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Scalar fields like dilaton appear in quantum field theory (QFT) due to scale symmetry breaking. Their
appeal also extends to modified theories of gravity, like FðRÞ gravity, Horva Lifshitz gravity etc. In unified
theories they make their appearance through compactification of the extra dimension. Apart from resolving
the issues of compactification scale and size, the particles of their fields can also turn out to be excellent
candidate to solve the dark energy (DE) and dark matter (DM) problem of the universe. In this work we
study their mixing dynamics with photons in a magnetized media, by incorporating the effect of parity
violating part of the photon polarization tensor, evaluated in a finite density magnetized media. This piece,
though in general is odd in the external magnetic field strength eB; in this work we however have retained
terms toOðeBÞ. We are able to demonstrate in this work that, in magnetized medium a dilatonic scalar field
ðϕÞ can excite the two transverse degrees of freedom (DOF) of the photons. One due to direct coupling and
the other indirectly through the parity violating term originating due to magnetized medium effects. This
results in the mixing dynamics being governed by, 3 × 3 mixing matrices. This mixing results in making
the underlying media optically active. In this work we focus on the spectro-polarimetric imprints of these
particles, on the spectra of the electromagnetic (EM) fields of gamma ray bursters (GRB). Focusing on a
range of parameters (i.e., magnetic field strength, plasma frequency ðωpÞ, size of the magnetized volume,
coupling strength to photons and their mass) we make an attempt to point out how space-borne detectors
should be designed to optimize their detection possibility.
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I. INTRODUCTION

The study of scale symmetry and its consequences on the
dynamics of particles has drawn attention for some time
now. The particles appearing as Goldstone bosons of a
spontaneously broken scale symmetry [termed dilaton,
ϕðxÞ] [1,2], have emerged from studies in QFT. There
are many theories those predict the existence of dilatons.
Apart from QFT, they appear in higher dimensional unified
theories, for instance, in five dimensional Kaluza-Klein
theory, they appear as the five-five component of the five
dimensional metric, formulated to unify gravity with
electromagnetism. In string and superstring theory they
appear from compactification of the extra dimensions and
are called string dilaton or moduli [3,4].
In some scale invariant extensions of standardmodel, they

are made to communicate with the standard model sector via
an underlying conformal sector, where they acquiremass due
to breaking of the conformal invariance[5,6]. This physics of
these models are phenomenologically rich with predicting
power that can be tested in collider based experiments.On the
other hand dilatons of unified theories, acquire their masses
from the curvature of the extra dimension.

They couple to the standard model fields by the trace of
their energy momentum tensor Tμ

ν, associated with the
anomalous divergence of the dilaton 4-current.1 Due to this,
dilatons may induce other observable signatures, like
dilatonic fifth force: [7–11]; bending of light [12], violation
of equivalence principle [13], decay into two photons and
optical activity [14–18] in external magnetic field (B).
When the last two phenomena—that is decay of ϕ into two
massless spin one photons and optical activity–follow from
the interaction Lagrangian,

Lint ¼ −
1

4M
ϕFμνFμν: ð1:1Þ

In Eq. (1.1) Fμν is the usual field strength tensor for EM
field. And M is the symmetry breaking scale related to the
inverse of the coupling constant gϕγγ, between the quanta of
scalar ðϕÞ and photon (γ) fields. Equation (1.1) leads to
their lifetime τϕ against decay to two photons ϕ → γγ,
given by τϕ ∼ 1

g2ϕγγm
3
ϕ
[1]. If the life time of these particles for

some values of gϕγγ and mϕ, turn out to be comparable to
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1The nonzero anomalous divergence, even for massless par-
ticles may realized due to scaling violation through radiative
corrections.
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the age of the universe, then the particles of the field ϕ will
turn out to be excellent candidates for DM. Thus, simulta-
neously solving the two out standing problems of contem-
porary physics. There are other particles that produce
similar signals that can be found in [19–46] but we will
not discuss those in this work.
Given the state of our current understanding that, about

27% of the total matter-energy density is in the form of
DM, it is possible to find what percentage of the total DM
density is composed of ϕ, at some epoch t, as cosmological
relic density ρðtÞ, from [47]:

ρðtÞ ¼ ρd

�
ηd
η

�
3

e
− t
τϕ ¼ ζð3Þ

π2
g�ðtÞ
g�d

T3ðtÞe−
t
τϕ : ð1:2Þ

In Eq. (1.2) ρd corresponds to the density and ηd the
magnitude of the scale factor of Friedman-Robertson-
Walker metric. And g�d along with g�ðtÞ are the number
of DOF available at the time of decoupling and the same at
the epoch t, respectively. The last line in Eq. (1.2) has been
obtained demanding entropy conservation in the co-moving
volume of the universe, from the time of decoupling to the
epoch t. Since the same depends crucially on the lifetime τϕ,
that in turn depends on coupling constant gϕγγ ¼ 1

4M and the
scalar mass mϕ—therefore the estimations of them are of
utmost importance. In this studywe focus on their estimation
from the EM signals originating due to the energetic
activities taking place in far away magnetized astrophysical
objects. To that end, we have taken a spectro-polarimetric
route in this paper, to estimate the parameters (mass and
coupling constant) associated with these particles (dilatonic
scalars) by studying their mixing dynamics in presence of
magnetized plasma present in the GRB environments. We
also indicate how such (spectro-polarimetric) analysis can
be used to design the space-borne gamma-ray or x-ray
detectors—optimally—to detect dilaton signatures through
EM signals coming from GRB.
At this juncture we would like to digress a little, so as to

pay attention to other possible physical sources those may
contribute to the polarization of electromagnetic field,
coming from far away sources. One of the possible sources
that can contribute the polarization of electromagnetic beam
is contribution from magnetized medium and the other can
be coming due to the presence of pseudoscalar particles like
axions or majorons, those couple to photons through mass
dimension-5 operators. Rotation of the plane of polarization
of light due to magnetized medium, that is referred usually
in literature as Faraday effect, takes place in a material
medium having nonzero chemical potential, and a magnetic
field B when the magnetic field is oriented along the
direction of propagation of the photon k. On the other
hand the effect due to the scalar dilaton or pseudoscalar
field, takes place, when the component of the magnetic
field, is perpendicular to the wave vector k. So these two
effects can be distinguished from each other by making the

external magnetic field parallel or perpendicular to the
propagation direction of the photons. It is also worth noting
that, rate of rotation for plane of polarization for Faraday
effect is inversely proportional to the square of the energy ω
of the photons of light. Hence the same can also serve as a
distinct feature to identify magnetized matter induced
polarization effect from dilatons or axions. Moreover the
degree of circular polarization associated with the beam of
light passing through magnetized medium turns out to be
zero. The details of these can be found in the Appendix A.
Now coming to the issue of distinguishing scalars

(dilatons) from pseudoscalar axions, it should be noted
that in magnetized vacuum, the dilaton mixes with polar-
ized light having a plane of polarization oriented along the
magnetic field and axion mixes with light having plane of
polarization orthogonal to the magnetic field. This simple
picture however gets complicated with the incorporation of
magnetized matter effects. We will come back to this issue
in a separate publication. Having taken these extra-dilaton
sources, contributing to polarization of light from astro-
physical sources, we turn our attention to the investigations
carried out in this work.
During the course of this investigation, we have achieved

few new things. They include the following (i) a better
understanding of the unique nature of the set of basis vectors
and the form factors, those appear in the description of the
gauge fields (i.e., of the photons), for a system in an external
magnetic field eB, and magnetized media. We provide the
transformation properties of the EM form factors and other
factors under charge conjugationC, parityP, and time reversal
T and use them to justify the coupling between the different
DOFavailable to the system, leading to a 3 × 3mixingmatrix;
(ii) We next provide the analytical route to diagonalize this
matrix exactly, using an unitary similarity transformation.
(iii) The resulting equations of motion obtained thereby are
also exact. (iv) The numerical estimates of the Stokes
parameters obtained from the numerical estimates of the form
factors, thus are also without any approximations.
The organization of this document is as follows: In

Sec. II we introduce the details, about properties of the
gauge fields (GF), the form factors those describe them
(GF) and their transformation properties under C, P, and T.
This is followed by the description of the photon polari-
zation tensor in a magnetized medium in Sec. III, called
inclusion of matter effects. In Sec. IV we move on to
analyzing the equations of motion for ðγ − ϕÞ interacting
system in a magnetized medium and demonstrate that the
mixing matrix for ϕFμνFμν interaction, turns out to be 3 × 3

instead of 2 × 2, that is usually encountered in magnetized
vacuum, or unmagnetized plasma. We discuss the exact
analytic diagonalization of the same in the following
subsection. Subsequently we justify the same from discrete
symmetry point of view. The solutions of the field
equations followed by construction of the Stokes param-
eters is obtained in Sec. V. In Sec. VI we introduce a typical
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GRB model and its environment that being used in this
analysis and the polarization signals one would get from
the same, for some bench mark values of gϕγγ and mϕ, the
geometry of the GRB fireball and plasma frequency. The
possible EM signatures of dilaton interaction from such
environments is presented in Sec. VII. Section VIII houses
a discussion on the relevance of our analysis to space-borne
detectors. In Sec. IX, we conclude by providing an outlook
for possible future directions of investigation. And lastly,
we have provided an Appendix that deals with the details of
polarization evaluation in a magnetized media. Few impor-
tant details regarding discrete symmetry transformations
and their effects on equations of motion can be found in
the Supplemental Material [48] in a separate work, titled:
“Supplementary materials for Exploring scalar-photon
interactions in energetic astrophysical events.”

II. ELECTROMAGNETIC FORM
FACTORS FOR AνðkÞ

In the standard formulation of the massless Abelian
gauge theory, that describes the dynamics of photons, the
action is written as,

S ¼ −
1

4

Z
FμνFμνd4x ð2:1Þ

where in Eq. (2.1), the field strength tensor, Fμν ¼
∂μAνðxÞ − ∂νAμðxÞ, and AνðxÞ defines the gauge potentials
having four DOF. The dynamics of these fields in vacuum
are described by two transverse �1 helicity states.
In contrast to vacuum, photons in a medium, acquire one

additional DOF, (the third) longitudinal DOF—in addition
to the two (existing) transverse degrees of freedom. In a
situation like this, if there exists an external magnetic field
B too, then the gauge fields AνðkÞ corresponding to the in
medium photons, can be expressed (in momentum space),
in terms of four EM form factors: AkðkÞ, A⊥ðkÞ, ALðkÞ,
AgfðkÞ and four orthonormal four vectors ðbð1Þν; Iν; ũν; kνÞ
constructed out of the available 4-vectors and tensors for
the system (in hand). They are given by:

AνðkÞ ¼ AkðkÞN1bð1Þν þ A⊥ðkÞN2Iν þ ALðkÞNLũν

þ NkAgfðkÞkν: ð2:2Þ

Here, Nis are the normalization constants. Rewriting
AνðkÞ in terms of unit vectors; b̂ð1Þν ¼ N1bð1Þν, Îν ¼ N2Iν,
ˆ̃uν ¼ NLbð1Þν and k̂

ν ¼ Nkkν we can rewrite Eq. (2.2) in the
following form,

AνðkÞ¼AkðkÞb̂ð1ÞνþA⊥ðkÞÎνþALðkÞ ˆ̃uνþAgfðkÞk̂ν: ð2:3Þ

The vectors, introduced in Eq. (2.3), are defined as,

b̂ð1Þν ¼ N1kμF̄μν; Îν ¼ N2

�
bð2Þν −

ðũμbð2Þμ Þ
ũ2

ũν
�
;

ˆ̃uν ¼ NL

�
gμν −

kμkν

k2

�
uμ;

bð2Þν ¼ kμ
˜̄Fμν; ˜̄Fμν ¼ 1

2
ϵμνλρF̄λρ: ð2:4Þ

The normalisation constants, N1, N2, NL, and Nk in
Eq. (2.2) are given by,

N1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−bð1Þμ bð1Þμ
q ¼ 1

K⊥B
; N2 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
−IμIμ

p ¼ K
ωK⊥B

;

NL ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ũμũμ

p ¼ k2

jKj ; and Nk ¼
1ffiffiffiffiffiffiffiffi
−k2

p ð2:5Þ

where K⊥ ¼ ðk21 þ k22Þ
1
2.

A. Degrees of freedom

In field theory, medium effects are incorporated into
a system by adding a self-energy corrected effective
Lagrangian to the tree level Lagrangian. For electromag-
netic theory, this term, in momentum space has the form
Aμð−kÞΠμνðk; T; μÞAνðkÞ; when, ΠμνðkÞ, the polarization
tensor, can be expressed in terms of transverse and
longitudinal form factors, ΠTðk; T; μÞ and ΠLðk; T; μÞ as,

Πμνðk; T; μÞ ¼ ΠTðk; T; μÞ½Rμν −Qμν�
þ ΠLðk; T; μÞQμν: ð2:6Þ

These form factors happen to be functions of finite
temperature (T), finite chemical potential (μ) and scalars
made out of photon four vector kμ and center of mass four
velocity of the medium uμ individually, or as a combination
such as ðk:uÞ. Tensors Rμν and Qμν are the transverse and
longitudinal projection operators, constructed using the
momentum and center of mass velocity four vector uμ as,

Rμν ¼ g̃μν; Qμν ¼
ũμũν
ũμũμ

and g̃μν ¼ gμν −
kμkν
k2

: ð2:7Þ

The transverse and longitudinal form factors have the
property that, in the limit ω ¼ 0 and k → 0, ΠT turns out to
be zero and ΠL → ω2

p [49–52]. The limit ω ¼ 0 and k → 0,
also termed “the” infrared limit, remains an interesting one
to study the long wavelength paradigm of the gauge field
excitations in a finite density medium. One can analyse
infrared dynamics of the system in configuration space by
first taking the limit mentioned before, followed by
replacing ki → i∂i in Eq. (2.6). The addition of the back-
ground medium induced pieces to the effective Lagrangian
may not change the number of degrees of freedom of the
system always. For instance, in presence of a background
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external electromagnetic field, the number of physical
degrees of freedom of quantum corrected U(1) gauge
theory with fermions, remains the same as that of the free
theory. However, the same may not be true when the
medium induced quantum corrections are incorporated.
The presence of unphysical degrees of freedom in a
dynamical system can be inferred from the Hessian matrix
of the same. If the Hessian matrix,

∂2Leff

∂ _Aμ∂ _Aν

; ð2:8Þ

is noninvertible, the system is constrained, i.e., the number
of dynamical variables are more than the number of
physical degrees of freedom present in the system. In that
case, to analyze the dynamics of the system one needs to
follow the procedures outlined in [53–56]. With finite
density effects, incorporated (in the effective Lagrangian)
this method, may get very complicated due to presence of
higher derivative terms. However, once the procedures (of
constraints analysis) are completed, one can find the
number of physical degrees of freedom (N) from the
equation,

N ¼ Npsv − 2 × n1 − n2
2

ð2:9Þ

where, Npsv stands for number of phase space variables, n1
stands for the number of first class constraints, and n2
stands for number of second class constraints.
One can, however infer the number of physical degrees

of freedom for a system made up of material medium, with
lesser effort, if one considers taking the infrared limit we
discussed earlier. In this limit the full in medium effective
Lagrangian (LeffðmÞ) takes the form,

LeffðmÞ ¼ −
1

4
FμνFμν þ 1

2
ω2
pA0A0; ð2:10Þ

barring the Lorentz structure, this Lagrangian is very close
to the Lagrangian of the Proca model. This model although
is gauge noninvariant, but is known to produce correct
number of degrees of freedom present in a massive theory.
This system is known to have two second class constraints
and no first class constraints. Therefore, the number of
physical degrees of freedom, for the same, turns out to be

three. Hence one needs to remove one of the four
components of the gauge potential, of U(1) gauge theory,
to describe the dynamics of the system. We expect the same
to hold good in our case. The same is performed in the next
paragraph.

B. Gauge fixing

In continuation to the discussion presented in the last
paragraph, we consider Agf, that appears in the equation for
the gauge potential,

AνðkÞ ¼ AkðkÞb̂ð1Þν þ A⊥ðkÞÎν þ ALðkÞ ˆ̃uν
þ AgfðkÞk̂ν; ð2:11Þ

to be a redundant DOF and consider it to be equal to zero.
As a consequence, it turns out that kνAνðkÞ ¼ 0 that
happens to be the Lorentz gauge condition. We would like
to point out at this stage that basis vectors bð1Þν, Iν, and ũν

used in Eq. (2.2) to describe the gauge potential AνðkÞ can
always be rotated to a set of new basis vectors, however the
associated DOF in that basis may not be suitable for normal
mode analysis of the system.

C. Some interesting observations

We further note here that Eqs. (2.4) and (2.5) offer some
interesting possibilities: in terms of them one can further
define an effective metric in the momentum space as:

Gμν ¼
kμkν
k2

−
bð1Þμ bð1Þν

bð1Þα bð1Þα
−
IμIν
IαIα

−
ũμũν
ũαũα

; ð2:12Þ

using the orthogonal properties of the unit vectors it would
be possible to raise or lower the index of any general four-
vector in momentum space using Eq. (2.12). The other
important consequence that follows from the definition of
the vector potential given by Eq. (2.2) is that, the gauge
fixed 4-vector potential is spacelike irrespective of the
choice of the momentum.

D. Discrete symmetries

The discrete symmetry (C, P, and T) transformation
properties of the tensors, four vectors and the EM form
factors, used here are listed in Table I. These transformation
laws (agrees with ones provided in [57–60]) can be

TABLE I. Transformation properties for the vectors, tensors and the EM form factors used to describe AνðkÞ in equation (2.2), under
C, P, and T.

Fμν kμ uμ ũμ bð1Þμ bð2Þμ Iμ Ak A⊥ AL fμν i ϵμνρσ

C −Fμν kμ −uμ −ũμ −bð1Þμ −bð2Þμ −Iμ Ak A⊥ AL −fμν i ϵμνρσ
P Fμν kμ uμ ũμ bð1Þμ bð2Þμ Iμ Ak A⊥ AL fμν i −ϵμνρσ
T −Fμν kμ −uμ −ũμ −bð1Þμ −bð2Þμ −Iμ −Ak −A⊥ −AL −fμν −i −ϵμνρσ
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obtained using standard QFT based arguments, except for
uμ (which can be obtained following the subtle principles of
finite temperature field theory [20]).
The question that one would like to pose next is, how the

interaction between charge neutral spin zero scalar with
charge neutral spin one photon, does take place. The best
way to address the same is to take a discrete symmetry
based route, done elegantly by Raffelt and Stodolosky in
[15], invoking CP symmetry based arguments. Where in
the case of a pseudoscalar-photon (aγ) interacting system, it
was shown that, in such situation, the CP asymmetric
pseudoscalar (axion) would couple to the CP asymmetric
part of the photon’s four vector potential. The CP sym-
metric part of the photon would remain decoupled. That is
the CP violating helicity state (HS) of the photon would
couple with the CP violating axion field and evolve in
space and time; and the CP preserving helicity state of the
photon propagates freely. The dilaton photon dynamics, in
similar situation, can be cast in a similar language as that of
[15], exchanging the role of pseudoscalars with scalars and
scalars with pseudoscalars.
Instead of following [15], we describe such a system here

in terms of a set of EM form factors of the photon,
described by Eq. (2.2), introduced originally in [61].
The proof of these transformations properties are provided
in the Supplemental Material [48] of this article. Having
these transformation laws in hand, we argue here, that, the
equations of motion, when cast in terms of the electro-
magnetic form factors of Table I, follow a PT symmetry
based coupling dynamics, instead of the CP symmetry
based one of [15].

III. INCORPORATION OF MATTER EFFECTS

Matter effects are incorporated through the inclusion of a
term of the following form, AμðkÞΠμνðT; μÞAνðkÞ in the
effective Lagrangian (Leff ) of the system [61–68]. This is a
scalar made up by contracting in-medium photon self-
energy tensor ΠμνðT; μÞ with gauge fields. Parameters T
and μ stand for temperature and chemical potential as
arguments of ΠμνðT; μÞ. The contribution of the parity
violating part of weakly magnetized matter effects is
similarly taken into account by the inclusion of a term
like AμðkÞΠp

μνðk; μ; T; eBÞAνðkÞ, when Πp
μνðk; μ; T; eBÞ is

the photon polarization tensor evaluated by incorporating
the effects of the magnetic field to first order in the external
field strength eB but exact to all orders in T, and chemical
potential μ; using Schwinger’s proper time propagator and
formalism of finite temperature field theory [20,21,68]. The
photon polarization tensor Πp

μνðkÞ can be parametrized in
the following way:

Πp
μνðkÞ ¼ ΠpðkÞPμν; when Pμν ¼ iϵμναβk

kα

jkj u
β̃k ; ð3:1Þ

where ϵμναβk is Levi-Civita tensor and subscript βk ¼ 0, 3.

In the expression for Pμν, β̃k is defined such that if
βk ¼ 0 then β̃k ¼ 3 and vice-versa. We have discussed
the C, P, and T symmetries of polarization tensors in the
Supplemental Material [48] part of this article.

IV. EQUATIONS OF MOTION

Coupling between different DOF of the system, follows
from the form of the effective Lagrangian. As can be
verified from the Eq. (4.1) that, the couplings between PT
violating AkðkÞ and PT symmetric ϕðkÞ, is generated in the
ϕγ tree level Lagrangian (in external B field), through
a multiplicative T violating factor i. Thus making the
Lagrangian PT symmetric. The other two PT violating EM
form factors A⊥ðkÞ and ALðkÞ (see Table I) have no
coupling with the scalar ϕðkÞ. Therefore, with the inclusion
of ΠμνðT; μÞ, when ALðkÞ becomes nonzero, the mixing
matrix for ϕγ remains 2 × 2. But with the inclusion of the
effective Lagrangian due to parity violating magnetized-
media-induced photon self-energy term ΠpðkÞμν, AkðkÞ
gets coupled to A⊥ðkÞ, thus turning the mixing matrix
3 × 3 one.
In magnetized media the effective Lagrangian—for ϕγ

interactive system including the effective interaction
Lagrangians due to photon self-energy terms—is given by:

Leff;ϕ ¼
1

2
ϕ½k2−m2

ϕ�ϕ−
1

4
fμνfμνþ

1

2
AμΠμνAνþ 1

2
AμΠp

μνAν

−
1

4
gϕγγϕF̄μνfμν: ð4:1Þ

In Eq. (4.1), the variable fμν stands for field strength for
the dynamical photons, F̄μν stands for the external field,
Πμν photon polarization tensor in an isotropic medium, and
Πp

μν the same in presence of magnetic field to OðeBÞ.

A. Mixing dynamics of ϕγ interaction

The equations of motion for the EM form factors for the
photon, in the notation of [61], turn out to be,

ðk2 − ΠTÞAkðkÞ þ iΠpðkÞN1N2

�
ϵμνδβ

kβ

jkj u
δ̃kbð1ÞμIν

�
A⊥ðkÞ

¼ igϕγγϕðkÞ
N1

; ð4:2Þ

ðk2 − ΠTÞA⊥ðkÞ − iΠpðkÞN1N2

�
ϵμνδβ

kβ

jkj u
δ̃kbð1ÞμIν

�
AkðkÞ

¼ 0; ð4:3Þ

ðk2 − ΠLÞALðkÞ ¼ 0: ð4:4Þ
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The three equations [i.e., (4.2)–(4.4)], describe the dynam-
ics of the three DOF of the photon. And the equation of
motion for ϕðkÞ is given by,

ðk2 −m2ÞϕðkÞ ¼ −
igϕγγAkðkÞ

N1

: ð4:5Þ

It can be checked that, left and right sides of the
equations of motion above are PT symmetric. Once
the discrete transformations P and T are applied on the
variables on both side including background field (F̄μν),
EM form factors of the photons and the scalar field ϕðkÞ,
then it would show that equations of motion (4.2) to (4.5)
remain invariant. For notational convenience, we next
introduce the new variables F and G, defined as,

F¼N1N2ΠpðkÞ
�
ϵμνδβ

kβ

jkju
δ̃kbð1ÞμIν

�
and G¼gϕγγ

N1

: ð4:6Þ

and would be using them when necessary.
As stated already, in the long wavelength limit, we

consider ΠT ¼ ω2
p, where ωp ¼

ffiffiffiffiffiffiffiffiffi
4παne
me

q
, is the plasma

frequency, α is EM coupling constant and ne is the density
of electrons. Other terms, F and G introduced in Eq. (4.6)

can be simplified to yield F ¼ ω2
p

ω
eB cos θ

me
and G ¼

−gϕγγB sin θω, where θ is angle between the photon

propagation vector k⃗ and the magnetic field B. Here me
is the mass of electron and e is the electronic charge. The
equations of motion can now be cast in terms of a compact
4 × 4 matrix M0 as:

½ k2I −M0 �

0
BBB@

AkðkÞ
A⊥ðkÞ
ALðkÞ
ϕðkÞ

1
CCCA ¼ 0; ð4:7Þ

As we have already mentioned that for ϕγ system in
magnetized media, the longitudinal DOF of the photon
does not mix with the others, therefore we will exclude this
term from the mixing matrix, and upon doing so, the 4 × 4
mixing matrix M0, reduces to a 3 × 3 mixing matrix
denoted by M. For the sake of brevity, using shorthand
notations the equations of motions now can be written as
follows:

½ k2I −M �

0
B@

AkðkÞ
A⊥ðkÞ
ϕðkÞ

1
CA ¼ 0; ð4:8Þ

where the 3 × 3mixing matrix for scalar-photon interaction
is given as:

M ¼

0
B@

ω2
p iF −iG

−iF ω2
p 0

iG 0 m2
ϕ

1
CA: ð4:9Þ

In order to get the Stokes parameters Iðω; zÞ;
Qðω; zÞ;Uðω; zÞ, and Vðω; zÞ for the EM radiation, we
need to get the solutions of the field equations; this can be
achieved by diagonalizing M.

B. Diagonalizing the 3 × 3 mixing matrix

Our objective here is to obtain the analytical expression
for the unitary matrix U, that would diagonalize the
Hermitian matrix M. We express the elements of the same
(U), using analytic algebraic expressions. Using this matrix
we carry out the numerical operations, to estimates of
observables, maintaining a numerical accuracy of the order
∼10−9 or more for the identities those the various inter-
mediate expressions of interest need to satisfy during the
numerical evaluation of the form factors.
In order to obtain the elements of the matrix U, we need

to solve the characteristic equation, obtained from Det
ðM−λjIÞ¼0, and find the eigenvalues (roots), i.e., λj
(j ¼ 1, 2, and 3) of M. Then use the same to find the
corresponding eigenvectors. Finally, using the eigenvec-
tors, construct the unitary matrix U that would diagonalize
M. The characteristic equation for this 3 × 3 Hermitian
matrix M, for obvious reasons turns out to be a cubic
equation, having real roots. The cubic equation, that
follows from the characteristic equation can be written,
in terms of parameters b, c, and d as,

λ3j þ bλ2j þ cλj þ d ¼ 0; ð4:10Þ
where the parameters b, c, and d are functions of the
elements of mixing matrix M, denoted by:

b ¼ −ð2ω2
p þm2

ϕÞ ð4:11Þ

c¼ω4
pþ2ω2

pm2
ϕ−

�
eBk
me

ω2
p

ω

�
2

− ðgϕγγB⊥ωÞ2 ð4:12Þ

d¼−
�
ω4
pm2

ϕ−
�
eBk
me

ω2
p

ω

�
2

m2
ϕ− ðgϕγγB⊥ωÞ2ω2

p

�
: ð4:13Þ

Next we introduce the variables P andQ, when P ¼ ð3c−b2
9

Þ
and 2Q ¼ ð2b3

27
− bc

3
þ dÞ; in terms of them, the roots turn

out to be,

λ1 ¼ R cos αþ ffiffiffi
3

p
R sin α − b=3;

λ2 ¼ R cos α −
ffiffiffi
3

p
R sin α − b=3;

λ3 ¼ −2R cos α − b=3;

with

(
α ¼ 1

3
cos−1ð QR3Þ

R ¼ ffiffiffiffiffiffiffiffiffiffiffið−PÞp
sgnðQÞ:

ð4:14Þ
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It should be noted that, in principle R can be equal to
þ ffiffiffiffiffiffiffiffiffiffiffið−PÞp

or −
ffiffiffiffiffiffiffiffiffiffiffið−PÞp

. However, the ratio ðQR3Þ should be
positive. Hence to maintain the same, the factor of sgnðQÞ
is introduced in the definition of R. The orthonormal
eigenvectors Xj of M are to be found from the matrix
relation, ½M − λjI�½Xj� ¼ 0. In terms of its elements, the
normalized column vector ½Xj�, can be denoted as,

½Xj� ¼

2
64
ūj
v̄j
w̄j

3
75:

Following standard methods, one can evaluate these
elements in terms of the roots λj and elements of the

mixing matrix M. The same, once evaluated turns out
to be,

ūj ¼ ðω2
p − λjÞðm2

ϕ − λjÞ ×N ðjÞ
vn ;

v̄j ¼ i
eBk
me

ω2
p

ω ðm2
ϕ − λjÞ ×N ðjÞ

vn ;

w̄j ¼ igϕγγB⊥ωðω2
p − λjÞ ×N ðjÞ

vn ;

when
n
N ðjÞ

vn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½jūjj2þjv̄jj2þjw̄jj2�

p : ð4:15Þ

Here N ðjÞ
vn is normalization constant and j can take

values from 1 to 3. Using these eigenvectors, the unitary
matrix U turns out to be

U ¼

0
BBB@

ðω2
p − λ1Þðm2

ϕ − λ1ÞN ð1Þ
vn ðω2

p − λ2Þðm2
ϕ − λ2ÞN ð2Þ

vn ðω2
p − λ3Þðm2

ϕ − λ3ÞN ð3Þ
vn

i
eBk
me

ω2
p

ω ðm2
ϕ − λ1ÞN ð1Þ

vn i
eBk
me

ω2
p

ω ðm2
ϕ − λ2ÞN ð2Þ

vn i
eBk
me

ω2
p

ω ðm2
ϕ − λ3ÞN ð3Þ

vn

igϕγγB⊥ωðω2
p − λ1ÞN ð1Þ

vn igϕγγB⊥ωðω2
p − λ2ÞN ð2Þ

vn igϕγγB⊥ωðω2
p − λ3ÞN ð3Þ

vn

1
CCCA: ð4:16Þ

The unitary matrix given by (4.16) is the one that
diagonalizes the 3 × 3 mixing matrix M.

C. Field equation: Solutions

In order to obtain the solutions of the coupled
equation (4.8), one can multiply the same by inverse of
the matrix given by Eq. (4.16), i.e., U−1 from left and use
the property of unitary matrices UU−1 ¼ 1 in the same
equation [i.e., (4.8)], and arrive at,

U−1½ k2I −M �UU−1

0
BB@

AkðkÞ
A⊥ðkÞ
ϕðkÞ

1
CCA ¼ ½ k2I −MD �

0
BB@

A0
kðkÞ

A0⊥ðkÞ
ϕ0ðkÞ

1
CCA

¼ 0: ð4:17Þ

In order to arrive at Eq. (4.17), we have used the
following notation,0

BB@
A0
kðkÞ

A0⊥ðkÞ
ϕ0ðkÞ

1
CCA ¼ U−1

0
BB@

AkðkÞ
A⊥ðkÞ
ϕðkÞ

1
CCA: ð4:18Þ

The matrix MD is the diagonal matrix given by MD ¼
U−1MU that has eigenvalues of the matrix M as diagonal
elements. For a propagating beam of photons in the z
direction, k3 can be retransformed back to z by taking the
inverse Fourier transform. Furthermore one can express
k2 ≈ 2ωðω − i∂zÞ, without much loss of generality, to use

in the equations of motion. As a result of these (algebraic
manipulations), Eq. (4.17) assumes the following form,

2
664 ðω − i∂zÞI −

2
664

λ1
2ω 0 0

0 λ2
2ω 0

0 0 λ3
2ω

3
775
3
775
2
64
A0kðzÞ
A0⊥ðzÞ
ϕ0ðzÞ

3
75 ¼ 0: ð4:19Þ

It is now easy to solve the matrix equation (4.19) by
introducing the variables, Ωk ¼ ðω − λ1

2ωÞ, Ω⊥ ¼ ðω − λ2
2ωÞ

and Ωϕ ¼ ðω − λ3
2ωÞ. Instead of going into details, we can

now directly write down the solutions for the column vector
½AðzÞ;ϕðzÞ�T ; in matrix form, they are given by:

2
64
AkðzÞ
A⊥ðzÞ
ϕðzÞ

3
75 ¼ U

2
64
e−iΩkz 0 0

0 e−iΩ⊥z 0

0 0 e−iΩϕz

3
75U−1

2
64
Akð0Þ
A⊥ð0Þ
ϕð0Þ

3
75:

ð4:20Þ

The magnitudes of the elements of column vector
½Að0Þ;ϕð0Þ�T in Eq. (4.20), are subject to the boundary
conditions appropriate for the physical situations assumed to
be prevailing at the origin. Using the same initial conditions,
one can write down the solution of Eq. (4.20) for Akðω; zÞ,
and it is
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Akðω;zÞ¼ ðe−iΩkzū1ū�1þe−iΩ⊥zū2ū�2þe−iΩϕzū3ū�3ÞAkðω;0Þ
þðe−iΩkzū1v̄�1þe−iΩ⊥zū2v̄�2þe−iΩϕzū3v̄�3Þ
×A⊥ðω;0Þ: ð4:21Þ

Similarly the perpendicular component A⊥ðω; zÞ, turns out
to be,

A⊥ðω;zÞ¼ðe−iΩkzv̄1ū�1þe−iΩ⊥zv̄2ū�2þe−iΩϕzv̄3ū�3ÞAkðω;0Þ
þðe−iΩkzv̄1v̄�1þe−iΩ⊥zv̄2v̄�2þe−iΩϕzv̄3v̄�3Þ
×A⊥ðω;0Þ: ð4:22Þ

Here, the parameters A⊥ðω; 0Þ and Akðω; 0Þ present in
Eqs. (4.21) and (4.22) are A⊥ðω; zÞ and Akðω; zÞ respec-
tively under the boundary conditions as mentioned above.

V. POLARIMETRIC OBSERVABLES

From the coherency matrix, Stokes parameters, can be
obtained. In terms of the solutions of the field equations
they can be expressed as:

Iðω; zÞ ¼ hAk�ðω; zÞAkðω; zÞi þ hA�⊥ðω; zÞA⊥ðω; zÞi;
Qðω; zÞ ¼ hAk�ðω; zÞAkðω; zÞi − hA�⊥ðω; zÞA⊥ðω; zÞi;
Uðω; zÞ ¼ 2RehAk�ðω; zÞA⊥ðω; zÞi;
Vðω; zÞ ¼ 2ImhAk�ðω; zÞA⊥ðω; zÞi: ð5:1Þ

It should be noted that Vðω; zÞ in the Eq. (5.1) is a measure
of circular polarization. Other polarimetric observables,
i.e., degree of linear polarization, ellipticity angle, polari-
zation angle, follows from the expressions of Iðω; zÞ,

Qðω; zÞ, Uðω; zÞ, and Vðω; zÞ. The degree of linear
polarization (represented as PL) along with Π, are
given by,

PL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðω; zÞ þ U2ðω; zÞ

p
Iðω; zÞ ; ð5:2Þ

Π ¼ Qðω; zÞ
Iðω; zÞ ð5:3Þ

The polarization angle (represented by Ψp), is defined in
terms of U and Q, as:,

tanð2ΨpÞ ¼
Uðω; zÞ
Qðω; zÞ : ð5:4Þ

The ellipticity angle (denoted by χ), is defined as:

tanð2χÞ ¼ Vðω; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðω; zÞ þ U2ðω; zÞ

p : ð5:5Þ

A. Stokes Iðω;zÞ and Qðω;zÞ
To find out the expressions of Stokes parameters Iðω; zÞ

and Qðω; zÞ for scalar-photon mixing, we need to evaluate
jAkðω; zÞj2 and jA⊥ðω; zÞj2, using Eqs. (4.21) and (4.22).
Introducing the new variables, P ¼ jū1jjv̄1j, Q ¼ jū2jjv̄2j
and R ¼ jū3jjv̄3j, the expression for jAkðω; zÞj2 in terms of
them, turns out to be,

jAkðω; zÞj2 ¼
�
1 − 4jū1j2jū2j2sin2

�ðΩk −Ω⊥Þz
2

�
− 4jū2j2jū3j2sin2

�ðΩ⊥ −ΩϕÞz
2

�

− 4jū3j2jū1j2sin2
�ðΩϕ −ΩkÞz

2

��
× jAkðω; 0Þj2

− 4

�
PQ sin2

�ðΩk −Ω⊥Þz
2

�
þQR sin2

�ðΩ⊥ −ΩϕÞz
2

�
þRP sin2

�ðΩϕ −ΩkÞz
2

��
× jA⊥ðω; 0Þj2

þ ½jū1ū2jðjū1v̄2j − jū2v̄1jÞ sinððΩk −Ω⊥ÞzÞ þ jū2ū3jðjū2v̄3j − jū3v̄2jÞ sinððΩ⊥ −ΩϕÞzÞ
þ jū3ū1jðjū3v̄1j − jū1v̄3jÞ sinððΩϕ −ΩkÞzÞ� × 2jAkðω; 0ÞjjA⊥ðω; 0Þj: ð5:6Þ

Similarly, we can find jA⊥ðω; zÞj2. The expression for the same, in terms of the variables introduced earlier, turns
out to be,
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jA⊥ðω; zÞj2 ¼ −4
�
PQ sin2

�ðΩk −Ω⊥Þz
2

�
þQR sin2

�ðΩ⊥ −ΩϕÞz
2

�
þRP sin2

�ðΩϕ − ΩkÞz
2

��
× jAkðω; 0Þj2

þ
�
1 − 4jv̄1j2jv̄2j2sin2

�ðΩk −Ω⊥Þz
2

�
− 4jv̄2j2jv̄3j2sin2

�ðΩ⊥ − ΩϕÞz
2

�

− 4jv̄3j2jv̄1j2sin2
�ðΩϕ −ΩkÞz

2

��
× jA⊥ðω; 0Þj2

þ ½jv̄1v̄2jðjū1v̄2j − jū2v̄1jÞ sinððΩk −Ω⊥ÞzÞ þ jv̄2v̄3jðjū2v̄3j − jū3v̄2jÞ sinððΩ⊥ − ΩϕÞzÞ
þ jv̄3v̄1jðjū3v̄1j − jū1v̄3jÞ sinððΩϕ − ΩkÞzÞ� × 2jAkðω; 0ÞjjA⊥ðω; 0Þj: ð5:7Þ

Using Eqs. (5.6) and (5.7), one can get the expressions for Iðω; zÞ and Qðω; zÞ as follows:

Iðω; zÞ ¼ jAkðω; zÞj2 þ jA⊥ðω; zÞj2 ð5:8Þ

Qðω; zÞ ¼jAkðω; zÞj2 − jA⊥ðω; zÞj2: ð5:9Þ

B. Stokes Uðω;zÞ and Vðω;zÞ
The expressions for Uðω; zÞ and Vðω; zÞ can be written in terms of Uk, U⊥, Uk⊥ and Vk, V⊥, Vk⊥. For Uðω; zÞ they are

given by:

Uk ¼ jū1ū2jðjv̄1ū2j − jū1v̄2jÞ sinððΩk −Ω⊥ÞzÞ þ jū2ū3jðjv̄2ū3j − jū2v̄3jÞ sinððΩ⊥ −ΩϕÞzÞ
þ jū3ū1jðjv̄3ū1j − jū3v̄1jÞ sinððΩϕ −ΩkÞzÞ: ð5:10Þ

U⊥ ¼ jv̄1v̄2jðjv̄1ū2j − jū1v̄2jÞ sinððΩk −Ω⊥ÞzÞ þ jv̄2v̄3jðjv̄2ū3j − jū2v̄3jÞ sinððΩ⊥ −ΩϕÞzÞ
þ jv̄3v̄1jðjv̄3ū1j − jū3v̄1jÞ sinððΩϕ − ΩkÞzÞ: ð5:11Þ

Uk⊥ ¼ ðjv̄1ū2j − jū1v̄2jÞ2 cosððΩk −Ω⊥ÞzÞ þ ðjv̄2ū3j − jū2v̄3jÞ2 cosððΩ⊥ −ΩϕÞzÞ
þ ðjv̄3ū1j − jū3v̄1jÞ2 cosððΩϕ −ΩkÞzÞ: ð5:12Þ

And similarly, the expressions for Vk, V⊥, and Vk⊥, introduced to express the measure of circular polarization Vðω; zÞ are

Vk ¼ ½ðjū1v̄1jjū1j2 þ jū2v̄2jjū2j2 þ jū3v̄3jjū3j2Þ þ jū1ū2jðjv̄1ū2j þ jū1v̄2jÞ cosððΩk − Ω⊥ÞzÞ
þ jū2ū3jðjv̄2ū3j þ jū2v̄3jÞ cosððΩ⊥ −ΩϕÞzÞ þ jū3ū1jðjv̄3ū1j þ jū3v̄1jÞ cosððΩϕ −ΩkÞzÞ�: ð5:13Þ

V⊥ ¼ ½ðjū1v̄1jjv̄1j2 þ jū2v̄2jjv̄2j2 þ jū3v̄3jjv̄3j2Þ þ jv̄1v̄2jðjū1v̄2j þ jv̄1ū2jÞ cosððΩk − Ω⊥ÞzÞ
þ v̄2v̄3jðjū2v̄3j þ jū3v̄2jÞ cosððΩ⊥ −ΩϕÞzÞ þ jv̄3v̄1jðjū3v̄1j þ jū1v̄3jÞ cosððΩϕ −ΩkÞzÞ�: ð5:14Þ

Vk⊥ ¼ ½ðjū1j2jv̄2j2 − jū2j2jv̄1j2Þ sinððΩk −Ω⊥ÞzÞ þ ðjū2j2jv̄3j2 − jū3j2jv̄2j2Þ sinððΩ⊥ −ΩϕÞzÞ
þ ðjū3j2jv̄1j2 − jū1j2jv̄3j2Þ sinððΩϕ −ΩkÞzÞ�: ð5:15Þ

Using them, one can write the expressions for Uðω; zÞ and Vðω; zÞ as follows:

Uðω; zÞ ¼ Uk × 2jAkðω; 0Þj2 þ U⊥ × 2jA⊥ðω; 0Þj2 þ Uk⊥ × 2jA⊥ðω; 0ÞjjAkðω; 0Þj ð5:16Þ

Vðω; zÞ ¼ Vk × 2jAkðω; 0Þj2 þ V⊥ × 2jA⊥ðω; 0Þj2 þ Vk⊥ × 2jA⊥ðω; 0ÞjjAkðω; 0Þj: ð5:17Þ

The measures of linear and circular polarization Qðω; zÞ, Uðω; zÞ and polarization angle Ψp are plotted as a function of
energy in Figures 1. The discussion about them is provided below.
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VI. POSSIBLE PHYSICAL SITUATION

Gamma ray bursts (GRB) are stellar sized explosions
(those usually found with an associated luminosity of
about ∼1051 ergs= sec), observed to occur isotropically
at a redshifts z ¼ 1 or z ¼ 2 with the EM radiation in
the form of x-ray or gamma-ray, with fluence of the order of
10−6 ergs=cm2, as observed from earth [69]. Their size is
usually estimated from the timescale variability of their
light curve, estimated to be around 0.1 sec [70].
Accordingly their size is estimated to be ∼109 cm. The

energy is believed to be injected from an object, like
neutron star, of radius 106 cm. The high the degree of linear
polarization associated with the EM spectrum (e.g., Π ¼
27� 11% in GRBICO826A), associated with them, makes
one infer, a strong magnetic field ∼109 Gauss to be
associated with them. The plasma frequency ωp associated
with them are believed to lie above, ωp > 10−17 GeV
[71–73]. The mechanism behind this explosion is currently
under scrutiny; one believes that the polarization studies
with intensity of the spectra holds the key to understanding
the geometry of the magnetic field at the source and the
energy release mechanism. Though these aspects can be
studied using classical physics, one needs to be cautious,
since factors like the presence of ALPs also potentially
contribute to the modification of these observables.
Therefore any anomaly in these signatures may provide
a clue to the existence of ALPs.

VII. RESULTS

Assuming a global magnetic field of magnitude ∼109
Gauss, to be existing in a GRB fireball—over a path length
of ∼109 cm, the stokes parameters Q, U and the polari-
zation angle Ψp were estimated using Eqs. (5.1) and (5.4)
numerically—for scalar-photon coupling constant gϕγγ ∼
10−11 GeV−1 with ωp ∼ 10−13 GeV, and mϕ ∼ 10−2 eV.
The plots of the same are provided in Fig. 1.

Since the degree of linear polarization Π, turns out to be
equal to Q, when U is neglected (as is evident from the
respective definitions of the same), we can get the infor-
mation about the amplitude variation forQ, Π andΨp over
the energy (ω) interval 1.0×10−6GeV<ω<1.0×10−5GeV
from the plots provided in Fig. 1.
In most of the astrophysically viable, satellite based

experiments, the detectors are hardly line sensitive, they
usually operate over a broad energy range; hence the
parameters (of Stokes) are usually estimated by adding
the signal strengths over an energy range (according to the
detector under consideration), followed by an averaging of
the signal—over that same energy range.
Now if we look into these plots, we notice the existence of

the highly oscillating part for the estimates ofQ in the energy
interval, 1.0 × 10−6 GeV < ω < 3.0 × 10−6 GeV and a
similar pattern also for U in the interval 1.0 × 10−6 GeV <
ω < 2.0 × 10−6 GeV. This is followed by anmonotonically
increasing or decreasing pattern (left panel of Fig. 1). Similar
effect, is identifiable in the plot forΨp vs energy in the right
panel of the same figure (i.e., Fig. 1).
Therefore if the standard satellite based experiment

dictated data extraction prescriptions are followed—while
extracting signals from the datum like that producing figure
[1]-it would lead to the generation of an extremely low
strength unphysical signal. This happens due to a major
cancellation of the contributions due to strong oscillations
of the actual signals around zero.
Thus, in order to get a realistic and statistically significant

estimate of a signal, from detectors operating over a broad
energy range, onemust explore the available parameter space,
over which thevariations of the signals are stablewith energy.
A collection of data sets for the spectro-polarimetric

observables, those (unlike the ones of Fig. 1) looked stable
under the variation with respect to ωÞ, were found in the
1–10 KeV range, when the numerical size of the parameters
ωp, and mϕ were considered at around ∼10−15 GeV, while

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5 6 7 8 9 10

Pa
ra

m
et

er
 U

Parameter Q

Pa
ra

m
et

er
s 

Q
 a

nd
 U

ω (10-6 GeV)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

1 2 3 4 5 6 7 8 9 10

Po
la

ri
za

tio
n 

an
gl

e 
(Ψ

p
)

ω (10-6 GeV)

FIG. 1. (In left), plot of Stokes parameter Q and U vs energy (ω). (In right), plot of polarization angle (Ψp) vs energy (ω). Here,
mϕ ¼ 1.0 × 10−12 GeV and ωp ¼ 3.7 × 10−13 GeV).
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the path length(z), magnetic field strength(eB) and scalar
photon coupling strength (gϕγγ) were maintained at 106 cm,
eB ∼ 109 Gauss and, gϕγγ ∼ 10−11 GeV−1, respectively.
The plots of the spectro-polarimetric observables, such

as linear polarization (PL), polarization angleΨp, ellipticity
angle χ, and degree of polarization Π, estimated with these
parameters, are displayed in figure [2], for an energy
interval–in the 1–10 KeV range. Interestingly enough,
the estimates of maximum linear polarization, for these
parameters and energy range, is about 99% and the
polarization angle is about 12°; those lie well within the
range of the observed linear-polarization and polarization
angle—estimated from satellite borne astrophysical obser-
vations, for the GRBs, occurring across the sky.
This little interesting exercise could have been used to

project out a possible operating energy range for the space
borne detectors, to explore the existence of ALPs in the
parameter range considered above; had it not have faced a
constraint (veto) from the fifth-force experiments due to
dilatons, that we elaborate below.

A. Fifth force constraints

The scale symmetry, thats being investigated in this
work, is an approximate one. This is due to the presence of
massive dilatons. In the field theory context, it can happen
through the incorporation of higher dimensional conformal
symmetry breaking operators (having scaling dimension
other than four) or by breaking the symmetry spontane-
ously as was done in [6].
And in unified theories of extra dimension, this breaking

may be due to nonzero curvature associated with the extra
dimension. Whatever may be the origin, their existence
would modify, the predictions of gravitational force of
Einstein gravity with dilatonic fifth force. Experiments
performed with torsion-balance, to find the range of
dilatonic fifth force, puts an upper bound on dilaton mass

to be ∼Oð10−11Þ GeV. Hence, one needs to consider the
value of mϕ ∼ 10−11 GeV, for any realistic search for ϕ.
Although we had seen earlier, that, the change in the

spectro-polarimetric observables with energy (ω) were
marginal when the mass of mϕ and plasma frequency
ωp were of the order of ∼10−15 GeV; but due to the reasons
explained above those results are unrealistic.
In the light of this, (i.e., for mϕ ≥ 10−2 eV), identifying

the favourable regions in the parameter variables (i.e.,
estimates of ωp eB and gϕγγ etc.) over which the signals
would remain stabilized is a time consuming task. Away of
bypassing this apparent difficulty, is by scaling these
variables with mϕ and finding the magnitude of the changed
variables, such that, the scaled ones remain constant. These
new modified values are expected to provide a suitable
parameter space, that one is searching for. We had performed
this scaling exercise and found the following modified
values for the variables ωp¼3.7×10−10GeV, eB ∼ 104

Gauss, and gϕγγ¼1.0×10−14GeV, rest being the same.
The results are provided in Fig. 3. The numerical exercise
confirms the existence of stable signals in the energy range
1.0 × 10−5 GeV < ω < 1.0 × 10−4 GeV, for the scaled
variables, chosen here.
However, in the process, the original parameters, chosen

from the generally accepted models of gamma ray bursts,
got modified. So one is left with the option of exploring
refined models of GRB emission, like synchrotron
emission based models or hydrodynamic instability based
models or streaming instability based models etc., as
described in [ [74–82] ].

VIII. DISCUSSION

For obvious reasons, detecting x-ray or gamma- ray
signals from earth surface is difficult. Hence spaceborne
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FIG. 2. Left: plots of Stokes parameters (I;Q;U;V) vs energy (ω). Right: plots of polarization angle [Ψp, ellipticity angle (χ), degree
of polarization (Π), and linear polarization (PL) vs energy (ω)]. Here, mϕ ¼ 1.0 × 10−15 GeV and ωp ¼ 3.7 × 10−15 GeV.
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detectors (e.g., GAP) have been developed and used to
detect the same [72]. They happen to be sensitive to a wide
energy range; for instance GAP is sensitive to an energy
range 70–300 KeV. The Ranaty High Energy Solar
Spectrometer Imager (RHESSI) [75] had an operational
window of 0.15–2 MeV, the same for SWIFT satellite [76]
happen to be 300 KeV–10 MeVetc. On the other hand our
numerical estimates show that, the signals may undergo
huge amount of oscillations in these operational windows.
A crucial assumption that goes in the detection of polari-
zation signal is additivity of the Stokes parameters over an
energy range. And the difference in the polarization angles
of the GRB EM beam, at two ends of the band, to be less
than ninety degrees, i.e., [73]

jΔðE2; zÞ − ΔðE1; zÞj ≤
π

2
: ð8:1Þ

This may not always be the case, as our numerical estimates
show. Since many of the polarization data–GRB or others
are used to extract estimates about gϕγγ and mϕ, assuming
Eq. (8.1) to be valid, when in principle, that may not be the
case; therefore those estimates of the coupling constant and
dilaton mass become questionable.

IX. CONCLUSION

To conclude, in this work we have analyzed the mixing
pattern of dilatons with photons in a magnetized medium.
Our analysis establishes that the mixing matrix for γϕ
system is 3 × 3 not 2 × 2. We also found that, in a
magnetized medium, the longitudinal DOF associated with
the photon, does not get excited, by the dilatons; the same
happens only for axions, as was rightly pointed out in [77].

Using analytical techniques we have solved for the equa-
tions of motion of this system exactly. Following that we
have estimated the strength of the polarimetric signals that
is expected for a typical GRB geometry.
What we find is, there are regions in the parameter space

over which, the signals are stable for some energy range,
and there are regions for which the same may not be true
(for instance see Fig. 2, where the signal (Ψp) is seen to
stable over photon energy range 1.0×10−6GeV<ω<
1×10−5GeV).
Given the fact that there are quite a few proposed satellite

borne experiments in line (e.g., [83–87]), one needs to be
careful while designing the detectors for them. The opera-
tional window of the energy range over which these
detectors should work may be decided after taking
into account the lessons those emerged from the inves-
tigations like ours, in the respective simulations those
usually considered for the purpose of detectors design.
Furthermore, the estimates of other observables like the

spectral evolutions over energy, the magnitude of the
fluence, the intensity of the spectrum in each polarization
channel etc., those usually emerge from an analysis like
ours and should also be taken into account while designing
the detectors (i.e., their energy sensitivity, operational
energy range, dead time fixation and physical dimension
etc.). Once these are taken into account, it would help in
getting better quality data—for understanding the nature of
the ALPs and their parameters.
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APPENDIX: POLARIMETRY WITH
MAGNETIZED MEDIA

In this part of thework, we discuss the polarization effects2

on an electromagnetic field due to magnetized media. The
description of photon propagation in a magnetized media are
provided by the set of equations describing the evolution of
the respective degrees of freedom, one of them having plane
of polarization along the magnetic field called Ak and the
other one having plane of polarization orthogonal to the same.
This set is given by

ðk2 − Π2
TÞAkðω; zÞ þ iFA⊥ðω; zÞ ¼ 0; ðA1Þ

ðk2 − Π2
TÞA⊥ðω; zÞ − iFAkðω; zÞ ¼ 0: ðA2Þ

In Eqs. (A1) and (A2), the strength of magnetization is
carried by the variable F and the same is given by

F ¼ ω2
peB cos θ
ωme

. Plasma frequency is denoted by ωp, ω is
the energy of photon, eB is the magnetic field strength.

Defining, Ω2 ¼ ðω2
p

2ω − ωÞ. The Eqs. (A1) and (A2) can

further be written terms of a mixing matrix M causing
mixing between the components of polarization Ak and A⊥,
in the following fashion,

i∂z

��
1 0

0 1

�
þ
� Ω2 − iF

2ω

− iF
2ω Ω2

���
Akðω; zÞ
A⊥ðω; zÞ

�
¼ 0: ðA3Þ

To find the solutions of Ak and A⊥, we need eigenvalues
and the eigenvectors for matrix M. Using the eigenvectors
and eigenvalues λþ and λ−, the unitary matrices turn out
to be,

Ũ ¼ 1ffiffiffi
2

p
�
i 1

1 i

�
and; Ũ† ¼ 1ffiffiffi

2
p

�−i 1

1 −i

�
: ðA4Þ

Using them, we finally arrive at the solutions of Ak and
A⊥ in terms of the initial conditions Akðω; 0ÞA⊥ðω; 0Þ the
solutions are,

Akðω; zÞ ¼
�
cosðΩ2zÞ cos

�
Fz
2ω

�
Akðω; 0Þ − cosðΩ2zÞ sin

�
Fz
2ω

�
A⊥ðω; 0Þ

�

þ i

�
sinðΩ2zÞ cos

�
Fz
2ω

�
Akðω; 0Þ − sinðΩ2zÞ sin

�
Fz
2ω

�
A⊥ðω; 0Þ

�
; ðA5Þ

A⊥ðω; zÞ ¼
�
cosðΩ2zÞ cos

�
Fz
2ω

�
A⊥ðω; 0Þ þ cosðΩ2zÞ sin

�
Fz
2ω

�
Akðω; 0Þ

�

þ i

�
sinðΩ2zÞ sin

�
Fz
2ω

�
Akðω; 0Þ þ sinðΩ2zÞ cos

�
Fz
2ω

�
A⊥ðω; 0Þ

�
: ðA6Þ

It is easy to check the consistency of the solutions, by
noting that for F ¼ 0, there is no mixing between Ak and
A⊥. Now we make use of the solutions to obtain the Stokes
parameters I, Q, U, and V and following that can evaluate
the polarization angle Ψ and ellipticity angle χ from them.
The expressions for I, Q, U, and V are given as follows,

I ¼ A2
kðω; 0Þ þ A2⊥ðω; 0Þ; ðA7Þ

Q ¼ cos

�
Fz
ω

�
½A2

kðω; 0Þ − A2⊥ðω; zÞ�

− 2 sin

�
Fz
ω

�
A⊥ðω; 0ÞAkðω; 0Þ; ðA8Þ

U ¼ sin

�
Fz
ω

�
½A2

kðω; 0Þ − A2⊥ðω; 0Þ�

þ 2 cos
�
Fz
ω

�
A⊥ðω; 0ÞAkðω; 0Þ: ðA9Þ

It turns out that, in this case the Stokes parameter V
describing circular polarization is equal to zero. It is to be
noted that the Stokes parameter I is now independent of the
path length z, which provides the consistency check of
energy conservation of the system. Also, the rate of rotation
of the plane of polarization, with change of path length
distance, is proportional to the inverse square of energy of
photon, i.e.,

dψ
dz

¼ ω2
peB cos θ

2ω2me
: ðA10Þ

The ω dependence of this result matches with the same
reported in [68]. Therefore one can state that the effect of

2For more details on discrete symmetries of different mediums
and their effects on propagation of EM signals, one can go
through [88] and [89].
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magnetized medium alone on the polarimetric signature of
light can be predicted by studying the state of circular
polarization of light along with energy dependence of rate
of rotation of the polarization angle per unit length by
studying the system when the magnetic field B⃗ is along k⃗.
On the other hand when the angle between k⃗ and B⃗ is π

2
then

the effect of magnetized media of polarization of the
electromagnetic beam vanishes and the variation of polari-
zation with ω can be found in [45]. Similar studies only for
scalars or pseudoscalars have been performed in [63], that
show different outcome.
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