The value of σ can be well
estimated with a large sample of SNe Ia at low redshifts
where the weak lensing effect is negligible.
In the universal PDF (UPDF) based framework [19], the

minimum of magnification μmin is related to the minimum
of convergence through μmin ¼ 1=ð1 − κ̂minÞ2 [43] and can
be calculated through

κ̂minðzÞ¼−
3

2

Ωmð1þ zÞ
cH−1

0

Z
z

0

dz0
ð1þ z0Þ2
Eðz0Þ

rðz0Þ
rðzÞ ½λðzÞ−λðz0Þ�;

ð3Þ

where rðzÞ is the comoving distance in a smooth universe,

EðzÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ þΩkð1þ zÞ2

q
ð4Þ

is the dimensionless Hubble parameter in a ΛCDM
cosmology with Ωm;ΩΛ and Ωk denoting the density
fraction of matter, dark energy and curvature respectively.
The affine parameter is defined as

λðzÞ ¼ cH−1
0

Z
z

0

dz0

ð1þ z0Þ2Eðz0Þ : ð5Þ

The cosmological model dependence of weak lensing
magnification is encoded in pðμÞ, and we note that there are
multiple ways for its computation, including both analytic
method and numerical methods based on N-body simu-
lations [21,22,24,25,44–47]. Here we assume pðμÞ can be
modeled by the universal probability distribution function
(UPDF) [19,48],

pðηÞ ¼ 1

1þ η2
exp

�
−
�
η − ηpeak
ωηq

�
2
�
; ð6Þ

where

η ¼ 1þ μ − 1

jμmin − 1j : ð7Þ

The parameters in this formula, fηpeak;ω; qg, are functions
of the variance of η, ξη, which absorbs all the cosmological
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dependence. Together with μmin, the minimum of the
magnification, the parameter set fμmin; ηpeak;ω; qg is able
to completely determine the pðμÞ model and therefore the
theoretical prediction for the distribution of observed
brightness of SNe Ia including the effect of weak lensing
magnification.
In principle, pðμÞ can be used as the observable in

comparing predictions with observations. For simplifica-
tion, here we only use its moments in explicit comparison
of model with data. For an arbitrary cosmological model,
one can compute ξη as [22]

ξμ ¼
Z

χs

0

dχw2ðχ; χsÞIμðχÞ; ð8Þ

with

Iμ ¼ π

Z
∞

0

dk
k
Δ2ðk;zÞ

k
W2ðDkθ0Þ;

Δ2ðk;zÞ¼ 4πk3Pmðk;zÞ; WðDkθ0Þ¼
2J1ðDkθ0Þ

Dkθ0
; ð9Þ

where Pmðk; zÞ is the matter power spectrum at redshift z
with wave number k, θ0 is the smoothing angle [42], and J1
is the Bessel function of order 1. The other quantities
depending on the distance measure in the Universe and can
be calculated as follows:

wðχ; χsÞ ¼
H2

0

c2
DðχÞDðχs − χÞ

DðχsÞ
ð1þ zÞ

DðχÞ ¼ cH−1
0ffiffiffiffiffiffiffiffiffijΩkj

p sinnð
ffiffiffiffiffiffiffiffiffi
jΩkj

p
χÞ;

χ ¼
Z

z

0

cH−1
0 dz0

Eðz0Þ ;

wEðzÞ ¼ HðzÞ
H0

; ð10Þ

where “sinn” is defined as sinh if Ωk > 0, sin if Ωk < 0. If
Ωk ¼ 0, both sinn andΩk disappear. Higher order moments
of η can provide additional information, but their accurate
calculation requires calibration from simulations [42]; thus
we leave these for future work and focus on the variance ξη
in this paper.
The smoothing angle θ0 is a nuisance parameter from the

window function for computing the variance of the weak
lensing magnification, and degenerate with the amplitude
of the matter power spectrum [see Eq. (9)]. This leads to the
degeneracy between cosmological parameters and θ0.
Fortunately, this degeneracy can be removed by measuring
θ0 from cosmological ray-shooting simulations; see dis-
cussion in Sec. IV B.

III. SIMULATION OF SNe Ia

A. Modeling SN Ia systematic effects

To build realistic simulations of the Roman SN survey,
we follow the strategy and design explained in [49]. Here
we use their “all-z” survey, which has a shallow, medium
and deep tier, where each uses four filters for observations
every 5 days. The four filters are RZYJ, RZYJ and YJHF
for the three tiers respectively and the areas covered for
each are 48.82,19.75,8.87 square degrees. In total, simu-
lations predict that up to 14 000 SNe Ia may be discovered
up to z ∼ 3.
To create the simulations, we use the SNANA simulation

package [50] which produces high-fidelity catalogs of the
expected photometric light-curves of the SNe. The simu-
lations are based on a description of the observatory (filter
properties, zero-points, sky noise, PSF sizes), the survey
(cadence, exposure times, and detection/selection require-
ments) and a description of the physical Universe (SN rates,
the SALT2 spectral model from [17], cosmological param-
eters). The simulations include a model of the intrinsic
scatter of SNe Ia based on [51], which can be described as
75% achromatic variation and 25% chromatic variation and
parameters for the color and stretch population derived in
[52]. SNANA can incorporate lensing models within the
simulations; however here they are added a posteriori to
understand specific effects. Therefore, it is assumed in this
analysis that lensing does not contribute strongly to the
impact of SN selection relative to typical SN variation.
To measure distances from the simulated light-curves,

we again use the SALT2 model to fit the light-curves and
then follow [53] to determine nuisance parameters and
convert the light-curve parameters to distance modulus
values. Following [49], we apply conventional light-curve
quality cuts to ensure accurate and precise distances. The
redshift distribution of the simulated SNe is shown in
Fig. 1, along with the redshift cuts we use for the analysis in
this paper.
In order to validate our analysis methodology, we have

created a “no SYS” companion data set of SNe Ia as
follows, as a baseline for comparing with the realistic
“SYS” data set described above. We first estimated the SN
Ia intrinsic flux distribution from the low-z subsample and
found that it can be well described by a Gaussian model
with standard deviation σ ¼ 0.1 (see Fig. 3). We then
created the “no SYS” simulated data set containing SNe Ia
at the same redshifts as the “SYS” data set. For each SN Ia
in the “no SYS” set, we take its distance modulus to be
randomly drawn from a Gaussian distribution with standard
deviation σ ¼ 0.1, and mean given by the prediction from
the input cosmological model at that redshift. We add weak
lensing signal to both the “SYS” and “no SYS” data sets
and compare the cosmological constraints derived; see
Table I.
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B. Modeling weak lensing magnification of SNe Ia

The weak lensing model for the SNe Ia brightness is
described by the probability function pðμÞ or pðηÞ. The
previous works in [23,48] assume pðηÞ is universal; i.e., it
can be well approximated by the stretched Gaussian
distribution [Eq. (6)] and the values of the parameters
depend only on ξη. The result is found to be in agreement
with numerical ray-tracing simulations. In this section, we
revisit the universality of pðηÞ by comparing the model
Eq. (6) with the measurements from simulations. The ray-
tracing simulations we use were carried out following the
methodology from [44] and provided by Andrew Barber
[54]. The cosmological parameters and simulation details
are summarized in Table 1 of [44]. They studied four
cosmological models: SCDM (Ωm ¼ 1.0, σ8 ¼ 0.64,
Γ ¼ 0.5), TCDM (Ωm ¼ 1.0, σ8 ¼ 0.64, Γ ¼ 0.25),
OCDM (Ωm ¼ 0.3, σ8 ¼ 1.06, Γ ¼ 0.25) and LCDM
(Ωm ¼ 0.3, σ8 ¼ 1.22, Γ ¼ 0.25). In our analysis to derive
weak lensing magnification model parameters, we only use
the LCDM model and measure pðμÞ within the redshift
range 0.5 < z < 3.5. Then we fit Eq. (6) to the measure-
ment at each redshift. The best-fit parameters for ηpeak, ω
and q are displayed in Fig. 2 as a function of ξη.

We have compared the results from simulations of other
cosmological models, the behavior of these quantities show
similar dependence on ξη, consistent with the universality
of pðηÞ. The parameter ηpeak is uniform among the models,
but the ω and q parameters for the LCDM model differ
significantly from those from the SCDM and OCDM
models. This is not surprising, since the LCDM model
has a much larger σ8 than the SCDM and OCDM models.
Note that the SCDM and OCDM models are tens of σ off
from the current measurements such as those from Planck
[38], and the LCDM model has a much higher σ8 than
current measurements. These three models thus span a
much larger parameter space than allowed by current
observational data, which means the universality of pðηÞ
should be much better than shown in Fig. 2 for viable
models. Therefore, we only use the LCDMmodel, which is
closest to current measurements, for deriving the weak
lensing magnification model parameters, and do not expect
the results to change significantly for moderate deviations
from this LCDM model.
We have performed a polynomial fit of ηpeak, ω and q as a

function of ξη, shown as the dashed lines in Fig. 2. These
fits can be used to derive pðηÞ and pðμÞ for an arbitrary
cosmological model at a given redshift and are as follows:

FIG. 1. The redshift distribution of the simulated SNe Ia data
sample. The vertical red lines mark the redshift cuts used in this
analysis. SNe Ia with z < 0.1 are impacted by the peculiar
velocity significantly, the data within 0.1 < z < 0.3 are used
to anchor the mean flux and model the distribution of the intrinsic
brightness, the weak lensing signal for cosmological analysis is
limited to 1.0 < z < 2.4.

TABLE I. A summary of the different cases considered in this
analysis.

Term Characteristics

SYS Realistic SN sample
No SYS Ideal SN sample
Weak lensing Add lensing signal to SN Ia brightness

FIG. 2. The dependence of the parameters to model pðηÞ as in
Eq. (6) on the value of η, based on the ray-shooting simulations
for a ΛCDM model (Ωm ¼ 0.3, σ8 ¼ 1.22, Γ ¼ 0.25) by [44].
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ηpeak ¼ 0.4051
� ffiffiffiffi

ξη
q �

2
− 0.6943

ffiffiffiffi
ξη

q
þ 0.9191 ð11Þ

ω ¼ −0.3231
� ffiffiffiffi

ξη
q �

2 þ 0.3867
ffiffiffiffi
ξη

q
þ 0.3262 ð12Þ

q ¼ 0.605
� ffiffiffiffi

ξη
q �

2
− 0.5743

ffiffiffiffi
ξη

q
þ 1.1943: ð13Þ

Given the simulated Roman data set of SNe Ia described
in the previous subsection, we add the weak lensing signal
by sampling μ from the probability distribution pðμÞ for
each SN Ia and multiplying its observed flux with μ.

IV. RESULTS

We follow the methodology from our previous analysis,
[20], in reconstructing the weak lensing signal from the

realistically simulated Roman data set of SNe Ia described
in the previous section. We now summarize the method-
ology and present the analysis results.

A. Reconstruction of pðμÞ
In order to measure the weak lensing signature, we first

use the flux-averaging method to find the flux distribution
of the SNe Ia as described in [19,20]. We use the low-
redshift data to anchor the mean flux and the distribution of
the intrinsic brightness since the weak lensing effect is
negligible at low redshift. The result is presented in Fig. 3;
the flux distribution at low redshift can be approximated as
a Gaussian distribution with σ ¼ 0.1 in units of the mean
flux. We split the high-redshift SNe Ia into several bins and
the flux distributions are shown in Fig. 4. We can find
similar characteristics as in the real observations [19,20].
The observed brightness has a non-Gaussian distribution
and the effect increases with redshift.
The pðμÞ reconstruction method presented in [20] was

based on linear interpolation. In this work, we apply a new
method. The flux measurement (Fig. 4) results from a
convolution of intrinsic brightness distribution gðLintÞ and
pðμÞ. We assume that gðLintÞ is independent of redshift and
can be derived from the low-redshift observations (Fig. 3).
In addition, we assume pðμÞ can be described by the
stretched Gaussian distribution in Eq. (6), and the unknown
parameter set P̃ ¼ fμmin; ηpeak;ω; qg can fully determine
the observed flux distribution of SNe Ia. Then we adopt the
same likelihood as in [20]

χ2 ¼
XNbin

i¼0

�
Di;obs −Di;pre

σD;i

�
2

: ð14Þ

For a given redshift bin,Di;obs is the number of SNe Ia with
flux in the ith bin, Di;pre is the prediction from the lensing
model pðμÞ, and σD;i is the uncertainty for a Poisson
distribution. We estimate the unknown parameter set P̃
through a MCMC (Markov chain Monte Carlo) analysis

FIG. 3. The flux distribution of the low-redshift subsample. The
redshift range and number of SNe Ia are also shown. The dot-
dashed line is a Gaussian distribution with σ ¼ 0.1, obtained
from a best-fit algorithm through Eq. (14). The solid line
represents the stretched Gaussian from UPDF for the weak
lensing model, which is not significantly different from the
Gaussian distribution since the weak lensing effect is marginal at
low redshift.

FIG. 4. The flux distribution for the high-redshift SNe Ia subsamples, split into different redshift ranges. The blue dashed lines
represent the intrinsic Gaussian distribution, gðLintÞ, with σ estimated from the low-redshift subsample. The purple lines represent the
convolution of the UPDF model due to weak lensing effect and gðLintÞ. The blue histograms show flux distribution when the selection
effect is taken into account, while the red histograms show the distribution with weak lensing effect added. Compared with the weak
lensing effect, the selection effect is subdominant, and the overall distribution is still consistent with a Gaussian distribution. The weak
lensing effect is significantly non-Gaussian, and increases with redshift and should be properly accounted for in the data analysis.
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using the emcee toolkit [55]. The convergence of the
MCMC output is tested by calculating the Gelman-Rubin
diagnostics [56]. The results at different redshifts have a
value of R < 1.15, and most of chains perform better
than R < 1.10, which indicates convergence of the
reconstruction.
We present the reconstructed result of pðμÞ in Fig. 5 for

different redshift bins. It is clear that the reconstruction can
capture the main characteristics of the distribution of
magnification: a shift of the peak to the faint end due to
demagnification since the Universe is mostly empty, and a
non-Gaussian tail at the bright end due to high magnifi-
cations. It is also clear that this weak lensing signature
increases with redshift. In order to examine the effect of the
intrinsic scatter σ on our result, in Fig. 6, we show a
reconstruction result when the intrinsic scatter is slightly
increased to σ ¼ 0.12. The weak lensing signal can still be
extracted and thus validates our method.

B. Cosmological constraint from weak lensing signature

The MCMC analysis results in the constraints on the
parameter set P̃, from which we can estimate the variance
of μ. Each model in the MCMC chain accurately describes
the shape of pðμÞ, but the calculation of ξμ needs to be self-
consistent. In order to do so, we adopt a similar strategy
as in [23]: the integral used to calculate the moment,R
dμpðμÞμ2, is truncated at μmax, which is determined by

requiring,

hμi≡
Z

μmax

0

dμpðμÞμ ¼ 1: ð15Þ

This prevents the contribution of the noisy high-μ tail from
impacting the mean significantly. In addition, this deter-
mination of μmax is required by flux conservation, other
values will be unphysical. For the reconstruction at each
redshift bin, we adopt this method and obtain the mea-
surements of ξμ as shown in Fig. 7. Two different sets of
measurements are shown in Fig. 7: the “SYS” set consists
of the ξμ measured from the simulated Roman data set of
SNe Ia with systematic effects as discussed in Sec. III A,
while the “no SYS” set consists of ξμ measured from a
reference set of SNe Ia with the same redshift and distance
modulus uncertainty for each SN Ia, but with its distance
modulus replaced by the prediction from the true cosmo-
logical model (i.e., the input model for the SN Ia data
simulation). We summarize these different situations in
Table I.
For a given cosmological model and redshift, the

theoretical prediction for ξμ can be calculated from
Eq. (8). We use the transfer function from [57] to calculate
the matter power spectrum for simplicity and the halofit
model to add the nonlinear correction [58,59]. In addition,
in the framework presented in Sec. II, one still needs to
determine θ0, the smoothing angle. This parameter sets the
scale of the window function and cuts the power at small
scale, which however cannot be ignored for point sources
like SNe Ia [22]. Figure 7 shows the predicted ξμ for two

FIG. 5. Reconstruction of pðμÞ from the high-redshift subsamples with only weak lensing signal added (no other systematics) as
shown by the red histogram of Fig. 4. The method is based on UPDF as explained in the text. The dot-dashed line represents the mean,
and the shaded area is the 68% C.L. range.

FIG. 6. The same as Fig. 5, but for σ ¼ 0.12 as the intrinsic scatter for the brightness distribution.
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different cosmological models. Clearly, Ωm and σ8 are
degenerate, as expected, as a common feature in weak
lensing analysis, e.g., [39]. In addition, the value of the
smoothing angle also impacts the overall amplitude of the
lensing signal, which is degenerate with the cosmological
parameters as well.
We have carried out an MCMC likelihood analysis,

comparing the measured and predicted ξμ values at various
redshifts, to derive robust cosmological constraints.
Figure 8 shows the resultant joint confidence contours
on Ωm and σ8, marginalized over the smoothing angle θ0

with the flat prior 0 < θ0 < 1.0. The left panel shows the
results from SN Ia weak lensing magnification only. The
right panel shows the results of SN Ia lensing magnification
with a prior on Ωm, Ωm ¼ 0.3� 0.01. We find that the
input cosmology can be recovered within 1σ using only
SN Ia lensing data without systematic effects. When the
systematic effects are included, the parameter estimates are
biased by more than 1σ, unless a prior onΩm is added. This
kind of test on simulated SN Ia data can be used to identify
and mitigate systematic effects.
The distance measurements from Roman SNe Ia alone

provide a powerful probe of cosmic expansion history. We
use flux-averaging to remove/minimize the effect of weak
lensing magnification of SNe Ia in analyzing SN Ia distance
measurements [60]. In the simplest model of a flat universe
with a cosmological constant, we obtain Ωm ¼ 0.303�
0.003 (SYS) and Ωm ¼ 0.298� 0.003 (no SYS) respec-
tively, using the distance measurements from the simulated
Roman data set of SNe Ia. Expanding the cosmological
model to include more parameters (to be investigated in
future work) will lead to significantly larger uncertainty on
the Ωm measurement. We use Ωm ¼ 0.3� 0.01 as a proxy
of such an analysis of SN Ia distance measurements, and
the Ωm prior on the SN Ia lensing data, to illustrate the
power of combining SN Ia lensing and distance measure-
ments, see the right panel of Fig. 8. Note that the addition of
the Ωm prior removes the bias in the estimated parameters
in the presence of systematic effects, and tightens the
constraints on σ8.
Ωm and σ8 are degenerate with the smoothing angle θ0.

This is illustrated in Fig. 7, where the ξμ measurements

FIG. 7. Measurements of ξμ, the variance of the lensing
magnification μ from the simulated SNe Ia data based on our
reconstruction method, for both data sets with (SYS) and without
systematics (no SYS) added. The lines correspond to different
cosmological models and smoothing angle, which can indicate
the degeneracy between these parameters.

FIG. 8. Cosmological constraint from the measurement of ξμ with the simulated SNe Ia data. Both cosmological parameters and the
smoothing angle are allowed to vary as free parameters. Left Panel: Flat prior for all the parameters. Right Panel: prior of Ωm ¼
0.3� 0.01 is applied. The contours in the figures show 1 and 2σ confidence levels.

FORECASTING COSMOLOGICAL CONSTRAINTS FROM THE … PHYS. REV. D 102, 123513 (2020)

123513-7



without systematics can be fit equally well by two very
different cosmological models with different values of θ0.
The information on θ0 is the key to further tighten the
cosmological constraints. In principle, θ0 can be deter-
mined from ray-tracing simulations based on cosmological
N-body simulations for different cosmological models.
Figure 7 shows that given a cosmological model, the ξμ
measurements can be fitted to determine θ0, which is found
to be 0.250 for our assumed true cosmological model.
Figure 9 shows the Ωm and σ8 joint confidence contours,
with the same line types as in Fig. 8. As expected, fixing θ0
significantly tightens cosmological constraints.
The constraints on σ8 are summarized in Table II. We

find that σ8 can be measured to ∼10% using SNe Ia data

alone and ∼5% if the smoothing angle θ0 can be deter-
mined from ray-shooting simulations.

V. SUMMARY AND DISCUSSION

We have presented a methodology for reconstructing the
probability distribution of the weak lensing magnification μ
of SNe Ia pðμÞ from observational data, and using it to
constrain cosmological parameters, and applied it to simu-
lated Roman data set of SNe Ia. We find that using the weak
lensingmagnification of the SNe Ia constrains a combination
of matter density Ωm and matter clustering amplitude σ8.
SN Ia distances alone lead to a better than 1% measurement
ofΩm. The combination of SN Iaweak lensingmagnification
and distance measurements result in a ∼10% measurement
on σ8. The SNe Ia from the Roman Space Telescope will be
powerful in constraining the cosmological model.
In simulating the SNe Ia expected from Roman, we have

assumed no evolution in the underlying SN population
parameters beyond z ¼ 0.1 or in the magnitude of the
intrinsic scatter after accounting for selection effects. This
assumption is supported by results from Pantheon over the
redshift range of 0.1 < z < 1.0 [18], and further study is
needed to understand if this can be extrapolated to z ¼ 2.
We have also assumed that all of the SNe Ia with useful
light curves from Roman will have spectroscopic redshifts,
e.g., from the host galaxy redshifts measured by a follow-
up spectroscopic mission such as ATLAS Probe [61].
This work extends our earlier paper for the reconstruction

of the weak lensing magnification distribution from SNe Ia
observations [20]. We have revisited the universality of the
function pðηÞ to model the weak lensing magnification of

FIG. 9. Cosmological constraint from the measurement of ξμ with the simulated SNe Ia data, with fixed smoothing angle θ0 ¼ 0.250.
Left Panel: Flat prior for all the parameters. Right Panel: prior of Ωm ¼ 0.3� 0.01 is applied. The contours in the figures show 1 and 2σ
confidence levels.

TABLE II. Constraints on σ8 with SNe lensing signal. The
uncertainties represent the centering 68% distribution around the
point with peak probability. The bottom section shows constraint
by fixing θ0 ¼ 0.250.

Input model: Ωm ¼ 0.3; σ8 ¼ 1.22

Data used σ8

Free θ0 ξμ (no SYS) 1.101þ0.586
−0.369

ξμ (SYS) 1.694þ0.532
−0.601

Ωm ¼ 0.3� 0.01þ ξμ (no SYS) 1.340þ0.131
−0.169

Ωm ¼ 0.3� 0.01þ ξμ (SYS) 1.289þ0.145
−0.147

θ0 ¼ 0.250 ξμ (no SYS) 0.997þ0.581
−0.349

ξμ (SYS) 1.922þ0.540
−0.761

Ωm ¼ 0.3� 0.01þ ξμ (no SYS) 1.221þ0.064
−0.066

Ωm ¼ 0.3� 0.01þ ξμ (SYS) 1.224þ0.062
−0.062
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SNe Ia and derived new fitting formulae for calculatingpðμÞ
as a stretched Gaussian in an arbitrary cosmological model.
Using the realistically simulated Roman data set containing
14 000SNe Ia,wehave successfully reconstructedpðμÞ in an
MCMC analysis. We find that for a redshift bin at z > 1.0, a
few hundreds of SNe Ia can form a statistically sufficient
sample to enable useful reconstruction of pðμÞ.
In another MCMC likelihood analysis comparing the

variance of μ measured from the reconstructed pðμÞ to its
theoretical prediction, we find that SN Ia lensing magni-
fication constrains a combination of Ωm and σ, as expected
for weak lensing measurements, but theΩm constraint from
SN distance measurements breaks that degeneracy and
leads to tight constraints on σ8. We find that both Ωm and σ
are degenerate with the smoothing angle θ0, a paramter
introduced in the modeling of weak lensing magnification,
which could in principle be determined via ray-tracing
experiments on cosmological N-body simulations. The
information on θ0 leads to the tightest constraints on σ8.
The measurement of ξμ from the weak lensing magnifi-

cation of SNe Ia provides an independent cosmological
probe, complementary to the SN Ia distance modulus. This
observable is worth further investigation in the future from
the aspects of both theoretical modeling and observational
analysis.
We note that the reconstruction method adopted in

this work is not unique, and another parameteric or

nonparameteric method is also possible. However, the
reconstructed result and the measurement of the moments
of μ should not change significantly. On the other hand, only
the variance of μ is used in our analysis. This means that
adding the information fromhigher ordermomentsmayhave
more constraining power and have different parameter
dependence. A method like “MeMo” [29,30] can be useful
in this investigation and this also requires precise calibration
based on numerical simulations, and thus we will leave this
for future work.
The analysis presented in this work demonstrates that the

SNe Ia can be used not only as a geometrical probe of
cosmic expansion, but also a probe of the clustering of
matter in the Universe. Our results indicate that Roman data
set of SNe Ia will place powerful constraints on the
cosmological model.
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