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This paper is an extension of the paper by Del Popolo et al. [Phys. Rev. D 101, 083505 (2020)] to take
account of the effect of dynamical friction. We show how dynamical friction changes the threshold
of collapse δc and the turnaround radius Rt. We numerically determine the relationship between the
turnaround radius Rt and mass Mt in ΛCDM, dark energy scenarios, and an fðRÞ modified gravity model.
Dynamical friction gives rise to a Rt-Mt relation differing from that of the standard spherical collapse.
In particular, dynamical friction amplifies the effects of shear and vorticity already studied by Del Popolo
et al.A comparison of the Rt-Mt relationships for ΛCDM, dark energy, and modified gravity models shows
that the Rt-Mt relationship of ΛCDM is similar to that of the dark energy models, and small differences are
seen when comparing with the fðRÞ models. The effects of shear, rotation, and dynamical friction are
particularly evident at galactic scales, giving rise to a difference between the Rt-Mt relation of the standard
spherical collapse of the order of ≃60%. Finally, we show how the new values of the Rt-Mt relation
influence the constraints on the w parameter of the equation of state.
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I. INTRODUCTION

In the past several decades, observations have revealed
the existence of missing mass in our Universe [1]. Many
physicists believe that the existence of some unknown
particles called cold dark matter (CDM) can account for
the missing mass [2]. On the other hand, cosmological
observations suggest that the expansion of our Universe is
accelerating. Many cosmologists have proposed that the
existence of a new kind of energy called dark energy can
help explain the accelerating expansion [3]. In the standard
cosmological model, the amount of dark energy can be
represented by the cosmological constant Λ. This standard
cosmological model is now known as the ΛCDM model.
The ΛCDM model can give good agreement with obser-
vations of large-scale structures [4,5]. However, there are
some discrepancies between the predictions of the ΛCDM
model and the observations of small-scale structures.
Specifically, the core-cusp problem [6], missing satellites
problem [7], and mass-discrepancy acceleration relation
problem [8,9] are three classical problems that challenge
the ΛCDM model. Moreover, currently no compelling

particle dark matter signal has been detected, either directly
or indirectly. The current direct-detection and indirect-
detection constraints of dark matter have ruled out a large
parameter space of potential particle dark matter models
[10–15]. Also, the cosmological constant Λ suffers from
the cosmological constant fine-tuning problem and the
cosmic coincidence problem [16,17]. Therefore, despite
some success on cosmological scales, the ΛCDM model is
still challenged by many recent studies.
Based on the above problems, some studies have proposed

alternative models for the Universe’s accelerated expansion,
such as dark energy (DE) effects that are generated by
additional matter fields (e.g., quintessence [18]), or that the
dynamical effects of dark matter and/or dark energy might
originate from modified gravity (MG) models [19–31].
Several popular modified gravity theories have been

proposed to compete with the standard ΛCDM model,
including emergent gravity [32], fðRÞ gravity [33], and
scalar-tensor-vector gravity [22]. Therefore, it is very
important to motivate some theoretical framework to
differentiate the dynamical effects of the ΛCDM model
and modified gravity models. Some recent studies proposed
using the turnaround radius (TAR) to test the standard
ΛCDM model and modified gravity models [34–39]. The
TAR has been claimed to be a well-defined and unam-
biguous boundary of a structure (e.g., galaxy clusters)
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in simulations [37]. Different cosmological models and
modified gravity models might have different general
relations for the TAR. Therefore, precisely determining
the TAR of different structures would be crucial to
test and constrain different cosmological models [35]
and DE, and to disentangle the ΛCDM model, DE, and
MG models [34–39].
Contrary to the previous claim, we already showed in

Refs. [40–45] that shear and vorticity modify the nonlinear
evolution of structures. In this paper, we will also show that
dynamical friction further modifies the structure formation,
and consequently modifies the TAR, and that the TAR
generally depends on baryon physics [45]. By using an
extended spherical collapse model, the TAR depends on
the effects of shear and vorticity. Taking into account the
effects of shear and vorticity, the relation between the
TAR and total mass can differ by 30% from that when these
effects are omitted, especially in galaxies [45]. In the
present paper, we show that the effect of dynamical friction
is also significant.
The TAR was calculated in Refs. [37,38] for the ΛCDM

model, while Ref. [39] obtained the TAR in generic
gravitational theories.
In this paper, we extend the results of Ref. [45], based on

an extended spherical collapse model (ESCM) introduced
and adopted in Refs. [4,40,42–44]. The ESCM takes into
account the effects of shear, vorticity, and dynamical
friction on the collapse to show how the TAR is changed.
Apart from the typical parameters of spherical collapse,
the shear, vorticity, and dynamical friction change the
two-point correlation function [46], the weak lensing peaks
[44], and the mass function [4,40,42,43]. Similarly to
Ref. [45], the aim of this paper is to show how the
parameters of the spherical collapse are changed, together
with the Rt-Mt relation for MG and DE models, and to
compare with ΛCDM model predictions.
The paper is organized as follows. Section II describes

the model used to derive the Rt-Mt relation. Section III is
devoted to the discussion of our results. Section IV is
devoted to conclusions.

II. THE MODEL

In the following, we will use an improved version
[47–53] of the spherical collapse model introduced in
Ref. [54]. The model describes the evolution of perturba-
tions from the linear to the nonlinear phase, when they
decouple from the Hubble flow, reach a maximum radius,
reach the TAR, collapse, and virialize to form a structure.
The initial model of Ref. [54] was extended to take account
of angular momentum [50,52,53,55–62], dynamical fric-
tion [63,64], shear [65–67], and the effects of the DE
fluid perturbation [see [68–76] ]. The effects of shear
and rotation have been studied in smooth DE models
[40,41], clustering DE cosmologies [77], and Chaplygin
cosmologies [78].

A. The ESCM

Here, we show how to obtain the evolution equations
of δ in the nonlinear regime.
The evolution equations of δ in the nonlinear regime

were obtained in Refs. [70,79–83]. In order to obtain the
equations, we use the neo-Newtonian expressions for the
relativistic Poisson equation, Euler equation, and continuity
equations [84]:

∂ρ
∂t þ∇r⃗ · ðρv⃗Þ þ

P
c2

∇r⃗ · v⃗ ¼ 0; ð1Þ

∂v⃗
∂t þ ðv⃗ · ∇r⃗Þv⃗þ∇r⃗Φþ c2

c2ρþ P
∇P ¼ 0; ð2Þ

∇2Φ − 4πG

�
ρþ 3P

c2

�
¼ 0; ð3Þ

where the equation of state (EoS) is given by P ¼ wρc2,
where r⃗ is the physical coordinate, Φ is the Newtonian
gravitational potential, and v⃗ is the velocity in three-space.
Writing and combining the perturbation equation as in
Ref. [45], we obtain the nonlinear evolution equation in a
dust (w ¼ 0) universe,

δ̈þ 2H _δ −
4

3

_δ2

1þ δ
− 4πGρ̄δð1þ δÞ

− ð1þ δÞðσ2 − ω2Þ ¼ 0: ð4Þ

Equation (4) is Eq. 41 of Ref. [81], and a generalization
of Eq. 7 of Ref. [70] to the case of a nonspherical
configuration of a rotating fluid.
In Eq. (4), H is the Hubble function, ρ̄ ¼ ρ − δρ is the

background density, and σ2 ¼ σijσ
ij and ω2 ¼ ωijω

ij are
the shear and rotation terms, respectively. The shear term
is related to a symmetric traceless tensor dubbed the shear
tensor, while the rotation term is related to an antisym-
metric tensor.
In terms of the scale factor a, the nonlinear equation

driving the evolution of the overdensity contrast can be
rewritten as

δ00 þ
�
3

a
þ E0

E

�
δ0 −

4

3

δ02

1þ δ
−
3

2

Ωm;0

a5E2ðaÞ δð1þ δÞ

−
1

a2H2ðaÞ ð1þ δÞðσ2 − ω2Þ ¼ 0; ð5Þ

where Ωm;0 is the DM density parameter at t ¼ 0 (a ¼ 1)
and EðaÞ is given in Eq. 11 of Ref. [45].
Since δ ¼ 2GMm

Ωm;0H2
0

ða=RÞ3 − 1, where R is the effective

perturbation radius, by inserting this into Eq. (4) it is easy
to check that the evolution equation for δ reduces to the
spherical collapse model (SCM) [81,85,86],
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R̈ ¼ −
GMm

R2
−
GMde

R2
ð1þ 3wdeÞ −

σ2 − ω2

3
R

¼ −
GMm

R2
−
4πG ¯ρdeR

3
ð1þ 3wdeÞ −

σ2 − ω2

3
R; ð6Þ

where Mde is the mass of the dark-energy component
enclosed in the volume, Mm ¼ 4πR3

3
ðρ̄þ δρÞ, and wde and

ρ̄de are the DE equation-of-state parameter and its back-
ground density, respectively [44,81,85,86].
In the case w ¼ −1, namely, the cosmological constant

case Eq. (6) can be written as

R̈ ¼ −
GMm

R2
−
σ2 − ω2

3
Rþ Λ

3
R: ð7Þ

The previous equation is clearly similar to the usual
expression for the SCM with a cosmological constant
and angular momentum [e.g., [59,62,87]]:

d2R
dt2

¼ −
GM
R2

þ L2

M2R3
þ Λ

3
R ¼ −

GM
R2

þ 4

25
Ω2Rþ Λ

3
R:

ð8Þ

The rightmost term in Eq. (8) is obtained by recalling
that L ¼ IΩ, where the moment of inertia of a sphere
I ¼ 2=5MR2.
Angular momentum is related to vorticity by Ω ¼ ω=2

(see also Ref. [88]) in the case of uniform rotation with
angular velocity Ω ¼ Ωzez. As in Refs. [40,41,45], we
define the dimensionless but mass-dependent quantity α
as the ratio between the rotational and gravitational terms
in Eq. (8):

αðMÞ ¼ L2

M3RG
: ð9Þ

In order to solve Eq. (4), the relation between the term
σ2 − ω2 and the density contrast δ is needed. This con-
nection can be obtained by recalling the relation between
angular momentum and shear, and recalling that Eq. (8)
(from which α was obtained) is equivalent to Eq. (6), which
is also equivalent to Eq. (4).
Calculating the same ratio between the gravitational and

extra terms appearing in Eq. (4), we obtain

σ2 − ω2

H2
0

¼ −
3

2

αΩm;0

a3
δ: ð10Þ

This reasonable assumption (see Ref. [41]) was also used
in Refs. [40–43].
The nonlinear equation to solve is obtained by substitut-

ing Eq. (10) into Eq. (4),

δ̈þ 2H _δ −
4

3

_δ2

1þ δ
− 4πGρ̄δð1þ δÞ

−
3

2
H2

0ð1þ δÞ αΩm;0

a3
δ ¼ 0: ð11Þ

By solving Eq. (11) following the method described in
Ref. [83] or by solving Eq. (6), the threshold of collapse
and the turnaround can be obtained.
At this point, we also want to take into account

dynamical friction in our analysis. Then, we notice that
Eq. (6) can be written in a more general form by taking into
account dynamical friction [63,64,87,89–96],

R̈ ¼ −
GM
R2

þ L2ðRÞ
M2R3

þ Λ
3
R − η

dR
dt

¼ −
GMm

R2
−
GMde

R2
ð1þ 3wdeÞ −

σ2 − ω2

3
R − η

dR
dt

;

ð12Þ

where η is the dynamical friction coefficient. Equation (12)
can be obtained via Liouville’s theorem [46], and the
dynamical friction force per unit mass η dR

dt was given in
Ref. [64] (Appendix D, Eq. D5) and Ref. [95] (Eq. 5).
A similar equation (excluding the dynamical friction term)

was obtained by several authors (e.g., Refs. [41,85,86]) and
generalized to smooth DE models in Ref. [44].
Equations (12) and (6) differ due to the presence of

the dynamical friction term. Similarly to rotation and the
cosmological constant, dynamical friction delays the col-
lapse of a structure (perturbation) [63,64,95–97]. The
magnitudes of the effects of the cosmological constant,
rotation, and dynamical friction are of the same order, with
differences of a few percent (see Fig. 1 of Ref. [97] and
Fig. 11 of Ref. [64]).
Notice that, by means of the relation δ ¼

2GMm
Ωm;0H2

0

ða=RÞ3 − 1, Eq. (12) can be written in terms of δ,

similarly to Eq. (4).
Our SCM model depends not only on shear and vorticity

(as in Ref. [45]), but also on dynamical friction. Since
shear, rotation, and dynamical friction depend on mass,
the SCM results depend on the baryon physics, which is
different from what was claimed in Refs. [34,35,37].

III. RESULTS

The effects of shear [65–67] and rotation [41,44,46,
93,98–100] on the collapse are manifold.
One general feature is that of slowing down the collapse

[99–102]. The mass function [41–44,46,97,98], two-point
correlation function [103], and scaling relations like the
mass-temperature and luminosity-temperature relations
[96,103,104] are modified. This is connected to the change
of the typical parameters of the SCM.
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A. Threshold of collapse with shear, rotation,
and dynamical friction

Figure 1 shows how shear, rotation, and dynamical
friction (hereafter, SRD) change the collapse threshold
δc. We show the dependence on redshift and mass in the left
and right panel, respectively. The red line represents the
predictions of the ESCM for δcðzÞ for the ΛCDM model,
while the black line shows the ESCM in the case of one DE
model: the Albrecht-Skordis (AS) model [105].
In the left panel, from top to bottom, the values of α are

0.05 (solid line) corresponding to a mass ≃1011M⊙, 0.03
(long dashed line) corresponding to a mass ≃1013M⊙, 0.01
(dotted line) corresponding to a mass ≃1015M⊙, and
0 (dashed line). The value of δcðzÞ for α ¼ 0.05 is
≃30% larger than in the α ¼ 0 case.
In the case of no shear, rotation (α ¼ 0), and dynamical

friction, δc has a weak dependence on redshift in the z range
[0, 2] and then assumes the value predicted by the Einstein–
de Sitter model.
In other terms, SRD gives rise to a nonflat threshold δc,

which is monotonically decreasing with redshift. Moreover,
the larger is α, the larger is the difference between the
values of δcðzÞ, as shown by the different curves.
Of the DE quintessence models in the literature, we

plotted the AS model because the other models considered
in previous papers [40,83] [INV1 (w0 ¼ −0.4), INV2
(w0 ¼ −0.79), 2EXP (w0 ¼ −1), CNR (w0 ¼ −1), CPL
(w0 ¼ −1), and SUGRA (w0¼−0.82) (see Refs. [41,83])1]

are contained in the envelope between the region included
in the ΛCDM and AS models (see Fig. 4 of Ref. [83]).
The right panel of Fig. 1 plots δcðMÞ vs mass. In the

absence of SRD the value of δc is constant (brown line),
while in the presence of SRD δc becomes mass dependent
and monotonically decreases with mass. This means
that in order a less massive perturbation (e.g., galaxies)
form structures must cross a higher threshold than
more massive ones. This behavior is related to the
anticorrelation of the angular momentum acquired by
the proto-structure and its height.2 Since low peaks
acquire larger angular momentum than high peaks, they
need a higher density contrast to collapse and form
structures [64,93,99–102,108].
As shown in the left and right panels of Fig. 1, the effect

of dynamical friction is to increase the values of δcðzÞ and
δcðMÞ with respect to the case when it is not present, as
shown in Ref. [45].

B. Comparison of TAR in the ΛCDM, ESCM,
and DE models

Shear, rotation, and dynamical friction modify the TAR.
In order to show this, we may compare the predictions of
the ΛCDM, ESCM, and DE models. References [37,38]
calculated the maximum TAR (MTAR), that is, the radius
of the surface where R̈ ¼ 0. Reference [38] found

FIG. 1. The threshold of collapse δc as a function of redshift and mass. Left: δc vs redshift. The predictions for δcðzÞ for the ΛCDM
model are represented by the red lines. The values of α are 0.05 (solid line) (galactic mass scale), 0.03 (long dashed line), 0.01 (dotted
line) (cluster mass scale), and 0 (dashed line). Right: δc vs mass. The solid red line represents the result of the ESCM model, the red
dashed line that of the elliptical collapse model of Ref. [106], and the brown line the ΛCDM expectation when shear and rotation are not
taken into account.

1w0 is the value of w today.

2The peak height is defined as ν ¼ δc=σðMÞ, where σðMÞ is
the mass variance. The specific angular momentum j is given by
j ∝ ν−3=2 [64,65,107].
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Rta ¼
�

−3M
4πρdeð1þ 3wÞ

�
1=3

; ð13Þ

which in the case of the ΛCDM model (w ¼ −1) reduces
to [37]

Rta ¼
�
3GM
Λ

�
1=3

: ð14Þ

In their estimation, they assumed that shear and rotation
were not present. Their expression can be generalized to the
case where shear and rotation are nonzero. This can be done
by using Eq. (6) to obtain

Rta ¼
�

−3M
4πρdeð1þ 3wÞ þ ðσ2 − ω2Þ

�
1=3

: ð15Þ

In this paper, we will calculate and plot the TAR, not the
MTAR, since we compare with Ref. [35] which calculated
the TAR.
Figure 2 shows the TAR predicted by the ΛCDM model

(solid red line), the ESCMmodel (taking into account shear
rotation and dynamical friction) for the ΛCDM model (red
dashed line), and the AS model (black dashed line). When
shear, rotation, and dynamical friction are taken into
account the collapse is slowed down and the TAR is
smaller. The difference between the ΛCDM model and
the ESCM predictions increases when going towards
smaller masses. This is mainly related to the larger rotation
of smaller objects, and reaches a maximum difference of
≃60%. The black dashed line (as already reported) is the
AS model, which has a slightly larger TAR with respect to
the ΛCDM model.

C. Constraints on the DE EoS parameter

Knowing the relation between the TAR, structure mass,
and EoS parameter, it is possible to obtain some constraints

on the DE EoS (w). This was attempted in Ref. [38] by
means of Eq. (13). In general, a great number of DE models
are described through the equation of state parameter wðaÞ.
This depends on its present value w0, its value at the matter-
radiation equality epoch, and some other parameters at the
same epoch (see Eq. 23 of Ref. [83]). If one wants to
constrain the evolution of the EoS parameter w, high-
redshift structures are needed. Conversely, is one wants to
constrain the values of w0, small-z cosmic structures may
be used. Reference [38] compared the predicted TARs at
different values of w in theMt-Rt plane, finding constraints
on w0. To this aim, data from several structures (e.g., the
Milky Way, M81/M82 group, Local Group, Virgo cluster,
and Fornax-Eridanus group) were used. It is of fundamental
importance to note that the constraints depend on the model
used. As shown in Ref. [109], the mass of the structure and
its TAR changes when the cosmological constant is added
to the standard SCM (considering only the gravitational
potential) (Eq. 1 of Ref. [109]). This was also pointed out
comparing the values predicted by several Karachentsev’s
paper (e.g., Refs. [110,111] for M81, the local group, and
neighboring groups) with those of Ref. [109].
In Fig. 3 the solid lines obtained from the TAR

equation (13) correspond (from bottom to top) to
w ¼ −2.5, −2, −1.5, −1, and −0.5 when shear, rotation,
and dynamical friction are absent. The dashed lines are the
corrections obtained when shear, rotation, and dynamical
friction are taken into account. The range of w for which no
stable structures exist is given by the parameter space above
each line. Reference [38] discussed some constraints on w
based on the highest mass objects. As shown by the dashed
lines, one has to expect that at masses smaller than 1013M⊙
the TAR is modified by the presence of shear, rotation, and
dynamical friction. As a consequence, structures at smaller
masses can give different constraints on w. At the same
time, following Ref. [109], by taking the effect of dynami-
cal friction into account we see that the constraints on the
cosmic structure plotted in Fig. 3 are notably different from
that of Ref. [45]. The values of the TAR and mass for each
of the objects in Fig. 3 were obtained using the SCM with
dynamical friction, and using a method described in
Refs. [109,112] (see the Appendix). In Table I we report
the constraints we obtained.

D. Comparison with the TAR in f ðRÞ theories
In this section, we compare the evolution of the TAR in

the ESCM and the fðRÞ theories. The evolution of the TAR
in general relativity (GR) and in the fðRÞ theories was
investigated in Ref. [35]. MG effects were introduced in
the overdensity evolution equation (their Eq. 3.3) by means
of the parameter ϵða; kÞ, where k is the (angular) wave
number. GR is recovered when ϵða; kÞ is zero, and our
Eq. (5) is recovered in the case when ϵða; kÞ is zero and
shear and rotation are set equal to zero. In other terms, our
Eq. (5) is a generalization of Eq. 3.3 of Ref. [35] for the

FIG. 2. Turnaround radius Rt vs mass Mt. The solid red line
represents the TAR predicted by the standard SCM, and the
dashed red line shows the ESCM result for the ΛCDM model.
The black dotted line is the result of the ESCM for the AS model.
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case where ϵða; kÞ is zero. Consequently, their Figs. 1
and 3 ( similarly to the left panel of our Fig. 1, and to the
ΛCDM, and DE models without shear and rotation, as
shown in Ref. [83]) shows a monotonic increase of δcðzÞ.
Their Fig. 4 shows an almost flat behavior of δcðMÞ,
with variations from constancy of the order of 1%. The
behavior of δcðzÞ and δcðMÞ in Ref. [35] disagrees with the
predictions of several papers (e.g., Refs. [40–43,97,106]).
The previous papers showed that in order to have a mass
function that reproduces the results of simulations, the
threshold must be a monotonically decreasing function of
mass. Since in Ref. [35] δcðMÞwas practically constant and
δcðzÞ was a monotonically increasing function of redshift,
their results cannot reproduce the mass function obtained in
simulations and observations. This is due to the fact that
Ref. [35] discarded the effects of shear and rotation, and in
general of aspericities. A more detailed discussion of this
aspect can be found in Ref. [45].
Going back to our main goal, namely, the use of the TAR

to distinguish GR-MG and GR-DE models (e.g., Ref. [35]),
we will compare the prediction of Ref. [35] for the Mt-Rt
relation with that of our ESCM. In Fig. 4 we plot the results

obtained in Ref. [35] for Rt vs mass for the ΛCDM model,
the model with ϵ ¼ 1=3, and fðRÞ with fR0 ¼ 10−6, 10−5,
and 10−4. The 68% confidence level region of our pre-
diction for the ΛCDM model obtained with the ESCM is
represented by the grey band. The 68% confidence level
was obtained (as in Ref. [45]) by means of a Monte Carlo
simulation. The result of the plot is slightly different from
Fig. 4 of Ref. [45]. Because of the presence of dynamical
friction, which further contributes to slowing down the
collapse, the TAR has smaller values. Consequently, the
TAR in the ESCM model does not completely overlap with
that of Ref. [35], as happened in Ref. [45]. This means that
the study of the highest values of the Mt-Rt relation could
disentangle the GR predictions from those of the fðRÞ
theories. Choosing peculiar values of the TAR would be
possible to distinguish between GR and fðRÞ theories.
In Fig. 5 the predictions of some of the quintessence DE

models previously cited are compared to the same fðRÞ
models of Ref. [35] plotted in Fig. 4. All of the curves are
obtained by means of the ESCM applied to the DE models
of the TAR. From top to bottom, the cyan, blue, brown,
magenta, black, red, and green lines represent results from
INV1, INV2, SUGRA, w09,

3 AS,ΛCDMwithout shear and
rotation, and ΛCDM with shear and rotation, respectively.
A comparison of the predictions from Ref. [35] for the

TAR with those of the DE models is plotted in the right
panel. In this plot, we show only INV2 (blue dashed line)
and the ΛCDMwith shear, rotation, and dynamical friction
(green dashed line). With the exception of INV1, the two
quoted curves contain all other DE models.

FIG. 3. Stable structure mass-radius relation for different w. The solid lines from top to bottom represent w ¼ −0.5 (green), −1
(black), −1.5 (blue), −2 (pink), and −2.5 (red). The results of the ESCM are represented by the dashed lines. The dots with error bars are
data from Ref. [38].

TABLE I. The allowed ranges of w based on the ESCM model.

Stable structure Range of w

M81 w ≥ −1.5
IC342 w ≥ −1
NGC253 w ≥ −1
CenA=M83 w ≥ −1.5
Local Group w ≥ −2
Virgo w ≥ −2 3Namely, the model with w ¼ −0.9.
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The other lines are the ΛCDM and fðRÞ models of
Ref. [35]. Differently from Fig. 4, the DE models contain
the TAR prediction from Ref. [35]. As a consequence, the
TAR cannot be used to distinguish between DE and fðRÞ
theory predictions.

IV. CONCLUSIONS

In this paper we discussed how shear, rotation, and
dynamical friction change the TAR and some of the
parameters of the SCM. The results were obtained using
an ESCM taking into account the effects of shear, vorticity,

� 1 3

�CDM

R0 10 6

R0 10 5

10 4
R0

3.0

2.5

2.0

1.5

2 4 6 8x10
13

x10
13

x10
13

x10
13 10

14

�CDM

FIG. 4. Turnaround radius Rt vs massMt. The plot represents the result obtained in Ref. [35] for Rta vs mass for the ΛCDMmodel, the
model with ϵ ¼ 1=3, and fðRÞ with fR0 ¼ 10−6, 10−5, and 10−4. The gray band represents the 68% confidence level region of our
prediction for the ΛCDM model obtained with the ESCM.

FIG. 5. The turnaround radius Rt vs mass Mt obtained with the ESCM for the DE models. Left: from top to bottom, the cyan, blue,
brown, magenta, black, red, and green lines represent the results for INV1, INV2, SUGRA, w09 (namely, the model with w ¼ −0.9), AS,
ΛCDMwithout shear, and rotation, and ΛCDMwith shear and rotation, respectively. Right: the solid lines are the results for the ΛCDM
and fðRÞmodels of Ref. [35], while the blue dashed and green dashed lines are for the INV2 model and the ΛCDMwith shear, rotation,
and dynamical friction plotted in the left panel.
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and dynamical friction to determine the Rt-Mt relation in
ΛCDM and DE scenarios. We numerically extended the
formula for the maximum TAR obtained in Ref. [45] to take
into account dynamical friction. The value of the TAR is
reduced by shear, rotation, and dynamical friction, especially
at galactic scales. Using the Rt-Mt relationship and data from
stable structures, one can obtain constraints on w. Its values
are smaller for structures with masses approximately smaller
than1013M⊙. In this paperwe recalculated themass andTAR
of theM81/M82group,LocalGroup,Virgocluster,NGC253,
IC342, and CenA/M83 group following Refs. [109,112].
A comparison of the Rt-Mt relationship obtained for

ΛCDM and DE scenarios with the prediction from
Ref. [35] of the fðRÞ theories shows that the Rt-Mt
relationships in the fðRÞ models are practically identical
to those of DE scenarios. This implies that the Rt-Mt
relationship is not a good probe to distinguish between GR
and DE model predictions. The situation is different in the
case of the ΛCDM model. In this case, the 68% confidence
level region does not overlap with that of the fðRÞ models.
The higher values of the TAR could be used to distinguish
between fðRÞ theories and GR.

APPENDIX: MASS AND TAR OF STRUCTURES

The most general equation that takes into account
shear, rotation, and dynamical friction is Eq. (12). We will
rewrite it in an adimensional form. We assume that
J ¼ kRα, with α ¼ 1 (in agreement with Ref. [113].4),
and that k is constant. In terms of the variables y ¼ R=R0

and t ¼ x=H0, Eq. (12) can be written as

d2y
dx2

¼ −
A
2y2

þ ΩΛyþ
Kj

y
−

η

H0

dy
dx

; ðA1Þ

where Kj ¼ k 1
ðH0R0Þ2,

5 A ¼ 2GM
H2

0
R3
0

, and

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a0
a

�
3

Ωm þ ΩΛ

s
: ðA2Þ

Equation (A1) has a first integral, given by

u2 ¼
�
dy
dx

�
2

¼ A
y
þΩΛy2 þ 2Kj log y − 2

η

H0

Z �
dy
dx

�
2

dxþ K;

ðA3Þ

where K ¼ 2E
ðH0R0Þ2 and E is the energy per unit mass of

a shell.

The previous equation can solved as described in
Refs. [109,112].
The mass and turnaround radius of some groups of

galaxies are obtained by finding a relation between the
velocity, and radius, v-R. The later will be fitted to the data.
The v-R relation is obtained as follows. Let us consider
Fig. 6. This is a solution of Eq. (12) for different values of
K. The vertical line corresponds to x ¼ 0.964. Its inter-
section with the curves, solution of Eq. (12) (cyan, red,
green) gives, for each one a value yðxÞ ¼ yð0.964Þ. The
solution of Eq. (12), also gives the velocity, allowing us
to find uðxÞ ¼ uð0.964Þ. We get a couple of values ðy; uÞ
for each intersection of the vertical line with the curves.
This allows us to find a series of points that can be fitted
with a relation of the form u ¼ −b=yn þ by, which gives
u ¼ −1.3436=y0.9107 þ 1.3436y. This last relation can be
written in physical units as follows:

vðRÞ ¼ −bH0R0

�
R0

R

�
n
þ bH0R: ðA4Þ

Substituting R0 ¼ ð2GMH2
0

Þ13 into this equation, we get

vðRÞ ¼ −b
H0

Rn

�
2GM
AH2

0

�nþ1
3 þ bH0R ðA5Þ

or

vðRÞ ¼ −
−0.66385H0

Rn

�
GM
H2

0

�nþ1
3 þ 1.3436H0R; ðA6Þ

where n ¼ 0.9107. Equation (A6) satisfies the condition
vðR0Þ ¼ 0. Fitting the equation to the data of Ref. [112]
(Fig. 2) and Ref. [109] (Fig. 2), one obtains the value of the
Hubble parameter H0 and the TAR. By solving Eq. (12)
one can obtain the value of A, and by solving the equation
A ¼ 2GM

H2
0
R3
0

one gets the mass M.

x

y

0.5

1
1.5

2

0.5 1 1.5 2

K = -5.1

K = -5.737

K = -6.2

FIG. 6. Evolution of shell radius for different values of K. The
red, cyan, and green lines correspond to K ¼ −5.737, K ¼ −6.2,
and K ¼ −5.1, respectively.

4In that paper, α ¼ 1.1� 0.3.
5Kj ¼ 0.78 and η

H0
¼ 0.5.
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