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There is a variety of cosmological models for dark matter and dark energy in which a possible interaction
is considered between these two significant components of the Universe. We focus on five suggested
models of interacting dark matter and dark energy and derive the modified virial theorem for them by
developing a previous approach. It provides an opportunity to study the evolution of this modified virial
theorem with time and interacting constants for different interacting models. Then, we use this obtained
virial condition to investigate the modified mass-temperature relation in galaxy clusters via three various
methods. It reveals that the effect of interaction between dark matter and dark energy merely appears in the

normalization factor of M ∝ T
3
2. This relation also leads to a new constraint on the constants of interacting

models, which only depends on the concentration parameter and density profile of the cluster. Then, we use
five observational datasets to check some proposed figures for the constants of interaction which have
resulted from other observational constraints. Finally, by fitting the observational results to the modified
mass-temperature relation, we obtain values for interacting constants of three models and four specific
cases of the two remaining models. In agreement with many other observational outcomes, we find that,
according to observational data for masses and temperatures of the galaxy clusters, energy transfer occurs
from dark matter to dark energy in the seven investigated models.

DOI: 10.1103/PhysRevD.102.123503

I. INTRODUCTION

As different observational outcomes have revealed the
existence of two unfamiliar contributors to the physics of
the Universe, research into the “dark sector” has gained
currency in modern cosmology. Dark matter (DM) was
proposed to clarify rotation curves of spiral galaxies, and
the idea behind dark energy (DE) was initially formed
to explain the late-time acceleration of the Universe.
Eventually, the Lambda cold dark matter (ΛCDM) model
accounted for the primary suggestion for the cosmos.
In spite of gravitational evidence for DM from galaxies

[1], clusters of galaxies [2], cosmic microwave background
(CMB) anisotropies [3], cosmic shear [4], structure for-
mation [5] and the large-scale structure of the Universe [6],
last several years of direct and indirect searches of those
DM particles did not give any convinced result [7]. In
addition, the accelerated expansion of the Universe mod-
eled with Λ [8] raised several problems, including the

“cosmological constant fine-tuning problem” and the
“cosmic coincidence problem” [9].
However, it could be possible to assume and investigate

more elaborate alternatives in which there is a feasible
nongravitational interaction between DM and DE. The idea
has extended in Ref. [10], where DM particle mass is
determined according to its interaction with a scalar field
with the energy density of DE. Such an assumption
resembles how the Higgs field results in quark and lepton
masses via interacting with them.
Not only is the notion of the interacting dark sector

interesting, but it could also be beneficial in terms of
solving some cosmological problems. By way of illustra-
tion, it may explain why the densities of DE and DM are of
the same order, despite the fact that they evolve differently
with redshift, namely the “coincidence problem” (see e.g.,
Ref. [11]). The interacting dark energy model should justify
the same observation in contrast to the ΛCDM model,
which modified gravity models do [12,13].
One can study the effects of modified gravity with

structure formation and verified employing dark-matter-
only N-body simulations [14]. Since experiments only
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measure photons which are emitted from the baryonic
matter, photons properties cannot be directly calculated
only from dark matter simulations. However, hydrodynam-
ical simulations are more appropriate in the observational
aspect, as they provide observables, such as the halo
profile, the turnaround radius [15], the splashback radius
[16], and the mass-temperature (M-T) relation [17].
There is a wide range of observations, simulations, and

theoretical research into the relationship between mass and
temperature of galaxy clusters which have been done here-
tofore. The only consensus among all these endeavors is
admission of an evident correlation between the total
gravitational mass of the clusters, x-ray luminosity, and
thereby their temperature (that is the temperature of the
intracluster medium). It is of significance to study this
relation, owing to the fact that the cluster masses are arduous
to measure directly through observation. Fundamental argu-
ments based on virialization density suggest that M ∝ T

3
2,

where T is the temperature of a cluster within a certain
radius (e.g., the virial radius) and M is the mass within the
same radius (see Refs. [18,19] for advanced discussion).
The mass-temperature relation can be directly compared
with observations. This relation has been used to put
constraints on modified gravity models. For example, using
the hydrodynamical simulations, Ref. [17] showed that the
M-T relation obtained in modified gravity theories is differ-
ent from the expectations of the general relativity.
Nevertheless, Ref. [20] showed that the mass-temperature
relation of theΛCDMmodel is similar to that of the f(R) and
symmetron models.
The paper is organized as follows. Section II briefly

presents the interacting dark energy model and specifically
introduces five interacting models on which we concentrate
in this study. We also obtain the virial theorem for these
interacting models. Section III is devoted to the mass-
temperature relation of galaxy clusters concerning the
interaction between dark matter and dark energy.
Section IV makes a comparison between observational
data and the obtained M-T relation to study constants of
interaction in the five models. We summarize and give our
final thoughts in Sec. V.

II. INTERACTING DARK ENERGY MODELS
AND VIRIAL THEOREM

The interacting dark energy model is composed of dark
matter and dark energy only, as a flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) background metric. The dark
sector interaction is modeled with a heat flux in the Bianchi
identities between the two dark components as

∇μT
μν
ðλÞ ≠ 0; ð1Þ

where Tμν
ðλÞ in the energy-momentum tensor of each

individual component, which is no longer conserved.

There are a number of interacting models which have
been suggested and investigated recently. According to
Ref. [11], the balance, Raychaudhuri, and FLRWequations
can be written as

_ρb ¼ −3Hρb; ð2Þ

_ρc ¼ −3Hρc þQ; ð3Þ

_ρx ¼ −3ð1þ wxÞHρx −Q; ð4Þ

_H ¼ −4πG½ρb þ ρc þ ð1þ wxÞρx�; ð5Þ

H2 ¼ 8πG
3

ðρb þ ρc þ ρxÞ; ð6Þ

whereH is the Hubble parameter, ρc is the cold dark matter
density, ρb is the baryonic matter density, and ρx represents
the density of dark energy [with wx < 0 constant of its
equation of state (EOS)].
Here, Q describes the rate of energy density transfer

between DE and DM, which results from the interaction
between them. For Q > 0, it describes the transfer of
energy from DE to DM, and on the other hand, Q < 0
shows the transfer of energy from DM to DE. Note that
baryons (b) and photons (γ) are not coupled to the dark
sector; therefore,Qγ andQb considered to be equal to zero.
A variety of functions has been proposed and studied for

Q, including linear and nonlinear combinations of ρx and
ρc. In this paper, we concentrate on five various models for
Q, which are rather simple and common in the literature:

model I∶ Q ¼ 3Hðαcρc þ αxρxÞ;
model II∶ Q ¼ 3Hξ1

ρcρx
ρc þ ρx

;

model III∶ Q ¼ 3Hξ2
ρ2x

ρc þ ρx
;

model IV∶ Q ¼ 3Hξ3
ρ2c

ρc þ ρx
;

modelV∶ Q ¼ 3ðΓcρc þ ΓxρxÞ: ð7Þ

Here, ξ1, ξ2, ξ3, αj, and Γj are the main parameters of
interacting dark sector (j ¼ c, x). The first four models are
interesting, due to being coefficient with the Hubble param-
eter, which leads to more straightforward calculations,
whereas model V is more complicated and has a physical
meaning. According to this model, the oscillation inflaton
field decays into relativistic particles during reheating
process after inflation in the early Universe, and Γj describes
decay width [11]. Constant parameters in models I to IV are
dimensionless, while in model V, Γj has the dimension of
the Hubble parameter. For further explanations about these
choices for Q, look at Refs. [13,21].
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A. Virial theorem in interacting models

In any theory of modified gravity, the virial theorem may
significantly change from its Newtonian form. To find a
virial relation in the context of general relativity, one has to
use the covariant collisionless Boltzmann equation (see
Ref. [22] and reference therein). This approach has been
extended to the virial theorem in the modified gravity
theories to study the dynamics of clusters of galaxies [23].
In homogeneous and isotropic background in which gravity
is not strong, the virial theorem gets the Newtonian form.
Before analyzing mass-temperature relation in galaxy

clusters, we have to investigate modifications to the virial
theorem with regard to interacting dark sector. In order to
achieve this objective, we derive the Layser-Irvine equation
for models I to V and then use this equation to obtain
the virial condition. This equation, and hence the virial
theorem, has been driven in Ref. [24] for model I; however,
we rewrite calculations so as to check it for the other four
models, as well.
Considering model V, the perturbation equations for DE

and DM in the subhorizon scale, which have been driven
in Ref. [25], can be written in the real space as

Δ0
c þ∇r̄ · vc ¼ 3ΓxðΔx − ΔcÞ=R; ð8Þ

v0c þHvc ¼ −∇r̄Ψ − 3ðΓc þ Γx=RÞvc: ð9Þ

Here, H indicates the Hubble parameter in the conformal
time, vc represents velocity of dark matter element, r̄ refers
to conformal coordinates, and the prime denotes the
derivative with respect to conformal time. Density contrasts
of DM and DE are defined as Δc ≈ δρc=ρc ¼ δc and
Δx ≈ δρx=ρx ¼ δx, and we symbolize the dark energy to
dark matter ratio by R ¼ ρc=ρx. Moreover,Ψ ¼ ψm þ ψd is
the peculiar potential and is described by the Poisson
equation,

∇2ψ j ¼ 4πGð1þ 3wjÞδρj; ð10Þ

where j stands for DM or DE. Considering ∇r ¼ 1
a∇r̄ and

defining σc ¼ δρc and σx ¼ δρx, Eqs. (8) and (9) can be
written as

_σc þ 3Hσc þ∇rðρcvcÞ ¼ 3ðΓcσc þ ΓxσxÞ; ð11Þ

∂
∂tðavcÞ ¼−∇rðaψcþaψxÞ−3ðΓcþΓx=RÞðavcÞ; ð12Þ

where a is background scale factor and H is its Hubble
parameter. Following the method of Refs. [24,26], we
multiply both sides of Eq. (12) by avcρcε̂ and then integrate
them over the volume (ε̂ indicates the volume element with
criterion of expansion ∂

∂t ε̂ ¼ 3Hε̂). For the left-hand side of
Eq. (12), it is possible to write

Z
avc

∂
∂t ðavcÞρcε̂ ¼

Z
avcð _avc þ a _vcÞρcε̂

¼
Z

a2Hρcv2cε̂þ
Z

a2ρcvc _vc ε̂ :

ð13Þ

The kinetic energy Kc, which stems from the movement of
DM particles, is defined as

Kc ¼
1

2

Z
v2cρcε̂: ð14Þ

It is possible to use this definition and write

∂
∂t ða

2KcÞ ¼ 2a _aKc þ a2
∂
∂t Kc

¼ 2a2HKc þ a2
�Z

vc _vcρcε̂þ
1

2

Z
v2c _ρc ε̂

þ 1

2
3H

Z
v2cρcε̂

�
: ð15Þ

Using Eq. (15) in Eq. (13), we have

Z
avc

∂
∂t ðavcÞρcε̂ ¼

∂
∂t ða

2KcÞ −
1

2
a2

Z
v2c _ρc ε̂

−
1

2
3Ha2

Z
v2cρcε̂: ð16Þ

Then, using Eq. (3) with Q of the model V in the last
equation gives

Z
avc

∂
∂t ðavcÞρcε̂ ¼

∂
∂t ða

2KcÞ − 3a2ðΓc þ Γx=RÞKc:

ð17Þ

For the first term in the right-hand side of Eq. (12),
integration gives

−
Z

avc∇rðaψc þ aψxÞρcε̂

¼ a2
Z

∇rðρcvcÞψcε̂þ a2
Z

∇rðρcvcÞψxε̂: ð18Þ

With the aid of Eq. (11), it can be related to potential energy

−
Z

avc∇rðaψc þ aψxÞρcε̂

¼ −a2ð _Ucc þHUccÞ − a2
Z

ψx
∂
∂t ðσcε̂Þ

þ 3a2fΓcUcx þ ΓxUxc þ 2ΓcUcc þ 2ΓxUxxg; ð19Þ
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where Uαβ ¼ 1
2

R
σαψβε̂; α and β stand for DM and DE,

interchangeably.
Eventually, integrating the second term in the right-hand

side of Eq. (12) leads to

−
Z

ðavcÞ23ðΓc þ Γx=RÞρcε̂ ¼ −6a2ðΓc þ Γx=RÞKc:

ð20Þ

Now, the Layzer-Irvine equation could be easily produced
by combination of Eqs. (17), (19), and (20) as

_Kc þ _Ucc þHð2Kc þUccÞ

¼ −
Z

ψx
∂
∂t ðσcε̂Þ − 3ðΓc þ Γx=RÞKc

þ 3fΓcUcx þ ΓxUxc þ 2ΓcUcc þ 2Γ2Uxxg: ð21Þ

In virial equilibrium, the first and second terms of the
previous equation are equal to zero. With the assumption of
homogeneous distribution of DE, σx ¼ 0, we get

Kc ¼ −
H − 6Γc

2H þ 3Γc þ 3Γx=R
Ucc: ð22Þ

In order to facilitate following calculations, we define
parameter λi and represent the virial condition as

Kc ¼ −λiUcc: ð23Þ

Obviously, λi is not necessarily equal to 1
2
in interacting

models and depends on interaction constants within Q.
The same procedure could be undergone for models I to IV.
To sum up the results for all the five models, λi is
(i ¼ I; II; III; IV; V)

model I∶ λI ¼
1 − 6αc

2þ 3αc þ 3αx=R
;

model II∶ λII ¼
1 − 6ξ1

Rþ1

2þ 3ξ1
Rþ1

;

model III∶ λIII ¼
1

2þ 3ξ2
RðRþ1Þ

;

model IV∶ λIV ¼ 1 − 6Rξ3
Rþ1

2þ 3Rξ3
Rþ1

;

modelV∶ λV ¼ H − 6Γc

2H þ 3Γc þ 3Γx=R
: ð24Þ

A constant of the EOS, wj, has similar behavior for
cold dark matter (CDM) and baryonic matter, that is
wm ¼ wc ¼ 0. Thus, the Poisson equation or Eq. (10) leads
to the same potential energy for both CDM and baryonic
matter. It is very common to assume that baryons can

merely interact with dark sector via gravitational field.
In this case, which we call ”first possibility,” Eq. (23)
results in

K ¼ Kc þ Kb ¼ −λiUG: ð25Þ

Notwithstanding such a simple assumption, interaction
between CDM and baryons might be considered a bit more
intricate. Although both CDM and baryonic matter have the
same potential function, they may interact separately, solely
with their own type of matter. Given the circumstances,
which we name “second possibility,” Eq. (23) gives

K ¼ −
�
λi

Ωc

Ωc þ Ωb
þ 1

2

Ωb

Ωc þΩb

�
UG; ð26Þ

whereΩ is the relevant density parameter for each element of
matter. In order to have brief calculations, we introduce
parameter λ0i and write the last equation as

λ0i ¼ λi
Ωc

Ωc þ Ωb
þ 1

2

Ωb

Ωc þ Ωb
; ð27Þ

K ¼ −λ0iUG: ð28Þ

Equations (25) and (28) are the substitutes for the classical
virial condition in dynamical equilibrium with respect to
interaction between DE and DM (considering the first or
the second possibility). It is apparent that these equations
with αj ¼ ξ1 ¼ ξ2 ¼ ξ3 ¼ Γj ¼ 0 reduce to the familiar
K ¼ − 1

2
U in noninteracting models.

Note that the assumption of homogeneous distribution of
DE in Eq. (22) would be denied by nonstandard models
of DE. As an example, detecting fewer clusters than the
prediction of the primary CMB anisotropies via the
Sunyaev-Zel’dovich effect by Planck satellite [27] has
given rise to the idea of clustering DE. In this regime,
DE contributes to clustering, and hence we cannot omit DE
terms in Eq. (21), whereby the virial theorem changes to a
more intricate form (see Refs. [28,29] to find out how
clustering DE model alters characteristics of virialized
haloes). In this work, we consider the common standard
DE and postpone more investigations on the modified virial
theorem with respect to DE with negligible sound speeds to
future studies.

III. MASS TEMPERATURE RELATION OF
GALAXY CLUSTERS

The primary approach to form mass-temperature relation
is combining the virial theorem with conservation of
energy, which brings about M ∝ Tζ. While the power-
law index appears to be ζ ¼ 3

2
in most masses, a “break” is

predicted in a myriad of observations and simulations at
low masses, which gives rise to ζ > 3

2
in this particular
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range. The physics behind this behavior has been under
study for a while; Ref. [30] attributed it to the cooling
process, and the heating process is stated in Ref. [31] to be
the rationale for this break, to name but a few. In order to
reconstruct theories concerning this break, Afshordi and
Cen have attributed it to the nonsphericity of the initial
protoclusters in Ref. [18], and Popolo has taken the angular
momentum acquisition by protoclusters into account in
Ref. [19]. Nevertheless, more recent studies, embracing
Refs. [32,33], revealed that there is no evidence of a double
slope in the M-T relation. However, the existence of this
break is still under discussion.
We try to take a look at three different methods which

have been provided by Afshordi and Cen and Popolo to
reconstruct the mass-temperature relation in galaxy clus-
ters, considering the modified virial theorem for interact-
ing dark matter and dark energy. The double slope in the
mass-temperature relation is not our principal focus, and
we neglect it, although there will be some mentions
of that.

A. Derivation of mass-temperature relation

In this section, we develop the method used by Afshordi
and Cen in Ref. [18] to rebuild the M-T relation in galaxy
clusters for interacting models. They begin with a definition
of the kinetic and potential energies and pursue calculations
by using velocity as a function of the gravitational potential
in the perturbation theory, Poisson equation, and Gauss’s
theorem to obtain the initial energy of a protocluster (i.e.,
Eta or the total energy of that at turnaround radius rta).
Since up to this point there is no indication of interacting
dark sector, we avoid repeating calculations, and we just
mention the outcome obtained in Ref. [18]:

Eta ¼ −
10πG
3

ρ2tar5taB: ð29Þ

Here, B is defined as

B≡
Z

1

0

δ̃taðr̃Þð1 − r̃2Þd3r̃; ð30Þ

where r̃≡ r
rta
, δ̃ta ≡ δta þ 3

5
ðΩta − 1Þ and Ωta and δta are

density parameter and density contrast at turnaround time,
respectively.
Taking a surface pressure term into account (which is

exerted at the boundary of the cluster), the virial condition
gives

Kvir þ Evir ¼ ð1 − 2λiÞUvir þ 3PextV: ð31Þ

There is the point where the impact of interacting dark
sector emerges. Here, Pext denotes the pressure on the outer
boundary of the virialized cluster, and V stands for the
volume. It is clear that the last equation could reduce to the

classical equation (used by Afshordi and Cen), if λi ¼ 1
2
.

Another equation for surface pressure is expressed by

3PextV ¼ −νUvir; ð32Þ

where the parameter ν is a coefficient constant to indicate
the considered correlation between exerted pressure and the
potential energy. Combining the two preceding equations
gives

Kvir þ Evir ¼ ð1 − 2λi − νÞUvir: ð33Þ

The surface pressure term also alters the relation between
kinetic and potential energy after virialization to

Kvir ¼ −
2λi þ ν

2
Uvir: ð34Þ

Inserting Uvir from Eq. (34) into Eq. (33) leads to

−
2λi þ ν

2 − 2λi − ν
Evir ¼ Kvir: ð35Þ

Then, the kinetic energy of the cluster can be separated into
fully ionized baryonic gas and DM as

Kvir ¼
3

2
Mcσ

2
v þ

3MbkBT
2μmp

; ð36Þ

where σv stands for the mass-weighted mean velocity
dispersion of DM particles in one dimension, Mb is the
total baryonic mass, kB is the Boltzmann constant, T is the
temperature, μ ¼ 0.59 is the mean molecular weight, and
mp represents the proton mass. To simplify the previous
equation, β̃spec is defined as

β̃spec ¼ βspec

�
1þ ðfβ−1spec − 1Þ Ωb

Ωb þΩc

�
: ð37Þ

Here, f is the fraction of baryonic matter in hot gas, and
βspec ≡ σ2v=ðkBT=μmpÞ. This definition assists to obtain
from Eq. (36)

Kvir ¼
3β̃specMkBT

2μmp
: ð38Þ

Now, using Eqs. (29) and (38) in Eq. (35), with respect to
conservation of energy (Eta ¼ Evir), we find

kBT ¼ 5μmp

8πβ̃spec

�
2λi þ ν

2 − 2λi − ν

�
H2

tar2taB: ð39Þ

In order to find an expression for H2
tar2ta, parameter e is

defined to be the energy of a test particle with unit mass
at rta; therefore, we can write it as
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e ¼ v2ta
2
−
GM
rta

: ð40Þ

We also have collapse time (or dynamical timescale) as

t ¼ 2πGM

ð−2eÞ32 : ð41Þ

With the assumption that this time is approximately
equal to the required time for virialization, and using the
Friedmann equations, one can obtain

−2e ¼ 5

4π
H2

tar2taA ¼
�
2πGM

t

�2
3

; ð42Þ

A≡
Z

1

0

δ̃iðr̃Þd3r̃ ¼
2

5

�
3π4

t2Gρta

�1
3

: ð43Þ

Using the last two equations together with Eq. (39), the
mass-temperature relation can be obtained:

kBT ¼
�
μmp

2β̃spec

��
2λi þ ν

2 − 2λi − ν

��
2πGM

t

�2
3

�
B
A

�
: ð44Þ

By inserting numerical values, this relation can be
written as

kBT ¼ ð6.62 keVÞQ̃
�

M
1015 h−1 M⊙

�
2=3

; ð45Þ

where the dimensionless factor Q̃ is defined:

Q̃≡
�
β̃spec
0.9

�
−1
�

2λi þ ν

2 − 2λi − ν

��
B
A

�
ðHtÞ−2=3: ð46Þ

Equation (45) is the mass-temperature relation in galaxy
clusters, regarding interaction between DE and DM. It is
noticeable that the effect of the interacting dark sector
merely appears in factor Q̃. Afshordi and Cen extensively
discuss this factor in Ref. [18]. Overall, β̃spec is a function
of the ratio of the kinetic energy per unit mass of DM to
the thermal energy of gas particles (βspec), the fraction of
baryonic matter in hot gas (f), and the ratio of baryonic
matter to DM in the sphere. According to different
simulations and observations, these three parameters vary
slightly, whereby the final value for β̃spec does not face
dramatic changes and is close to 0.9; hence, we fix it by this
figure in our calculations. The second variable, ν, depends
on density profile fðωÞ and concentration parameter c,
which is given by

νðc; fðωÞÞ≡ −
3PextV
U

¼ c3
R
∞
c fðωÞgðωÞω−2dωR
c
0 fðωÞgðωÞωdω

; ð47Þ

where

gðωÞ ¼
Z

ω

0

fðωÞω2dω: ð48Þ

For the density profile, we may choose the Navarro-Frenk-
White (NFW) profile as:

fNFWðωÞ ¼
1

ðωÞð1þ ωÞ2 ; ð49Þ

where ω ¼ r
rs

and rs is the scale radius given in [34].
This profile is proposed by Navarro, Frenk, and White
and has been widely used and studied in the literature.
However, there have been some objections to that, as
some recent observations have revealed a cored density
profile in the inner region of the haloes. Several density
profiles have been proposed to include the cored central
region, including the Burkert profile [35], which is
expressed by

fBurkertðωÞ ¼
1

ð1þ ωÞð1þ ω2Þ : ð50Þ

Clearly, considering each of these profiles may affect the
M-T relation, as well as the other properties of clusters.
Concentration parameter c is defined as the ratio of

virial radius to scale radius, that is rvir
rs
. The density profile

is exclusively described by c. In case there are not any
observational data, the following relation (from Ref. [36])
may be used to find the value of the concentration
parameter,

c ¼ 8.3

�
M200

1012 M⊙

�
−0.104

; ð51Þ

whereM200 is the mass enclosed by the radius in which the
average density is 200 times the critical density of the
Universe. Meanwhile, the mass-concentration relation has
extensively been under study, and it would have minuscule
differences in various works, such as Ref. [37].
In Eq. (46), parameter ðBAÞ plays the prominent role in the

break of mass-temperature relation in low masses. In spite
of the fact that both A and B are proportional to scale factor,
A
B remains constant. Considering an initial density profile
with multiple peaks (rather than a homogeneous distribu-
tion of density, or a profile with one central peak), Afshordi
and Cen obtain

�
B
A

�
¼ 4ð1− nÞ
ðn− 5Þðn− 2Þ

�
1−

nðnþ 3Þ
10ð1− nÞ ð1−Ωc −Ωb −ΩΛÞ

×

�
Ht

πðΩc þΩbÞ
�2

3

�
; ð52Þ
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where n is the index of the density power spectrum.
Choosing an initial density profile with multiple peaks
would be more comprehensive and rational because, in
hierarchical structure formation models, mass gradually
accumulates in several regions of the initial cluster and not
solely around the center. Taking nonsphericity in the
geometry of the collapsing protocluster into account, which
has a notable sign in low masses, Afshordi and Cen write
some equations for dispersion of factor A

B, or
ΔB
A . It reveals

more dispersion in low masses and consequently leads to a
so-called break in the M-T relation. However, as we have
mentioned before, not only is there no agreement on the
existence of this double slope, but there is also no sign of
interacting dark sector in this parameter; thus, we neglect it
for our study.
Furthermore, another parameter is introduced in

Ref. [18] as

y ¼ B

AðHtÞ23 : ð53Þ

This definition changes Eq. (46) to a more straightforward
form. It can be written as a function of density profile and
concentration parameter,

yðc; fÞ ¼ Δ1=3ð2 − 2λi − νÞc R c
0 fðωÞgðωÞωdω

3π2=3g2ðcÞ ; ð54Þ

whereΔ is the overdensity of the sphere and for a virialized
cluster is somewhere in the region of Δ ¼ 200, meaning
that the cluster has an average density of 200 times as much
as critical density of the Universe. The last relation is driven
in Ref. [18] regarding the virial theorem and the definition
of ν; meanwhile, owing to modification of the virial
theorem, the factor (1 − ν) has changed to ð2 − 2λi − νÞ
for interacting models.
Both the mass and temperature of a cluster have to be

positive to result in a genuine outcome. Combining this
principle with Eq. (46) shows a constraint on the possible
values for λi. As all contributors in Eq. (46) are positive
quantities, the ratio ð 2λiþν

2−2λi−ν
Þ should be positive. As a result,

we should have either

−
ν

2
< λi <

2 − ν

2
; ð55Þ

or

2 − ν

2
< λi < −

ν

2
: ð56Þ

Due to the fact that ν is always a positive parameter,
Eq. (56) necessitates a negative λi. Taking Eq. (25) into
account, a negative λi does not have any physical meaning;

thus, just Eq. (55) could be acceptable as a criterion for the
value of λi, and its more accurate form is

0 < λi <
2 − ν

2
: ð57Þ

Note that Eq. (46) is derived for our first possibility. It is
self-evident that by replacing λi with λ0i we would also be
able to study the second possibility.

B. Reforming the top-hat model

In order to form the break in the M-T relation, Del
Popolo takes angular momentum acquisition of the col-
lapsing protoclusters into consideration in Ref. [19] and
later reinforces this method by adding another term for
dynamical friction in Ref. [20]. The angular momentum
is acquired by interacting with neighboring protoclusters.
Del Popolo suggests two approaches to formulate the M-T
relation. The first approach is based upon the development
of the top-hat model, and we investigate it in this section,
with an additional assumption of the interacting dark sector.
To start this method, an ensemble of gravitationally

growing mass concentrations is assumed, and then with the
assistance of the Liouville’s theorem, Del Popolo obtains
the radial acceleration of a particle as

dvr
dt

¼ −
GM
r2

þ L2ðrÞ
M2r3

þ Λ
3
r − η

dr
dt

; ð58Þ

where η is the dynamical friction coefficient and LðrÞ
denotes the acquired angular momentum in radius r from
the center of the cluster. LðrÞ has a very complicated
relation, which can be found in Refs. [38,39]. Integrating
the previous equation leads to

1

2

�
dr
dt

�
2

¼ GM
r

þ
Z

r

0

L2

M2r3
drþ Λ

6
r2 −

Z
r

0

η
dr
dt

þ ϵ;

ð59Þ

Here, ϵ is the specific binding energy of the shell and can be
determined by condition of dr

dt ¼ 0 at rta. The preceding
equation represents four forms of potential energy; using
them in the modified virial condition for interacting dark
sector, we have

hKi ¼ −λihUGi − hULi þ hUΛi þ hUηi: ð60Þ

Here, hi indicates time averaged value of any quantity. By
using Eq. (32) and (33) in the previous equation, we get

hKi ¼ ð2λi þ νÞ
�
−
1

2
hUGi − hULi þ hUΛi þ hUηi

�
:

ð61Þ
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Defining reff as the time averaged radius of mass shell, Eq. (61) can be written as

hKi ¼ −
�
2λi þ ν

2

�
UG

�
1þ 2

UL

UG
− 2

UΛ

UG
− 2

Uη

UG

�

¼
�
2λi þ ν

2

�
GM
reff

�
1þ 2

reff
GM3

Z
reff

0

L2ðrÞ
r3

dr −
Λr3eff
3GM

− 2
reff
GM

Z
reff

0

η
dr
dt

�
: ð62Þ

The ratio of reff to rta is defined by ψ ¼ reff
rta
; then, we have

M ¼ 4πρbx31=3; χ ¼ rta=x1; Ω0 ¼
8πGρb
3H2

0

; ð63Þ

and as a result,

reff ¼ ψχ

�
2GM
Ω0H2

0

�
1=3

: ð64Þ

Then, putting hKi from Eq. (38) into Eq. (62) results in the M-T relation as

kBT
keV

¼ 1.58ðλi þ νÞ μ

βspec

1

ψχ
Ω1=3

0

�
M

1015 M⊙h−1

�
2=3

ð1þ ztaÞ ×
�
1þ

�
32π

3

�
2=3

ψχρ2=3b;ta
1

H2
0Ωb;0M8=3ð1þ ztaÞ

×
Z

reff

0

L2

r3
dr −

2

3

Λ
Ωb;0H2

0ð1þ ztaÞ3
ðψχÞ3 − 210=3

32=3
π2=3

�
ψχ

Ωb;0H2
0

��
ρb;0
M

�
2=3 1

1þ zta
×
Z

η
dr
dt

dr

�
: ð65Þ

Conservation of energy should be used in order to determine the value of ψ , or reff, as

hEi ¼ hKi þ hUGi þ hUΛi þ hULi þ hUηi ¼ UG;ta þ UΛ;ta þ UL;ta þUη;ta: ð66Þ
Using Eq. (61) in this equation, we find

−2λi − νþ 2

2
hUGi − ð2λi þ ν − 1ÞhULi þ ð2λi þ νþ 1ÞðhUΛi þ hUηiÞ ¼ UG;ta þ UΛ;ta þ UL;ta þ Uη;ta; ð67Þ

and with the aid of the method provided by Ref. [40] for the last equation, the cubic equation is obtained,

ð−2λ − νþ 2Þ þ ðχψÞ3ð2λi þ νþ 1Þϒ − ψð2þϒχ3Þ − 27

32

χ9ψ

ρ3taπ
3Gr8ta

�
ð2λi þ ν − 1Þ

Z
reff

0

L2ðrÞ
r3

drþ
Z

rta

0

L2ðrÞ
r3

dr

−
16π2

9
ð2λi þ νþ 1Þρ2tar6ta ×

�Z
reff

0

η
dr
dt

dr −
1

2λi þ νþ 1

Z
rta

0

η
dr
dt

dr
��

¼ 0;

with

ϒ ¼ Λ
4πGρta

¼ Λr3ta
3GM

¼ 2ΩΛ

Ω0

�
ρta
ρta;b

�
−1
ð1þ ztaÞ−3: ð68Þ

Then, it is possible to find ψ , or reff, by solving the above equation. Note that the M-T relation or Eq. (65) can be expressed
in terms of rvir as

kBT
keV

¼ 0.94ð2λi þ νÞ μ

βspec

�
rta
rvir

��
ρta
ρb;ta

�
1=3

Ω1=3
0

�
M

1015 M⊙h−1

�
2=3

ð1þ ztaÞ
�
1þ 15rvirρb;ta

π2H2
0Ω0ρ

3
tar

9
tað1þ ztaÞ

Z
rvir

0

L2ðrÞdr
r3

−
2

3

Λ
H2

0Ω0

�
rvir
rta

�
3
�
ρb;ta
ρta

�
1

ð1þ ztaÞ3
−
61=3

π1=3
rvirrta

�
ρb;ta
ρta

�
1=3

�
ρb;0
M

�
2=3 1

1þ zta
×

λ0
1 − μðδÞ

�
; ð69Þ

where μðδÞ and λ0 are parameters related to dynamical friction and are given in Ref. [41].
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The previous equation has been obtained for the mass-
temperature relation of galaxy clusters, considering the
effects of angular momentum acquisition (in Ref. [19]),
dynamical friction (in Ref. [20]), and eventually the impact
of interacting dark sector (in this paper). As can be seen, λi
plays a more profound role in this approach, in comparison
with Afshordi and Cen’s method, owing to its contribution
to both Eqs. (68) and (69). Similar to the preceding model,
λ0i could be substituted for λi to create the second possibility
in all equations.
This model is based on the assumption of cluster

formation with the evolution of a spherical top-hat density
perturbation, and the “late-formation approximation.” The
latter approximation states that any cluster at redshift z
is has just reached its virialization. Although it is a good
assumption in some cases, including the critical case of
Ω0 ¼ 1 (where the cluster formation is rapid), it constructs
impediments to other cosmological models.

C. Continuous formation model

After a discussion on limitations and disadvantages to
the former model in Ref. [19], Del Popolo derives the M-T
relation concerning the continuous formation model, which
had been used in Ref. [42] before. In this model, cluster
formation occurs gradually, instead of instantaneously. The
effects of angular momentum and dynamical friction with
respect to this approach have been studied in Refs. [19,20],
respectively. Now, we are going to study how interacting
dark sector makes a difference in the M-T relation in terms
of this procedure.
By integrating Eq. (58), Del Popolo obtains an expression

for the ratio of the total energy of a virialized cluster to its
mass or E

M. We avoid iterating calculations, so the result is

E
M

¼ 3m
10ðm − 1Þ

�
2πG
tΩ

�2
3

M
2
3

�
1

m
þ
�
tΩ
t

�
2=3

þ Kðm; xÞ
ðM=M0Þ8=3

þ λ0
1 − μðδÞ þ

Λχ3

3H2
0Ωb;0

�
; ð70Þ

where

tΩ ¼ πΩ0

Hoð1 − Ω0 −ΩΛÞ32
;

Kðm; xÞ ¼ ðm − 1ÞFxLerchPhiðx; 1; 3m=5þ 1Þ
− ðm − 1ÞFLerchPhiðx; 1; 3m=5Þ;

LerchPhiðx0; y0; z0Þ ¼
X∞
n¼0

x0n

ðz0 þ nÞy0 ;

F ¼ 27=3π2=3χρ2=3b

32=3H2Ω

Z
r

0

L2ðrÞdr
r3

;

x ¼ 1þ
�
tΩ
t

�
2=3

: ð71Þ

Meanwhile, M ¼ M0x−3m=5, and M0 is given in Ref. [42].

Combining Eqs. (70) and (38) with the virial theorem
results in

kBT ¼ 4

3
ã
μmp

2βspec

E
M

; ð72Þ

and afterwards

kBT
keV

¼ 2

5
ã
μmp

2βspec

m
m − 1

�
2πG
tΩ

�
2=3

M2=3

×

�
1

m
þ
�
tΩ
t

�
2=3

þ Kðm; xÞ
ðM=M0Þ8=3

þ λ0
1 − μðδÞ þ

Λχ3

3H2
0Ωb;0

�
: ð73Þ

Here, the parameter ã is the ratio of the kinetic to total
energy of the cluster, and according to Eq. (35), we have

ã ¼ 2λi þ ν

2 − 2λi − ν
: ð74Þ

Thus, we can see that the trace of interacting dark sector
emerges in a factor in the M-T relation. Like in the previous
procedures, putting λ0i instead of λi gives the equation for
the second possibility.

IV. RESULTS AND DISCUSSION

We use five different sets of observational data to
determine constants of the interacting dark sector for
models I to V, with the aid of the M-T relation
[Eq. (45)]. These observational datasets are provided in
Refs. [43–47]. The first set provides details of mass and
temperature for 32 clusters (hereafter “Obs. 1999”). The
second source of data is used by Afshordi and Cen in
Ref. [18] and consists of 39 clusters (hereafter “Obs.
2001”). The third dataset includes Chandra’s observations
for ten low-redshift clusters (hereafter “Obs. 2006”), and
details of 49 low-redshift clusters from Chandra are
collected in the fourth dataset (hereafter “Obs. 2009”).
Finally, the last resource comprises 20 clusters from XMM-
Newton observations (hereafter “Obs. 2015”).
Measurements of temperature are generally based on

x-ray observations; hence, the temperatures given in the
mentioned catalogs are x-ray temperature and could be
different than density-weighted temperature in Eq. (45),
which is averaged over the whole cluster. The reason lies
within the fact that x-ray temperature (TX) is exclusively
measured over the central brighter portion of the cluster.
To convert x-ray temperature to T in Eq. (45), we use the
relation below from Ref. [48]:

T ¼ TX½1þ ð0.22� 0.05Þ log10 TXðkeVÞ− ð0.11� 0.03Þ�:
ð75Þ
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As has been mentioned before, it is prevalent to consider
the overdensity of the virialized clusters to be about 200
times the critical density of the Universe. Therefore,M200 is
considered to be the cluster mass after virialization. The
masses given in Obs. 1999 to 2015 have been obtained with
respect to different methods, and none of them incorporates
M200. In order to convert these masses to M200 (e.g., M500

to M200), we use the relation Mδ ∝ δ−0.266 from Ref. [49],

where δ ¼ Mð<rÞ
4
3
πρcr3

. This relation has been obtained via fitting

the relation of M ∝ T
3
2 to simulation data, regarding differ-

ent values of δ. As our calculations revealed, considering
interaction between DM and DE has no impact on density
profile, and it only affects the factor of the M-T relation.
Therefore, this relation can be used for mass conversion.
Our aim is to fit observational data between M200 and T

to the relation ofM ∝ T
3
2, in order to find the matched value

of λi in the coefficient factor for each fit and each model and
then determine the interacting constants. In addition, some
values for constants of the interacting dark sector have been
recently proposed in Ref. [13] for models II, III, IV, and two
special cases of model I, based on various observations.
Observations related to Type-Ia Supernovae (SNe Ia), the
present value of the Hubble parameter (H0), cosmic
chronometers (CC), baryon acoustic oscillations (BAOs),
and the Planck measurements of the CMB temperature
anisotropy (Planck TT) are the five types of observation
which make up constraints in Ref. [13] to find constants
of the interacting dark sector. We also use those pro-
posed values in the M-T relation to make comparison
among outcomes and observational datasets for mass and
temperature.
Model I is expressed by two interacting constants,

namely αx and αc. Two specific and simple cases for this
model are αx ¼ 0 and αc ¼ 0. Figure 1 compares the mass-
temperature relation under the assumption of αx ¼ 0 for
model I with observational datasets, based on the values
obtained in Ref. [13]. According to Ref. [13], observations
of “SNeIaþH0” and “SNeIaþH0 þ CC” result in
αc ¼ −0.36 and αc ¼ −0.092, respectively. These two
values are not consistent with the constraint of Eq. (57)
and give the unreal negative temperatures for given masses.
The outcome of αc ¼ −0.0019, which is obtained from
“SNeIaþH0 þ CCþ BAO,” is illustrated with red lines
in Fig. 1. Likewise, the constraint of “PlanckTT” has given
αc ¼ −9.73 × 10−5, and its result in the M-T relation is
shown with black lines. For both predictions, solid lines are
related to the first possibility of the NFW density profile,
while dotted lines are attributed to the second possibility for
the same density profile. The results of the Burkert density
profile are presented by dashed lines (for the first possibil-
ity) and dot-dashes lines (for the second possibility). Note
that the differences between first and second possibilities
are very subtle in this model, whereby solid and dotted
black lines are almost indistinguishable. Datasets and their

fitted curves for Obs. 1999, 2001, 2006, 2009, and 2015 are
demonstrated with colors cyan, magenta, blue, green, and
brown, respectively (the fitted lines for Obs. 1999 and 2001
are virtually coincident).
We immediately infer that for the case of αx ¼ 0 in

model I a negative αc has to be very close to zero to not
violate the constraint of Eq. (57). However, these values are
not consistent with any observational dataset.
Figure 2 indicates the M-T relation for another special

case for model I, which is αc ¼ 0. Chosen colors and types
of lines are the same as Fig. 1, and, again, results of
SNeIaþH0 (with αx ¼ −0.26) and SNeIaþH0 þ CC
(with αc ¼ −0.27) violate the constraint of Eq. (57) and
consequently cannot be presented, whereas observations
of SNeIaþH0 þ CCþ BAO (with αx ¼ −0.037) and
PlanckTT (with αx ¼ −0.0052) are theoretically accept-
able. Here, the difference between the first and second
possibilities is easier to spot, in comparison with the former
case. As can be seen, these predicted values lead to higher
masses than observational data, like in the previous case.
The value of λi explains the ratio of kinetic to potential

energy after virialization and plays the most vital role in our
calculations. Figure 3 reveals how λ and λ0 change as a
function of αc or αx, in two mentioned cases of model I,
which are more simple. The blue lines are related to model I
with αx ¼ 0, and the red lines describe the same model with
αc ¼ 0. Therefore, the horizontal axis is attributed to αc in

FIG. 1. The behavior of the mass-temperature relation in
interacting model I, in special case of αx ¼ 0. Red lines indicate
the outcome of SNeIaþH0 þ CCþ BAO observations for αc,
and black lines display the prediction related to PlanckTT
observations for this parameter. The other five colors denote
five observational datasets from 1999 to 2015 (Obs. 1999: cyan;
Obs. 2001: magenta; Obs. 2006: blue; Obs. 2009: green; Obs.
2015: brown). Solid and dotted lines show the first and second
possibilities for NFW density profile, while dashed and dot-
dashed lines illustrate these two possibilities for the Burkert
profile, respectively.
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the former case and to αx in the latter one. Moreover, solid
lines are shown as the symbol of the first possibility, and the
dotted lines denote the second possibility. The black dashed
line is drawn with respect to the obtained value of λI for
Obs. 1999 (first possibility), and the dot-dashed line shows
the same value, but regarding the second possibility. We do

not display the outcomes of the other four observational
datasets to avoid an overcrowded graph.
For both situations of model I, large negative values of αj

are too far away from the observational results. As the
interacting constants are declining, both cases reach obser-
vational outcomes just before the zero points. Although
model I with αx ¼ 0 almost keeps its slope for positive
values, the case of αc ¼ 0 remains stable and would be
rather comparable with observational results if λ and λ0
were less than 0.5, even for higher values of αx. According
to the definition of Q for model I, it means that if the
transfer of energy from DE to DM primarily stemmed from
the density of DE different values for interacting constant
would not lead to considerable changes in the virial
condition. In other words, whether the protocluster consists
of a dense region of DE or not, there would be merely
negligible differences. However, it does not have great
practical importance, since we initially assumed that the
distribution of DE is unchanged through the interior and
exterior of the collapsing sphere. On the contrary, if the
energy transfer between DE and DM were mostly affected
by the density of DM, the virial theorem would gradually
change with interacting constant.
Description of model I in general (without any zero

constant) is more elaborate. Nonetheless, several con-
straints have been yet derived. For example, Ref. [11]
obtains four constraints between αc and αx. In our study,
Eq. (57) gives rise to another constraint for these two
parameters:

0 <
1 − 6αc

2þ 3αc þ 3αx=R
<

2 − ν

2
: ð76Þ

Figure 4 illustrates how different inputs of αc and αx give
different amounts of λI, for a small range from −0.1 to 0.1
as an example. Colors denote different values of λI for
each given αc and αx. The red line also constrains
acceptable choices for these two parameters, according
to Eq. (76). Here, we chose the value of c ¼ 5 for a typical
cluster and used NFW density profile to calculate ν. All
the points in the left-bottom corner of the figure (below
the red line) are unacceptable and have no physical
meaning due to our recent constraint. In this specific
region, which has been deliberately chosen to be close to
noninteracting models, every couple with αc ¼ −αx gives
approximately the same value for λI, while αc ¼ αx results
in very different numbers.
For models II, III, and IV, there is only one interacting

constant. For model II, Fig. 5 makes a comparison between
observational data and the outcome of obtained values for
ξ1 in Ref. [13]. Similar to the previous cases, the result
of SNeIaþH0, which has given ξ1 ¼ −0.53, violates
Eq. (57) and leads to negative temperatures. Despite
model I, SNeIaþH0 þ CC (with ξ1 ¼ −0.07) results in
an allowable prediction for the M-T relation, which is

FIG. 3. The behavior of λI (or λ0I) as a function of interacting
constant for two simple cases of model I. The black dashed line
represents the result of Obs. 1999 for the first possibility, and the
dot-dashed line shows this for the second possibility. The blue
lines are related to the case of αx ¼ 0, and the red lines indicate
model I with αc ¼ 0. Here, the solid lines describe the first
possibility, while the dotted lines are attributed to the second
possibility.

FIG. 2. Comparison between observational data and the pre-
dictions of SNeIaþH0 þ CCþ BAO and PlanckTT observa-
tions for the case of αc ¼ 0 in model I. Colors and types of lines
are chosen the same as in Fig. 1.
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represented with the purple lines in Fig. 5. The character-
istics of the other lines are selected similar to Figs. 1 and 2,
with ξ1 ¼ −0.06 for SNeIaþH0 þ CCþ BAO and
ξ1 ¼ −0.010 for PlanckTT. In this model, predictions
of SNeIaþH0 þ CC and SNeIaþH0 þ CCþ BAO are
close to some observational data. For example, the
SNeIaþH0 þ CCþ BAO result of the second possibility
in the NFW density profile and also the outcome of
SNeIaþH0 þ CC for the first possibility in the Burkert

density profile are approximately in agreement with Obs.
1999 and Obs. 2001.
Similarly, Fig. 6 shows the M-T relation for three

allowable values of ξ2 in model III and compares them
with fitted curves of the five observational datasets.
Here, the values have been proposed as ξ2 ¼ −0.40 for
SNeIaþH0 (unacceptable), ξ2 ¼ −0.04 for SNeIaþ
H0 þ CC (purple lines), ξ2 ¼ −0.08 for SNeIaþH0 þ
CCþ BAO (red lines), and ξ2 ¼ −0.0024 for PlanckTT
(black lines). It is clear that merely the results of SNeIaþ
H0 þ CCþ BAO for the NFW density profile are almost
close to Obs. 1999 and Obs. 2001, and, again, the other
predictions show higher masses than datasets.
For model IV, it is not possible for the result of SNeIaþ

H0 þ CC (ξ3 ¼ −0.27) to indicate an actual illustration of
the M-T relation, while the outcomes of SNeIaþH0

(ξ3 ¼ −0.23), although just for NFW profile, in addition
to the results of SNeIaþH0 þ CCþ BAO (ξ3 ¼ −0.038)
and PlanckTT (ξ3 ¼ −1.36 × 10−6) are credible. Figure 7
represents these three predictions and compares them with
observational datasets. In this graph, the prediction of
SNeIaþH0 is displayed by yellow lines, and its first
possibility of the NFW density profile is virtually consis-
tent with Obs. 2015.
The evolution of λ as a function of ξi (with i ¼ II; III; IV)

for models II, III, and IVare presented in Fig. 8. The brown,
green, and magenta lines are related to models II, III,
and IV, respectively. Like in Fig. 3, black lines describe the
obtained value from Obs. 1999 in which the solid lines
are drawn for the first possibility and dotted lines show the
second possibility. It demonstrates that, while the λ gradu-
ally decreases with the growth of ξi in models III and IV, it
sharply falls for model II.
Model V is the most complicated one. In addition to the

fact that there are two interacting parameters, there is also

FIG. 5. The M-T diagram of galaxy clusters based on model II.
The features are identical to Figs. 1 and 2, except for the purple
lines, which have emerged because the predicted value from
SNeIaþH0 þ CC observations is allowable in this model.

FIG. 4. Different combinations of αc and αx in the range
between −0.1 to 0.1 result in the value of λI from just less than 0.2
to over 1.6, as is illustrated in this figure. Colors stand for the
given value of λI for any given couple of αc and αx, according to
the guide strip in the right side. The red line specifies the obtained
constraint, which confines real physical choices.

FIG. 6. The M-T diagram for model III; all chosen colors and
types of lines are analogous to Fig. 5.
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an important dependency on H (and therefore redshift z),
which means that λ evolves with time. Although Ref. [13]
does not investigate model V, Ref. [11] claims that Γx and
Γc should have opposite signs. As a second condition, it is
possible to use Eq. (57) to constrain interacting constants.
Figure 9 shows the evolution of λ with time, for the simple
cases of Γx ¼ 0 or Γc ¼ 0. The horizontal axis indicates
HðzÞ
H0

from the present time to approximately z ¼ 0.75, when

HðzÞ
H0

¼ 1.5. The blue lines are related to the case of Γx ¼ 0,
and the red lines describe the case of Γc ¼ 0. Solid lines
and dotted lines denote the first and the second possibilities,
respectively. As an observational example, we used the
result from Obs. 2001, regarding the first (black dashed
line) and the second (black dot-dashed line) possibilities.
According to this graph, the farther away the cluster is
located, the more noticeable difference between the cases
of Γx ¼ 0 and Γc ¼ 0 can be seen. All the lines are
consistent with observational data in a low redshift, since
we fixed the value of interacting constants with regard to
this observational dataset itself, so it is not an interesting
point. In addition, the figure clearly reveals that the
constant of the virial condition was much lower than its
present value in the past. It means that further clusters in
interacting model V must behave more similarly to the
noninteracting model.
The core of our work is to determine interacting

constants with respect to observational datasets for mass
and temperature of galaxy clusters. As has been mentioned
before, we tried to find λi (and λ0i) in a way that the M-T
relation could accurately fit the observational curves.
Tables I and II summarize the information which has been
obtained for all situations, including NFW and Burkert
density profiles, the first and the second possibilities, five
observational datasets, and seven preferred and discussed
cases of models I to V. As far as the constants are
concerned, we obtained negative values for all of them.
Our results are in agreement with Ref. [13] in terms of
obtaining negative values for these constants. It means that
energy transfer occurs from DM to DE.

FIG. 8. The changes of λ or λ0 as a function of interacting
constant in models II, III, and IV. The black dashed line and black
dot-dashed line display the first and second possibilities for Obs.
1999, respectively. The behavior of the three mentioned models
are shown with brown (model II), green (model III), and magenta
(model IV) lines.

FIG. 9. The figure demonstrates how λ and λ0 evolve with time,
considering model V. Red and blue lines are related to Γx ¼ 0 and
Γc ¼ 0, respectively, and black lines denote the result of Obs.
2001 (with dashed line and solid lines representing the first
possibility and the dot-dashed line and dotted lines standing for
the second possibility).

FIG. 7. The behavior of the M-T relation for the predicted
values of model IV. Yellow lines represent the observations of
SNeIaþH0, and the other colors and types of lines are chosen
completely the same as the previous M-T graphs.
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In model V, it is common to define the dimensionless

constants γj ¼ Γj

H0
and write λV as

λV ¼
HðzÞ
H0

− 6γc

2
HðzÞ
H0

þ 3γc þ 3γx=R
: ð77Þ

Therefore, we calculated the constants γj rather than Γj.
From the calculated constants, it can be concluded that

more negative values are needed for a cored density profile
(Burkert) than a cuspy profile (NFW) to be consistent with
each observational dataset.
Note that even fine differences among observational

results may play considerable roles in the calculated con-
stants. In fact, in our method, every input value in Eq. (46)
contributes to measuring interacting constants. However, we
strove to incorporate as many various assumptions as
possible (embracing different density profiles, different
possibilities, and different observational datasets) in order
to compensate for the inaccuracies of parameters within Q.

V. CONCLUSION

We investigated the mass-temperature relation of galaxy
clusters for a number of interacting models of dark matter

and dark energy, which are summarized in Eq. (7). First of
all, we expanded the method provided in Ref. [25] to derive
the modified virial theorem for all these models of the
interacting dark sector in Sec. II. It immediately suggested
that there might be two different possibilities for this
condition, regarding two plausible behaviors of dark matter
through baryonic matter. Then, we used the modified virial
condition to obtain the M-T relation with respect to three
different procedures in Sec. III. It revealed that the effect of
interaction only emerges within the normalization factor of
the M-T relation.
The M-T relation led to a new constraint on interacting

constants, which totally depends on the concentration
parameter and density profile of the clusters [Eq. (57)].
This constraint is used to check the suggested constants of
interacting and showed that many of those suggested values
are not acceptable, due to resulting in negative masses for
given temperatures.
To analyze the obtained M-T relation, we focused on five

different observational datasets and compared their fitted
lines with many suggested values for interacting constants.
We considered two outstanding density profiles, which are
NFW and Burkert, and managed to calculate interacting
constants for seven cases of the five interacting models.
Overall, it appears that according to these observational

TABLE I. The calculated constants of interacting models regarding the first possibility, based on making comparison with
observational datasets of mass and temperature in galaxy clusters.

αc ðαx ¼ 0Þ αx ðαc ¼ 0Þ ξ1 ξ2 ξ3 γc ðγx ¼ 0Þ γx ðγc ¼ 0Þ
NFW Obs. 1999 −0.0334 −0.0517 −0.0459 −0.0709 −0.1235 … …

Obs. 2001 −0.0301 −0.0472 −0.0412 −0.0647 −0.1110 −0.0306 −0.0481
Obs. 2006 −0.0547 −0.0764 −0.0750 −0.1048 −0.2019 −0.0577 −0.0806
Obs. 2009 −0.0891 −0.1078 −0.1222 −0.1478 −0.3290 −0.0919 −0.1111
Obs. 2015 −0.0653 −0.0871 −0.0896 −0.1195 −0.2412 −0.0660 −0.0881

Burkert Obs. 1999 −0.0519 −0.0734 −0.0711 −0.1007 −0.1915 … …
Obs. 2001 −0.0488 −0.0701 −0.0670 −0.0961 −0.1803 −0.0497 −0.0713
Obs. 2006 −0.0747 −0.0958 −0.1024 −0.1314 −0.2758 −0.0788 −0.1010
Obs. 2009 −0.1117 −0.1242 −0.1532 −0.1703 −0.4125 −0.1152 −0.1280
Obs. 2015 −0.0880 −0.1070 −0.1207 −0.1467 −0.3251 −0.0890 −0.1081

TABLE II. The calculated constants of interacting models regarding the second possibility, based on making comparison with
observational datasets of mass and temperature in galaxy clusters.

αc ðαx ¼ 0Þ αx ðαc ¼ 0Þ ξ1 ξ2 ξ3 γc ðγx ¼ 0Þ γx ðγc ¼ 0Þ
NFW Obs. 1999 −0.0292 −0.0461 −0.0400 −0.0632 −0.1077 … …

Obs. 2001 −0.0262 −0.0420 −0.0360 −0.0576 −0.0968 −0.0267 −0.0427
Obs. 2006 −0.0479 −0.0691 −0.0657 −0.0947 −0.1769 −0.0506 −0.0729
Obs. 2009 −0.0786 −0.0992 −0.1078 −0.1360 −0.2903 −0.0811 −0.1023
Obs. 2015 −0.0574 −0.0792 −0.0787 −0.1086 −0.2118 −0.0580 −0.0801

Burkert Obs. 1999 −0.0454 −0.0663 −0.0623 −0.0909 −0.1677 … …
Obs. 2001 −0.0427 −0.0631 −0.0586 −0.0866 −0.1578 −0.0435 −0.0642
Obs. 2006 −0.0657 −0.0875 −0.0901 −0.1200 −0.2427 −0.0693 −0.0923
Obs. 2009 −0.0990 −0.1154 −0.1358 −0.1582 −0.3657 −0.1021 −0.1189
Obs. 2015 −0.0777 −0.0984 −0.1065 −0.1349 −0.2868 −0.0785 −0.0995
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datasets energy transfer should occur from DM to DE,
which leads to negative values for interacting constants. It
is completely consistent with the results of Ref. [13], which
has investigated many other observational constraints to
obtain numerical values for interacting constants. Although
different observations result in minuscule differences in the
figures, the figures are usually near zero. Furthermore, the
positive constants can solely be obtained for models I and
V, if both constants have nonzero values. It also appears
that for a cored density profile more negative constants are
obtained in comparison with a cuspy profile.
While the M-T relation and interacting constants were

being studied, we also allocated some parts of this paper to
discuss how the ratio of kinetic to the potential energy of a
virialized cluster behaves as a function of interacting
constants or redshift, for many of our interacting models.
Figures 3 and 8 show that various models of interaction
cause different behaviors of λ as a function of interacting
constant, although all of them lead to decreasing functions.
The graphs also indicated that for model V the value of λ
grows with time, resulting in the fact that more distant
clusters must be theoretically more consistent with non-
interacting models. Two specific cases of this model
(Γx ¼ 0 and Γc ¼ 0) are also more distinguishable from
each other when the cluster is located in a higher redshift.

Finally, we emphasized that the obtained values could be
extremely affected by the other parameters in the normali-
zation factor of the M-T relation, which we have fixed with
particular values for our research. However, considering a
variety of possibilities might have compensated for these
unwanted errors and impacts to some extent.
We should also mention that future observations of

cluster masses and temperatures may assist in obtaining
more exact numerical values for interacting constants. To
this purpose, cluster masses should be determined via the
other methods of mass measurement, such as gravitational
lensing, instead of obtaining the mass from x-ray temper-
ature. The Euclid satellite and large synoptic survey tele-
scope (LSST) are two upcoming projects which would
provide improved mass data through gravitational lensing
observations. To have a better temperature dataset,
eROSITA is one of the x-ray surveys that would help. In
addition, future simulations with regard to verified assump-
tions according to observational results can suggest
improved density profile and velocity dispersion for
galaxy clusters and consequently play a beneficial
role in the certainty of our calculations. The impact of
velocity dispersion emerges in β̃spec. Clearly, any change in
the assumed characteristics of the halo profile can affect the
final outcomes.
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