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We present a method for assigning a statistical significance to detection candidates in targeted searches
for continuous gravitational waves from known pulsars, without assuming the detector noise is Gaussian
and stationary. We take advantage of the expected Doppler phase modulation of the signal induced by
Earth’s orbital motion, as well as the amplitude modulation induced by Earth’s spin, to effectively blind the
search to real astrophysical signals from a given location in the sky. We use this “sky shifting” to produce a
large number of noise-only data realizations to empirically estimate the background of a search and assign
detection significances, in a similar fashion to the use of time slides in searches for compact binaries. We
demonstrate the potential of this approach by means of simulated signals, as well as hardware injections
into real detector data. In a study of simulated signals in non-Gaussian noise, we find that our method
outperforms another common strategy for evaluating detection significance. We thus demonstrate that this
and similar techniques have the potential to enable a first confident detection of continuous gravitational
waves.
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I. INTRODUCTION

In addition to short-lived gravitational waves (GWs)
from compact-binary coalescences like those observed so
far [1–8], ground-based detectors like the Advanced Laser
Interferometer Gravitational-Wave Observatory (aLIGO)
[9] and Virgo [10] are also expected to detect persistent,
almost-monochromatic signals [11–17]. The primary
potential source of such “continuous waves” (CWs) is
rapidly spinning neutron stars with an asymmetry in their
moment of inertia [18]. This includes galactic pulsars
known from electromagnetic observations, which are a
main target for searches for continuous signals in LIGO and
Virgo data [16,19,20]. The detection of gravitational waves
from any of these sources would provide a new wealth of
astrophysical information, as well as invaluable opportu-
nities to learn about fundamental physics (see, e.g., [21] for
a recent review).
There exist a number of efforts to detect gravitational

waves from known pulsars [15,16,22,23]. However, an
outstanding problem affecting all of these searches is the
lack of a well-defined procedure to establish the statistical
significance of potential detections without making the

assumption that the instrumental noise is Gaussian and
(semi-)stationary. Consequently, if evidence for a continu-
ous wave from a known pulsar was found today, we would
be unable to establish, with certainty, the probability for
this to have arisen from a spurious noise artifact. The need
for a systematic and robust way of computing detection
significance in the presence of non-Gaussian noise has
already become apparent with the appearance of hard-to-
diagnose outliers in recent searches in actual aLIGO
data [16,24].
Establishing a robust procedure to assign significance is

challenging because the noise artifacts that limit the
searches are intrinsically unpredictable and cannot be
modeled from first principles. Given this, we may instead
attempt to empirically determine the response of the
different searches to real detector noise in the absence of
astrophysical signals. Armed with such knowledge, we
would then be able to analyze actual data, or “foreground,”
and produce empirical likelihood ratios (or other measures
of detection confidence, like p-values) for the presence of
an astrophysical signal vs just instrumental noise, Gaussian
or otherwise. This requires several instances of “back-
ground”—that is, instrumental data that are known to
contain no astrophysical signals, while still retaining all
statistical properties representative of real instrumen-
tal noise.
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Ideally, one would obtain background distributions by
physically isolating the instruments from the environment
to shield them from actual signals. Because this is impos-
sible in the case of gravitational waves, we must attempt to
replicate this shielding digitally after the data have been
recorded. Several techniques exist to do this when looking
for gravitational-wave transients, the most straightforward
of which is probably the use of “time slides”: The outputs
of different detectors are shifted relative to each other by
time offsets longer than the light-travel time between them
[25,26]. This ensures the spuriousness of any signal
candidate left in the multidetector data thus produced,
hence allowing us to estimate how likely it is for noise to
mimic a signal.
The direct analog of time slides in the context of

continuous waves would be “frequency slides”: a misalign-
ment of the frequency-domain data of different detectors.
However, our ability to effect such frequency shifts is
limited by the frequency resolution of the searches (of the
order of inverse observation time), and the fact that the
properties of actual instrumental noise are heavily depen-
dent on frequency—not only due to a frequency-dependent
power spectral density, but also to varying populations of
narrow-band noise features. By the same token, time slides
themselves would not be feasible in transient analyses if the
noise properties of the detectors changed rapidly compared
to the duration of a typical signal.
In light of this, here we propose a simple method for

estimating the background of searches for continuous gravi-
tational waves by analyzing data assuming an incorrect sky
location for the targeted source. This “sky shifting” takes
advantage of the expected Doppler modulation of the signal
due to the relative motion of the detector and source to
effectively blind the search to real astrophysical signals.
Similar methods have been developed for pulsar timing
arrays [27]. We can use this to produce a large number of
noise-only instantiations of data, so as to empirically estimate
the background of a search and assign detection significances
in the presence of actual detector noise. We demonstrate that
this method can outperform another common strategy for
estimating the background in realistic situations.
We begin by providing relevant background about

continuous waves and targeted searches in Sec. II. We
then introduce the sky-shifting method and explore its
applicability in Sec. III. We demonstrate the efficacy of the
strategy in Sec. IV with the aid of several examples based
on both synthetic and actual detector noise. We conclude
in Sec. V.

II. BACKGROUND

In this section, we review the basic morphology of
continuous gravitational waves as measured by differential-
arm detectors, with an emphasis on the timing corrections
on which we will rely for sky shifting (Sec. II A 1). We also
make a special point of discussing the relation between the

frequency resolution at which a signal is sampled and the
ability to localize the source in the sky (Sec. II A 2). We
next describe the key properties of noise in existing ground-
based instruments as it pertains to searches for persistent
signals (Sec. II B). Finally, we provide an overview of three
staple search methods for these signals in LIGO and Virgo
data (Sec. II C): the Bayesian time-domain method, and the
frequentist five-vector and F -statistic methods.

A. Continuous waves

1. Morphology

Continuous waves are nearly monochromatic gravita-
tional perturbations with constant intrinsic amplitude that
are expected to be sourced by some rapidly spinning
bodies, like neutron stars. Within the context of standard
physics, there are several ways in which a neutron star
could emit CWs, but the most favored is the presence of a
nonaxisymmetry in the star’s moment of inertia [28]. For
this type of triaxial, nonprecessing source, such a GW will
induce a strain in a differential-arm (quadrupolar) detector,
like LIGO or Virgo, which can be written as

hðtÞ ¼ h0
1

2
ð1þ cos2ιÞFþðt;ψÞ cosϕðtÞ

þ h0 cos ιF×ðt;ψÞ sinϕðtÞ; ð1Þ

where the Fþðt;ψÞ and F×ðt;ψÞ factors respectively give
the instrument’s response to the plus (þ) and cross (×) GW
polarizations, ι is the inclination angle between the spin
axis of the source and the observer’s line of sight, ϕðtÞ is the
phase of the signal, and h0 is an overall amplitude related to
the properties of the source by

h0 ¼
16π2G
c4

ϵIzzf2rot
r

; ð2Þ

where r is the source distance, frot its rotation frequency
around the principal axis z, I the moment-of-inertia tensor,
and ϵ≡ ðIxx − IyyÞ=Izz the equatorial ellipticity [18].
The antenna patterns Fþðt;ψÞ and F×ðt;ψÞ encode the

amplitude modulation of the signal due to the local geo-
metric effect of a GWacting on a given detector. Thus, they
implicitly depend on the relative location and orientation of
source and detector by means of the source’s right-
ascension α, declination δ, and polarization angle ψ . The
latter gives the orientation of the frame in which the
polarizations are defined, and we set it to be the angle
between the line of nodes and the projection of the celestial
north onto the plane of the sky. While α and δ are always
well known, ψ generally is not, which is why we show this
argument explicitly. Importantly, the antenna patterns
acquire their time dependence from the rotation of Earth
on its axis, and consequently have a characteristic period of
a sidereal day (∼10−5 Hz).
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For a simple triaxial source, the GW frequency f is twice
the rotational value frot, so we can write

ϕðtÞ ¼ 2ϕrotðtÞ þ ϕ0; ð3Þ
where ϕrot is the rotational phase as measured via electro-
magnetic (EM) observations and ϕ0 is a fiducial phase
offset. The rotational frequency itself is almost constant,
with a small spin-down due to energy loss into the
environment (via GWs and other mechanisms), which
means that the phase evolution can be well described by
a simple Taylor expansion on τ, the time measured by a
clock inertial with respect to the source:

ϕðtÞ ¼ 2π
XN
j¼0

∂ðjÞ
t f0

ðjþ 1Þ! ½τðtÞ − T0�ðjþ1Þ: ð4Þ

Here ∂ðjÞ
t f0 is the jth time derivative of the GW frequency

measured at the fiducial time T0, and N is the order of the
series expansion (1 or 2 suffices for most sources). Timing
solutions are generally obtained through the pulsar timing
package TEMPO2 [29]. These solutions have exquisite
precision (frequency uncertainty of 10−12≲δfrot≲10−8Hz
formost pulsars) and are the cornerstone of targeted searches
for continuous waves from known pulsars.
The inertial time, τ in Eq. (3), is usually taken to be the

time measured by a clock at the Solar System barycenter
(SSB), which is itself assumed to be inertial with respect to
the pulsar. In that case, τ can be written as a function of
detector time t by taking into account some well-known,
time-dependent offsets:

τðtÞ ¼ tþ ΔEðtÞ þ ΔSðtÞ þ ΔbinaryðtÞ þ ΔRðtÞ: ð5Þ
Here ΔE is the Solar System Einstein delay, ΔS is the Solar
System Shapiro delay, Δbinary is the delay originating from
the motion of the pulsar in its binary (a term that vanishes
for isolated sources) [30], and ΔR is the kinematic delay
due to the relative motion of the detector with respect to the
source.
The timing correction of Eq. (5) is heavily dependent on

the sky location of the targeted pulsar and will be the key to
the sky-shifting method presented in Sec. III. The depend-
ence on sky location is dominated by the last term in
Eq. (5),ΔR. This is sometimes known as the “Rømer delay”
and encodes the Doppler modulation of the signal:

ΔRðtÞ ¼ −
Ω̂ · r⃗ðtÞ

c
; ð6Þ

where r⃗ðtÞ is a vector joining the SSB and the detector at
any given time, Ω̂ is a unit vector pointing from the SSB in
the direction of the source,1 and c is the GW speed. For

practical purposes, r⃗ is usually computed by first splitting it
into three components:

r⃗ ¼ r⃗⊙ þ r⃗⊕ þ R⃗; ð7Þ
with r⃗⊙ joining the SSB with the Sun’s center, r⃗⊕ joining
Sun and Earth, and R⃗ going from Earth’s center to the
detector on the surface. One can then use Solar System
ephemerides, together with knowledge of the location of
the detector on Earth and the source in the sky, to compute
the Rømer correction at any given time.
The timing correction of Eq. (5) can be understood as

inducing extrinsic frequency shifts to the signal, as seen by the
detector. This is dominated by the Rømer termΔRðtÞ, which
results in a modulation at the frequency of Earth’s orbital
rotation ωorb ≈ 2 × 10−7 rad=s, as well as subdominant
daily effects due to its spin ωsid ¼ 2π=ðsidereal dayÞ≈
7 × 10−5 rad=s. In the frequency domain, the effect of this
correction is to spread the signal power across a narrow band
centered on its intrinsic GW frequency, with a characteristic
width of Δf=f ≈ ωorbr⊕=c ≈ 10−4 (see e.g., [31]). This
frequency modulation will be the key to our approach.

2. Frequency and sky resolution

The sky resolution is the minimum angular separation in
the sky at which two, otherwise equal, sources could be
distinguished. This is a function of the frequency resolution
at which the signal is sampled, namely,

δf ¼ 1=T; ð8Þ
for an observation time T. This frequency bin is related to a
sky bin by the sky-location-dependent frequency modula-
tion of Eq. (5). Thus, the angular resolution will be roughly
given by the separation in the sky corresponding to a
Rømer frequency shift ofΔf ¼ δf. In other words, we may
define a bin around any point in the sky by the maximum
angular distance one can move away from that point before
the frequency shift caused by the modulation of Eq. (6)
reaches a magnitude of 1=T. Thus, the characteristic size of
a bin defined this way will necessarily depend on the
integration time.
Proceeding as above, we may cover the sky with a series

of such bins to obtain a “sky grid” representing the
resolvability of points in the sky as a function of angular
location. Because the timing correction of Eq. (5) is
dominated by ΔR, which is itself mostly due to Earth’s
orbital motion, such a sky grid will be most naturally
defined in ecliptic coordinates to yield bin sizes given
approximately by [32]

δβ ¼ 1

Ndj sin βj
; δλ ¼ 1

Ndj cos βj
ð9Þ

where β and λ are respectively the ecliptic latitude and
longitude, and the scale factor (that represents the total
number of Doppler bins) is

1The source-location vector Ω̂ can be treated as constant over
the timescale of our observations.
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Nd ¼ Δf · f · T ¼ fωorbr⊕T
c

ð10Þ

for Earth’s orbital radius r⊕. As demonstrated in Fig. 1, the
sky grid can be easily computed using ecliptic coordinates
(left panel) and then rotated to equatorial coordinates (right
panel). This is a conservative sky grid for an integration
time of Tcoh ¼ 1024s that implicitly assumes the power of
the signal may be split over at most two frequency bins as a
result of the timing correction—in practice, the character-
istic size of the sky bins may be reduced, but the scaling
with f and T will always be as in Eq. (10). In a full-
coherent search that uses one year of data, the sky bins’ size
is significantly reduced.

B. Detector noise

The output of ground-based gravitational-wave detectors
is vastly dominated by instrumental noise [33,34]. For this
reason, the weak continuous signals discussed in Sec. II A
are expected to become visible only after long periods of
coherently integrated observation. Understanding the stat-
istical properties of the noise is critical to successfully
detecting these signals.
For the most part, the noise in a given detector is well

described as a Gaussian random process with a frequency-
dependent (colored) power spectral density [33,34].
Gaussian noise has numerous convenient statistical proper-
ties that would drastically simplify many of LIGO and
Virgo’s analyses. However, this idealization is far from
perfect: The data are plagued with uncountable non-
Gaussian features with a range of spectral properties and
durations. Among these, the most-often discussed are
probably the noise transients (“glitches”) that haunt searches
for compact-binary coalescences [35]. Yet, searches for
continuous waves are most affected not by these short-lived

glitches, but rather by persistent narrow-band features
(“lines”) [36]. Many of these spectral lines only become
apparent after long periods of coherent observation, making
their identification and eradication especially challenging.
Noise-spectral lines could also be accompanied by side-
bands which affects the sensitivity in a narrow-frequency
region [37]. Furthermore, their distribution over the sensi-
tive frequency band of the detectors is highly irregular and
changes with time as the instruments evolve.
Fully coherent searches for continuous waves tend

to have very high-frequency resolution (of order
δf ∼ 10−7–10−8 Hz) scaling directly with the integration
time (δf ∼ 1=T). This fine resolution means that such
analyses can fall victim to very narrow (and weak) noise
lines. Furthermore, as mentioned at the end of Sec. II A 1,
a pulsar signal will be spread over a band of width Δf ≈
f × 10−4 Hz around its central GW frequency f. This
means that attempts to find such a signal will be affected
by noise over a range of frequencies, broad with respect to
the typical resolution of the search. A persistent departure
from Gaussianity in that frequency range (e.g., a wandering
instrumental line that happens to intermittently cross the
targeted band) will confound most searches, potentially
yielding false positives (“outliers”). Naturally, the number
of outliers due to unmodeled noise found by the pipelines
will increase with the searched CW parameter space, as
well as with observation time (which increases the fre-
quency resolution and the sensitivity to unmodeled noise
sources).
As is the case with the glitches affecting searches for

compact binaries, lines and other non-Gaussian features
would not be an issue for continuous-wave searches if there
existed a robust way to model them and directly incorporate
that knowledge into the statistical analyses (cf. Sec. II C
below). However, the noise artifacts in the set that interests
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FIG. 1. Left: sky bins built using ecliptic coordinates for a search at a frequency of 60 Hz and an integration time of 1024 s. Right: the
same sky grid for the same sky configuration in equatorial coordinates.
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us are, by definition, impossible to fully model from first
principles: Any particular noise source that is well under-
stood can usually be physically or digitally removed, so
that they are no longer of concern [36,38–40]; the remain-
ing artifacts are, therefore, those that are intrinsically
unpredictable or so-far not understood. Consequently, we
are left to try to find ways to empirically estimate the true
statistical background (i.e., the probability distribution of
false positives) of a search in order to assign significances
to potential detection candidates.

C. Searches

Searches targeted at known pulsars make use of the
simple form of the expected signal Eq. (1) to match filter
the data and determine the likelihood that a signal is
present. There exist three standard approaches of this kind:
the time-domain Bayesian [22,30,41,42] and F=G-statistic
[23,43–45] methods, and the frequency-domain 5n-vector
method [46–48]. Due to the technical details underlying
each implementation, only the Bayesian time-domain
method has been broadly applied to a large number of
targets [16]. Although sky shifting is applicable to all three
of these techniques, in the following sections we will only
use the Bayesian and five-vector searches for concrete
examples. For completeness, here we provide a brief
overview of the basics of all three approaches.

1. Bayesian approach

Bayesian statistics provide a complete and straightfor-
ward framework for computing the probability that a given
set of data contains a signal vs Gaussian noise, and for
inferring the parameters that best describe the signal if
present. The implementation utilized for searches by the
LIGO Scientific Collaboration and Virgo Collaboration
[22] takes advantage of the fact that the phase evolution
ϕðtÞ is known from electromagnetic observations to
remove the high-frequency components of the signal early
in the process—this dramatically simplifies the Bayesian
inference step itself [30,42].
First, the data are digitally heterodyned [30,41], so that

the signal they putatively contain becomes

h0ðtÞ≡ hðtÞe−iϕðtÞ ¼ ΛðtÞ þ Λ�ðtÞe−i2ϕðtÞ; ð11Þ

with � indicating complex conjugation, and

ΛðtÞ≡ 1

4
FþðtÞh0ð1þ cos2ιÞ − i

2
F×ðtÞh0 cos ι: ð12Þ

A series of low-pass filters are then applied to remove the
second term in Eq. (11), which enables the downsampling
of the data by averaging over minute-long time bins. As a
result, ΛðtÞ is the only contribution from the original signal
left in our binned data B, which will now look like

BexpectedðtkÞ ¼ ΛðtkÞ þ nðtkÞ; ð13Þ

where nðtkÞ is the heterodyned, filtered, and downsampled
noise in bin k, which carries no information about the GW
signal.
Equation (13) implies that the quantity BðtkÞ − ΛðtkÞ

should have the statistical properties of noise, and that
Eq. (12) should be the template in our search. This
knowledge can be used to compute the marginalized-
likelihood ratio (Bayes factor) that the data contain a signal
buried in noise (HS), vs just Gaussian noise (HN):

BS
N ¼ PðBjHSÞ

PðBjHNÞ
: ð14Þ

If the detector noise was indeed Gaussian, this single
quantity would suffice to define a detection criterion:
A value greater than unity would indicate the signal model
is favored by that factor (in terms of betting odds), and vice
versa. However, since actual noise cannot be guaranteed to
be Gaussian (and, generally, will not be), the probability
ratio of Eq. (14) does not inform us about the relative
likelihoods of a signal vs actual (non-Gaussian) noise. To
address this, one may attempt to capture instrumental
artifacts by defining a construction similar to Eq. (14)
but using signal coherence across detectors to distinguish
spurious effects from actual astrophysical signals
[16,49,50]. Nevertheless, it cannot be shown that any such
construction will always capture all the features of real
instrumental noise (in the language of formal logic, our
hypothesis set is never complete). Therefore, we would
benefit from a method to empirically test the efficacy of our
Bayesian constructions at actually distinguishing signals
from (non-Gaussian) detector noise.

2. Five-vector approach

The frequentist five-vector method [46] builds a detec-
tion statistic using the sidereal modulation given by the
interferometer antenna response to the two CW polar-
izations, encoded by Fþ=× in Eq. (1). Similar to the
procedure outlined in Sec. II C 1, the first step is to remove
all the possible phase modulations, apart from the sidereal
ones caused by the antenna patterns. Depending on the type
of search, this may be achieved through different tech-
niques, including subheterodyning, nonuniform resam-
pling, or a combination thereof [51–53]. After this step,
the signal can be modeled via two sidereal responses
Aþ=×ðtÞ analogous to Fþ=×ðtÞ but which do not depend
on the polarization angle ψ (see [46] for more details).
Concretely, it may be shown that AþðtÞ≡ Fþðt;ψ ¼ 0Þ
and A×ðtÞ≡ F×ðt;ψ ¼ π=4Þ. Doing this, the signal
assumes the complex-valued form:

hðtÞ ¼ H0ðηÞ½Hþðψ ; ηÞAþðtÞ þH×ðψ ; ηÞA×ðtÞ�; ð15Þ
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where η is related to the ratio of the two polarization
amplitudes given in Eq. (1),

η ¼ −
2 cos ι

1þ cos2ι2
ð16Þ

and with Hþ=× defined by

Hþ ¼ cosð2ψÞ − iη sinð2ψÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p ;

H× ¼ sinð2ψÞ − iη cosð2ψÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p :

Just as in the case of ΛðtÞ in Eq. (12), the frequency
components of a signal described by Eq. (15) are simply
those corresponding to the sidereal modulations encoded in
Aþ=×ðtÞ. These frequency components (fi5-vec) are integer
multiples of the sidereal rotation frequency of Earth,
namely,

fi5-vec ¼ fgw þ 2πkiωsid; k⃗ ¼ ½−2;−1; 0; 1; 2�: ð17Þ

Therefore, any signal like Eq. (15) may be described as a
vector in the space spanned by the five δ-functions
corresponding to the frequencies in Eq. (17).
To search for signals, the frequency-domain GW data

can be projected onto the five-vector space, to obtain a set
of projections X⃗. This resulting vector now lives in the same
space as the sidereal templates, which can be represented as
five-vectors A⃗þ=×. We may thus obtain the matched filter
between the data and the antenna patterns by taking a
simple scalar product between X⃗ and A⃗þ=×. By maximizing
this matched filter, one obtains an estimator for the GW
polarization amplitudes:

Ĥþ=× ¼ X⃗ · A⃗þ=×

jA⃗þ=×j2
; ð18Þ

which can be in turn used to define a detection statistic

S5 ≡ jA⃗þj4jHþj2 þ jA⃗×j4jH×j2: ð19Þ

After carrying out the above procedure for templates
corresponding to different parameters, detection candidates
(i.e., values of the parameters for which might match a
potential signal) are identified by their value of S5. In
particular, the statistic is required to exceed a threshold
corresponding to a preset false-alarm probability. To do
this, one must know or measure the distribution of S5 over
noise. Traditionally this has been computed analytically by
assuming purely Gaussian noise with known variance [46].
Alternatively, since real data are not Gaussian, one

may try to approximate the background distribution by

computing S5 over frequency bands far from the expected
signal (off-frequency analysis). The frequency regions
should be far enough from a possible CW signal such
that only the noise contribution is present in the detection
statistic, and close enough to the analyzed band to share its
statistical properties. Given that the noise is strongly
frequency dependent, finding this sweet spot is far from
trivial (if at all possible) and one can never guarantee that
the conditions required for an unbiased estimation of the
background are being satisfied.

3. F -statistic

The F -statistic was first introduced in [23] for gravita-
tional-wave searches from neutron stars, and was later
extended for other astrophysical objects (e.g., [54,55]). In
the case of Gaussian noise, the F -statistic is defined as the
natural logarithm of the maximum-likelihood ratio between
the signal and noise hypotheses:

F ¼ max

�
ln
Pðdjθ⃗;HSÞ
PðdjHNÞ

�
θ⃗

; ð20Þ

where d are usually calibrated detector data, and the
maximization is over the signal-template parameters, θ⃗.
It can be shown that the F -statistic can be analytically
maximized over the “extrinsic parameters” (h0, ψ , ι, and
ϕ0), thus reducing the dimensionality of the numerical
computations to the so-called “intrinsic parameters” (α, δ,
f, and _f). Since in a targeted search the intrinsic parameters
are supposed to be perfectly known, a targeted search based
on the F -statistic would reduce to the computation of one
value for F , that is later compared to the expected noise-
only distribution for Gaussian noise in order to assign the
p-value.
The analysis proceeds by match filtering the data against

four different templates, each of them corresponding to a
particular combination of intrinsic phase evolution and
sidereal modulation. The outcome of these four filters is the
F -statistic, for which, if the data are composed purely of
Gaussian noise, it can be shown that the value 2F follows a
χ2 distribution with 4 degrees of freedom [23]. Detection
candidates (“outliers”) are selected according to their false-
alarm probability, which can be computed analytically if
one assumes Gaussian noise. However, false-positive out-
liers arise when the noise is not Gaussian, and thus not
properly handled by Eq. (20). If this is the case and one
cannot trust the background distribution of the statistic to
be simple χ2, this distribution must be estimated empiri-
cally by producing sets of data known with certainty to
contain no astrophysical signals.

III. METHOD

Having reviewed the basics behind targeted searches for
continuous waves, including the difficulties inherent to
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nonidealized instrumental noise, we here introduce sky
shifting as a way to empirically assign detection signifi-
cances. In Sec. III Awe describe the basic ideas behind this
simple procedure and explain how it can be easily applied
to the Bayesian and five-vector searches. In Sec. III B, we
heuristically explore the limits of applicability of this
technique, concluding that sky shifting is a viable method
for estimating the background distribution of detection
statistics, as long as a few simple conditions are satisfied.
This will be demonstrated in the following section (Sec. IV)
with concrete examples.

A. Sky-shifting

Lacking a satisfactory way to model all noise artifacts
and their effect on CW searches from first principles, we
may instead attempt to empirically determine the distribu-
tion of the different search statistics in response to real
detector noise and in the absence of astrophysical signals.
As discussed in Sec. I, a naive attempt at blinding the data
to astrophysical CWs using methods analogous to those
used for compact-binary coalescences (CBCs) is doomed to
fail. Therefore, we may instead look for a solution in
specific properties exclusive to real gravitational signals, as
opposed to noise.
One example of such a feature is the requirement of

consistency between the phase evolution observed by EM
astronomers, and the sky location of the source: While the
two properties, as encoded in the signal itself, must
necessarily agree in the case of a real GW, there is no
special link between them in the case of noise artifacts.
Furthermore, as explained in Sec. II A, the location of
the source is independently imprinted in the morphology of
the signal twice: In the amplitude modulation due to the
antenna patterns, Eq. (1), and in the frequency modulation
due to Rømer and other timing delays, Eq. (5). Since these
three properties (frequency, amplitude modulation, and
phase modulation) must all agree for an astrophysical
signal, we may ask: How likely is it for an instrumental
artifact to randomly satisfy this condition and thus mimic a
real signal from a given source?
A priori, an instrumental artifact with frequency close to

that expected from a given source is no more likely to also
show the amplitude and phase modulations corresponding
to the true location of the pulsar than those of any other
arbitrary sky location. In other words, there is no reason for
instrumental noise at the target frequency to “know” what
the true sky location of the source is. By carrying out our
analysis assuming incorrect sky locations, we may blind
ourselves to astrophysical signals and empirically estimate
the probability that instrumental artifacts in the narrow-
frequency region corresponding to a given source also
present the modulation matching its location in the sky.
The above idea may be rephrased in the language of

function spaces. Continuous signals observed for a finite
period of time can be represented as vectors in the space of

square-integrable functions (L2) or, after discretization, the
space of square-summable sequences (l2). We would like
to estimate the overlap between the subspace of L2 (or,
rather, l2) occupied by noise features and the much
narrower one spanned by the signal template, Eq. (1).
We attempt to empirically achieve this by computing an
inner product (defined by the detection statistic itself)
between the data and signal templates (basis elements)
corresponding to different sky locations. We expect this to
work partly because templates for different sky locations
will be morphologically very similar to the true template,
while the same is not true for any arbitrary function. This
also allows us to explore the statistical properties of the
noise in the same region of frequency space occupied by the
expected signal. (See also [56].)
An alternative to sky shifting would be to simply

randomly shuffle the time series data used in the analysis;
this would be easy to do for the time-domain dataB used in
the Bayesian analysis, and is similar to previously imple-
mented strategies (e.g., [57]). Such a shuffling would
completely decohere any real signal in the data and, given
the huge number of permutations of the shuffling, any
random shuffling would be extremely unlikely to be
correlated with any other. This approach would be the
simplest way to proceed if the data were purely Gaussian
and stationary across an observation run. However, for real
data that contain contaminating instrumental lines and a
time-varying noise level, it would also scramble these
components. Therefore, any statistic produced with the
scrambled data would not be a fair comparison to the
unshuffled foreground. Shuffling would also be compli-
cated to perform for a search method that begins with data
that have already been transformed into the frequency
domain. Sky-shifting, as described above, does not suffer
from these limitations.

1. Implementation examples

Background distributions may be estimated via sky
shifting in the context of any of the searches described
in Sec. II C. This is true regardless of whether the search is
carried out in the time or frequency domains, for one or
several detectors, maximizing or marginalizing over nui-
sance parameters. This generality stems from the fact that
sky shifting is largely insensitive to the specific details
behind the computation, as long as the sky location and
phase evolution are assumed to be known.
Let us first illustrate this by using the time-domain

Bayesian search as a concrete example. As outlined in
Sec. II C 1, this approach is split into two stages: (i) hetero-
dyning of the data to put the signal in the shape of Eq. (12)
and (ii) Bayesian inference to compute the relative like-
lihood of a signal being present, Eq. (14). It is important for
our purposes that information about the location of the
pulsar is only needed in the first step, making it straightfor-
ward to apply our suggested strategy. In particular, we may
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intentionally heterodyne the data assuming an off-source
(shifted) sky location, and then carry out the inference stage
as usual, assuming the true (on-source) sky location. Rather
than being indicative of a signal, a large Bayes factor
obtained this way would necessarily reveal the presence of
a noise artifact. This process may be repeated for different
sky locations to obtain an estimate of how likely noise is to
mimic a signal from this pulsar.
As another example, consider the frequency-domain

five-vector approach of Sec. II C 2. In that case, we may
also resample or reheterodyne the data assuming a shifted
sky location during a preprocessing stage. This procedure is
expected to spread the power of a possible GW signal over
many different frequency bins, making it too weak to be
detectable and thus blinding the analysis to it. Next, we
compute the S5 statistic by using the five-vector sidereal
function Aþ=×ðtÞ computed for the on-source sky position.
We can then repeat these steps for many different sky
locations to obtain a collection of background values for the
S5 statistic. This yields a noise-only distribution for the S5
statistic that quantifies the probability for a noise disturb-
ance to mimic the sidereal antenna patterns corresponding
to the true sky location.

B. Blinding and draw independence

In order for the method above to work, we need to make
sure that the different sky locations used are actually
distinct, so that there is no leakage of a possible GW
signal in the draws used for building the noise-only statistic
distribution. In order for the method above to work, we
need to make sure that (i) the different sky locations used
are actually distinct, so that the results can be treated as
distinct draws from the probability distribution we are
trying to estimate, and (ii) sky shifting really does blind the
data to foreground signals. The first requirement is easy to
satisfy and translates into the need for picking sky locations
with angular separations greater than the worst (largest) sky
bin resolvable by the search, as explained in Sec. II A 2. As
we show below, the second requirement can also be
satisfied by picking off-source locations far enough away
from the true position of the source.

1. Signal contribution to sky-shifted statistic

Let us first examine the conditions under which sky
shifting effectively removes contributions from real con-
tinuous waves. For simplicity, consider a signal of fixed
frequency (f) originating from some known location (Ω̂on).
Now imagine heterodyning the data containing it by using a
mismatched timing correction corresponding to some
shifted sky location (Ω̂off ), as proposed in Sec. III A. In
full analogy to Eq. (13), we would then obtain binned data
like

BðtÞ ¼ ΛðtÞe2πifΔτðtÞ þ nðtÞ≡ Λ0ðtÞ þ nðtÞ; ð21Þ

where we no longer assume the instrumental noise nðtÞ is
normally distributed, and where

Δτðt;ΔΩ̂Þ≡ τðt; Ω̂onÞ − τðt; Ω̂offÞ ð22Þ

represents the timing-correction mismatch between the two
sky locations with angular separation ΔΩ̂ ¼ Ω̂off − Ω̂on
[cf. Eq. (5)]. As a proxy for a generic search statistic,
consider the evaluation of a simple inner product between
the data and the expected template:

hBðtÞjΛðtÞi ¼ hnðtÞjΛðtÞi þ hΛ0ðtÞjΛðtÞi: ð23Þ

Our goal is to estimate the distribution of the overlap
between the noise and the template hnðtÞjΛðtÞi by studying
our proxy statistic hBðtÞjΛðtÞi. Consequently, we would like
the contribution of the true signal hΛ0ðtÞjΛðtÞi to Eq. (23) to
be sufficiently small to be effectively undetectable.
Explicitly, the contribution of the signal to the inner

product of Eq. (23) can be written in terms of a time integral
over the observation time T,

hΛ0ðtÞjΛðtÞi ¼
����
Z

T

0

Λ2ðtÞe2πifΔτðt;ΔΩ̂Þdt
����; ð24Þ

where Λ2ðtÞ≡ Λ�ðtÞΛðtÞ. The first key feature of this
result is that a signal with greater signal-to-noise ratio
(SNR) will tend to contaminate the sky-shifted statistic
more strongly. This is not at all surprising: A strong signal
can be detected even if there is a small error in its assumed
sky location, because enough coherent power can remain
even after the timing correction spreads it over several
frequency bins. In fact, Eq. (24) is bounded from above by
the squared norm of the signal template,

hΛ0ðtÞjΛðtÞi ≤ hΛðtÞjΛðtÞi ¼
����
Z

T

0

Λ2ðtÞdt
����; ð25Þ

which, for a flat power spectrum, is directly proportional to
the square of the SNR.
The second relevant feature of Eq. (24) is that the

dependence of hΛ0ðtÞjΛðtÞi on sky location will be deter-
mined solely by the angular structure of Δτ, and how well
that can be resolved given f and T (see Sec. II A 2). The
inequality of Eq. (25) is, of course, saturated if and only if
the shifted location is such that Δτðt;ΔΩ̂Þ ¼ 0 at all times:
This takes place, for instance, if the “shifted” location is
really just the original location of the source (ΔΩ̂ ¼ 0). On
the other hand, for most other values of ΔΩ̂ and for the
range of f’s we are interested in, the exponential term in
Eq. (24) is highly oscillatory—this means that we should
expect hΛ0ðtÞjΛðtÞi to quickly vanish as we move away
from the true location of the source. This is consistent with
the sky-bin definition given in Sec. II A 2, from which it is
possible to see that the sky-bin size decreases with
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increasing frequency. In other words Eq. (24) is represen-
tative of the templates density lattice for a GW search
[58–60].

2. Angular pattern and magnitude

The detailed angular structure of our proxy sky-shifted
statistic is represented in Fig. 2. To produce this plot, we
began with a set of binned data, Eq. (13), containing
Gaussian noise and a very strong (SNR ¼ 70) simulated
signal from an arbitrary sky location on the ecliptic plane
(indicated by a magenta circle). We then reheterodyned
these data assuming different (sky-shifted) locations cover-
ing the whole sky, and for each instantiation computed the
overlap (normalized cross-correlation),

Overlap ¼ hB0ðtÞjBðtÞi
hBðtÞjBðtÞi ≈

hΛ0ðtÞjΛðtÞi
hΛðtÞjΛðtÞi ; ð26Þ

between the sky-shifted data B0ðtÞ and the on-source data
BðtÞ. This quantity (shown in color in Fig. 2) represents the
normalized contribution of the injected signal to the sky-
shifted statistic for different sky locations, as desired. This
is because hn0ðtÞjnðtÞi ≈ 0 for Gaussian noise, yielding the
approximate equality in Eq. (26).
As expected, the contribution of the signal falls off

steeply as we move away from the source location: While
the normalized overlap of Fig. 2 equals unity if ΔΩ̂ ¼ 0
(center of the magenta circle), it is orders of magnitude
smaller for all other choices of Ω̂off . The rest of the structure
in this plot reflects the symmetries of the timing correction
Eq. (5), which are themselves dominated by the Rømer
term in Eq. (6): Locations across lines of fixed ecliptic
latitude remain somewhat correlated to the on-source

location, and the whole pattern is symmetric under reflec-
tions through the ecliptic (see Sec. II A 2 for more details).
This important observation means that, for any given on-
source location, we will want to sample our sky-shifted
points from only one of the ecliptic hemispheres. This may
be achieved by laying out a grid in the sky, or by picking
sky locations randomly. In either case, one must ensure
uniqueness of the chosen point by enforcing a minimal
separation set by the overlap function in Fig. 3.
For a sufficiently loud signal, sky bins neighboring the

source will yield contaminated sky-shifted data (i.e., data
that still contain measurable coherent power due to the on-
source signal). Unlike the angular dependence, the overall
magnitude of this contamination will be determined by the
SNR of the signal and, as such, will depend on the
integration time and intrinsic amplitude. For the same
example as in Fig. 2, Fig. 3 shows the rate at which the
overlap with the on-source location decreases as one moves
at constant ecliptic latitude away from the source and for
different integration times.
Because latitude is held constant in this plot, Fig. 3

represents the slowest-possible decrease in the contamina-
tion by this source (cf. Fig. 2). Furthermore, this example
was chosen to have very high SNR and to lie on the ecliptic
plane, where the sky resolution is poorest (cf. Sec. II A 2)—
all of which makes this close to a worst-case scenario.
Despite this, the overlap vanishes quite quickly, plateauing
far away from the source at a value of the order 0.01. For
realistic (low SNR) CW signals a 1% overlap is small
enough to make the signal term in Eq. (23) negligible with
respect to the noise. Hence for one month of data
integration or more, setting sky-shifting separation to 1
deg is enough to remove any measurable correlation
between sky bins in any realistic situation. Examples of
this are given in Sec. IV below.

3. Contaminated backgrounds

An analysis that draws part of the background from a
measurably contaminated region may underestimate the
significance of the true signal, but never overestimate it.
This is because a contaminated background will show
artificial tails toward higher values of the detection statistic,
due to coherent power left over after sky shifting in some of
the “noise-only” instantiations. Thus, in a sense, such an
analysis would, at worst, be conservative. Yet, as we will
show in Sec. IV, a signal that is sufficiently loud to cause
such contamination over a non-negligible region of the sky
will itself yield an on-source detection statistic that is
significantly higher than any of the contaminated-back-
ground tails. Therefore, the significance (e.g., p-value)
assigned to such a signal will be the same with or without
the tails.
In any case, sky bins in the immediate vicinity of the

source may always be removed from the background
estimation to prevent contamination. However, the excision

FIG. 2. Value of the reheterodyned correlation overlap of
Eq. (26) over the entire sky, as a function of right ascension
(α) and declination (δ). The data contain a simulated signal
with SNR ¼ 70 located at α ¼ 22h35m40.73s, δ ¼ 39°40044.7600
(magenta circle).
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of a large area of the sky will have the detrimental
consequence of effectively reducing the number of sky
bins available for background estimation. Furthermore,
such procedure is only justified if we (implicitly) assume
that the on-source data do contain an astrophysical signal.
In a way, this is analogous to how a very loud CBC signal
may pollute the time-slid background in searches for
transient gravitational waves (e.g., see caption to Fig. 3
in [61], or Fig. 7 in [62]). In that case, the standard
procedure has been to first compute significances with the
“polluted” background to determine whether the zero-lag
detection candidate is a real signal, and only if that is the
case remove it from the background.2 The same can be
done here if necessary.
In summary, we conclude that sky shifting, as described

in Sec. III A, is a viable method for estimating the back-
ground distribution of detection statistics in targeted
searches for continuous waves, as long as the shifted
sky locations are chosen such that (i) they are distributed
over only half the sky; (ii) the angular distance between
them is no shorter than the sky resolution of the search

(cf. Sec. II A 2). This will guarantee that the different draws
from the background distribution (obtained from different
shifted sky locations) are distinct and uncontaminated by a
true signal, if present.

IV. ANALYSIS

We study the efficacy of sky shifting (Sec. III A) as a
viable method to empirically estimate the background
distribution of detection statistics in targeted searches for
continuous gravitational waves from known pulsars. We do
this in the context of both the Bayesian (Sec. II C 1) and
frequentist five-vector (Sec. II C 2) analyses, to demon-
strate the generality of the approach. We discuss specific
case studies in Sec. IVA, and systematically compare to
different methods by computing false-dismissal and false-
alarm rates in Sec. IV B.
The following results make use of both simulated and

actual noise from interferometric detectors. In all cases, we
begin with a set of data representing the (synthetic or
actual) output of a detector after applying the preprocessing
required to target some chosen pulsar (e.g., filtering and
downsampling)—these are the on-source data. We then
proceed as described in Sec. III A to generate multiple new
sets of sky-shifted data, and then evaluate the distribution of
the detection statistic over all such instantiations (excluding
the original, on-source data). We can then compare the
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FIG. 3. Left panel: overlap Eq. (26) computed for a software injection with the same parameters as Fig. 2 for one year of integration
time and sky locations close to the source; the overlap drops very rapidly over an angular distance of ∼5 × 10−4 deg from the source,
keeping ecliptic latitude fixed. Central panel: same as in the first panel but for six months of integration; the overlap drops over a greater
distance than for one year of integration. Right panel: overlap functions for various integration times, as indicated by the legend; shorter
integration times induce correlations over greater angular scales. The on-source overlap (null distance) is not identically 1 due to the
presence of noise.

2These two kinds of backgrounds are known colloquially as
with and without “little dogs,” since this distinction first arose
during the analysis of an injection in the direction of Canis Major
[63].
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value of the on-source statistic to the sky-shifted back-
ground, as we would in a real analysis.

A. Case studies

Here we provide several concrete examples of sky
shifting at work in the presence of pure noise, realistic
signals, and strong signals, as summarized in Table I.
Background distributions are estimated from 104 shifted
locations in the hemisphere of the source. The simulations
of Gaussian noise (Sec. IVA 1) were carried out assuming
an observation time of six months and power spectral
densities (PSDs) corresponding to the aLIGO and Virgo
design sensitivities. With the exception of Fig. 4, the
simulated data for LIGO Hanford (“H”), LIGO
Livingston (“L”), and Virgo (“V”) detectors were then
analyzed coherently with the Bayesian method of Sec. II C
1, to obtain the signal vs noise Bayes factors of Eq. (14) as
our detection statistic.
The examples with real instrumental noise correspond to

LIGO’s first observation run (O1). The data streams start on
September 11, 2015 at 01∶25∶03 UTC for Hanford and
18∶29∶03 UTC for Livingston, and finish on January 19,
2016 at 17∶07∶59 UTC at both sites. The first example
consists of data prepared for the pulsar PSR J1932þ 17, for
which search results were presented in [16]. All analysis
settings are the same as in [16], except for a log-uniform prior
in the signal amplitude (same as in [65]). The second example
is for a hardware injection presented in [64]. Both these
examples are offered merely to demonstrate the performance
of sky shifting under realistic circumstances—we present no
new observational results.

1. Pure-Gaussian noise

We first demonstrate that sky shifting works as expected
in pure-Gaussian noise and in the absence of signal. In this
case, the on-source data are just a set of samples from a
Gaussian distribution with zero mean and standard deviation
given by the value of the detector PSD at the GW frequency
expected from the targeted pulsar. The sky-shifting process
should correspondingly produce multiple instantiations of
independent Gaussian noise, a fact that should be reflected in
the resulting background distribution of the detection sta-
tistic. This distribution is shown in Fig. 4 for an example
using the five-vector statistic of Eq. (19). When computed
over Gaussian noise, it can be shown that this statistic must
follow a Γ distribution with 2 degrees of freedom [46].
Figure 4 shows that this is the case, in agreement with our

expectation that sky shifting should produce independent
draws from the background distribution.

2. Injections in Gaussian noise

Ideally, the background distribution should be unaffected
by the presence of a signal: While the value of the on-
source statistic should rise to reveal it, the sky-shifted
values should be insensitive to it. We demonstrate that this
is the case by injecting signals of different amplitudes in
Gaussian noise. We simulate a signal from the Crab Pulsar
(PSR J0534þ 2200) as seen by three advanced detectors
(H, L, V) at design sensitivity over six months, and recover
it using the Bayesian method of Sec. II C 1.
We first choose a realistic signal amplitude of

h0 ¼ 10−26, which is weak enough to be consistent with
the latest upper limits for this source [20], but strong
enough to yield a non-negligible network SNR ¼ 5 for the
chosen PSDs and observation time. The data containing the
injected signal are then reheterodyned for 104 shifted sky
locations to yield the survival function in Fig. 5, i.e., the

TABLE I. Parameters for the case-study signals (Sec. IVA).

fGW (Hz) α δ Figures Data Comment

J0534þ 2200 59.33 5h34m31.97s 22°00052.0700 5, 6 Gauss. design (H,L,V) Assumed ι ¼ 61.3°, ψ ¼ 124.0°
J1932þ 17 47.81 19h32m07.17s 17°56018.7000 7 Real O1 (H,L) Published in [16]
P03 108.86 11h53m29.42s −33°26011.7700 8 Real O1 (H,L) Hardware injection [64]
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FIG. 4. Histogram of the noise-only distribution obtained using
the sky-shifting method in case of Gaussian noise (no signal).
Red line: best fit given by a Γ distribution with a ¼ 1.95. In this
test case the hypothetical source was assumed at a frequency
f ≈ 108.85 Hz with a spin-down _f ≈ 10−17 Hz=s. The on-source
position was chosen on the ecliptic plane (α ¼ 22h35m40.73s,
δ ¼ 39°40044.7600) as in Fig. 2. The search assumed a single
detector at the LIGO Hanford site.
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complement of the cumulative density function (CDF),
1–CDF. Each colored trace in this figure represents the
distribution of sky-shift background computed from the
northern celestial hemisphere, excluding any points closer
to the source than the indicated angular distance, i.e.,
excluding points with ðα; δÞ such that jα − α⋆j < Δ and
jδ − δ⋆j < Δ with a “⋆” indicating the true location of the
Crab and Δ one of the values given in the legend of Fig. 5:
0° (blue), 10° (green), 30° (yellow), or 90° (red). In
particular, the blue curve corresponds to background
from points sampled over the whole hemisphere, while
the red curve corresponds to points sampled over the half-
hemisphere not containing the source.
In this case, the choice of sky region does not have a

strong effect on the background: We may take advantage
of the whole hemisphere, getting quite close to the source
(as allowed by the frequency resolution of this search). In
fact, note that the blue and green curves in Fig. 5 are
essentially identical. For reference, the distribution of the
sky-shift statistic over the whole northern sky (0° curve on
the left) is represented on the right panel of Fig. 5 via a
stereographic map, with the true location of the source
indicated by magenta crosshairs.
As expected, the background produced via sky shifting is

practically indistinguishable from results in pure-Gaussian
noise (gray, thin histogram). Indeed, these two samples
yield a Kolmogorov-Smirnov (KS) p-value of 0.77, favor-
ing the hypothesis that they were both drawn from a
common distribution. This agreement is despite the fact
that the on-source statistic (dark gray dashed line) takes a
significantly increased value, revealing the presence of the
injection. Completely ignoring the intrinsic probabilistic

meaning of BS
N, a background like the blue curve in the left

panel of Fig. 5 would allow us to place a p-value of at most
10−4 on the null hypothesis that the on-source data
are noise.
As anticipated in Sec. III B, there is a limit to how loud

the injection can be without noticeably contaminating
nearby sky bins and, therefore, biasing the background
distribution obtained through sky shifting. However, this
threshold is quite high: For the same detector configura-
tion as above, we find that the injection must reach
h0 ∼Oð10−24Þ, or a network SNR ∼ 700 at design sensi-
tivity, before sky shifting is unable to effectively remove it.
We show an example of this in Fig. 6 for a signal from the
Crab Pulsar with h0 ¼ 1.4 × 10−24, which roughly corre-
sponds to the spin-down limit for this source [16].3 This
time, as seen from the panel on the left, the full-hemisphere
sky-shifting distribution (blue curve) is visibly inconsistent
with a pure-Gaussian background (gray, thin curve), and a
KS p-value of 10−7 strongly disfavors a shared distribution
between the two sample sets. From the right panel, it is
clear that the culprits are noticeably contaminated sky
locations in the neighborhood of the source (magenta
crosshairs). These polluted sky bins are arranged in the
same pattern predicted in Fig. 2, although under a different
guise due to the logarithmic color scale.

FIG. 5. Realistic Crab signal in Gaussian noise. We simulate a six-month-long signal with h0 ¼ 10−26 (network SNR 5) and
parameters consistent with the Crab Pulsar (PSR J0534þ 2200), inject it in Gaussian noise for aLIGO and Virgo design PSDs, and
recover it using the Bayesian analysis of Sec. II C 1 (see Table I). The left panel shows the survival function (1–CDF) of log10BS

N,
Eq. (14), for the sky-shifted background produced from the injected data for different excision areas around the source (different colors,
blue and green overlap almost perfectly), as well as from pure-Gaussian noise (gray, thin histogram); the on-source statistic for the
injection is log10 BS

N ¼ 2.5 (thick dashed line), higher than any of the 104 sky-shifted instantiations. The right panel shows
the distribution of the sky-shift statistic over the sky in a north-polar stereographic projection, with the Crab’s location marked by the
magenta crosshairs; the color of each hexagon gives the average of log10 BS

N over several sky bins.

3For an isolated pulsar (no accretion), the spin-down limit is
the maximum power that could possibly be emitted in gravita-
tional waves given the observed decay in the pulsar’s angular
momentum.
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As discussed in Sec. III B, background contamination
can at worst cause us to underestimate, never overestimate,
the significance of a detection. Yet, the background is not
underestimated in the example of Fig. 6 because the signal
is too loud (log10BS

N ¼ 9 × 104, off the scale of the
histogram in Fig. 6). This is a general feature: In
Gaussian noise, if a signal is loud enough to contaminate
a large region of the sky, it will also be louder than the
loudest background produced from it.

3. Real noise

The above behavior is replicated in the presence of actual
noise from LIGO and Virgo, with the difference that the
background naturally shows tails due to the non-
Gaussianities in the data. An example of this is shown
in Fig. 7, which was produced using actual data from
aLIGO’s first observation run prepared for the pulsar PSR
J1932þ 17 and with both detectors analyzed coherently
using the Bayesian method of Sec. II C 1. As before, the left
panel shows the sky-shifted background distributions for

FIG. 6. Very loud Crab signal in Gaussian noise. We simulate a six-month-long signal with h0 ¼ 1.4 × 10−24 (network SNR 700) and
parameters consistent with the Crab pulsar (PSR J0534þ 2200), inject it in Gaussian noise for aLIGO and Virgo design PSDs, and
recover it using the Bayesian analysis of Sec. II C 1 (see Table I). The left panel shows the survival function (1–CDF) of log10 BS

N,
Eq. (14), for the sky-shifted background produced from the injected data for different excision areas around the source (different colors),
as well as from pure-Gaussian noise (gray, thin histogram); the on-source statistic for the injection is log10 BS

N ¼ 9 × 104, which is vastly
higher than any of the 104 sky-shift instantiations (off the scale). The right panel shows the distribution of the sky-shifted statistic over
the sky in a north-polar stereographic projection, and with the Crab’s location marked by the magenta crosshairs; the color of each
hexagon gives the average of log10 BS

N over several sky bins, in semilog scale linearly interpolated between ð−1; 1Þ.

FIG. 7. Real O1 noise for J1932þ 17. Off-sourced background produced from real O1 LIGO data prepared for PSR J1932þ 17,
analyzed coherently with the Bayesian method of Sec. II C 1 (see Table I). The left panel shows the survival function (1–CDF) of
log10BS

N, Eq. (14), for the sky-shifted background for different excision areas around the source (different colors); the on-source statistic
for this pulsar is log10 BS

N ¼ 0.5 (vertical dashed line), which differs from the result in [16] only due to a log-uniform prior on the signal
amplitude. The right panel shows the distribution of the sky-shifted statistic over the sky in a north-polar stereographic projection, with
the true location marked by the magenta crosshairs; the color of each hexagon gives the local average of log10 BS

N over several sky bins.
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different excision areas around the source (different colors).
Note that the excision process does not have any significant
impact on the distribution, which is what one would expect
in the absence of a very loud signal at the on-source
location. The presence of artifacts in the data becomes
apparent in the slower drop of the survival function with
respect to, e.g., Fig. 5. The on-source value of the signal vs
noise Bayes factor for this source was published in [16],
and is marked here by a vertical dashed line—clearly, there
is no evidence for a signal in the data.
To study the effectiveness of sky shifting in detecting a

signal in real noise, we analyze data for the hardware injection
referred to as “P03” in [64]. Hardware injections are produced
by physically actuating on the test masses to mimic the effect
of a true gravitational wave, providing a valuable end-to-end
test of the instrumental calibration and analysis pipelines. In
the case of P03, the signal was injected at 108.86 Hz with an
amplitude of h0 ¼ 8.2 × 10−25 (network SNR ¼ 50). As
shown on the left panel of Fig. 8, this signal seems to be
sufficiently strong to slightly contaminate the sky bins in its
immediate vicinity, but this pollution is easily removed via a
narrowexcision (compare the blue trace to the rest inFig. 8). In
any case, thevalue of the on-sourceBayes factor for this signal
is log10 BS

N ¼ 504, which is significantly louder than the
loudest background. Given that 104 sky-shifted noise instan-
tiationswere used to estimate the background, this implies that
Fig. 8 would allow us to claim a detection of P03 with
p ≤ 10−4 (ignoring the intrinsic probabilistic meaning
of BS

N).

B. Comparison to other methods

In order to determine whether sky shifting offers an
improvement over other strategies, we must go beyond

specific examples and study false-alarm and false-dismissal
rates. That is, respectively, how likely is sky shifting to
conclude that a noise artifact is a signal (false alarm), versus
how likely is it to conclude that a signal is a noise artifact
(false dismissal), as a function of the confidence level. We
estimate those rates from a large number injections in
simulated and actual noise, and use them to directly
compare with the standard background-estimation method
for the five-vector search (Sec. II C 2). In our simulations,
we find that sky shifting can outperform the usual methods
in real LIGO data.

1. False-dismissal rate

First, in order to study the false-dismissal rate, for a
selection of SNRs, we simulate 250 signals over the sky,
with extrinsic parameters ðψ ; η;ϕ0Þ picked randomly over
their allowed ranges. We then inject these in both idealized
(Gaussian) and actual O1 noise for the LIGO Hanford and
Livingston detectors (four months observation time). In the
case of Gaussian noise, we pick the injection frequency and
spin-down to be equal to those of P03, a choice that will
only affect the specific size of the sky patches that required
for sky shifting per Eq. (9). When using real detector data,
we set the frequency of the injections to be 54.5 Hz with no
spin-down. This is because O1 data are known to be
polluted by noise artifacts in this frequency band, espe-
cially in the Livingston detector [66], making this a good
frequency region to test the performance sky shifting under
realistic circumstances.
In each case, we use the method of Sec. II C 2 to obtain

the on-source value of the detection statistic, as well as
2 × 104 sky-shifted background values with a minimal
separation of 0.01 deg. We then compute the number of

FIG. 8. Real O1 noise for a loud hardware injection (P03). Off-sourced background produced from real O1 LIGO data prepared for
hardware injection P03 [64] analyzed coherently with the Bayesian method of Sec. II C 1 (see Table I). The left panel shows the survival
function (1–CDF) of log10 BS

N, Eq. (14), for the sky-shifted background for different excision areas around the source (different colors);
the on-source statistic for this pulsar is log10 BS

N ¼ 504 (off scale). The right panel shows the distribution of the sky-shift statistic over the
sky in a south-polar stereographic projection, with the true location marked by the magenta crosshairs; the color of each hexagon gives
the local average of log10 BS

N over several sky bins.
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detected signals as a function of the false-alarm probability,
i.e., the number of injections recovered with a detection
statistic that is higher than or equal to the value corre-
sponding to a certain p-value, as established from the
empirically estimated background. For comparison, we
repeat the above procedure but with a background gen-
erated via the standard off-frequency method (mentioned in
Sec. II C 2 and described in detail in [66]), instead of sky
shifting. In both cases, the tails of the background dis-
tributions are extrapolated for very large values of the
detection statistic using an exponential-decay fit.
The results of this study are summarized in the receiver

operating characteristic (ROC) curves of Fig. 9. Curves in
that figure represent the normalized detection rate (detec-
tion probability) as a function of the p-value (FAP) for
different choices of injected SNR (different colors and
traces) and different methods used to estimate the false-
alarm probability (FAP). The top panel shows the results
from applying the sky-shifting method to the case of
Gaussian noise, the middle panel from applying the off-
frequency method to real detector data, and the bottom
panel from applying the sky-shifting to the same real data
as in the middle plot. As expected, optimal ROCs are
obtained in the case of Gaussian noise, for which both
methods are equivalent; on real detector data, however, sky
shifting shows better ROCs.
Non-Gaussian artifacts in real noise produce tails in the

background distribution, hurting our chances to detect
actual signals. This can be seen by comparing Fig. 5–8.
This shows in Fig. 9 which indicates that, with those
settings, we are only 50% likely to detect a SNR ¼ 16

signal (green curve, down-pointing triangles) with FAP ¼
10−6 (∼5σ) in real O1 noise, but we are 75% likely to detect
it with the same confidence in Gaussian noise.

Nevertheless, Fig. 9 also shows that sky shifting can
outperform traditional methods in the presence of actual
instrumental noise, as can be seen by comparing the center
and bottom panels. For instance, the off-frequency method
(middle panel) has essentially 0% chance of detecting a
SNR ¼ 16 signal at FAP ¼ 10−6, which is dramatically
less than the 75% chance of detecting it via sky shifting
(bottom panel). In fact, for these settings, sky shifting is
consistently superior at all SNRs.

2. False-alarm rate

Besides assigning high significance to real signals, sky
shifting should also be able to robustly reject outliers
arising from non-Gaussianities in the data. In other words,
it should have a low false-alarm rate at any given level of
confidence, rejecting artifacts with high probability. The
study of noise features is a very general problem due to the
wide morphological range of non-Gaussianities that can be
found in the data, which is the same reason why modeling
noise likelihoods from first principles is impossible in the
first place. This makes the benchmarking of noise-rejection
probability a challenging problem.
To address this, we use as proxy simulated monochro-

matic noise lines at frequencies close to the targeted pulsar
frequency. The putative source for which we were looking
was again a pulsar with the rotational parameters of P03
and the sky position α ¼ 22h35m40.73s, δ ¼ 39°40044.7600.
In particular, we produce 300 datasets with noise lines
added to four months of Gaussian noise with varying
SNRs. Each noise line is injected with a frequency within
0.01 Hz of the targeted frequency, ensuring that the Rømer
correction will cause it to contaminate the on-source
analysis. This is because, for a putative source at

FIG. 9. Top panel: detection probability vs FAP threshold in Gaussian noise. Middle panel: same but done in non-Gaussian noise using
the off-frequency method. Bottom: same again but this time using the sky-shift method.
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f ¼ 108.85 Hz (see Table I), the Rømer frequency shift
will be at most [51]

Δf ¼ f × 10−4 ≈ 0.01 Hz: ð27Þ

We pick the specific frequency and phase of the noise lines
from a uniform distribution. After doing this, for every
dataset we compute the significance of the noise-line
outlier using sky shifting through the five-vector method
(Sec. II C 2). As above, we produce 104 background
realizations using sky patches separated with a minimal
distance of 0.01 deg. For comparison with the traditional
method, we additionally evaluate the significance using
the theoretical formula assuming pure-Gaussian noise
(cf. Fig. 4) [46].
We evaluate our method’s ability to identify noise

artifacts by studying the rejection probability as a function
of the confidence threshold set to claim a detection—that is,
how likely the analysis is to reject the artifact as we
decrease our tolerance for false alarms (FAP). Figure 10
shows the results obtained empirically with sky shifting
(right panel) and analytically assuming Gaussian noise
(left panel). In the ideal case, we would be able to perfectly
measure the significance of an outlier and the curves in
Fig. 10 would simply be a straight line with slope −1. As
we can see, strong (SNR > 256) noise lines produce
significant outliers if we assume the background to be
Gaussian; however, this is not true for sky shifting.
These tests can be extended to a general noise back-

ground. In principle, we can model coherent instrumental
noise as a linear combination of monochromatic noise lines
like those injected above. Every noise line will couple
constructively or destructively with the other noise
lines after Doppler corrections. If the lines combined

constructively, we would obtain a case very similar to
the one presented in Fig. 10 but with a larger noise-line
SNR. On the other hand, if the noise lines combine
destructively, then the SNR would be lower than
Fig. 10. The general case should lie somewhere in between.

V. CONCLUSION

Sky-shifting can provide a much-needed efficient and
robust way to empirically estimate the background of
searches for continuous gravitational waves targeted at
known pulsars, enabling estimates of detection significance
that are valid in actual (non-Gaussian) instrumental noise.
This method has already been put into practice for
diagnosing outliers in actual LIGO and Virgo searches
[16,24], but a systematic study of its performance was
lacking from the literature. In this paper, we fill in this gap
by introducing the rationale behind this strategy, exploring
its theoretical applicability and studying its performance in
real and simulated data.
The procedure is simple: The original gravitational-wave

data are time corrected for multiple shifted sky locations to
obtain as many instantiations of noise-only data, which are
then analyzed by any of the usual searches with the same
settings as the on-source search (Sec. III A). Under the right
conditions, we show that the sky-shifted data are blind to
astrophysical signals while retaining the statistical proper-
ties of the noise. This allows for the direct empirical
estimation of the background distribution of the different
search statistics.
Two conditions need to be satisfied for sky-shifting to be

effective: Shifted sky locations must (i) be resolvably
different and (ii) be drawn from the same hemisphere as
the source. As long as this is true, sky shifting will provide
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independent draws from the background distribution
(Sec. III B). Furthermore, for realistic signal amplitudes,
the distribution will be uncontaminated by the presence of a
signal at the true on-source sky location. This is not true for
extremely loud signals, but this is not a problem because in
those cases the on-source statistic is always louder than the
background (Sec. III B 2). The phenomenon is analogous to
that observed with strong signals in searches for compact
binaries [61,62].
We illustrate the efficacy of sky shifting with several

examples in real and synthetic data (Sec. IVA). This
includes simulated Gaussian noise in the absence of signal
(Fig. 4), as well as in the presence of realistic (network
SNR ¼ 5, Fig. 5) and strong (network SNR ¼ 700, Fig. 6)
signals. We also demonstrate the method in the presence
of real LIGO O1 noise with data prepared for PSR
J1932þ 17 [16] and loud hardware injection [64].
Source parameters for all these case studies are summa-
rized in Table I.
Finally, we systematically study the performance of sky

shifting by looking at false-dismissal and false-alarm rates
(Sec. IV B). The former is quantified by the receiver
operating curve of Fig. 9 and the latter by the rejection-
probability vs confidence-level plot of Fig. 10. In the cases
we consider, we find that sky shifting outperforms the
standard method for computing significances in the context
of the five-vector search.
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