
 

Nonlinear duality-invariant conformal extension of Maxwell’s equations

Igor Bandos ,1 Kurt Lechner ,2 Dmitri Sorokin ,2 and Paul K. Townsend 3

1Department of Theoretical Physics, University of the Basque Country UPV/EHU,
P.O. Box 644, 48080 Bilbao, Spain

and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
2I.N.F.N., Sezione di Padova, and Dipartimento di Fisica e Astronomia Galileo Galilei,

Universitá degli Studi di Padova, Via F. Marzolo 8, 35131 Padova, Italy
3Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,

University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received 24 July 2020; accepted 22 November 2020; published 11 December 2020)

All nonlinear extensions of the source-free Maxwell equations preserving both SOð2Þ electromagnetic
duality invariance and conformal invariance are found, and shown to be limits of a one-parameter
generalization of Born-Infeld electrodynamics. The strong-field limit is the same as that found by
Bialynicki-Birula from Born-Infeld theory but the weak-field limit is a new one-parameter extension of
Maxwell electrodynamics, which is interacting but admits exact light-velocity plane-wave solutions of
arbitrary polarization. Small-amplitude waves on a constant uniform electromagnetic background exhibit
birefringence, but one polarization mode remains lightlike.
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Nonlinear extensions of Maxwell’s equations have a
long history. The Born-Infeld (BI) equations [1], which
preserve the electromagnetic duality invariance of
Maxwell’s equations, is perhaps the best known example,
for reasons reviewed in [2]. The Euler-Heisenberg equa-
tions [3], which incorporate vacuum polarization effects of
QED, is another. Both reduce to Maxwell’s equations in a
weak-field limit since the interactions introduce a fixed
energy scale that breaks conformal invariance.
It is to be expected that any nonlinear electrodynamics

theory in a Minkowski spacetime will have some conformal
weak-field limit, and it is easily established that this must
be Maxwell electrodynamics if it is assumed that all
conformal invariant equations arise as Euler-Lagrange
(EL) equations for a Lagrangian density that is a real
analytic function of gauge-invariant Lorentz scalars con-
structed from electric and magnetic fields only. However,
this assumption also implies that the only possible con-
formal strong-field limit is Maxwell’s theory, whereas the
strong-field limit of BI theory has long been known to be an
interacting conformal theory [4,5], which we shall call
Bialynicki-Birula (BB) electrodynamics.
Herewe useHamiltonianmethods similar to those of [4] to

investigate whether there are other physically acceptable
interacting conformal electrodynamics theories. We restrict

our analysis to theories with an electromagnetic duality
invariance, for simplicity but also because of its intrinsic
interest; one of our aims is to determine whether there are
interacting alternatives toMaxwell electrodynamics with the
same symmetries. We find that the conditions imposed by
duality and conformal invariance on the Hamiltonian density
of a generic nonlinear theory of electrodynamics have two
types of solution: one yields BB electrodynamics and the
other yields a generalization of Maxwell electrodynamics,
which we call the ModMax theory. The ModMax equations
depend on a dimensionless parameter γ, and they reduce to
Maxwell’s equations for γ ¼ 0. For any other value of γ the
equations are nonlinear, but for γ ≥ 0 they admit exact light-
velocity plane wave solutions of arbitrary polarization.
The Lagrangian formulation of ModMax electrodynam-

ics is found by a Legendre transform. As expected, the
Lagrangian density is not analytic everywhere; it fails to be
analytic at configurations for which the Lorentz invariants
are zero, which includes the vacuum. Linearization about a
nonvacuum background of uniform constant electromag-
netic fields is possible, however, and it leads to a polari-
zation-dependent dispersion relation for small-amplitude
waves, i.e., birefringence, as expected since BI theory is
known to be the unique nonlinear electrodynamics that
does not exhibit birefringence [6,7]. For the ModMax
theory we shall see that there is always one light-velocity
polarization mode, while the other is subluminal for γ > 0

but superluminal for γ < 0. This provides a physical reason
for a restriction to γ ≥ 0. It also has implications for
predictions derived from the Euler-Heisenberg theory, as
we explain in our conclusions.
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The Hamiltonian density H for a generic source-free
theory of electrodynamics is a function of the magnetic
induction 3-vector field B and an independent electric-
displacement 3-vector field D. The field equations are the
“macroscopic Maxwell equations”

_B ¼ −∇ × E; ∇ · B ¼ 0;

_D ¼ ∇ ×H; ∇ ·D ¼ 0; ð1Þ
taken together with the “constitutive relations”

E ¼ ∂H=∂D; H ¼ ∂H=∂B: ð2Þ
These equations imply that

_H ¼ −∇ · ðE ×HÞ; _Pi ¼ −∂jTj
i; ð3Þ

where fPi; i ¼ 1; 2; 3g are the components of the field
3-momentum density P ¼ D × B, and

Ti
j ¼ δijðB ·HþD · E −HÞ − ðBiHj þDiEjÞ: ð4Þ

This is the stress tensor; it is symmetric because rotational
invariance implies that B ×HþD ×E ¼ 0.
We may conclude from (3) that the integrals over space

of H and P are conserved quantities for appropriate
boundary conditions; they are the conserved energy and
momentum associated with the time and space translational
invariance of the field equations. Together with rotational
invariance, these are the manifest symmetries of the field
equations but there may be additional symmetries that are
not manifest, such as Lorentz boost invariance. In a Lorentz
invariant theory it should be possible to write the equa-
tions (3) as the 4-vector continuity equation for a symmetric
stress-energy tensor, but this is possible only if

E ×H ¼ D ×B; ð5Þ

which is therefore the condition for the equations (1) to be
Lorentz invariant [4]. The Lorentz scalar trace of this stress-
energy 4-tensor is

Ti
i −H ¼ 2½D · EþB ·H − 2H�: ð6Þ

The condition for conformal invariance is therefore (5) and

D ·EþB ·H ¼ 2H: ð7Þ

Finally, the condition for invariance under the SOð2Þ
electromagnetic duality group, which acts by shifting the
phase of the complex 3-vector field Dþ iB, is [4]

E · B ¼ D ·H: ð8Þ

There are three independent rotation scalars, but at most
two are duality invariant; for example:

s ¼ 1

2
ðjDj2 þ jBj2Þ; p ¼ jD ×Bj: ð9Þ

IfH is a duality invariant rotation scalar, which we assume,
then it must be a function of s and p. Using the notation
ðHs;HpÞ for partial derivatives of H, the Lorentz invari-
ance condition (5) implies, upon using (2), that

H2
s þ

2s
p
HsHp þH2

p ¼ 1: ð10Þ

A convenient alternative basis for the duality-invariant
rotation scalars is

u ¼ 1

2
ðsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

q
Þ; v ¼ 1

2
ðs −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

q
Þ: ð11Þ

These new variables are well-defined since

s2 − p2 ¼ ξ2 þ η2 ≥ 0; ð12Þ

where ðξ; ηÞ are the following rotation scalars (which will
be used later):

ξ ¼ 1

2
ðjDj2 − jBj2Þ; η ¼ D ·B: ð13Þ

If we look for solutions of the formH ¼ ffiffiffiffi
K

p þ constant,
then the equation we need to solve is KuKv ¼ 4K. For
quadratic K this just restricts the coefficients, and the
general quadratic solution for which K is non-negative for
all ðu; vÞ is found to depend on one parameter T with
dimensions of energy density and an additional dimension-
less parameter γ such that, for zero vacuum energy,

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 2Tðe−γuþ eγvÞ þ 4uv

q
− T: ð14Þ

This is the Hamiltonian density of BI electrodynamics
when γ ¼ 0. The strong-field (T → 0) limit yields the
Slð2;RÞ-duality and conformal invariant Hamiltonian den-
sity H ¼ p of BB electrodynamics [4], irrespective of the
value of γ. Notice that

H ¼ p ⇒ D · E ¼ B ·H ¼ H; ð15Þ

which implies (7) and hence conformal invariance. It also
implies that the attempt to find a Lagrangian density by
taking the Legendre transform of HðD;BÞ with respect to
D fails, since D ·E −H≡ 0 [4]. Thus, the Lorentz
invariance of BB electrodynamics cannot be made manifest
in this way, although it can be made manifest in other
ways [5,8].
The weak-field (T → ∞) limit of (14) yields the

Hamiltonian density
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H ¼ ðchγÞs − ðshγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

q
; ð16Þ

where we use “sh” for “sinh” and “ch” for “cosh.” An
equivalent expression (since s2 − p2 ¼ ξ2 þ η2) is

H ¼ 1

2
ðchγÞðjDj2 þ jBj2Þ

−
1

2
ðshγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjDj2 − jBj2Þ2 þ 4ðD · BÞ2

q
: ð17Þ

The Maxwell Hamiltonian density is recovered for γ ¼ 0,
so we have now found the promised one-parameter
“ModMax” extension of Maxwell electrodynamics. For
any value of γ, its Hamiltonian density satisfies the
condition (7) required for conformal invariance.
There may be other nonlinear Lorentz and duality

invariant theories of electrodynamics corresponding to
other solutions of (10), but there are no other such theories
that are also conformal invariant. To prove this we observe
that when H is a function only of ðs; pÞ the conformal
invariance condition (7) becomes

sHs þ pHp ¼ H: ð18Þ

This implies that H can be written as a product of s with
some function of the dimensionless ratio p=s; it is
convenient to choose

Hðs; pÞ ¼ sfðyÞ; y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðp=sÞ2

q
: ð19Þ

The condition on f implied by (10) is found to be

ðf − yf0Þ2 − ðf0Þ2 ¼ 1; f0 ¼ ∂f
∂y : ð20Þ

Differentiating once we deduce that

f00½ð1 − y2Þf0 þ yf� ¼ 0: ð21Þ

This equation has two solutions:

ðiÞ f ¼ aþ by; ðiiÞ f ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
; ð22Þ

and substitution into (20) shows that

a2 − b2 ¼ 1; c2 ¼ 1: ð23Þ

The first solution yields ModMax with tanh γ ¼ −b=a. The
second solution yields H ¼ �p, which is the BB theory if
we assume that H is non-negative. Thus, the only (positive
energy) conformal and duality invariant electrodynamics
theories are BB electrodynamics and the new family of
ModMax theories, with Maxwell electrodynamics as the
special free-field case.

For the ModMax Hamiltonian density (17), it is con-
venient to define an angular variable Θ by

ðξ; ηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ξ2

q
ðcosΘ; sinΘÞ; ð24Þ

where ðξ; ηÞ are the rotation scalars of (13); notice that
Θ → Θþ 2α under the duality transformation ðDþ iBÞ →
eiαðDþ iBÞ. This allows us to write the ModMax con-
stitutive relations in the form

E ¼ A−D − CB; H ¼ AþB − CD; ð25Þ

where

A� ¼ chγ � ðshγÞ cosΘ; C ¼ ðshγÞ sinΘ: ð26Þ

The constitutive relations linearize when Θ ¼ θ, a
constant, which suggests that we consider plane-wave
configurations for which

Dþ iB ¼ ℜ½Deiðk·x−jkjtÞ� þ iℜ½Beiðk·x−jkjtÞ�; ð27Þ

where ðD;BÞ are complex 3-vector amplitudes. For such
configurations, the field equations (1) reduce to

B ¼ n ×E; D ¼ −n ×H; ð28Þ

where n ¼ k=jkj, and substitution for ðE;HÞ leads to the
algebraic equations

D ¼ −n × ½AþB − CD�;
B ¼ n × ½A−D − CB�; ð29Þ

where the constants ðA�; CÞ are the coefficients (26) for
Θ ¼ θ. These equations imply that both D and B are
orthogonal to n, and they determine one in terms of the
other; e.g.,

D ¼ A−1
− ½CB − n ×B�: ð30Þ

Using this result, one can deduce that

p ¼ A−1
− jBj2; s ¼ ðchγÞp; ð31Þ

and that D × B ¼ np, as expected. One can also deduce
that

ðξ; ηÞ ¼ ðtanh γÞsðcos θ; sin θÞ; ð32Þ

which is consistent with (24) only if γ ≥ 0.
To summarize, for γ > 0 the ModMax Hamiltonian

equations admit exact light-velocity plane wave solutions,
determined by the two nonzero independent complex
components of B, which comprise the two amplitudes
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and relative phase of an elliptically polarized wave, and an
irrelevant overall phase. However, the linear superposition
of two solutions is another solution only if both have the
same direction n and the same value of θ.
A feature of the Hamiltonian density (17) for γ > 0 is

that it is not a convex function of D for all values of ðD;BÞ,
whereas convexity is essential for the Legendre transform
to be involutive (see e.g., [9]). Although all eigenvalues of
the 3 × 3 Hessian matrix are everywhere positive for γ ≤ 0,
the lowest eigenvalue for γ > 0 is

Hs ¼ chγ − ðshγÞ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

p ; ð33Þ

which is negative unless

s ≥ ðchγÞp: ð34Þ

From (31) we see that this “convexity bound” is saturated
by the exact plane wave solution just discussed; the
significance of this is best understood in terms of the
Lagrangian formulation, to which we now turn.
Equations equivalent to the combined Hamiltonian field

equations (1) and constitutive relations (2) may be derived
from the phase-space action

I½A;A0� ¼
Z

dt
Z

d3xfE ·D −HðD;BÞg; ð35Þ

where the independent fields are D and the potentials
ðA0;AÞ defined, up to gauge transformations, by the
relations

E ¼ ∇A0 − _A; B ¼ ∇ ×A: ð36Þ

Elimination of D effects the Legendre transform of
HðD;BÞ with respect to D and hence yields an action
with configuration-space Lagrangian density LðE;BÞ.
To implement this transform for the ModMax theory, we

first use the fact that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

p
¼ ξ secΘ to rewrite the

ModMax Hamiltonian density (16) as

H ¼ ðchγÞs − ðshγÞðsecΘÞξ: ð37Þ

Next, we contract the first of equations (25) with D to
obtain an expression for E ·D, and hence deduce that

L ¼ E · D −H ¼ ξHs: ð38Þ

We should be able to rewrite this expression in terms of the
two independent Lorentz scalars:

S ¼ 1

2
ðjEj2 − jBj2Þ ¼ −

1

4
ημνηρσFμρFνσ;

P ¼ E · B ¼ −
1

8
ϵμνρσFμνFρσ; ð39Þ

where Fμν (μ, ν ¼ 0, 1, 2, 3) are the components of the
field-strength 2-form F ¼ dA for the 1-form potential
A ¼ dtA0 þ dx ·A, and ημν is the Minkowski metric.
Expressions for ðS; PÞ may be obtained from the

equation for E in (25) by (i) taking the norm-squared of
both sides (and then subtracting jBj2), and (ii) contracting
both sides with B. This yields

S ¼ ½ðchγÞ − ðshγÞ secΘ�L; P ¼ tanΘL; ð40Þ

with L given by (38), and then substitution for ξ using (32)
yields L ¼ 0, so S ¼ P ¼ 0 for the plane-wave solution, as
one would expect. Notice too that L ¼ 0 is possible only if
γ ≥ 0, which is therefore necessary for the existence of the
plane-wave solution, as we have already seen.
From (40) and (38), and the definition of A− in (26), we

find that

S2 þ P2 ¼ ½A−ðsecΘÞξHs�2: ð41Þ

AsA− and ξ secΘ are non-negative butHs may be negative
when γ ≥ 0, the sign of Hs will appear on the right-hand
side when we take the (positive) square root. We saw earlier
that H is a convex function of D when its domain is
restricted by Hs ≥ 0, so we make this choice. Then, since
ξHs ¼ L, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
¼ ðchγ secΘ − shγÞL: ð42Þ

Finally, by substitution for S and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
, one may

verify that

L ¼ ðchγÞSþ ðshγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
: ð43Þ

We have now found the manifestly Lorentz invariant
ModMax Lagrangian density. For γ ≥ 0 it is a convex
function of E for all values of ðE;BÞ. Also, and as
expected, it has the form required for conformal invariance:
L ¼ SfðP=SÞ for some function f [10]. This implies the
following relation that will be used below:

LSSLPP − L2
SP ¼ 0: ð44Þ

The ModMax Hamiltonian density can be recovered
from its Lagrangian density by an inverse Legendre trans-
form, implemented by solving the equation D ¼ ∂L=∂E
for E as a function of ðD;BÞ. This equation for D may also
be used to derive expressions for ðξ; ηÞ in terms of ðS; PÞ,
and these can be shown to imply that Hs ≥ 0 when γ ≥ 0,
and hence that the convexity bound (34) is satisfied, in
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accord with the general theory of the Legendre transform.
In particular, Hamiltonian configurations that violate the
convexity bound (which include all those for which the
Hamiltonian field equations are not defined) do not
correspond to Lagrangian configurations. Hamiltonian con-
figurations saturating the convexity bound, such as the
exact plane wave solutions, correspond to Lagrangian
configurations with S2 þ P2 ¼ 0 for which the EL equa-
tions are not defined, because of the nonanalyticity of L at
such points. However, the Hamiltonian field equations
remain well defined, and we think it likely that these
equations will consistently evolve incoming waves to
outgoing waves through an interaction region, within which
the EL equations provide an equivalent configuration-space
trajectory.
Because the ModMax Lagrangian density is nonanalytic

at S2 þ P2 ¼ 0, the EL equations cannot be linearized
about the vacuum. However, they can be linearized about
solutions for which S2 þ P2 ≠ 0, such as one for which
E and B are generic uniform constants. For the generic
Lagrangian density LðS; PÞ the resulting linear equation
was shown in [4] to have plane-wave solutions with a wave
4-vector k ¼ ðω;kÞ satisfying

k2 ¼ ðikFÞ2λ� ðikFÞν ≔ kμFμν; ð45Þ

where F is the background 2-form field-strength and λ� are
“birefringence indices.” The formula in [4] for these indices
may be simplified for conformal theories by use of (44),
and the result is

λ− ¼ 0; λþ ¼ LSS þ LPP

LS þ 2ðPLSP − SLPPÞ
: ð46Þ

Thus, a consequence of conformal invariance (albeit broken
by the constant background solution of the full field
equations) is that there is always one mode with the
free-field dispersion relation ω2 ¼ jkj2.
For the ModMax theory we find that

λþ ¼ tanh γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
− ðtanh γÞS : ð47Þ

As shown in [4], the background mimics an optical medium
in constant uniform motion. In the rest-frame of this
medium, for which E and B are (anti)parallel, the
λþ-dispersion relation of (45) is

ω2 ¼ jkj2ðcos2 φþ e−2γ sin2 φÞ; ð48Þ

where φ is the angle between k and B; there is no
birefringence when φ ¼ 0 because in this case the back-
ground preserves rotational symmetry in the plane defined
by k. Notice that ω is independent of the strengths of the
background fields; this is presumably a consequence of the
conformal and duality invariance of ModMax electrody-
namics. Notice too that the propagation is superluminal for
φ ¼ π=2 when γ < 0, as claimed earlier, whereas it is never
superluminal for γ ≥ 0.
In view of this birefringence prediction, it seems likely

that compatibility with current observations involving light
propagating through slowly-varying magnetic fields (ter-
restrial or astronomical) will put a stringent upper bound on
the ModMax coupling constant γ. As the magnitude of the
birefringence is independent of the (nonzero constant)
strength of the background field, it is qualitatively different
from that predicted by effective classical nonlinear theories
of electrodynamics incorporating QED corrections, for
which the magnitude increases with increasing magnetic
field strength (see e.g., [11,12]). However this QED
prediction has yet to be confirmed experimentally [13]
and it is possible that an initial experimental confirmation
of birefringence could have a ModMax interpretation.
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