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The reconstruction of a k-essence inflationary universe, considering the unification between the
swampland criteria and the attractor given by the scalar spectral index nSðNÞ together with the slow-roll
parameter ϵðNÞ in terms of the number of e-folds N is studied. In the context of a coupling of the form
LðϕÞX in the k-essence model, we find the effective potential V and the coupling parameter L in terms of
the scalar spectral index and the slow-roll parameter under a general formalism. To apply the unification in
our model, we consider some examples in order to rebuild the effective potential VðϕÞ and the coupling
parameter LðϕÞ as a function of the inflaton field ϕ. Here, we find that the reconstruction gives rise to an
exponential potential and also to natural and hyperbolic inflation, respectively. Thus, in this article we show
that it is possible to unify the theoretical foundations from the swampland criteria and the observational
parameters corroborated by observations, in the reconstruction of an inflationary universe.
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I. INTRODUCTION

It is well known that the evolution of the early universe
can be described by the standard hot big bang model;
however, this hot model presents some cosmological
problems that the inflationary stage or inflation solves
through an accelerated expansion previous to the radiation
era [1–4]. Nevertheless, the importance of inflation is that
this scenario gives an account of the large-scale structure
[5,6], and it also provides a causal description of the
anisotropies observed in the cosmic microwave back-
ground radiation [7–12].
In the literature, we can find different models that give an

account of the inflationary evolution of the early universe.
In this context, we can distinguish the inflationary models
where inflation is driven for a canonical or noncanonical
scalar field; see, e.g., [13–15]. In this sense, we can stand
out the k-essence inflationary model, where the description
of the k-essence is through an action or Lagrangian density
that includes a nonstandard higher order kinetic term
associated with the scalar field [16,17]. An important
consideration to take into account of the k-essence models
is the fact that the speed gravitational waves is equal to the
speed of light, coinciding with the speed obtained from
the detection of gravitational waves by GW170817 and the
γ-ray burst [18–20]. Additionally, the k-essence models
give the possibility that the value of the speed of sound of
the scalar perturbations is smaller than one or equal to one
[16]. In this form, the k-essence model is consistent with

these observational data, since the speed of gravitational
waves is equal to the speed of light and we can also have the
possibility that the speed of sound associated with scalar
perturbations could be less than or equal to one, depending
on the Lagrangian density associated with the k-essence
model. Thus, the k-essence model can be interesting to
study the early (inflation) and current (dark energy) [21]
universe. In particular, in the context of inflation, different
effective potentials associated with a scalar field have been
studied under the slow-roll approximation [22–24].
On the other hand, the reconstruction of the background

variables, such as the effective potential, the coupling
functions, and the scale factor associated with the infla-
tionary models, from the observational parameters, such as
the scalar spectrum, the scalar spectral index, and the tensor
to scalar ratio, have been analyzed by several authors
[25–31]. In this sense, a possible methodology for the
reconstruction of inflation under the slow-roll approxima-
tion can be developed by means of the parametrization of
these cosmological parameters or attractors, in terms of the
number of e-foldings N.
As an example of this methodology, we have the scalar

spectral index nSðNÞ as a function of the number N. In
particular, the simple parametrization or attractor nSðNÞ ¼
1–2=N is well corroborated by Planck data [32], when the
number of e-foldings N ≃ 50–60. Here we consider that
the number of e-foldings N ≃ 50–60 corresponds to the
comoving scale k that crossed the Hubble radius; i.e.,
k ¼ aH during the inflationary epoch.
In the framework of the general relativity (GR), the
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origin for different inflationary models according to the
attractor point nSðNÞ given by nSðNÞ ¼ 1–2=N, during the
slow-roll scenario for large N. In this way, we can have
the following: the hyperbolic tangent model or T-model [33],
the E-model [34], the R2-model [1], the chaotic inflationary
model [3], the study of Higgs inflation [35,36], etc. In the
reconstruction of two background variables as the case of
warm inflation, it was necessary to consider the attractors
nSðNÞ and rðNÞ to rebuild the effective potential and the
dissipation coefficient as a function of the scalar field,
respectively [37]. Similarly, for the reconstruction of
G-inflation, the spectral index nSðNÞ together with the
tensor to scalar ratio rðNÞ was required, in order to
reconstruct the potential and the coupling parameter in
terms of the inflaton field (see Ref. [38]).
Additionally, we mention that in the literature it is

possible to find other methodologies to rebuild the variables
as the scalar potential, the scalar spectral index, and the
tensor to scalar ratio under the slow-roll approximation.
For example, we have the parametrization of the slow-roll
parameter ϵðNÞ, in terms of the number of e-folds N
[29,39,40]. Similarly, the reconstruction of the scalar
potential and spectral index from two slow-roll parameters
ϵðNÞ and ηðNÞ was studied in Ref. [41]. Also, the
reconstruction of the scalar potential, considering as ansatz
the velocity of the scalar field as a function of the number
N, in a model of k-essence inflation was developed in
Ref. [42]. For other reconstruction methodologies in the
scenario of inflation, see Refs. [43–45].
On the other hand, in the context of the theoretical

foundations of the early and present universe from an
effective field theory, there are some criteria or conjectures
that have emerged recently in the literature. These criteria
are related with the consistency between the effective field
theory and superstring theory, in order to describe the
universe from one or various scalar fields. In this sense, we
have the swampland criteria or conjectures (SC) [46,47]
and are related to the conditions on the range of inflaton
field during its dynamic evolution and also on the effective
potential (derivatives) associated with the inflaton field, in
order to permit an embedding in the framework of super-
string theory [46]. This first criterion establishes that the
range of inflaton field values Δϕ is smaller than the
Planckian scale during the dynamic of the inflationary
epoch. This first conjecture supposes that the effective field
theory is consistent with the string theory, if the range of
inflaton field values satisfies Δϕ < ΔMp, where Δ denotes
a constant of the order Oð1Þ and Mp denotes the Planck
mass [46]. In relation to the condition on the effective
potential and its derivatives, we have that the slope of the
potential has to be larger to explain that the fields coming
from the frame of string theory (see Refs. [46,47]). Thus,
the condition on the slope of the effective potential VðϕÞ
(called the second swampland conjecture) can be written as

Vϕ=V > c=Mp, where Vϕ ¼ ∂V=∂ϕ and c denotes another
constant of the order one as Δ. Additionally, we can have
that the above condition cannot be satisfied when the fields
are around the maximum (local) of the potential, with
which we can also consider that Vϕϕ=V < −c1=M2

p, in
which c1 denotes another constant of the order one [48].
However, we mention that recently it was shown that these
constants may be somewhat less than unity (see, e.g.,
Ref. [49]). In this sense, under the theoretical description of
inflation in the framework of GR, we can find a direct
tension from the second SC and the utilization of the
slow-roll approximation, since the slow-roll parameter
ϵ ∝ ðVϕ=VÞ2 must be smaller than one during inflation;
i.e., ϵ ≪ 1. In this way, the imposed conditions by the SC
have questioned whether slow-roll inflation is described by
an effective field theory.
In this respect, we mention that the SC do not exclude all

inflationary models in the context of the slow-roll approxi-
mation. In order to describe inflation under the slow-roll
approximation, we have some models that can survive to
the requirements of the SC. In particular, we can mention
that for the case of a single scalar field, the model of warm
inflation satisfies the criteria imposed by SC [50] (see also
Ref. [51]). Also, the SC for a single field with a chaotic
potential in the framework of brane inflation was developed
in Ref. [52], and this model showed to be compatible with
the SC (see also Ref. [53] for other potentials). The case
of quintessential brane inflation and its compatibility with
the SC introducing deviations from the Bunch-Davies
initial state was studied in [54]. A curvatonlike mechanism
is another possibility used in order to conciliate the SC from
a single field [55] and for multifield models, and its
compatibly with the SC was analyzed in Ref. [56].
Additionally, we comment that another conjecture stud-

ied in the literature is known as the trans Planckian
censorship conjecture (TCC) [57] (see also Ref. [58]).
The TCC is established on the concept that in a suitable
quantum theory of gravity the sub-Planckian quantum
fluctuations should persist on a quantum scale and never
become larger than the Hubble horizon, and then these
fluctuations never freeze during the expansion of the
universe (see also Refs. [59,60]).
The goal of this investigation is to reconstruct the

k-essence inflationary model, considering the unification
between the attractor or parametrization of the scalar
spectral index and the slow-roll parameter as a function
of the e-foldings together with the SC. In this context, we
investigate how the k-essence inflationary model, in which
the Lagrangian density Lðϕ; XÞ with a new term given by
LðϕÞX modifies the reconstructions of the background
variables, such as the scalar potential VðϕÞ and the
coupling parameter LðϕÞ, and simultaneously satisfies
the SC. In this sense, we will determine the structure of
the coupling parameter LðϕÞ and of the effective potential
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VðϕÞ, in order to satisfy the swampland criteria and also the
attractor point associated with the scalar spectral index nS
from the observations.
In order to satisfy the observational data and the swamp-

land criteria, we consider a general formalism to rebuild the
effective potential V and the coupling parameter L, from
the parametrization of the cosmological attractor nSðNÞ
and the slow-roll parameter ϵðNÞ, under the slow-roll
approximation.
As an application to the developed formalism, we will

study different examples in order to analyze the SC consid-
ering the slow-roll parameter ϵðNÞ and also assuming the
simplest attractor point for the scalar spectral index nS − 1 ¼
−2=N. In this respect, we will reconstruct the effective
potentialVðϕÞ and the coupling parameterLðϕÞ as a function
of the inflaton field ϕ. Additionally, we will find different
constraints on the parameters in our k-essencemodel from the
unification of the observational data and the SC.
The outline of the paper is as follows: In Sec. II we give

a brief description of the model of the k-essence. The
background equation and cosmological perturbations are
shown. In Sec. III, we elaborate a general formalism to
rebuild the scalar potential and coupling parameter in terms
of the observable or attractor nSðNÞ and the slow-roll
parameter. Later in Sec. IV, we apply the methodology for
different examples in order to obtain the effective potential
VðϕÞ and the coupling parameter LðϕÞ, as a function of the
scalar field ϕ. In the end, in Sec. V we give our conclusions.
We chose units so that c ¼ ℏ ¼ Mp ¼ 8π ¼ 1.

II. THE k-ESSENCE MODEL

As a brief description of the scenario of the k-essence
model, we begin with the four-dimensional action S for this
theory given by [16,17]

S ¼
Z ffiffiffiffiffiffiffiffi

−g4
p

d4x

�
1

2
Rþ Lðϕ; XÞ

�
; ð1Þ

where g4 corresponds to the determinant of the spacetime
metric gμν, R denotes the Ricci scalar, and the quantity
Lðϕ; XÞ represents the Lagrangian density associated
with the scalar fieldϕ andX. Here the quantityX corresponds
to the kinetic energy of the field ϕ defined as X ¼
−gμν∂μϕ∂νϕ=2.
By assuming that the energy momentum corresponds to

a perfect fluid, then it is possible to identify from the action
(1) that the energy density ρ and the pressure p associated
with the scalar field ϕ and X are given by [16,17]

ρðϕ; XÞ ¼ 2X
∂Lðϕ; XÞ

∂X − Lðϕ; XÞ ð2Þ

and

pðϕ; XÞ ¼ Lðϕ; XÞ; ð3Þ

respectively. In particular, for the specific case in which the
LagrangianLðϕ; XÞ ¼ X − VðϕÞ, we recovered the expres-
sions for the energy density and pressure in the framework
of the GR. Here the quantity VðϕÞ denotes the effective
potential associated with the scalar field ϕ.
In this context and in order to develop the reconstruction

for the k-essence model of inflation, we will study the
specific case in which the Lagrangian density Lðϕ; XÞ is
given by [16,17]

Lðϕ; XÞ ¼ X þ 2LðϕÞX − VðϕÞ; ð4Þ
where LðϕÞ is a coupling function that depends exclusively
on the scalar field ϕ. We note that in the limit in which
this coupling parameter LðϕÞ → 0, we recovered the
standard GR.
To analyze this inflationary model, we consider a

spatially flat Friedmann Robertson Walker (FRW) metric,
together with a homogeneous scalar field, such that the
field ϕ ¼ ϕðtÞ. In this sense, we have that the Friedmann
equation can be written as

3H2 ¼ ρ; ð5Þ
where H ¼ _a

a denotes the Hubble rate and the quantity a
represents the scale factor. In the following, the dots denote
differentiation with respect to the time.
Thus, from relations (2), (3), and (4), we can rewrite the

continuity equation for the perfect fluid _ρþ 3Hðρþ pÞ ¼ 0
as

ϕ̈þ 3H _ϕþ Vϕ þ Lϕ
_ϕ2

1þ 2L
¼ 0; ð6Þ

and also Eq. (5) can be rewritten as

3H2 ¼
_ϕ2

2
þ VðϕÞ þ L _ϕ2: ð7Þ

Additionally, combining Eqs. (6) and (7) we have

2 _H þ 3H2 þ 1

2
_ϕ2 − VðϕÞ þ L _ϕ2 ¼ 0: ð8Þ

In the following, we will assume that the notation
Vϕ ¼ ∂V=∂ϕ, Lϕ corresponds to Lϕ ¼ ∂L=∂ϕ, Vϕϕ to
Vϕϕ ¼ ∂2V=∂ϕ2, etc.
Introducing the slow-roll parameters ϵ1, ϵ2, ϵ3, and ϵ4

defined as [16,17]

ϵ1¼−
_H

H2
; ϵ2¼−

ϕ̈

H _ϕ
; ϵ3¼−

LX
H2

; ϵ4¼−
2LϕX

Vϕ
;

ð9Þ
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and assuming that the slow-roll parameters ϵ1 jϵ2j, jϵ3j,
jϵ4j ≪ 1 during the inflationary regime, then the Friedmann
equation (5) reduces to [16,17]

3H2 ≈ VðϕÞ; ð10Þ

and Eq. (6) results in

3H _ϕð1þ 2LÞ ≈ −Vϕ: ð11Þ

Note that combining Eqs. (7) and (8) we have that the
first slow-roll parameter ϵ1 can be rewritten as ϵ1 ¼
Xð1þ 2LÞ=H2.
In general, in order to give a measure of the inflationary

expansion in an inflationary model, we can define the
number of e-folds N as

N ¼
Z

te

t
Hdt0 ¼

Z
ϕe

ϕ
H
dϕ0

_ϕ
≃
Z

ϕ

ϕe

V

�
1þ 2L
Vϕ0

�
dϕ0; ð12Þ

where the quantities t and te correspond to two different
values of cosmological time in which the time te indicates
the end of the inflationary stage and additionally we have
assumed that the number of e-folds at the end of inflation is
defined as Nðt ¼ teÞ ¼ 0.
On the other hand, in the context of the cosmological

perturbations, the action for the curvature perturbation ζ for
the k-essence model can be written as [15,16,61]

Sð2Þ ¼ 1

2

Z
dτd3xz2½Gðζ0Þ2 − F ð▽⃗ζÞ2�; ð13Þ

where the quantity G ¼ F ¼ 1þ 2L and the variable z is
defined as z ¼ a _ϕ=H. Here the prime corresponds to the
derivative with respect to the conformal time η ¼ R

dt=a,
and from the Lagrangian density given by Eq. (4), we note
that the speed of sound associated with perturbations
c2S ¼ pX=ρX ¼ 1.
From Eq. (13), the scalar power spectrum of the

primordial curvature perturbation is given by [15,16,61]

PS ¼ H4

4π2 _ϕ2ð1þ 2LÞ ≃
V3

12π2V2
ϕ

ð1þ 2LÞ: ð14Þ

Since the scalar spectral index nS is defined in terms of
the power spectrum PS as nS ¼ d lnPS=d ln k, we have
that the index nS as a function of the standard slow-roll
parameters ϵ and η can be written as [15,16,61]

nS − 1 ≃
1

1þ 2L

�
2η − 6ϵþ 2Lϕ

1þ 2L

ffiffiffiffiffi
2ϵ

p �
; ð15Þ

where the standard parameters ϵ and η are defined by

ϵ ¼ 1

2

�
Vϕ

V

�
2

and η ¼ Vϕϕ

V
: ð16Þ

Note that in the limit in which the coupling parameter
L → 0, the spectral index nS given by Eq. (15) reduces
to the standard spectral index of the GR, where
nS − 1 ≃ 2η − 6ϵ. Additionally, we have that in the context
of the slow-roll approximation, the relation between the
parameters ϵ1 and ϵ is given by

ϵ1 ¼ −
_H

H2
≃

1

1þ 2L
ϵ: ð17Þ

For the case of the tensorial perturbation, the amplitude
of the tensor mode in the k-essence model of inflation is
not modified, and its expression is equivalent to the
standard GR, where the tensor spectrum PT is defined
as PT ≃ ðH2=2π2Þ. Thus, we have that the tensor to scalar
ratio r in the framework of the k-essence model can be
written as [15,16,61]

r ¼ PT

PS
¼ 16Xð1þ 2LÞ

H2
¼ 16ϵ1: ð18Þ

Also, we can obtain that the tensor to scalar ratio can be
rewritten in terms of the standard slow-roll parameter ϵ as

r ¼ PT

PS
¼ 16Xð1þ 2LÞ

H2
¼ 16

1þ 2L
ϵ: ð19Þ

Here we have considered Eqs. (17) and (18), respectively.
In the following we will study the reconstruction of the

background variables from the unification of the observable
parameters together with the swampland conjectures or
criteria.

III. RECONSTRUCTING k-ESSENCE MODEL

In this section we will consider the methodology used to
reconstruct the background variables, such as the scalar
potential VðϕÞ and the coupling parameter LðϕÞ, from the
attractor nSðNÞ and the slow-roll parameter ϵðNÞ, together
with the swampland conjectures.
In the context of the reconstruction, we rewrite the slow-

roll parameters, the spectral index, and the tensor to scalar
ratio as a function of the number of e-foldings N and its
derivatives [30]. From these expressions and from consid-
ering an attractor point nS ¼ nSðNÞ together with a
parameter ϵðNÞ, we should obtain the effective potential
V and the coupling parameter L in terms of the number N;
i.e., V ¼ VðNÞ and L ¼ LðNÞ. Now, from Eq. (12) we
should find analytically the number of e-folds N as a
function of the inflaton field ϕ, and then we should
reconstruct the scalar potential VðϕÞ and the coupling
function LðϕÞ.
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In this framework, we start rewriting the derivatives of
the potential V, the coupling function L, and the slow-roll
parameters in terms of the number N, as

Vϕ ¼ dV
dϕ

¼ Vð1þ 2LÞ
Vϕ

VN;

and then we get

V2
ϕ ¼ ½Vð1þ 2LÞVN �: ð20Þ

In the following, we will assume that VN > 0 and then
the quantity 1þ 2L > 0. Also, in the following we will
consider the notation VN ¼ dV=dN, VNN ¼ d2V=dN2, LN
to LN ¼ dL=dN, etc.
For the quantity Vϕϕ, we have

Vϕϕ ¼ 1

2VN
½ð1þ 2LÞ½V2

N þ VVNN � þ 2LNVVN �; ð21Þ

and for the coupling parameter Lϕ, we get

Lϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð1þ 2LÞ

VN

s
LN: ð22Þ

From these relations, we find that the standard slow-roll
parameters ϵ and η given by Eq. (16) can be rewritten as

ϵ ¼ 1

2
ð1þ 2LÞVN

V
ð23Þ

and

η ¼ ð1þ 2LÞ
2

�
VN

V
þ VNN

VN

�
þ LN; ð24Þ

respectively.
Also, from Eq. (12) we obtain that the relationship

between the e-folding N and the inflaton ϕ becomes

Z �
VN

ð1þ 2LÞV
�
1=2

dN ¼
Z

dϕ: ð25Þ

In relation to the observables, we find that the power
spectrum of the primordial curvature perturbation PS as a
function of the number of e-folds becomes

PS ¼ 1

12π2
V2

VN
; ð26Þ

and we note this quantity does not depend on the coupling
parameter L under this formalism.
Also, from Eqs. (15), (23), and (24), we obtain that the

scalar spectral index nS can be rewritten in terms of the
e-folds N as

nS − 1 ¼ −2
VN

V
þ VNN

VN
¼

�
ln

�
VN

V2

��
N
; ð27Þ

and by considering Eq. (18) the tensor to scalar ratio can be
rewritten as

r ¼ PT

PS
¼ 8

VN

V
: ð28Þ

Here, we note that the expressions for the power
spectrum PSðNÞ, the scalar spectral index nSðNÞ, and
the tensor to scalar ratio rðNÞ are the same as the one
obtained in the standard GR [30]; these observables depend
exclusively on the effective potential and its derivative with
respect to N. This suggests that the coupling parameter
LðϕÞ cannot be rebuilt from the one attractor, such as the
scalar spectrum or the scalar spectral index nSðNÞ, or from
the tensor to scalar ratio rðNÞ, as can be seen from Eq. (26),
(27), or (28). However, we observe from Eq. (25) that the
relation between the number of e-folds and the inflaton
field depends on the coupling parameter L as well as V, and
then in order to reconstruct the background in our model,
we should know the function LðNÞ.
Thus, as in the case of GR the effective potential V in

terms of the number N can be obtained from the attractor
nSðNÞ as

VðNÞ ¼ −1
�Z �

exp

�Z
ðnS − 1ÞdN

��
dN; ð29Þ

or also giving the attractor rðNÞ with which we have that
the effective potential becomes

VðNÞ ¼ exp

�
1

8

Z
rdN

�
: ð30Þ

Here, we emphasize that the reconstruction of the
effective potential in terms of the scalar field ϕ, i.e.,
VðϕÞ, cannot be determined without the help of the
coupling parameter LðNÞ [see Eq. (25)]. In this sense,
we make the difference with respect to the standard GR,
although the expressions for the observable parameters
nSðNÞ and rðNÞ are the same to GR, as can be seen in
Eqs. (27) and (28).
Thus, a possible solution to rebuild the background

variables can be through an ansatz on the slow-roll
parameter ϵ in terms of the number N, i.e., ϵðNÞ. This
ansatz on the slow-roll parameter ϵ would have to take into
account the swampland conjecture in which Vϕ=V ∼Oð1Þ,
since this parameter ϵ ∝ ðVϕ=VÞ2. In this respect, the
coupling parameter LðNÞ can be determined considering
Eq. (23) in which
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LðNÞ ¼
�
ϵV
VN

−
1

2

�
; ð31Þ

where the slow-roll parameter ϵ ¼ ϵðNÞ.
Note that the relation between the number N and the

inflaton ϕ given by Eq. (25) can be rewritten as

Z
VN

V

�
1

2ϵ

�
1=2

dN ¼
Z

dϕ: ð32Þ

This suggests that the first swampland criterion on the field
range traversed by the scalar field during the slow-roll
epoch in an effective field theory Δϕ < Δ ∼Oð1Þ can be
written as

ϕ − ϕ0 ¼ Δϕ ¼
Z

N

N0

VN0

V

�
1

2ϵ

�
1=2

dN0

¼
Z

N

N0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

8ð1þ 2LÞ
r

dN0 < Δ ∼Oð1Þ; ð33Þ

where Nðϕ ¼ ϕ0Þ ¼ N0 corresponds to the number of
e-folds during the slow-roll epoch and its value is such
that 0 < N0 < N. Recall that during the slow-roll scenario
we can consider that the number of e-folds is large
[Oð10Þ ∼Oð102Þ]; see Refs. [30,37]. Also, we note that
in the special case in which the ratio r and L are constants,
then we have the relation Δϕ ∝ ΔN < Δ, in which
ΔN ¼ N − N0 > 0.
In the context of the second swampland conjecture we

consider that this criterion is related to the slope of the
effective potential, and then we can associate the parameter ϵ
with this conjecture, such as the parameter

ffiffiffiffiffi
2ϵ

p ¼
ðVϕ=VÞ > c, where the constant c from the swampland
conjecture is of order one; i.e., c ∼Oð1Þ (in Planck units) as
we mentioned before.
In this sense, from Eqs. (19) and (28) [or Eq. (23)],

we have

ð1þ 2LÞ ¼ 2ϵ

�
V
VN

�
; ð34Þ

and considering the second swampland conjecture in which
ϵ > c2=2, we obtain a lower bound for the coupling
parameter L given by

L > c2
�

V
2VN

�
−
1

2
: ð35Þ

In this form, we can obtain some constraints on the
parameter space from the swampland criteria in order to
rebuild the k-essence model.
In the following, under the slow-roll approximation we

will study some specific examples in order to reconstruct
the scalar potential VðϕÞ and coupling parameter LðϕÞ,

from the attractor nSðNÞ and ϵðNÞ together with the
swampland criteria.

IV. UNIFYING SWAMPLAND CRITERIA AND
ATTRACTOR POINT

In this section we will apply the formalism of above in
order to rebuild the background variables in our k-essence
model. In this context, we shall use the simplest attractor
for the scalar spectral index nSðNÞ together with some
examples for the slow-roll parameter ϵðNÞ, in order to find
analytically the effective potential VðϕÞ and the coupling
parameter LðϕÞ in terms of the inflaton field ϕ. Thus,
following Refs. [30,33] we consider that for large N (slow-
roll regime), the simplest attractor point for the scalar
spectral index in terms of the number of e-foldings can be
written as

nS − 1 ¼ −
2

N
; ð36Þ

in which for N ¼ 60 the scalar spectral index is well
corroborated from the Planck data. As we mentioned
before, here large N corresponds to values of the number
of e-foldings ∼Oð10Þ ∼Oð102Þ, during the slow-roll stage
[30,33], and the point N ¼ 0 is not allowed. In this sense,
this parametrization on the observable nSðNÞ does not
pretend to describe the end of the inflation where the
number N ¼ 0, but it characterizes the slow-roll regime in
which the number of e-foldsN is large. In the following, we
will consider the value of the number of e-folds N ¼ 60,
in order to evaluate the observational parameters, and we
will only analyze the attractor point nSðNÞ given by relation
(36) for two different slow-roll parameters ϵðNÞ.
In this way, replacing Eq. (36) into Eq. (27) and

integrating we have [30]

VN

V2
¼ α

N2
;

where the parameter α corresponds to an integration
constant and as we have assumed that VN > 0, then the
parameter α > 0. However, from Eq. (26) we can note that
this integration constant α can be fixed considering the
scalar power spectrum PS, when the wavelength of the
perturbation crosses the Hubble radius (at N ¼ 60) results,

α ¼ N2

12π2PS
: ð37Þ

In this sense, for the specific case in which the number
N ¼ 60 and the scalar power spectrum PS ≃ 2.2 × 10−9,
we have that the value of α ≃ 1010.
Now, from Eq. (29) the effective potential in terms of the

number of e-folds N can be written as
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VðNÞ ¼ N
αþ βN

; ð38Þ

where the quantity β corresponds to a second integration
constant and rigorously this constant can be chosen to be
positive, negative, or zero. However, we can obtain an
estimate of this constant considering the tensor to scalar
ratio (28) in which

β ¼ α

N

�
8

Nr
− 1

�
; for β > 0; and

β ¼ α

N

�
1 −

8

Nr

�
; for β < 0: ð39Þ

Thus, for the case in which β > 0, using the valuesN ¼ 60,
α ¼ 1010, and considering that the tensor to scalar ratio
r < 0.07 from observational data, we obtain a lower limit
for the integration constant β given by β > 1.5 × 108. For
the case in which the integration constant β is negative, we
find an upper bound given by β < −1.5 × 108.
In order to rebuild the effective potential VðϕÞ and the

coupling parameter LðϕÞ, we should know the parameter
LðNÞ to perform the integral given by Eq. (25); i.e., we
should find the relation between the number of e-folds and
the inflaton field [N ¼ NðϕÞ] for the reconstruction of the
functions VðϕÞ and LðϕÞ.
In fact, to find the coupling parameter LðNÞ and then

N ¼ NðϕÞ, we can consider an ansatz on the slow-roll
parameter ϵ ¼ ϵðNÞ together with the attractor point nSðNÞ
from the relation given by Eq. (31). The motivation to
consider this ansatz on the slow-roll parameter ϵðNÞ is
associated with satisfying the second swampland conjec-
ture, since the parameter ϵ is proportional to ðVϕ=VÞ2.
As a first ansatz on the variable ϵðNÞ, we consider the

simplest situation in which the slow-roll parameter ϵ is
equal to a constant

ϵðNÞ ¼ ϵ0 ¼ cte: ð40Þ

In order to satisfy the second swampland conjecture,
we can assume that this constant ϵ0 satisfies the lower
bound ϵ0 > c2=2 ∼ 1=2.
Immediately, we can see that from Eq. (16) and this

ansatz for the slow-roll parameter, the effective potential as
a function of the inflaton field corresponds to an expo-
nential potential with which

VðϕÞ ¼ exp½A1ϕþ C� ¼ exp½ϕ̃�; ð41Þ

where the field ϕ̃ is defined as ϕ̃ ¼ A1ϕþ C, in which the
quantity A1 ¼

ffiffiffiffiffiffiffi
2ϵ0

p
and C corresponds to an integration

constant. Thus, we note that the attractor given by Eq. (36)
is not necessary for the reconstruction of the VðϕÞ.

However, in order to rebuild the coupling parameter
LðϕÞ, we need an ansatz on the attractor point nSðNÞ.
In this context, from Eq. (31) we obtain the coupling

parameter LðNÞ in terms of the number of e-folds N
becomes,

LðNÞ ¼ ϵ0Nðαþ βNÞ
α

−
1

2
: ð42Þ

Here we have used the relation for the potential VðNÞ given
by Eq. (38) obtained from attractor nSðNÞ given by Eq. (36).
Now, considering the relation between the numberN and

the scalar field given by Eq. (32) and assuming the special
case in which β > 0, we have that the number NðϕÞ is
given by

NðϕÞ ¼ α exp½ϕ̃�
α − β exp½ϕ̃� : ð43Þ

Here we can note that replacing Eq. (43) into Eq. (38) we
recover the effective potential VðϕÞ ¼ eϕ̃ given by
Eq. (41). Also, we observe that the number of e-folds
has a pole at ϕ̃ ¼ lnðα=βÞ when β > 0, and then we can
only consider that the range for the scalar field ϕ̃ is given by
ϕ̃ < lnðα=βÞ, since the number N > 0 [see Eq. (43)].
Additionally, we can mention that for the case in which

the integration constant β < 0 the number N ¼ NðϕÞ
results NðϕÞ ¼ α exp½ϕ̃�

αþð−βÞ exp½ϕ̃� and this number N does not

contain a pole.
Also, for the specific case in which the constant β ¼ 0,

we have that the number of e-foldings evolves exponen-
tially as NðϕÞ ¼ eϕ̃, and we note that the number of
e-foldings does not depend on the integration constant
α. Here, we mention that in this specific case in which the
integration constant β ¼ 0, we obtain that the effective
potential is reduced to VðNÞ ¼ N=α and then combining
Eqs. (28) and (36), the consistency relation r ¼ rðnSÞ is
given by r ¼ 4ð1 − nSÞ. In this sense, for the value nS ¼
0.967 the tensor to scalar ratio r ≃ 0.13 and this value is
disapproved from the Planck data. Furthermore for β ¼ 0,
we note that this consistency relation r ¼ 4ð1 − nSÞ
becomes independent of the chosen parameters ϵðNÞ,
and then this rebuilt model does not work.
Thus for β > 0, we find that the reconstruction for the

coupling function LðϕÞ by combining Eqs. (42) and (43)
becomes

LðϕÞ ¼ ϵ0α
2eϕ̃

ðα − βeϕ̃Þ2 −
1

2
¼ ϵ0α

2VðϕÞ
½α − βVðϕÞ�2 −

1

2
; ð44Þ

with α > βVðϕÞ, since the number of e-foldings N is
defined as positive.
For the case in which the integration constant β < 0,

we have
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LðϕÞ¼ ϵ0α
2eϕ̃

ðαþð−βÞeϕ̃Þ2−
1

2
¼ ϵ0α

2VðϕÞ
½αþð−βÞVðϕÞ�2−

1

2
: ð45Þ

For the situation in which the quantity β ¼ 0, we find
that the reconstruction for the coupling parameter LðϕÞ is
given by

LðϕÞ ¼ ϵ0eϕ̃ −
1

2
: ð46Þ

In relation to the unification between the observational
parameters and the SC, we consider the first swampland
conjecture in which Δϕ < Δ ∼Oð1Þ, for our first example.
In this sense, we can rewrite Eq. (43) for the case β > 0 in
which the integration constant C is defined as C ¼
ln½N0=ðαþ βN0Þ� −

ffiffiffiffiffiffiffi
2ϵ0

p
ϕ0, wherewith the range of the

inflaton field during the slow-roll regime results as

Δϕ ¼ ϕ − ϕ0 ¼
1ffiffiffiffiffiffiffi
2ϵ0

p ln

�
Nðαþ βN0Þ
N0ðαþ βNÞ

�
< Δ ∼ 1; ð47Þ

as before Nðϕ ¼ ϕ0Þ ¼ N0 and its value is 0 < N0 < N
[see Eq. (33)]. Thus, from this conjecture and for the case
β > 0, we can find a lower bound for the value ϵ0 given by

ϵ0 >
1

2
ln2

�
Nðαþ β½N − ΔN�Þ
½N − ΔN�ðαþ βNÞ

�
; ð48Þ

where we recall that the quantity ΔN is defined
as ΔN ¼ N − N0 > 0.
In particular for the case in which ΔN ¼ 50 (or

N0 ¼ 10) and α ¼ 1010, we find that the integration
constant β becomes β < 3.2 × 108 according to Eq. (48)
together with the constraint ϵ0 > c2=2 ∼ 0.5 (second
swampland conjecture). However, from the tensor to scalar
ratio in which r < 0.07 at N ¼ 60 we have found that
β > 1.5 × 108 [see relation given by Eq. (39)]. In this form,
we obtain that the range for the parameter β unifying the
observational data together with the swampland conjec-
tures becomes

1.5 × 108 < β < 3.2 × 108: ð49Þ

In this sense, we observe that the range for the parameter β
is very narrow if we want to satisfy the observational and
theoretical conditions. Similarly, for the situation in which
the integration constant β is negative, we find that the range
for this parameter is given by

−1.5 × 108 > β > −3.2 × 108: ð50Þ

As a second ansatz on the variable ϵðNÞ, we can assume
that for large N, the slow-roll parameter ϵðNÞ can be
considered as [39,40,62]

ϵðNÞ ¼ γ

N
; ð51Þ

where γ corresponds to a constant. We note that from
Ref. [40], we can recognize that for large N, the constant γ
is equal to γ ¼ 1=4 for this parametrization on ϵðNÞ.
However, applying the second swampland conjecture,
we have that the slow-roll parameter ϵ > c2=2, and then
the constant γ can satisfy the lower bound given by
γ > Nc2=2. Thus, for the case in which the number of
e-folds N ¼ 60 and c ∼ 1, we get that the lower limit for γ
results in γ > 30.
From this ansatz on ϵðNÞ, we find that the coupling

parameter L as a function of the number of e-folds results in

LðNÞ ¼ γðαþ βNÞ
α

−
1

2
: ð52Þ

Now, from Eq. (32) and assuming the case in which the
constant β is positive, we get that the number of e-foldings
in terms of the scalar field becomes

NðϕÞ ¼ α

β
tan2

�
1

2

ffiffiffiffiffiffi
αβ

p
ðA2ϕþ CÞ

�
; ð53Þ

where A2 is defined as A2 ¼
ffiffiffiffiffi
2γ

p
=α and C corresponds to

an integration constant. Here we note that in order to evade
the singularity on the number N ¼ NðϕÞ given by Eq. (53),
we have that 0 <

ffiffiffiffiffiffi
αβ

p ðA2ϕþ CÞ ≲ π. For the situation in
which the integration constant β < 0, we obtain that the
relation between N and ϕ can be written as

NðϕÞ ¼ α

ð−βÞ tanh
2

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αð−βÞ

p
ðA2ϕþ CÞ

�
: ð54Þ

In particular for the special case in which β ¼ 0, we find
that the relation N ¼ NðϕÞ is given by

NðϕÞ ¼ 1

4
½

ffiffiffiffiffi
2γ

p
ϕþ C�2: ð55Þ

Again, we note that this relation N ¼ NðϕÞ for the case
β ¼ 0 does not depend on the integration constant α.
Thus, for the case β > 0, we obtain that the

reconstruction for the effective potential VðϕÞ combining
Eqs. (38) and (53) results in

VðϕÞ ¼ 1

β
sin2

�
1

2

ffiffiffiffiffiffi
αβ

p
ðA2ϕþ CÞ

�

¼ 1

2β
½1 − cos ð

ffiffiffiffiffiffi
αβ

p
½A2ϕþ C�Þ�; ð56Þ

and this effective potential corresponds to natural inflation
[63,64] (see also [65]). In this framework, the scalar field is
associated with a pseudo–Nambu-Goldstone boson (pNGb)
with a pNGb potential given by (56). Here the constants
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β−1=4 and 1=
ffiffiffiffiffiffi
αβ

p
A2 can be associated with the mass

scales from the particle physics models; for more details
see [63,64].
For the case in which the integration constant β is

negative, we have that the reconstruction of the effective
potential as a function of the scalar field becomes

VðϕÞ ¼ 1

ð−βÞ sinh
2

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αð−βÞ

p
ðA2ϕþ CÞ

�
; ð57Þ

and this potential corresponds to hyperbolic inflation [66].
Also, we mention that this potential has an interesting
application to describe the dark energy and then the later
time acceleration of the present universe [67]. Additionally,
we have that this hyperbolic potential has a behavior of an
exponential or power law potential, depending on the
specific limits taken for the scalar field. In this way, in
the case in which j ffiffiffiffiffiffiffiffiffiffiffiffiffi

αð−βÞp ðA2ϕþ CÞ=2j ≫ 1, we have an

exponential potential VðϕÞ ∝ e−
ffiffiffiffiffiffiffiffiffi
αð−βÞ

p
A2ϕ, and in the

opposite limit j ffiffiffiffiffiffiffiffiffiffiffiffiffi
αð−βÞp ðA2ϕþ CÞ=2j ≪ 1, we get a quad-

ratic potential VðϕÞ ∝ ϕ2.
In the special case in which the integration constant

β ¼ 0, we obtain that the reconstruction for the effective
potential is given by

VðϕÞ ¼ 1

4α
½

ffiffiffiffiffi
2γ

p
ϕþ C�2; ð58Þ

and it corresponds to a quadratic potential (chaotic poten-
tial), i.e., VðϕÞ ∝ ϕ2, and it coincides with the potential
given by Eq. (57) in the limit j ffiffiffiffiffiffiffiffiffiffiffiffiffi

αð−βÞp ðA2ϕþ CÞ=2j ≪ 1.
For the reconstruction of the coupling parameter LðϕÞ,

we can combine Eqs. (52) and (53) for the case in which
β > 0 obtaining

LðϕÞ ¼ γ

�
1þ tan2

�
1

2

ffiffiffiffiffiffi
αβ

p
ðA2ϕþ CÞ

��
−
1

2

¼ γ

ð1 − βVðϕÞÞ −
1

2
; ð59Þ

and in order to have 1þ 2L > 0, then it is necessary that
during the inflationary epoch βV < 1.
In the situation in which the integration constant β is

negative we have

LðϕÞ ¼ γ

�
1þ tanh2

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αð−βÞ

p
ðA2ϕþ CÞ

��
−
1

2

¼ γ

ð1þ ð−βÞVðϕÞÞ −
1

2
: ð60Þ

Note that in this case we have the possibility to consider the
regime in which 1 < ð−βÞVðϕÞ, for the function LðϕÞ that
increases as LðϕÞ ∝ 1=VðϕÞ, when the potential decreases
during the slow-roll scenario.

Now, for the situation in which the integration constant β
is equal to zero, we obtain that the reconstruction of the
coupling parameter LðϕÞ ¼ γ − 1=2 ¼ const and positive,
since γ > 30 in order to satisfy the SC. Again, we mention
that in this specific case in which the integration constant
β ¼ 0, the tensor to scalar ratio r is disapproved from the
data and then this reconstructed model does not work, since
the consistency relation r ¼ rðnSÞ becomes r ¼ 4ð1 − nSÞ.
As before, in order to consider the first conjecture in the

reconstruction of k-essence inflation, we rewrite Eq. (53),
and then the range Δϕ in terms of the variation ΔN ¼
N − N0 can be written as

Δϕ ¼ 2ffiffiffiffiffiffi
αβ

p
A2

arctan

� ffiffiffiffiffiffiffiffiffiffi
βΔN
α

r �
< Δ ∼ 1: ð61Þ

In this form, from Eq. (61) we find that a lower bound for
the parameter γ is given by

γ >

�
2α

β

�
arctan2

� ffiffiffiffiffiffiffiffiffiffi
βΔN
α

r �
: ð62Þ

From the lower bound for γ given by Eq. (62) and under the
condition γ > Nc2=2 ≃ 30 imposed by the second SC, we
find numerically that the upper bound for the integration
constant β is given by β < 8.3 × 108. Here we have used
the values α ¼ 1010 and ΔN ¼ 50.
In this way, we obtain that the range for the integration

constant β under the unification of the upper bound for the
ratio r < 0.07 and the swampland criteria is

1.5 × 108 < β < 8.3 × 108: ð63Þ
Thus, to satisfy the observational data together with the
swampland criteria, we note that this range for the parameter
β is not that narrow as the previous case in which
ϵðNÞ ¼ ϵ0 ¼ const. Also, we note that this result suggests
that the mass scale β−1=4 ∼Oð10−2Þ (in units of Planck
mass) is similar to that obtained in the framework of GR,
where β−1=4∼ grand unified theory scale ½∼Oð10−4Þ� [64].
Analogously, for the situation in which the parameter β

is negative, we find that the range for β is given by
−108 > β > −109, assuming the values of α ¼ 1010 and
the variation ΔN ¼ N − N0 ¼ 50.

V. CONCLUSIONS

In this article we have investigated the reconstruction
of the background variables in the k-essence inflationary
model from the Lagrangian density given by Eq. (4). To
rebuild this scenario, we have unified the swampland
criteria together with the attractor point associated with
the scalar spectral index nSðNÞ and the slow-roll parameter
ϵðNÞ, in which N denotes the number of e-folds. From a
coupling of the form LðϕÞX in the k-essence model, we
have found a general treatment of reconstruction in the
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framework of slow-roll approximation. In this sense, we
have obtained integrable results for the scalar potential
VðNÞ and the coupling parameter LðNÞ, in terms of the
scalar spectral index nSðNÞ and the slow-roll parameter
ϵðNÞ. Interestingly, we have found that the effective
potential as a function of the number N, i.e., VðNÞ,
coincides with the expression obtained in the framework
of GR [see Eq. (29)] and it does not depend on the coupling
parameter L. However, in order to rebuild the effective
potential in terms of the scalar field VðϕÞ, we need to
consider an expression for the coupling parameter L as a
function of the number of e-foldings N, i.e., LðNÞ. In this
respect, we make the difference with respect to the
reconstruction of the effective potential VðϕÞ in the
framework of the GR. Additionally, in this general analysis
we have obtained from the slow-roll parameter ϵðNÞ and
the attractor point nSðNÞ an expression for the coupling
parameter LðNÞ [see Eq. (31)].
In order to apply this reconstruction methodology during

the slow-roll regime, we have considered the simplest
example for the scalar spectral index nSðNÞ given by
nS ¼ 1–2=N, together with two specific ansatze for the
slow-roll parameter ϵðNÞ under the assumption of large N.
In this sense, we have utilized the special cases in which
the slow-roll parameter ϵðNÞ is a constant and when
ϵðNÞ ∝ N−1, in order to rebuild the effective potential
VðϕÞ and the coupling parameter LðϕÞ.
In the case in which the slow-roll parameter is a constant,

we have found that the effective potential as a function of
the scalar field corresponds to an exponential potential, as
can be seen of Eq. (41). In this situation, we have noted that
the attractor nSðNÞ was not necessary to rebuild the
exponential potential VðϕÞ, since from the definition of
the slow-roll parameter it is possible to obtain the effective
potential. In relation to the coupling parameter LðϕÞ when
ϵðNÞ ¼ const, we have found that the reconstruction of this
parameter is given by Eq. (44) for the case in which the
integration constant β is positive, and for the case in which
β < 0, the coupling parameter LðϕÞ is given by Eq. (45).
Also, we have obtained that in order to satisfy that the
number of e-folds N > 0, we have imposed the condition
α > βV.
To unify these results with the swampland criteria, we

have found a lower bound for the ansatz ϵðNÞ ¼ ϵ0 ¼ const
given by Eq. (48), together with the fact that the second
swampland conjecture ϵ0 > c2=2 ∼ 1=2. In particular for
the case in whichΔN ¼ 50 and from the observational data
in which α ¼ 1010, we have obtained a range for the
integration constant β when β > 0 is given by Eq. (49) and
for β < 0, we have obtained the range described by
Eq. (50). Here from this unification, we have found that
the range for the parameter β is very narrow, in order to
satisfy the observational data and swampland criteria. In
particular for the specific case in which the integration
constant β ¼ 0, we have obtained that the effective potential

VðNÞ ∝ N and by combining Eqs. (28) and (36), the
consistency relation r ¼ rðnSÞ becomes r ¼ 4ð1 − nSÞ.
Here we have found that the reconstruction of the model
does not work when the constant β ¼ 0.
Another ansatz on the slow-roll parameter ϵðNÞ that we

have studied for large N, is given by Eq. (51), in which the
parameter ϵðNÞ ∝ 1=N. Interestingly in this situation, we
have found that the reconstruction for the effective potential
VðϕÞ for β > 0 coincides with the natural inflation. In this
sense, we have obtained a pNGb potential given by Eq. (56)
in the reconstruction of this k-essence model. Here we have
recognized the constants β−1=4 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=ðβγÞp

as parameters
associated with mass scales from the particle physics
models. For the case in which the integration constant
β < 0, we have found the effective potential given by
Eq. (57), and this potential corresponds to the hyperbolic
inflation. Here the hyperbolic potential has a behavior of an
exponential or power law potential (quadratic potential)
depending on the limits applied to the scalar field.
Additionally, we have obtained that for the specific case
in which the integration constant β ¼ 0, the effective
potential corresponds to a chaotic potential in which
VðϕÞ ∝ ϕ2. Also, we have found that the reconstruction
for the coupling parameter LðϕÞ in the case in which the
integration constant β > 0 is given by Eq. (59) and for
β < 0 by Eq. (60).
As well, from the first swampland conjecture we have

obtained a lower limit for the parameter γ given by Eq. (62)
and by considering the second conjecture we have found
the limit γ > Nc2=2. In particular for the situation in which
ΔN ¼ 50, we have obtained numerically an upper bound
for the constant β given by β < 8.3 × 108 from both
criteria. On the other hand, considering the observational
data for the tensor to scalar ratio in which r < 0.07, we
have obtained a lower limit, and then we have found that
the range for the integration constant β given by
1.5 × 108 < β < 8.3 × 108. As before, we have found that
the range for the parameter β is very narrow from the
unification of the observational data and swampland
criteria. In this respect, these narrow ranges on the
parameter β found from this unification suggest that the
amplitude of primordial gravitational waves must have a
lower limit different from zero and similar to its upper
bound. In this sense, the results obtained from the uni-
fication of the observational data and swampland criteria
predict that the amplitude of primordial gravitational waves
can be detected in the future.
Thus, we have shown that it is possible to unify the

theoretical foundations from the SC and the observational
parameters corroborated by observations in the recon-
struction of the early universe (inflation epoch). In relation
to this point, we mention that the reconstruction of inflation
only from the observational attractors does not guarantee that
the SC are satisfied (see, e.g., [37,38]). In particular, it is
possible for an adaptation to the first swampland criterion to
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be associatedwith the range of the inflatonΔϕ; however, this
methodology of reconstruction only from the observational
counterpart does not ensure that the second conjecture is
satisfied.
Finally in this article, we have not addressed the

reconstruction to another attractor point nSðNÞ or slow-
roll parameter ϵðNÞ. Also, we have not included the TCC in

our analysis. We hope to return to these points in the near
future.
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