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Pulsar timing arrays (PTAs) are currently the only experiments directly sensitive to gravitational
waves with decade-long periods. Within the next five to ten years, PTAs are expected to detect
the stochastic gravitational-wave background (SGWB) collectively sourced by inspiraling super-
massive black hole binaries. It is expected that this background is mostly isotropic, and current
searches focus on the monopole part of the SGWB. Looking ahead, anisotropies in the SGWB
may provide a trove of additional information on both known and unknown astrophysical and
cosmological sources. In this paper, we build a simple yet realistic Fisher formalism for
anisotropic SGWB searches with PTAs. Our formalism is able to accommodate realistic properties
of PTAs and allows simple and accurate forecasts. We illustrate our approach with an idealized
PTA consisting of identical, isotropically distributed pulsars. In a companion paper, we apply our
formalism to current PTAs and show that it can be a powerful tool to guide and optimize real data
analysis.
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I. INTRODUCTION

The promise of timing pulsars to detect nanohertz (nHz)
gravitational waves (GWs) was pointed out more than
four decades ago [1,2], and the application to a stochastic
gravitational-wave background (SGWB) was studied
shortly after [3]. In that seminal paper, Hellings and
Downs derived the response of pulsar timing residual
correlations to an isotropic SGWB, and were the first to
combine several pulsars to extract an upper limit on
the SGWB amplitude. Since then, several collaborations
[4–7] have been timing arrays of pulsars, some for over
two decades, and getting an increasingly stringent upper
limit on the SGWB amplitude [8–10]. If our understan-
ding of galaxy formation and merger history is correct,
pulsar timing arrays (PTAs) should detect the SGWB
generated by inspiraling supermassive black hole binaries
(SMBHBs) within the next decade [11–13]. In addition
to this astrophysical background, other, more exotic proc-
esses could also contribute to the nHz SGWB; see, e.g.,
Refs. [12,14,15].
While most current searches assume perfect

isotropy, there is likely some level of anisotropy in the

SGWB.1 For one, the finite number of SMBHBs should
inevitably imply some level of anisotropy [16–18]. On large
scales, one also expects the distribution of SMBHBs to trace
cosmic structure [12]. Independent of their physical origin, it
is important to understand what kind and what level of
SGWB anisotropy PTAs might in principle be able to detect.
Indeed, such anisotropy might eventually prove a powerful
discriminant between different models of the SGWB.
The standard approach to study the detectability of

SGWB anisotropies has been to harness the full power
of Bayesian analysis pipelines used for real data [19,20].
While this approach provides the most accurate results, it is
computationally demanding and does not allow for making
quick estimates or building intuition. Recently, the authors
of Ref. [21] developed a simplified approach, holding for

1Given that the SGWB is the power spectrum of the gravi-
tational-wave strain, we are technically referring to statistical
anisotropy. However, since the gravitational-wave strain itself is
necessarily anisotropic (the only isotropic rank-2 and trace-free
tensor is the null tensor), we will drop the qualifier “statistical”
when referring to anisotropies of the (scalar) SGWB intensity, as
there is no risk of confusion.
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an idealized PTA constituted of a large number of identical,
isotropically distributed pulsars.2 In this paper, we fill the
gap between these two methods, by deriving a simple, yet
realistic, Fisher formalism for SGWB anisotropies. We
moreover break away from the spherical-harmonic decom-
position of the SGWB that most past works have relied on
thus far [17,20,22,23], as we argue it is poorly adapted to
real PTAs (see Ref. [24] for a different mapping approach,
in the case of continuous waves). Our formalism allows for
real pulsar distributions and noise properties, and yet it
permits us to make quick detectability estimates without
running time-consuming Monte Carlo Markov chains.
While our formalism is not a substitute for a full-on data
analysis, it provides useful tools to make forecasts, as well
as guide and optimize SGWB searches with PTAs. Our
philosophy is inspired by what has long been the norm in
the field of cosmology, where Fisher analyses (e.g.,
[25,26]) are routinely used and have proven extremely
useful, not only to produce forecasts, but also to make the
field accessible to a broader community.
This work is the first of a series of two articles. In the

present paper, we expound the theoretical formalism, culmi-
nating in the derivation of the PTA Fisher matrix for an
anisotropic SGWB, Eq. III C. Along the way, we rederive
some known results with a fresh approach, using only frame-
independent, geometric expressions. In the companion paper
(hereafter, Paper II), we shall apply this tool to several
practical examples, and illustrate how to make forecasts or
optimize searches for SGWB anisotropies.
This paper is organized as follows. In Sec. II, we start by

describing the statistical properties of the SGWB in a new
frame-independent, geometric fashion, and then derive the
responseof a timing array to the SGWB. InSec. III, wederive
the Fisher matrix for the SGWB intensity, which is our main
result. In Sec. IV, we apply our results to the idealized case of
a dense array of identical pulsars isotropically distributed on
the sky. We present a new calculation of the Hellings and
Downs curve in Appendix A, derive the covariance matrix of
time residual band powers in Appendix B, and compute the
Fisher matrix in the limit of a large number of identical,
isotropically distributed pulsars in Appendix C. Throughout
we use units in which the speed of light is unity. A summary
of our notation can be found in Table I.

II. GEOMETRIC DESCRIPTION OF THE
RESPONSE OF PULSAR PAIRS TO A SGWB

A. Geometric decomposition of the
SGWB power spectrum

In this section we present a new, geometric, and frame-
independent decomposition of the SGWB power spectrum.

In Sec. II B, we relate the new expressions, Eqs. (6), (9),
and (11), to those commonly found in the PTA literature.
Our frame-independent expressions will prove very power-
ful later on as they allow us to express all relevant
observables through explicit functions of scalar products
between unit vectors.
We decompose the GW strain habðt; x⃗Þ in the Fourier

domain as follows:

habðt; x⃗Þ ¼
Z

∞

−∞
df

Z
d2 Ω̂ habðf; Ω̂Þe2iπfðt−Ω̂·x⃗Þ; ð1Þ

where habðf; Ω̂Þ is symmetric, trace-free, and transverse to
the direction of propagation Ω̂, i.e., Ω̂ahabðf; Ω̂Þ ¼ 0.
If we assume that the SGWB is a stationary Gaussian

random field (as would be the case if it is generated by a
large number of uncorrelated sources), it is entirely
determined by its power spectrum Pabcd, which we
normalize as follows:

hhabðf; Ω̂Þh�cdðf0; Ω̂0Þi ¼ δDðΩ̂0; Ω̂Þ
4π

δDðf0 − fÞ
2

×Pabcdðf; Ω̂Þ; ð2Þ

where δD is the Dirac function. The Dirac function in
frequency stems from time-translation invariance (i.e., sta-
tionarity) of the correlation function hhabðtÞhcdðtþ ΔtÞi,
and the angular Dirac function δDðΩ̂0; Ω̂Þ stems from spatial-
translation invariance (i.e., statistical isotropy).
The definition (2) implies the following Hermiticity

property:

Pcdabðf; Ω̂Þ ¼ P�
abcdðf; Ω̂Þ: ð3Þ

In addition, the reality of habðt; x⃗Þ implies that
habð−f; Ω̂Þ ¼ h�abðf; Ω̂Þ, in turn implying

Pabcdð−f; Ω̂Þ ¼ P�
abcdðf; Ω̂Þ: ð4Þ

The GW power spectrumPabcd is a rank-4 tensor, which is
symmetric and trace-free for the first and last pairs of
indices, and transverse to Ω̂ in each index. Hence it has four
independent components, which are a priori complex. The
Hermiticity property (3) reduces the number of independent
components to four real quantities. This is the same
number of components as the (rank-2) electromagnetic
intensity tensor, i.e., the power spectrum of the electro-
magnetic field. Just as the latter, we may decomposePabcd
into a component proportional to its trace (the total
intensity)

Iðf; Ω̂Þ≡ 1

4
Pababðf; Ω̂Þ; ð5Þ

2This underlying assumption is not explicitly spelled out in
Ref. [21], but is required for the harmonic transform of the timing
residuals to be uncorrelated and have l-independent noise, as
assumed there.
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a component proportional to a real pseudoscalar Vðf; Ω̂Þ
(the circular polarization), and a real, fully trace-free
linear-polarization tensor Labcdðf; Ω̂Þ, carrying the two
remaining independent components. More specifically, we
want to decompose the power spectrum as follows:

Pabcdðf; Ω̂Þ ¼ Iðf; Ω̂ÞIabcdðΩ̂Þ þ iVðf; Ω̂ÞVabcdðΩ̂Þ
þLabcdðf; Ω̂Þ; ð6Þ

where the (real) tensors IabcdðΩ̂Þ and VabcdðΩ̂Þ are purely
geometric, frequency-independent objects. The traces of
the tensors appearing in Eq. (6) are

Iabab ¼ 4; Vabab ¼ 0; Labad ¼ 0: ð7Þ

The reality condition (4) implies that Iðf; Ω̂Þ and
Labcdðf; Ω̂Þ are even functions of f, while Vðf; Ω̂Þ is
an odd function of f.

TABLE I. Summary of the notation used in this paper, in alphabetic order, with the defining equations.

Symbol Description Dimensions Defining equation

1ðΩ̂Þ Isotropic map equal to unity for all directions Ω̂ Dimensionless 1ðΩ̂Þ ¼ 1 ∀ Ω̂
CIJ Covariance of estimators of time-residual band power Time4 CIJ ≡ covðR̂I ; R̂JÞ
δ⊥Ω̂
ab

Identity tensor in the plane orthogonal to Ω̂ Dimensionless (10)

Δtp Observation cadence of pulsar p Time
Δf Frequency bandwidth for band powers Frequency
f Gravitational-wave frequency Frequency (1)
F ðΩ̂; Ω̂0Þ Fisher matrix of band-integrated GW intensity Dimensionless (55)

FðΩ̂; Ω̂0Þ Reduced Fisher matrix for identical pulsars Dimensionless (69)
FIJ Npair × Npair discretized reduced Fisher matrix Dimensionless (84)

γp̂ q̂ðΩ̂Þ ¼ γIðΩ̂Þ Pairwise timing response function at pulsar pair I ¼ ðp; qÞ Dimensionless II D

γ�I ðΩ̂Þ Dual map of γIðΩ̂Þ Dimensionless γ�I · γJ ¼ δIJ
habðt; Ω̂Þ Gravitational-wave strain Dimensionless (27)

habðf; Ω̂Þ Fourier transform of habðtÞ 1/Frequency (1)
hcðfÞ Characteristic gravitational-wave strain Dimensionless (13)
HðμÞ Hellings and Downs function (response to an isotropic SGWB) Dimensionless (45)
I, J Labels of unique pulsar pairs Indices I ¼ ðp; qÞ, J ¼ ðp0; q0Þ
Iðf; Ω̂Þ Total intensity of the SGWB 1/Frequency (5)

I fðΩ̂Þ or IðΩ̂Þ Band-integrated SGWB intensity Dimensionless (49)

IabcdðΩ̂Þ Geometric dependence of the SGWB total intensity piece Dimensionless (9)

Labcdðf; Ω̂Þ Linear polarization tensor of the SGWB 1/Frequency (6)
NpðtÞ Intrinsic time-residual noise of pulsar p Time (47)
NpðfÞ Fourier transform of NpðtÞ Time/Frequency
Ω̂ Gravitational-wave direction of propagation Unit vector (1)
p, q Labels of individual pulsars Indices
p̂, q̂ Unit vectors pointing in the direction of individual pulsars Unit vectors
Pabcdðf; Ω̂Þ Rank-4 power spectrum of the SGWB 1/Frequency (2)
RGW
p ðtÞ Gravitational-wave-induced time residual of pulsar p Time (30)

RGW
p ðfÞ Fourier transform of RGW

p ðtÞ Time/Frequency (32)
RpðtÞ Total time residual of pulsar p Time (47)
RpðfÞ Fourier transform of RpðtÞ Time/Frequency
RIðfÞ ¼ RpqðfÞ Cross-power spectrum of time residuals of pulsar pair I ¼ ðp; qÞ Time2/Frequency (33)
RI;f or RI Band-integrated time-residual power spectrum Time2 (51)

R̂I Estimator for RI Time2

σ2pðfÞ Pulsar timing noise power spectrum Time2=Frequency (48)
σ2p;f or σ2p Band-integrated pulsar timing noise Time2 (50)
T pðfÞ Timing-model-fitting transmission function of pulsar p Dimensionless III C
Tp Total observation time of pulsar p Time
Tpq Effective total observation time of pulsar pair p, q Time Tpq ¼ minðTp; TqÞ
Vðf; Ω̂Þ Circular polarization amplitude of the SGWB 1/Frequency (12)

VabcdðΩ̂Þ Geometric dependence of the SGWB circular polarization piece Dimensionless (11)

YlmðΩ̂Þ Real spherical harmonics Dimensionless
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The geometric objects IabcdðΩ̂Þ and VabcdðΩ̂Þ must be
built exclusively out of isotropic tensors, i.e., the Kroneker
delta and the Levi-Civita tensor ϵabc, and of Ω̂, which is the
only preferred direction. For I to be a real scalar, the tensor
Iabcd must only contain Kronecker deltas and Ω̂, i.e., be of
the form

IabcdðΩ̂Þ ∝ δabδcd;…; δabΩ̂cΩ̂d;…; Ω̂aΩ̂bΩ̂cΩ̂d; ð8Þ

where the ellipses include all permutations of indices. By
imposing that Iabcd has the symmetries of Pabcd, and,
from Eq. (3), is symmetric under exchange of the first and
last pairs of indices, one finds that the only rank-4 tensor
satisfying these properties, with the appropriate normali-
zation Iabab ¼ 4 is

IabcdðΩ̂Þ ¼ δ⊥Ω̂
ac δ⊥Ω̂

bd þ δ⊥Ω̂
ad δ⊥Ω̂

bc − δ⊥Ω̂
ab δ⊥Ω̂

cd ; ð9Þ

where δ⊥Ω̂
ab is the identity tensor projected on the plane

orthogonal to Ω̂,

δ⊥Ω̂
ab ≡ δab − Ω̂aΩ̂b: ð10Þ

For V to be a pseudoscalar, the geometric object VabcdðΩ̂Þ
must be proportional to Ω̂aϵabc, and otherwise be built
out of Kronecker deltas and Ω̂. It must have the same
symmetry properties asPabcd and satisfyVcdab ¼ −Vabcd.
Up to a proportionality constant (which we chose in order
to match existing derivations, as we will see shortly), the
only possible tensor with the appropriate symmetry proper-
ties is

VabcdðΩ̂Þ ¼ Ω̂eðϵeaðcδ⊥Ω̂
dÞb þ ϵebðcδ⊥Ω̂

dÞaÞ; ð11Þ

where XðabÞ ≡ ðXab þ XbaÞ=2 represents symmetrization.

With this convention, we have Vabad ¼ 2Ω̂eϵebd; thus the
amplitude of circular polarization V can be obtained from

V ¼ 1

4i
PabadϵbdeΩ̂e: ð12Þ

Finally, Labad contains information about the linear polari-
zation of the SGWB.
To conclude, Eqs. (6), (9), and (11) form a geometric,

frame-independent decomposition of the GW power
spectrum, with the most general frequency and angular
dependence. In the remainder of this paper, we will focus
on the total-intensity part of the SGWB, i.e., assume that
the circular and linear polarization components are sub-
dominant (it is conceptually straightforward to generalize
our formalism to a polarized SGWB). In the majority of
works on the SGWB, the intensity is assumed to be
isotropic, Iðf; Ω̂Þ ¼ IðfÞ. In this case, the SGWB inten-
sity is just half of the one-sided GW strain spectral density

ShðfÞ ¼ h2cðfÞ=f, where hcðfÞ is the characteristic strain
[27]. More generally, these quantities are related to the
angle average of Iðf; Ω̂Þ through

ShðfÞ ¼
h2cðfÞ
f

¼ 2

Z
dΩ̂
4π

Iðf; Ω̂Þ; ð13Þ

as can be seen from taking the trace of Eq. (2) and
integrating it over angles, and comparing to, e.g.,
Ref. [28]. The authors of Ref. [17] consider the possibility
of an anisotropic GW intensity, with a factorized frequency
and angular dependence. Their convention corresponds to
Iðf; Ω̂Þ ¼ 8πHðfÞPðΩ̂Þ. A similar convention is adopted
(up to a factor of 2) in Ref. [22].

B. Connection with standard
frame-dependent notation

We now relate the geometric, frame-independent
description given above to the more standard frame-
dependent expressions found in the literature. For a
given direction of GW propagation Ω̂, one may pick
two arbitrary vectors m̂ and n̂ ¼ Ω̂ × m̂ orthogonal to Ω̂,
and define the two polarization basis tensors

eþab ≡ m̂am̂b − n̂an̂b; e×ab ≡ m̂an̂b þ n̂am̂b: ð14Þ

Since the triad m̂, n̂, Ω̂ forms an orthonormal basis, we have

m̂am̂b þ n̂an̂b ¼ δab − Ω̂aΩ̂b ¼ δ⊥Ω̂
ab ; ð15Þ

m̂bn̂d − n̂bm̂d ¼ Ω̂eϵebd; ð16Þ

independent of the choice of m̂, n̂. From these expressions,
one can show that the tensors Iabcd and Vabcd defined in
Eqs. (9) and (11) are given by

Iabcd ¼ eþabe
þ
cd þ e×abe

×
cd; ð17Þ

Vabcd ¼ eþabe
×
cd − e×abe

þ
cd: ð18Þ

Let us now project the strain onto the basis eþab, e
×
ab:

habðf; Ω̂Þ ¼ hþðf; Ω̂Þeþab þ h×ðf; Ω̂Þe×ab: ð19Þ

For the sake of compactness, for any two stochastic
variables X, Y, we define the quantity hXY�i0 such that

hXðf; Ω̂ÞY�ðf0; Ω̂0Þi ¼ δDðΩ̂0; Ω̂Þ
4π

δDðf0 − fÞ
2

hXY�i0: ð20Þ

In words, hXY�i0 is the cross-power spectrum of X and Y.
With this convention, the GW power spectrum is
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Pabcd ¼ hhabh�cdi0
¼ hjhþj2i0eþabeþcd þ hhþh�×i0eþabe×cd
þ hh×h�þi0e×abeþcd þ hjh×j2i0e×abe×cd: ð21Þ

Now using Eqs. (17) and (18), we see that we can write the
GW power spectrum in the form (6), with

I ¼ 1

2
hjhþj2 þ jh×j2i0; ð22Þ

V ¼ 1

2i
hhþh�× − h×h�þi0 ¼ Imhhþh�×i0; ð23Þ

Labcd ¼ Qðeþabeþcd − e×abe
×
cdÞ þ Uðeþabe×cd þ e×abe

þ
cdÞ; ð24Þ

Q≡ 1

2
hjhþj2 − jh×j2i0; ð25Þ

U ≡ 1

2
hhþh�× þ h×h�þi0 ¼ Rehhþh�×i0: ð26Þ

These relations clearly show the analogy with the standard
Stokes parameters of electromagnetic waves (see, e.g.,
[29]). Our normalization matches precisely that of
Ref. [30]—see Ref. [31] for similar expressions, with a
different normalization.

C. Concise derivation of the timing
residuals from GWs

A common derivation of the time-residual induced by
GWs consists of deriving expressions for a null geodesic in
the presence of gravitational plane waves using Killing
vectors [2,32,33]. Here we provide a new and concise
derivation in the spirit of the first calculation by Ref. [1].
Our derivation has the advantage of not being limited to a
plane wave, but directly applies to a generic superposition
of waves, with no special symmetries and hence no Killing
vector fields. Consider null geodesics in the metric

ds2 ¼ −dt2 þ ðδab þ habÞdxadxb; ð27Þ

where the GW strain habðt; x⃗Þ is symmetric, trace-free, and
transverse (∂ahab ¼ 0Þ. Specifically, consider light rays
originating at a pulsar p (event P) and received on Earth
(event E). We define dl2 ¼ δabdxadxb. The null geodesic
condition implies that

dt ¼ ðdl2 þ habdxadxbÞ1=2 ¼ dl
�
1þ hab

dxa

dl
dxb

dl

�
1=2

¼ dl
�
1þ 1

2
hab

dxa

dl
dxb

dl

�
þOðh2Þ; ð28Þ

where we have expanded to linear order in hab. At this
order, we only need to compute dxa=dl along unperturbed

geodesics. For unperturbed geodesics traveling along the
direction −p̂ (so that the unit vector p̂ points from Earth to
the pulsar), we have dxa=dl ¼ −p̂a. Integrating Eq. (28),
we therefore get

tE − tP ¼ lE − lP þ 1

2
p̂ap̂b

Z
tE

tP

dthabðt; x⃗ðtÞÞ; ð29Þ

where we have substituted dl by dt in the integral, as they
are equal to zeroth order in hab, and x⃗ðtÞ is the spatial
position along the geodesic. Now, in this gauge the pulsar
and Earth (seen as test particles) stay at the same spatial
coordinates [34]. This implies (i) lE − lP takes the same
value with and without GWs, and (ii) the proper time
measured at Earth is also the coordinate time t. Therefore
the last term in Eq. (29) is precisely the sought-after GW-
induced timing residual RGW

p . Assuming the Earth is at the
origin of spatial coordinates, we have

RGW
p ðtÞ ¼ 1

2
p̂ap̂b

Z
t

t−Dp

dt0habðt0; ðt − t0Þp̂Þ; ð30Þ

where Dp is the distance (or time) between Earth and the
pulsar.
It is useful to recast this result in terms of the Fourier

transform of the strain. Inserting Eq. (1) into the time-
residual (30), we obtain

RGW
p ðtÞ ¼ 1

2
p̂ap̂b

Z
df

Z
d2 Ω̂ habðf; Ω̂Þ

×
Z

t

t−Dp

dt0e2πifðt0−p̂·Ω̂ðt−t0ÞÞ

≡
Z

dfe2πiftRGW
p ðfÞ: ð31Þ

Upon performing the time integral, we find the Fourier
transform of the GW-induced time residual RGW

p ðfÞ:

RGW
p ðfÞ ¼ p̂ap̂b

4πif

Z
d2Ω̂

habðf; Ω̂Þ
ð1þ Ω̂ · p̂Þ

× ð1 − e−2πifDpð1þp̂·Ω̂ÞÞ: ð32Þ

The first term in the parentheses corresponds to the “Earth
term” and the second term to the “pulsar term.”

D. Time-residual correlations

We define the (one-sided) cross-power spectrum
RGW

pq ðfÞ of the GW-induced time residuals at different
pulsars p, q as follows:

hRGW
p ðfÞR�GW

q ðf0Þi ¼ δDðf0 − fÞ
2

RGW
pq ðfÞ: ð33Þ
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Using Eq. (2), we find

RGW
pq ðfÞ¼ 1

ð4πfÞ2
Z

d2Ω̂
4π

p̂ap̂bq̂cq̂dPabcdðf;Ω̂Þ
ð1þ p̂ · Ω̂Þð1þ q̂ · Ω̂Þ

× ð1− e−2πifDpð1þp̂·Ω̂ÞÞð1− e2πifDqð1þq̂·Ω̂ÞÞ: ð34Þ

We can think of the pulsar-term contributions as taking the
harmonic transform of the integrand at multipole l ∼ 2πfD
(note that the numerator vanishes as Ω̂ → −p̂ and Ω̂ → −q̂
so the integrand is well behaved there). In practice, we have
D ∼ kpc ∼ 3 × 103 light-years and f ∼ 1=yr; thus

2πfD ≈ 2 × 104
D
kpc

f
yr−1

: ð35Þ

Therefore, as long as angular fluctuations of the SGWB on
a scale l≳ 104 are negligible, we may safely approximate
the terms in parentheses by

ð1 − e−2πifDpð1þp̂·Ω̂ÞÞð1 − e2πifDqð1þq̂·Ω̂ÞÞ → ð1þ δpqÞ;

where the Kronecker delta accounts for the factor of 2 if the
two pulsars are identical, i.e., have the same location on the
sky and are at the same distance. See Ref. [35] for an
explicit proof of the validity of this approximation for an
isotropic SGWB and [36] for an anisotropic one.
It will be useful in what follows to introduce some

compact notation to denote integrals over the sky. For any
two functions of sky location (which from here on we refer
to as “maps” and represent by bolded symbols throughout)
M1ðΩ̂Þ and M2ðΩ̂Þ, we denote for short the scalar
product

M1 ·M2 ≡
Z

d2Ω̂
4π

M1ðΩ̂ÞM2ðΩ̂Þ: ð36Þ

Specializing to the total-intensity piece of the SGWB
power spectrum, Eq. (34) then becomes

RGW
pq ðfÞ ¼ 1þ δpq

ð4πfÞ2
Z

d2Ω̂
4π

γp̂ q̂ðΩ̂ÞIðf; Ω̂Þ

¼ 1þ δpq
ð4πfÞ2 γp̂ q̂ðΩ̂Þ · IðfÞ; ð37Þ

where we have defined the geometric quantity

γp̂ q̂ðΩ̂Þ≡ p̂ap̂bq̂cq̂dIabcdðΩ̂Þ
ð1þ p̂ · Ω̂Þð1þ q̂ · Ω̂Þ ; ð38Þ

which can be written explicitly in terms of dot products as
follows:

γp̂ q̂ðΩ̂Þ ¼ 2
ðp̂ · q̂ − ðp̂ · Ω̂Þðq̂ · Ω̂ÞÞ2
ð1þ p̂ · Ω̂Þð1þ q̂ · Ω̂Þ

− ð1 − p̂ · Ω̂Þð1 − q̂ · Ω̂Þ:
ð39Þ

In what follows, we shall refer to γp̂ q̂ðΩ̂Þ as the pairwise
timing response function. It can be expressed in the
standard, frame-dependent, notation in terms of the so-
called antenna beam patterns Fþ

p̂ , F
×
p̂ :

γp̂ q̂ðΩ̂Þ ¼ 4
X

A¼þ;×

FA
p̂ðΩ̂ÞFA

q̂ðΩ̂Þ; ð40Þ

FA
p̂ðΩ̂Þ≡ 1

2

p̂ap̂b

1þ p̂ · Ω̂
eAabðΩ̂Þ; ð41Þ

as can be seen from Eqs. (17) and (38). Our geometric
approach allowed us to obtain the explicit and clearly
frame-independent expression for this function, Eq. II D.
The so-called overlap reduction function is then obtained
by integrating the angular dependence of the SGWB
intensity multiplied by the pairwise timing response
function.
The kernel γp̂ q̂ðΩ̂Þ is symmetric in p̂, q̂, and so RpqðfÞ

is symmetric in p, q. We show plots of γp̂ q̂ðΩ̂Þ in Fig. 1 as a
function of the separation between pulsars p̂, q̂ (see also
Ref. [37] for similar plots).
As an aside, it is interesting to consider the response

function for a single pulsar (p̂ ¼ q̂):

γp̂ p̂ðΩ̂Þ ¼ ð1 − p̂ · Ω̂Þ2

¼ 4

3
− 2p̂ · Ω̂þ p̂ap̂b

�
Ω̂aΩ̂b −

1

3
δab

�
: ð42Þ

Therefore a single pulsar is sensitive to a specific linear
combination of the SGWB monopole, dipole projected
onto p̂, and quadrupole twice projected onto p̂. Single-
pulsar upper limits typically assume an isotropic back-
ground. These limits would be weakened if accounting for
anisotropies (see, e.g., models 1, 2A–2D considered
in Ref. [10]).

E. Response to an isotropic SGWB

Let us now compute the response to an isotropic SGWB.
We define the unit-norm monopole map

1ðΩ̂Þ≡ 1; ∀ Ω̂: ð43Þ

If the SGWB intensity is isotropic, Iðf; Ω̂Þ ∝ 1ðΩ̂Þ. In that
case the time-residual power spectrum Rpq only depends
on the scalar product μ≡ p̂ · q̂, with the well-known
Hellings and Downs functional dependence [3]. We define

ALI-HAÏMOUD, SMITH, and MINGARELLI PHYS. REV. D 102, 122005 (2020)

122005-6



Hp̂ q̂ ≡ 1 · γp̂ q̂ ¼
Z

d2Ω̂
4π

γp̂ q̂ðΩ̂Þ ¼ Hðp̂ · q̂Þ: ð44Þ

We provide a new and concise derivation of this function
in Appendix A, making use of our geometric, frame-
invariant formalism. With our normalization convention,
it is given by

HðμÞ ¼ 3þ μ

3
þ 2ð1 − μÞ ln

�
1 − μ

2

�
: ð45Þ

III. PTA FISHER MATRIX FOR THE
GWB INTENSITY

A. Motivations and general considerations

The analyses of real PTA data are typically built on a
Bayesian framework and deal directly with the times of
arrival (TOAs) of pulsar pulses [8,10]. The final product of
such analyses is to estimate how likely a GWB signal
Iðf; Ω̂Þ is given the data. If the data sample is sufficiently
large, the likelihood L of the GWB intensity Iðf; Ω̂Þ ought
to be approximately Gaussian (see, e.g., Fig. 2 of [38]), i.e.,
formally of the form

−2lnLðIÞ¼const

þ
ZZ

dfdf0½IðfÞ−ImlðfÞ� ·Gff0 · ½Iðf0Þ−Imlðf0Þ�; ð46Þ

where Gff0 ðΩ̂; Ω̂0Þ is a generalized inverse-covariance
“matrix” and Imlðf; Ω̂Þ is the maximum-likelihood SGWB
intensity. In full generality, Gff0 itself ought to depend on the
SGWB intensity (so that the likelihood is not actually

Gaussian); nevertheless, we expect that this dependence
should only be important once the GWB is detected to
sufficient significance, as wewill quantify shortly. Until then,
a weak-signal Fisher matrix is sufficiently accurate.
Our goal here is to provide an approximate Fisher matrix

that can be used as a guide to data analysis. This bears
similarities with the study of cosmic microwave back-
ground (CMB) anisotropies (see, e.g., Ref. [39]): while the
full analysis of CMB data uses a Bayesian framework and
deals with the temperature and polarization maps directly,
the simple Fisher matrix of CMB power spectra allows one
to make quick and rather accurate detectability forecasts,
which serve to inform full data analyses.

B. Approximate Fisher matrix
of band-integrated GWB intensity

In addition to the stochastic timing residual caused by a
SGWB, arrival times are noisy, due to intrinsic pulsar noise
and instrumental noise:

Rp ¼ RGW
p þ Np; ð47Þ

where Np is the (non-GWB-sourced) timing noise, which
we assume to be uncorrelated between pulsars,3 and whose
power spectrum is σ2pðfÞ:

FIG. 1. Pairwise timing response function γp̂ q̂ðΩ̂Þ, as a function of sky location Ω̂, for four different pulsar separations. The pulsars
locations p̂ and q̂ are shown as stars, and the angle between them is indicated on the top of each figure.

3A more realistic analysis includes several additional sources
of common noise, correlated among pulsars, such as global clock
errors or ephemeris errors [10]. These additional noise sources
do not appear to significantly affect current upper limits on the
amplitude of the SGWB [10], and we do not include them here.
We leave to future work a more detailed treatment including these
common noise sources within our Fisher framework.
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hNpðfÞN�
qðf0Þi ¼ δpq

δDðf0 − fÞ
2

σ2pðfÞ: ð48Þ

The standard pulsar analysis fits for several different pulsar-
specific sources of noise (e.g., [38,40]).
In the remainder of this paper, we will work with band-

integrated quantities: given a frequency bandwidth Δf, we
define the dimensionless band-integrated SGWB intensity

I fðΩ̂Þ≡
Z

fþΔf=2

f−Δf=2
df0Iðf0; Ω̂Þ; ð49Þ

and the band-integrated noise (with dimensions of time
squared)

σ2p;f ≡
Z

fþΔf=2

f−Δf=2
df0σ2pðf0Þ: ð50Þ

We denote by RpqðfÞ ¼ RGW
pq ðfÞ þ δpqσ

2
pðfÞ the total

timing–residual cross power spectrum, and by Rpq;f the
timing–residual cross-band-powers (with dimensions of
time squared), given by

Rpq;f ¼ RGW
pq;f þ δpqσ

2
p;f

¼ 1þ δpq
ð4πfÞ2 γpq · I f þ δpqσ

2
p;f: ð51Þ

In what follows, and unless explicitly specified, we always
work with band-integrated quantities centered at frequency
f. To keep the notation manageable, we drop the subscripts
f on all band powers.
We label unique pairs of distinct pulsars by capital

indices I, J,K. For instance, I ¼ ðp; qÞ ¼ ðq; pÞ represents
a unique pair of distinct pulsars p ≠ q. For Npsr pulsars,
there are Npair ¼ NpsrðNpsr − 1Þ=2 such distinct pairs. For a
pair of distinct pulsars I, assuming the SGWB is the only
source of correlated noise between distinct pulsars, Eq. (51)
simplifies to RI ¼ γI · I=ð4πfÞ2.
Let us denote by R̂I unbiased estimators of the band

powers. Let us assume that these estimators are con-
structed from a large number of effectively uncorrelated
samples, implying that they are approximately Gaussian
distributed. Their statistics are thus entirely determined
by their Npair × Npair covariance matrix C, with elements
CIJ [with dimensions of ðtimeÞ4]. Note that this matrix
depends on frequency f. Under the Gaussian approxi-
mation, the joint probability distribution L of the estima-
tors R̂I is therefore

− 2 lnL ¼ const

þ
X
I;J

�
R̂I −

γI · I
ð4πfÞ2

�
ðC−1ÞIJ

�
R̂J −

γJ · I
ð4πfÞ2

�
: ð52Þ

As is standard in Bayesian data analysis, we view this
probability distribution as the likelihood of the signal—
the GWB background bandpower IðΩ̂Þ—given the data.
To be precise, this statement assumes a uniform prior on
the amplitude of IðΩ̂Þ.
In order to write an estimator for the SGWB intensity Î,

we define the dual maps γ�I ðΩ̂Þ (not to be mistaken with
complex conjugates), which are the unique linear combi-
nations of the γIðΩ̂Þ satisfying

γ�I · γJ ¼ δIJ: ð53Þ

We then define

ÎðΩ̂Þ≡ ð4πfÞ2
X
K

R̂Kγ�KðΩ̂Þ; ð54Þ

which satisfies ðγI · ÎÞ=ð4πfÞ2 ¼ R̂I . We are now finally
in the position of defining the Fisher matrix for the band
powers,

F fðΩ̂; Ω̂0Þ≡ 1

ð4πfÞ4
X
I;J

γIðΩ̂ÞðC−1ÞIJγJðΩ̂0Þ : ð55Þ

With these definitions, we see that the likelihood for timing
residual band powers can be rewritten as

L ∝ exp

�
−
1

2

X
bandðfÞ

½I f − Î f� ·F f · ½I f − Î f�
�
: ð56Þ

It might appear at first sight that Eq. (56) is a probability
distribution on the inifinite-dimensional space of maps
IðΩ̂Þ. However, the Npair pairwise-time-residual correla-
tionsRI can only possibly measure Npair projections of the
SGWB map. To see what these are precisely, decompose
IðΩ̂Þ onto a piece which is a linear combination of the
functions γIðΩ̂Þ—hence of the γ�I ðΩ̂Þ—and a piece which is
orthogonal to all of them:

IðΩ̂Þ ¼ I jjðΩ̂Þ þ I⊥ðΩ̂Þ;
I jjðΩ̂Þ≡ ð4πfÞ2

X
K

RKγ�KðΩ̂Þ;

I⊥ · γI ¼ 0; ∀ I: ð57Þ

We purposefully denoted by RK the coefficient of γ�K , as it
is indeed the time-residual correlation measured by the
pulsar pair K [see Eq. (51)]. From the expression of F , we
see that F · I⊥ ¼ 0. Thus the likelihood function only
depends on I jj, which spans aNpair-dimensional space, and
contains no information about I⊥. Put differently, the
components of F orthogonal to the space spanned by the
γI’s have infinite noise. A consequence of this property is
that one cannot hope to simultaneously constrain more than
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Npair statistically independent components of the SGWB
map—be they harmonic coefficients, independent pixels, or
any other linear projections.

C. Weak-signal limit for the Fisher matrix

In Appendix B, we derive the following approximation
of the covariance matrix of the estimators for the pairwise-
time-residual band powers R̂pq: for two pairs I ¼ ðp; qÞ
and J ¼ ðp0; q0Þ, we have

CIJ ¼ Cpq;p0q0 ≡ covðR̂pq; R̂p0q0 Þ

≈
1

2TIJΔf
ðRpp0Rqq0 þRpq0Rqp0 Þ; ð58Þ

where TIJ is the effective total time of observation of
the four pulsars p, q, p0, q0, which we found to be
approximately

TIJ ≈max ½minðTp; TqÞ;minðTp0 ; Tq0 Þ�; ð59Þ

if each pulsar p is observed for a total time Tp. This
equation is a generalization of the radiometer equation for
electromagnetic intensity [41] and holds provided the
bandwidth Δf satisfies

1=T ≪ Δf ≪ f; ð60Þ

where T is the minimum of all observation times. In
particular, it only applies for f ≫ 1=T.
We now specialize to the weak-signal limit, i.e., assume

that, for every pulsar p (and in particular, for the least noisy
pulsar),

I ≪ ð4πfÞ2σ2p: ð61Þ

In other words, we assume that the SGWB-induced signal
is subdominant to the intrinsic pulsar noise in each
individual pulsar. In this limit, we may approximateRpq ≈
δpqσ

2
p on the right-hand side of Eq. (58). As a result, the

weak-signal correlation matrix CIJ is diagonal, and so is its
inverse:

CIJ ≈
σ2pσ

2
q

2TpqΔf
δIJ; ðC−1ÞIJ ≈

2TpqΔf
σ2pσ

2
q

δIJ;

I ¼ ðp; qÞ; Tpq ≡minðTp; TqÞ: ð62Þ

In addition to stochastic contributions discussed thus far,
the timing residual Rp contains a deterministic piece,
resulting from the pulsar’s intrinsic motion, spin down,
etc. To account for these deterministic contributions, a
timing model is fitted to pulsars’ times of arrival. This
process results in a loss of information, quantified by a
“transmission function” T pðfÞ [40]. For our purposes, let
us note that for all pulsars T pðfÞ ≃ 1 for f ≳ 1=T and

T pðfÞ ≃ ðfTpÞ6 for fTp ≪ 1 for most pulsars4 [40]. In
addition (and more relevant for us since we only consider
the regime fTp ≳ 1), the transmission function filters out
harmonics of 1=year due to degeneracies of timing-model
parameters with the motion of the Earth around the Sun.
Combining Eq. (55) with Eq. (62) and multiplying the

contribution of each pair I ¼ ðp; qÞ by T pT q, our final
expression for the Fisher matrix for the band-integrated
SGWB is therefore

F fðΩ̂; Ω̂0Þ ¼ 1

ð4πfÞ4
X
p≠q

T pðfÞT qðfÞ

×
2TpqΔf
σ2p;fσ

2
q;f

γp̂ q̂ðΩ̂Þγp̂ q̂ðΩ̂0Þ:
ð63Þ

This weak-signal Fisher matrix is the main result of this
paper.5 It allows us to estimate the signal-to-noise ratio
(SNR) of the GWB band-integrated intensity I fðΩ̂Þ with
an arbitrary angular dependence:

SNR2½I f� ¼ I f ·F f · I f

¼
X
p≠q

T pðfÞT qðfÞ2TpqΔf
�

γp̂ q̂ · I f

ð4πfÞ2σp;fσq;f

�
2

:

ð64Þ
Provided the bandwidth is much wider than the inverse of
the observation time for each pulsar, Δf ≫ 1=Tp, different
bands are uncorrelated, so that the total SNR2 is obtained
from summing that of each band:

SNR2½total�
≈

X
bandðfÞ

SNR2½I f�

≈ 2
X
p≠q

Tpq

Z
fmax

1=Tpq

dfT pðfÞT qðfÞ
�

γp̂ q̂ ·IðfÞ
ð4πfÞ2σpðfÞσqðfÞ

�
2

;

ð65Þ

where we replaced the sum over bands by an integral under
the assumption that Δf ≪ f. The lower frequency bound is
such that fmin ¼ maxð1=Tp; 1=TqÞ ¼ 1=Tpq, and depends
on the pulsar pair. The upper frequency bound is the
Nyquist frequency fmax ¼ minð1=Δtp; 1=ΔtqÞ=2, inversely
proportional to the observation cadence. Given the factor
f−4 in the integrand, unless the SGWB is significantly blue
the total SNR is typically dominated by the lowest
frequencies, and the upper cutoff has little impact.

4This scaling applies to pulsars with a quadradic spin-down.
5Note that the “point-spread function” defined in Ref. [37] is

proportional to our Fisher matrix, in the case where all pulsars
have identical noise.
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Equation (65) generalizes Eq. (17) of Ref. [42] in several
ways. First, it accounts for different observation times for
each pulsar. Second, it accounts for the loss of information
in the timing-model-fitting process, through the trans-
mission functions T pðfÞ. Last but not least, it accounts
for an arbitrary angular dependence of the SGWB, rather
than assuming a monopole.
Before moving on to applications, let us quantify when

the weak-signal limit applies. Suppose all pulsars have a
typical observation time T and noise σ2f. Consider moreover
frequencies for which T pðfÞ ≃ 1 (note that for our simple
covariance matrix to hold, we require f ≫ 1=T, and thus
T ðfÞ ≃ 1 except at harmonics of 1=year). Equation (64)
then gives

SNR2½I fðΩ̂Þ� ≃ Npair2TΔf
�

If

ð4πfÞ2σ2f

�
2

: ð66Þ

The weak-signal approximation (61) requires the last term
in parentheses to be less than unity. It is thus self-consistent
as long as the band-integrated SGWB is detected with a
signal-to-noise ratio SNR≲ Npsr

ffiffiffiffiffiffiffiffiffiffi
TΔf

p
in each band.

Unless the SGWB is significantly blue, the total SNR is
dominated by the lowest frequencies, so that for the weak-
signal limit to be appropriate we must have a total
(frequency-integrated) SNR≲ Npsr.

IV. IDEALIZED CASE: ISOTROPICALLY
DISTRIBUTED IDENTICAL PULSARS

In this section we apply our results to an idealized PTA
consisting of Npsr ≫ 1 identical pulsars approximately
isotropically distributed on the sky. This limiting case is
amenable to analytic approximations, and it will serve to
cross-check our numerical algorithms when we apply our
formalism to real PTAs. We moreover compare our results
with those of Ref. [21], which apply in this limit.

A. Analytic expression for Npsr → ∞
Suppose all the pulsars have the same noise σp ¼ σ, are

observed for the same time T, and have the same trans-
mission function T ðfÞ. In that limit the Fisher matrix F is
given by

F ðΩ̂; Ω̂0Þ ¼ CFðΩ̂; Ω̂0Þ; ð67Þ

C≡ T ðfÞ2
ð4πfÞ4

2TΔf
σ4

Npair; ð68Þ

FðΩ̂; Ω̂0Þ≡ 1

Npair

X
I

γIðΩ̂ÞγIðΩ̂0Þ: ð69Þ

In the limit that Npsr → ∞, assuming the pulsars are
isotropically distributed, we find

FðΩ̂; Ω̂0Þ ⟶
Npsr→∞

F∞ðΩ̂ · Ω̂0Þ

≡
Z

d2p̂
4π

d2q̂
4π

γp̂ q̂ðΩ̂Þγp̂ q̂ðΩ̂0Þ: ð70Þ

By symmetry, this is a function of χ ≡ Ω̂ · Ω̂0 only, which
we compute explicitly in Appendix C. We derive the
following analytic expression:

F∞ðχÞ ¼
16

9ð1þ χÞ2

×
��

1 − χ2

4
þ 2 − χ þ 3

1 − χ

1þ χ
log

1 − χ

2

�
2

þ
�
2 − χ þ 3

1 − χ

1þ χ
log

1 − χ

2

�
2
�
: ð71Þ

We show F∞ðχÞ as a solid line in Fig. 2. For comparison,
we also show the reduced Fisher matrix FðΩ̂; Ω̂0Þ for a
finite number of identical, quasi-isotropically distributed
pulsars,6 for 1000 randomly selected pairs of sky directions
ðΩ̂; Ω̂0Þ. Only in the limit Npsr → ∞ is the Fisher matrix a
function of the angle ∠ðΩ̂; Ω̂0Þ only; otherwise, it depends
on both Ω̂ and Ω̂0, which translates into a scatter of the
values of FðΩ̂; Ω̂0Þ when plotted as a function of ∠ðΩ̂; Ω̂0Þ.
We see that FðΩ̂; Ω̂0Þ indeed converges to the function F∞
as Npsr increases, with a difference (both in running mean
and scatter) scaling as ∼1=Npsr.
The dense-PTA Fisher matrix can be decomposed into

Legendre polynomials:

F∞ðΩ̂ · Ω̂0Þ ¼
X
l

ð2lþ 1ÞF lPlðΩ̂ · Ω̂0Þ

¼ 4π
X
l;m

F lYlmðΩ̂ÞYlmðΩ̂0Þ; ð72Þ

where the Ylm are the real spherical harmonics.
We show the Legendre coefficients F l in Fig. 3.

Interestingly, the amplitude of Legendre coefficients
decreases monotonically with l, except for F 1 ≈ F 0=7,
which is significantly lower thanF 2 and comparable toF 3.

B. Minimum detectable dipolar anisotropy

Suppose the GWB takes the form

I ¼ I0

�
1þ

X
l≥1;m

glmYlm

�
: ð73Þ

From Eq. (72), we see that in the limit of a dense array of
identical pulsars, the spherical harmonic coefficients of the

6To place pulsars quasi-isotropically we arrange them in equal
intervals in the azimuthal angle and with the polar angle
θ ¼ cos−1ðUÞ, where U are a set of uniformly spaced numbers
in [−1, 1].
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SGWB are uncorrelated, with noise proportional to 1=F l.
Explicitly, the signal-to-noise ratio of the coefficients glm is
such that

SNR2½I0glmYlm�
SNR2½I01�

¼ g2lm
4π

F l

F 0

; ð74Þ

where we used the fact that 1 ¼ ffiffiffiffiffiffi
4π

p
Y00. In particular, in

order to detect the lmth harmonic with SNR ≥ 3 requires
an amplitude

glm ≥ glm;min ≡
ffiffiffiffiffiffiffi
F 0

F l

s
6

ffiffiffi
π

p
SNR0

; ð75Þ

where SNR0 ≡ SNR½I01� is the signal-to-noise ratio of the
monopole. For the dipole, we find

g1m;min ≈
28

SNR0

; ð76Þ

which is identical to the result of Ref. [21] in the weak-
signal limit.

C. Hot spot in the SGWB

Now consider a SGWB with a hot spot7 in a known
direction Ω̂0. Such a hot spot could be generated, for
instance, by a concentration of supermassive black hole
binaries, sufficiently numerous that the GW background
can still be approximated as stochastic. Specifically, we
assume

IðΩ̂Þ ¼ I0 þ I0gð4πδDðΩ̂; Ω̂0Þ − 1Þ; ð77Þ

where we chose the normalization such that the fraction of
GWenergy density (proportional to the SGWB intensity) in
the hot spot is g. With this convention, a physical SGWB
ought to have g ≤ 1.
The joint probability distribution of the monopole and

hot spot amplitudes can be obtained from Eq. (56), and is a
two-dimensional uncorrelated Gaussian distribution:

FIG. 2. Values of the rescaled Fisher matrix for a finite number
of quasi-isotropically distributed identical pulsars (10, 30, and 90,
respectively), for 1000 randomly selected pairs of SGWB
directions in the sky ðΩ̂; Ω̂0Þ, as a function of the angle between
them. The solid black line shows our analytic result, holding for
an infinite number of isotropically distributed identical pulsars.
We also show the difference between F and its infinite-pulsar
limit, F∞. We see that the difference decreases as jF − F∞j ∼
1=Npsr (note the different y-axis scales in the difference plots).

FIG. 3. First few Legendre coefficients of the dense-PTA Fisher
matrix.

7A GW “beam” in the nomenclature of Ref. [21].
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LðI0; I0gÞ ∝ exp ½−2πCðI2
0F 0 þ ðI0gÞ2ðF∞ð1Þ − F 0ÞÞ�

¼ exp

�
−
8π

27
CðI2

0 þ 5ðI0gÞ2Þ
�
; ð78Þ

where the coefficient C is given in Eq. (68), and in the
second line we used F 0 ¼ 4=27 and F∞ð1Þ ¼ 8=9. The
variances of the monopole and hot spot amplitudes are thus
given by

var½I0� ¼ 5var½I0g� ¼
27

16π
C−1: ð79Þ

Hence, for the hot spot to be detectable at the 3 − σ level, its
amplitude needs to be

g ≥ gmin ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½I0g�

p
I0

¼ 3=
ffiffiffi
5

p

SNR0

; ð80Þ

where SNR0 ¼ I0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½I0�

p
is again the signal-to-noise

ratio of the monopole amplitude. This estimate is in
agreement with the numerical result of Ref. [21] in the
weak-signal limit. We thus conclude that, provided with the
knowledge of the direction of the hot spot, an idealized
PTAwould be able to detect a hot spot with amplitude g ≃ 1
shortly after the monopole is detected. Without any prior
information on the hot spot’s direction, of course, this
conclusion does not hold.

D. Eigenmaps

From Eq. (72), we can see that the eigenmaps of the
dense-PTA Fisher matrix are the real spherical harmonics.
As one can expect, and as we shall see in greater detail in
Paper II, the real spherical harmonics are no longer the
eigenmaps of realistic PTAs, and therefore do not provide
a particularly well adapted basis for searches for anisotro-
pies. To illustrate this, we diagonalize the reduced
Fisher matrix FðΩ̂; Ω̂0Þ of an idealized array of a finite
number of identical, quasi-isotropically distributed pulsars.
Specifically, we seek unit-norm maps MnðΩ̂Þ such that

F ·Mn ¼
1

Σ2
n
Mn: ð81Þ

This continuous eigenvalue problem can be transformed
into a regular, discrete, eigenvalue problem by seekingMn
as a linear combination of the γI:

MnðΩ̂Þ ¼
X
I

MI
nγIðΩ̂Þ: ð82Þ

The eigenvalue problem (81) is then equivalent to the
discrete Npair × Npair eigenvalue problem

X
J

FIJMJ
n ¼

1

Σ2
n
MI

n; ð83Þ

FIJ ≡ γI · γJ
Npair

: ð84Þ

We thus see that there are exactlyNpair principal maps. They
do not form a complete set of all possible maps. However,
they are a complete set of observablemaps for a given PTA.
Note that the eigenmaps that we derive here are scalarmaps,
corresponding to the intensity of a stochastic GW back-
ground; this is to be contrasted with the strain eigenmaps
derived in Ref. [24], which apply to continuous (i.e.,
deterministic) GW searches. There does not appear to be a
straightforward connection between our Npair SGWB inten-
sity eigenmaps and the 2Npsr strain eigenmaps of Ref. [24].
We show the first 50 eigenvalues Fig. 4 forNpsr ¼ 10, 30,

90, where we compare them against the dense-pulsar limit
Npsr → ∞.We see that, asNpsr increases, the eigenvalues do
converge toward the dense pulsar limit. For Npsr ¼ 90, one
recognizes the sequences of quasidegenerate eigenvalues,
corresponding to the degenerate harmonics for Npsr → ∞.
For lower Npsr, as the Fisher matrix departs further from its
Npsr → ∞ limit, eigenmaps “mix” and are no longer
grouped in subsets with similar eigenvalues. This is very
similar to the breaking of degeneracy in atomic levels in the
presence of a perturbed Hamiltonian. We show the first five
eigenmaps in Fig. 5, as a function ofNpsr.We see that asNpsr

becomes large, the first eigenmap approaches themonopole,
and the next two become quadrupolar. For Npsr ¼ 10,
however, the eigenmaps do not at all resemble spherical
harmonics.More importantly, as we shall see in Paper II, for
realistic pulsar distributions, there exist anisotropies to

FIG. 4. First 50 eigenvalues of quasi-isotropically distributed
identical pulsars compared against the dense-pulsar limit
Npsr → ∞. The sequences of equal-noise black dots correspond
to multipoles l ¼ 0, 2, 1, 3, 4, 5, in that order. Having a finite
number of pulsars perturbs the eigenmaps away from spherical
harmonics and breaks the degeneracies in their eigenvalues.
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which a PTA is much more sensitive than the lowest-order
spherical harmonics.

V. CONCLUSIONS

We have derived a band-integrated Fisher matrix for the
intensity of a weak, anisotropic SGWBmeasured by a PTA,
Eq. (III C). This Fisher matrix provides a versatile tool with
which we can better study the detectability of anisotropies
in the SGWB by PTAs. We derived a simple expression of
the SNR of an anisotropic SGWB, Eq. (65), generalizing

previous results. We moreover derived an exact analytic
expression for the Fisher matrix of an idealized PTA
consisting of a dense and isotropic distribution of pulsars
on the sky. With this matrix, we could recover the results of
Ref. [21] for the detectability of dipolar and hot-spot
anisotropies. We illustrated how our formalism is better
adapted to realistic PTAs by quantifying the convergence of
the Fisher matrix of a finite number of pulsars to that of
the dense-pulsar limit. In particular, we showed that, for a
finite number of pulsar pairs, the eigenmaps of the Fisher
matrix are not spherical harmonics, commonly used to

FIG. 5. First five eigenmaps of the Fisher matrix for Npsr ¼ 10 (left column), 30 (middle column), and 90 (right column) identical,
quasi-isotropically distributed pulsars. As Npsr is increased, the first eigenmap approaches the monopole, and the next few eigenmaps
become more and more quadrupolar. For Npsr ¼ 10, the eigenmaps do not resemble spherical harmonics at all. The stars indicate the
location of the identical pulsars.
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study SGWB anisotropies. These Npair eigenmaps best
characterize the information content of the Fisher matrix. In
a follow-up paper, we will further explore the information
content of real PTAs, with unevenly distributed pulsars of
unequal noise properties.
In order to arrive at our new Fisher formalism, we

rederived existing results with a fresh look and presented
them in a geometric, coordinate-free form. Let us highlight,
in particular, the SGBW power spectrum (a rank-4 tensor)
given in Eq. (6), and the pairwise timing response function,
Eq. II D, which characterizes the correlated response of a
pair of pulsars to a generic SGWB intensity map. While in
this paper we focused on the total intensity of the SGWB,
we have provided all the ingredients needed to extend our
results to a circularly or linearly polarized SGWB. Our
work could also be generalized to non-Einsteinian polar-
izations [43]. Last, our Fisher formalism can easily be made
more realistic: it can accommodate other sources of
correlated pulsar timing residuals, such as global clock
errors, and can be generalized to a nonweak SGWB, by
using the full expression for the Fisher matrix, Eq. (55).
Some elements of our Fisher formalism may moreover
carry over to other gravitational-wave detection techniques
(such as space and ground-based laser interferometers).
The strength of the approach outlined in this paper lies in

its ability to clearly and concisely describe the information
content of GW measurements. A similar approach for
measurements of the CMB [25] has allowed accurate,
rigorous, and intuitive estimates of the CMB’s sensitivity
to a variety of effects. At the dawn of GW astronomy, the
development of such a tool is both timely and necessary in
order to learn as much as we can from the first GW signals
that have been and will be measured.
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APPENDIX A: NEW DERIVATION OF THE
HELLINGS AND DOWNS FUNCTION

We want to compute the following function of μ≡ p̂ · q̂,
with p̂ ≠ q̂:

HðμÞ≡
Z

d2Ω̂
4π

γp̂ q̂ðΩ̂Þ; ðA1Þ

where γp̂ q̂ðΩ̂Þ is given in Eq. II D. Let us define the new
variables x≡ p̂ · Ω̂, y≡ q̂ · Ω̂, so that

γp̂ q̂ðΩ̂Þ ¼
2ðμ − xyÞ2 − ð1 − x2Þð1 − y2Þ

ð1þ xÞð1þ yÞ : ðA2Þ

The numerator can be rewritten as

2ðμ−xyÞ2− ð1−x2Þð1−y2Þ
¼ 2ðx2þy2−2μxy−1þμ2Þþð1−x2Þð1−y2Þ: ðA3Þ

The second part simplifies with the denominator and the
integral can readily be computed, so we get

HðμÞ ¼ J ðμÞ þ ð1þ μ=3Þ; ðA4Þ

J ðμÞ≡ 2

Z
d2Ω̂
4π

x2 þ y2 − 2μxy − ð1 − μ2Þ
ð1þ xÞð1þ yÞ : ðA5Þ

One can show that the coordinates x, y are restricted to the
region

EðμÞ ¼ fðx; yÞ; x2 þ y2 − 2μxy < 1 − μ2g: ðA6Þ

The boundary of EðμÞ is an ellipse whose principal axes are
at 45 degree angles from the ðx; yÞ coordinate axes, and
with semimajor and semiminor axes

ffiffiffiffiffiffiffiffiffiffiffi
1� μ

p
. Moreover, we

can show that the area element is

d2Ω̂ ¼ 2dxdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2 − x2 − y2 þ 2μxy

p : ðA7Þ

With these new variables, the integral J ðμÞ simplifies to

J ðμÞ ¼ −
Z
EðμÞ

dxdy
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2 − x2 − y2 þ 2μxy

p
ð1þ xÞð1þ yÞ : ðA8Þ

For a given x ∈ ½−1; 1�, y ∈ ½y−; yþ�, where the boundaries
are given by

y� ≡ μx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − μ2Þð1 − x2Þ

q
: ðA9Þ

We therefore rewrite the integral as

J ðμÞ ¼
Z

1

−1
dx

Kðx; μÞ
1þ x

; ðA10Þ

where the inner integral is

Kðx; μÞ≡ −
1

π

Z
yþ

y−

dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðyþ − yÞðy − y−Þ
p

1þ y

¼ jxþ μj − ð1þ μxÞ: ðA11Þ
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After performing the simple outer integral, we arrive at

J ðμÞ ¼ 2ð1 − μÞ ln
�
1 − μ

2

�
: ðA12Þ

Inserting this result into Eq. (A4), we finally arrive at the
Hellings and Downs function, given in Eq. (45).

APPENDIX B: PROBABILITY DISTRIBUTION
OF TIMING POWER SPECTRA

In this Appendix we derive a simple estimate of the
covariance matrix of the pairwise-time-residual cross-
power spectra. This simple estimate is not meant to follow
nor replace a realistic data analysis. Yet, it should provide
accurate qualitative scalings, and be quantitatively accurate
at the factor-of-few level.

1. Continuous sampling case

Let us suppose that we sample the time residuals RpðtÞ of
each pulsar p continuously over some finite time interval
t ∈ ½−Tp=2; Tp=2�. Given a frequency f, we define

R̃pðfÞ≡
Z

Tp=2

−Tp=2
dte−2πiftRpðtÞ

¼ Tp

Z
df1Rpðf1ÞsincðπTpðf1 − fÞÞ: ðB1Þ

The covariance of these quantities is such that

hR̃pðfÞR̃�
qðf0Þi

¼ 1

2
TpTq

Z
df1Rpqðf1ÞsincðπTpðf1 − fÞÞ

× sincðπTqðf1 − f0ÞÞ; ðB2Þ

where Rpq is the total timing residual cross-power spec-
trum, defined as in Eq. (33). Now, assume Rpq varies on a
scale δf ∼ f, and that Tpf, Tqf ≫ 1. Suppose moreover,
for definiteness, that Tp > Tq. The sinc function with Tp is
narrower and can be approximated as

TpsincðπTpðf0 − fÞÞ ≈ δDðf0 − fÞ: ðB3Þ

We define Tpq ≡minðTp; TqÞ. We then get

hR̃pðfÞR̃�
qðf0Þi ≈

Tpq

2
RpqðfÞsincðπTpqðf0 − fÞÞ: ðB4Þ

Let us now define for f > 0

R̂pqðfÞ≡ 1

Tpq
ðR̃pðfÞR̃�

qðfÞ þ R̃qðfÞR̃�
pðfÞÞ: ðB5Þ

From the previous result, hR̂pqðfÞi ¼ RpqðfÞ, which

means that R̂pq is an unbiased estimator of RpqðfÞ. Let
us now compute its covariance,

Cpq;p0q0 ðf; f0Þ≡ hðR̂pqðfÞ −RpqðfÞÞðR̂p0q0 ðf0Þ −Rp0q0 ðf0ÞÞi ¼ hR̂pqðfÞR̂p0q0 ðf0Þ −RpqðfÞRp0q0 ðf0Þi

¼ 1

2TpqTp0q0
fTpp0sincðπTpp0 ðf0 − fÞÞTqq0sincðπTqq0 ðf0 − fÞÞRpp0 ðfÞRqq0 ðfÞ

þ Tpq0sincðπTpq0 ðf0 − fÞÞTqp0sincðπTqp0 ðf0 − fÞÞRpq0 ðfÞRqp0 ðfÞg: ðB6Þ

We now define

Tmin≡minðTpp0 ;Tqq0 Þ ¼minðTpq0 ;Tqp0 Þ ¼minðTp;Tq;Tp0 ;Tq0 Þ; T1≡maxðTpp0 ;Tqq0 Þ; T2≡maxðTpq0 ;Tqp0 Þ: ðB7Þ

The broader sinc functions can be evaluated at f0 ¼ f, and the expression above simplifies to

Cpq;p0q0 ðf; f0Þ ≈
Tmin

2TpqTp0q0
fT1sincðπT1ðf0 − fÞÞRpp0 ðfÞRqq0 ðfÞ þ T2sincðπT2ðf0 − fÞÞRpq0 ðfÞRqp0 ðfÞg: ðB8Þ

This result shows that the estimators are correlated for
frequencies separated by less than ∼1=T, and that their
correlation drops for wider frequency separations.
Let us consider the band powers, centered at frequencies

fn ¼ nΔf, where Δf is some fixed bandwidth:

Rpq;fn ≡
Z

fnþΔf=2

fn−Δf=2
df0Rpqðf0Þ: ðB9Þ

The unbiased estimator R̂pq;fn is obtained by integrating

R̂pqðfÞ over a frequency band. Provided Δf=fn ≪ 1, we
have Rpq;fn ≈ ΔfRpqðfnÞ. The covariance of the band
power estimators is obtained by integrating Eq. (B8) over
the bandwidth Δf for both frequencies f, f0. Provided
T1Δf, T2Δf ≫ 1, the sinc functions integrate out, and we
are left with
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covðR̂pq;fn ; R̂p0q0;fn0 Þ

≈
δnn0Δf
2TIJ

fRpp0 ðfnÞRqq0 ðfnÞ þRpq0 ðfnÞRqp0 ðfnÞg

≡ δnn0ΔfCIJðfnÞ; ðB10Þ

where the indices I ≡ ðp; qÞ; J ≡ ðp0; q0Þ label pairs of
pulsars, and

TIJ ≡max ½minðTp; TqÞ;minðTp0 ; Tq0 Þ�: ðB11Þ

2. Discrete sampling

Let us now consider the more realistic case where
each pulsar p is timed at ðNp þ 1Þ ≫ 1 discrete times
tk ¼ kΔtp, k ¼ −Np=2;…; Np=2, where Tp ¼ NpΔtp.
Typically, Δtp ∼ 2–4 weeks. We now define

R̃pðfÞ≡ Δtp
XNp=2

k¼−Np=2

e−2πiftkRpðtkÞ

¼ Tp

Z
df1Rpðf1Þ

sincðπTpðf1 − fÞÞ
sincðπΔtpðf1 − fÞÞ : ðB12Þ

The derivation follows the same route as in the continuous
case, except for the issue of aliasing, translated mathemati-
cally by

T
sincðπTðf0−fÞÞ
sincðπΔtðf0−fÞÞ≈

X∞
n¼−∞

ð−1ÞnδDðf0−f−n=ΔtÞ: ðB13Þ

If the timing cross-power spectrum RpqðfÞ scales
as f−α, with α > 1, then aliasing does not affect any of
the results above, as the contribution from higher-order
multiples of 1=Δtp is negligible relative to the fundamental
mode n ¼ 0. This is expected to be the case for p ≠ q.
However, the single-pulsar timing residual power spectrum
RppðfÞ has a constant white noise piece PpðfÞ ¼ σ2p;wntobs
at sufficiently high frequencies, up to a maximum fre-
quency jfmaxj ¼ 1=tobs. Here tobs is the duration of an
individual observation (typically, tobs ∼ 30 min), from
which a single, averaged TOA is obtained, and σ2p;wn is
the variance of the timing residual (after fitting a timing
model) between individual observations. Thus, we find

hR̃pðfÞR̃�
pðf0Þi

≈
Tp

2

XΔtp=tobs
n¼−Δtp=tobs

Rppðf−n=ΔtpÞsincðπTpðf0−fÞÞ

¼Tp

2
sincðπTpðf0−fÞÞðRppðfÞþ2σ2p;wnΔtpÞ: ðB14Þ

Hence, the results obtained for the continuum-sampling
case carry over to the discrete-sampling case, provided one
includes the white noise contribution 2σ2p;wnΔtp in pulsar
autocorrelations. We emphasize that this term accounts for
aliasing, i.e., from the white noise power at all harmonics of
1=Δtp, up to the maximum frequency 1=tobs.

APPENDIX C: DENSE AND ISOTROPIC
PULSAR DISTRIBUTION LIMIT

In the limit where pulsars are densely and isotropically
distributed across the sky, the Fisher matrix becomes
proportional to

F∞ðχÞ≡
Z

d2p̂
4π

d2q̂
4π

γp̂ q̂ðΩ̂Þγp̂ q̂ðΩ̂0Þ; χ≡ Ω̂ · Ω̂0: ðC1Þ

Now remember that the pairwise timing response function
is given by

γp̂ q̂ðΩ̂Þ ¼
p̂ap̂bq̂cq̂dIabcdðΩ̂Þ

ð1þ p̂ · Ω̂Þð1þ q̂ · Ω̂Þ : ðC2Þ

The double angular integral over pulsar directions can thus
be factorized:

F∞ðΩ̂ · Ω̂0Þ ¼ K̃aba0b0 ðΩ̂; Ω̂0ÞIa0b0c0d0 ðΩ̂0Þ
× K̃c0d0cdðΩ̂0; Ω̂ÞIcdabðΩ̂Þ; ðC3Þ

K̃aba0b0 ðΩ̂; Ω̂0Þ≡
Z

d2p̂
4π

p̂ap̂bp̂a0 p̂b0

ð1þ p̂ · Ω̂Þð1þ p̂ · Ω̂0Þ : ðC4Þ

Since Ia0b0c0d0 ðΩ̂0Þ is orthogonal to Ω̂0 in all indices, and
trace-free in the first and last pairs of indices, one may
replace K̃aba0b0 ðΩ̂; Ω̂0Þ by its projection orthogonal to Ω̂0

and trace-free on the right two indices. The same holds for
the left two indices. Upon projecting on I , we find

F∞ðΩ̂ · Ω̂0Þ ¼ 4Kaba0b0 ðΩ̂; Ω̂0ÞKaba0b0 ðΩ̂; Ω̂0Þ; ðC5Þ

Kaba0b0 ðΩ̂; Ω̂0Þ≡
Z

d2p̂
4π

ðp̂⊥
a p̂⊥

b − 1
2
ðp̂⊥Þ2δ⊥abÞðp̂⊥0

a0 p̂
⊥0
b0 −

1
2
ðp̂⊥0 Þ2δ⊥0

a0b0 Þ
ð1þ p̂ · Ω̂Þð1þ p̂ · Ω̂0Þ ; ðC6Þ

where p̂⊥ ≡ p̂ − ðp̂ · Ω̂ÞΩ̂ and p̂⊥0 ≡ p̂ − ðp̂ · Ω̂0ÞΩ̂0.
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The tensor Kaba0b0 ðΩ̂; Ω̂0Þ is symmetric, trace-free, and
orthogonal to Ω̂ in its first two indices, and symmetric,
trace-free, and orthogonal to Ω̂0 in its last two indices. It
therefore has four independent components.
Given the preferred directions Ω̂, Ω̂0, one may construct

two rank-2 tensors that are symmetric, trace-free, and
orthogonal to Ω̂ on both indices. Defining V ¼ Ω̂ × Ω̂0,
those two tensors are

AðΩ̂; Ω̂0Þ≡ ðΩ̂0 − χΩ̂Þ ⊗ ðΩ̂0 − χΩ̂Þ − V ⊗ V;

BðΩ̂; Ω̂0Þ≡ ðΩ̂0 − χΩ̂Þ ⊗ V þ V ⊗ ðΩ̂0 − χΩ̂Þ: ðC7Þ

Note that both Ω̂0 − χΩ̂ and V have norm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
, where

χ ≡ Ω̂ · Ω̂0, which is why A is indeed trace-free.
Therefore the rank-4 tensor KðΩ̂; Ω̂0Þ ought to take the

form

KðΩ̂; Ω̂0Þ ¼ AAðΩ̂; Ω̂0Þ ⊗ AðΩ̂0; Ω̂Þ
þ BBðΩ̂; Ω̂0Þ ⊗ BðΩ̂0; Ω̂Þ
þ CAðΩ̂; Ω̂0Þ ⊗ BðΩ̂0; Ω̂Þ
þDBðΩ̂; Ω̂0Þ ⊗ AðΩ̂0; Ω̂Þ; ðC8Þ

where A, B, C, D only depend on χ. Now, K is symmetric
under the exchange of the first two indices and the last two
indices, simultaneously with the exchange of Ω̂, Ω̂0. Since
BðΩ̂0; Ω̂Þ ¼ −BðΩ̂; Ω̂0Þ (if we do not change the definition
of V ¼ Ω̂ × Ω̂0), then we must have D ¼ −C. Last,
Kð−Ω̂;−Ω̂0Þ ¼ KðΩ̂; Ω̂0Þ, which implies C ¼ D ¼ 0.
We have thus found that

KðΩ̂; Ω̂0Þ ¼ AðχÞAðΩ̂; Ω̂0Þ ⊗ AðΩ̂0; Ω̂Þ
þ BðχÞBðΩ̂; Ω̂0Þ ⊗ BðΩ̂0; Ω̂Þ: ðC9Þ

The desired function is the contraction ofKwith itself in its
first two indices and in its last two indices. Using the fact
that ðA∶BÞ≡AabBab ¼ 0, we get

F∞ðχÞ ¼ 4½A2ðA∶AÞ2 þ B2ðB∶BÞ2�: ðC10Þ

Last, we have

A∶A ¼ 2ð1 − χ2Þ2 ¼ B∶B: ðC11Þ

Hence we have found

F∞ðχÞ ¼ 16ð1 − χ2Þ4½A2 þ B2�: ðC12Þ

The next step is now to determine AðχÞ and BðχÞ. We do so
by computing the following contractions:

ðΩ̂0 ⊗ Ω̂0Þ∶AðΩ̂; Ω̂0Þ ¼ ð1 − χ2Þ2 ¼ ðΩ̂0 ⊗ VÞ∶BðΩ̂; Ω̂0Þ;
ðC13Þ

ðΩ̂0 ⊗ VÞ∶AðΩ̂; Ω̂0Þ ¼ 0 ¼ ðΩ̂0 ⊗ Ω̂0Þ∶BðΩ̂; Ω̂0Þ: ðC14Þ

We therefore arrive at

ð1 − χ2Þ4A ¼ ðΩ̂0 ⊗ Ω̂0Þ∶KðΩ̂; Ω̂0Þ∶ðΩ̂ ⊗ Ω̂Þ; ðC15Þ

ð1 − χ2Þ4B ¼ ðΩ̂0 ⊗ VÞ∶KðΩ̂; Ω̂0Þ∶ðV ⊗ Ω̂Þ: ðC16Þ

It is now “only a matter of" computing these contractions,
which are scalar integrals. To do so, let us introduce some
notation:

x≡ p̂ · Ω̂; y≡ p̂ · Ω̂0;

Pðx;y;χÞ≡1−χ2−x2−y2þ2χxy¼ðV · p̂Þ2 ≥ 0: ðC17Þ

We then get

Ω̂0
aΩ̂0

b

�
p̂⊥
a p̂⊥

b −
1

2
ðp̂⊥Þ2δ⊥ab

�

¼ðy−χxÞ2−1

2
ð1−χ2Þð1−x2Þ

¼ 1

2
ð1−χ2Þð1−x2Þ−Pðx;y;χÞ; ðC18Þ

Ω̂0
aVb

�
p̂⊥
a p̂⊥

b −
1

2
ðp̂⊥Þ2δ⊥ab

�

¼ ðy − χxÞV · p̂ ¼ �ðy − χxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðx; y; χÞ

p
: ðC19Þ

So we find

ð1 − χ2Þ4AðχÞ ¼
Z

d2p̂
4π

½1
2
ð1 − χ2Þð1 − x2Þ − Pðx; y; χÞ�½1

2
ð1 − χ2Þð1 − y2Þ − Pðx; y; χÞ�

ð1þ xÞð1þ yÞ

ð1 − χ2Þ4BðχÞ ¼
Z

d2p̂
4π

ðy − χxÞðx − χyÞPðx; y; χÞ
ð1þ xÞð1þ yÞ : ðC20Þ

Now recall, from Appendix A, that

d2p̂ ¼ 2dxdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðx; y; χÞp : ðC21Þ
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Evaluating the integrals, and simplifying, we find

ð1 − χ2Þ4AðχÞ ¼ ð1 − χÞ2
3

�
1þ χ

4
ð9 − χð4þ χÞÞ þ 3ð1 − χÞ log 1 − χ

2

�
; ðC22Þ

ð1 − χ2Þ4BðχÞ ¼ ð1 − χÞ2
3

�
ðχ þ 1Þðχ − 2Þ − 3ð1 − χÞ log 1 − χ

2

�
: ðC23Þ

After simplifying, we thus arrive at our final expression, Eq. (71).
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