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The chiral vortical effect (CVE) was derived first for massless fermions, within the framework of thermal
quantum field theory. Recently, a dual description of the CVE, as related to the radiation from the horizon
of a rotating black hole was suggested. Generalizing the latter approach to the case of photons, we
encounter a crucial factor-of-2 difference from the predictions based on the thermal field theory. To
elucidate the reason for this discrepancy, we turn to the limit of large spin S of the massless particles. Within
the gravitational approach, the CVE grows as S3, while the flat-space relations result in a dependence which
is linear in S. We also discuss briefly an alternative formulation of the presumed duality between the
statistical and gravitational approaches.

DOI: 10.1103/PhysRevD.102.121702

I. GRAVITATIONAL CHIRAL ANOMALY AND
CVE FOR SPIN-1=2 PARTICLES

The chiral vortical effect (CVE) is the flow of chirality of
massless particles in a rotating medium along the vector of
the angular velocity Ω⃗. For a single right-handed Weyl
fermion, one finds [1]

j⃗NCVE ¼
�
μ2

4π2
þ T2

12

�
Ω⃗; ð1:1Þ

where j⃗N is the particle-number current, μ is the chemical
potential, and T is the temperature.
Remarkably enough, the coefficient in front of the μ2Ω⃗

term turns out to be directly related to the coefficient on the
rhs of the chiral anomaly [2],

∂αjNα ¼ −
1

32π2
ϵαβγδFαβFγδ; ð1:2Þ

where Fαβ is the electromagnetic field strength tensor.

The relation, if any, of the T2 term in Eq. (1.1) to
anomalies remained a kind of mystery until the appearance
of Ref. [3].1 The main idea here goes back to Refs. [5–10],
which relate the Hawking radiation to the anomalies of
quantum field theory. In more detail, it is suggested [3] to
consider space-time with a boundary imposed by the
horizon of a rotating black hole. Then one can check that
near the horizon, the rhs of the gravitational chiral anomaly,

∇αjNα ¼ 1

768π2
ffiffiffiffiffiffi−gp ϵαβγδRαβρσR

ρσ
γδ ; ð1:3Þ

where Rαβγδ is the Riemann tensor, is not vanishing. Far off
from the horizon, where the rhs of Eq. (1.3) vanishes, there
is a flow of chirality which can be found by integrating the
rhs of Eq. (1.3) [3].
This asymptotic current coincides with the T2Ω⃗ term in

Eq. (4.4), provided that the generic temperature T is
replaced by the Hawking temperature TH of the black
hole, T → TH ≡ aH

2π .
Thus, in the case of massless spin-1=2 particles, there are

two complementary ways of deriving the CVE—that is,
within the statistical approach in flat space and in terms of
black-hole physics. We are considering generalization to
the photonic case and obtain a quantitative prediction for
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1For an earlier attempt to relate the CVE to the gravitational
anomaly, see Ref. [4].
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the CVE of particles with arbitrary spin, based on the
gravitational anomaly.

II. GRAVITATIONAL CHIRAL ANOMALY
AND CVE FOR PHOTONS

As is well known, the chirality of photons is measured by
the “charge” QA

photon ¼
R
d3xK0, where the current Kμ is

given by

Kμ ¼ 1ffiffiffiffiffiffi−gp ϵμνρσAν∂ρAσ; ð2:1Þ

where Aμ is the electromagnetic potential. Note that the
charge QA

photon is gauge invariant, unlike the current itself.
The current [Eq. (2.1)] is apparently not conserved, since

∇μKμ ≡ 1

4
ffiffiffiffiffiffi−gp ϵμνρσFμνFρσ: ð2:2Þ

However, one can demonstrate [11] that naively, the
expectation value of the rhs of Eq. (2.2) for photons
propagating in external gravitational field vanishes.
Moreover, there exists [11–14] the bosonic chiral gravita-
tional anomaly

h∇μKμi ¼ 1

192π2
ffiffiffiffiffiffi−gp ϵαβγδRαβρσR

ρσ
γδ : ð2:3Þ

Furthermore, Eq. (2.3) suffices to evaluate the chiral
vortical effect for photons in terms of the black-hole
physics following the logic of Ref. [3].
Indeed, the chiral gravitational anomalies for spin-1=2

and spin-1 massless particles are proportional to the same
RR̃, and the effect of the rotating black hole reduces to a
universal geometric factor. We are interested now in the
spin dependence of the chiral vortical effect. To elucidate
the spin dependence of the CVE, it is convenient to
compare fermionic and bosonic fields with an equal
number of chiral degrees of freedom—that is, we normalize
the photonic case to the case of a Weyl spinor. By
comparing Eqs. (1.3) and (2.3), we conclude

ðCVEÞphotons
ðCVEÞWeyl fermions

����
black hole

¼ 4: ð2:4Þ

The problem is that the flat-space derivation suggests rather
that the ratio (2.4) is equal to 2, not 4.

III. EVALUATION OF PHOTONIC CVE
IN FLAT SPACE

A. Kubo-type relation

The most common way to evaluate the CVE in flat space
is to use a technique [4] similar to Kubo relations. In more
detail, we define the conductivity σΩ as

j⃗NCVE ¼ σΩΩ⃗: ð3:1Þ

Then, σΩ is given by the retarded two-point Green’s
function between the current jNi and momentum density
T0j at zero frequency ω and small momenta ki:

lim
k→0

GRðω; kÞjω¼0 ¼ iϵijnknσΩ: ð3:2Þ

Detailed calculations along these lines in case of charged
spin-1=2 particles within thermal field theory can be found,
in particular, in Refs. [15,16].
Equation (3.2) can be generalized to the case of photons

[15]. The result of calculations can be summarized as

ðCVEÞphotons
ðCVEÞWeyl spinor

����
Kubo relation

¼ 2: ð3:3Þ

Note that Eq. (3.3) differs from Eq. (2.4) by a factor of 2.
Gauge invariance of the results obtained remains a subtle

point, since the current Kμ is not explicitly gauge invariant.
Gauge invariance could be imposed explicitly by introduc-
ing nonlocality. In particular, for photons on a mass shell,
the gauge-invariant current reads as

κμ ¼ ðconstÞ qμ
q2

FαβF̃αβ; ð3:4Þ

where qμ is the four-momentum brought in by the current.
Note, however, that in the two cases most interesting for
applications, the current κμ reduces in fact to Kμ. Namely,
evaluation of the charge

R
d3xK0ðxÞ assumes taking the

limit qi ¼ 0, ω → 0 in the language of the Fourier trans-
form. In this limit,

lim
qi¼0;ω→0

κ0 ¼ K0; ð3:5Þ

and the charge density K0, understood as the component of
the Fourier transform with qi ≡ 0; q0 → 0, turns gauge
invariant.
Similarly, in the case of the definition (3.2), one con-

siders the limit ω ¼ 0; q3 → 0. In this limit, the nonlocal
current κμ reduces to the component K3:

lim
ω¼0;q3→0

κ3 ¼ K3: ð3:6Þ

In other words, the component of the Fourier transform of
the current defined by Eq. (3.2) is gauge invariant, and the
conductivity σΩ is a physical observable.

B. CVE from the Sommerfeld expansion

There is another approach to evaluating the CVE, by
statistically averaging the matrix element of the corre-
sponding current. One first finds the energy levels as a
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function of the momentum of the particles and of the
angular velocity of the medium, and then evaluates the
matrix element of the current for each mode.
The latter technique was tried first [1], with the following

result, for a Weyl fermion:

JNCVE ¼ 1

4π2

Z
∞

−∞
ϵ2dϵ

�
1

1þ eβðϵ−ðμþΩ=2Þ −
1

1þ eβðϵ−ðμ−Ω=2Þ

�

¼ μ2Ω
4π2

þ Ω3

48π2
þ T2Ω

12
: ð3:7Þ

Both the statistical averaging and the use of the Kubo
relation result in the same prediction for the CVE in the
case of spin-1=2 particles.
Note that, taken at face value, Eq. (3.7) implies the

existence of negative modes at ϵ≲ Ω. However, Eq. (3.7)
itself is derived under the assumption that one can expand
inΩ, and this assumption is apparently not true at p≲Ω. In
other words, the region of small energies ϵ is to be
considered more carefully.
The lowest levels in the rotating system can be found by

using the well-known analogy between the magnetic field
H⃗ and the “field of rotation” Ω⃗. For massless charged
fermions of spin 1=2, the Landau levels are given by

En ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hðnþ 1=2Þ þ P2

3 þHσ3

q
; ð3:8Þ

where P3 is the momentum along the magnetic field and
σ3 ¼ �1 is the sign of the spin projection onto the direction
of the magnetic field. The lowest level, n ¼ 0, P3 ¼ 0,
σ3 ¼ −1, is the famous zero model responsible for the
chiral magnetic effect. In the case of the rotation, however,
there is no zero mode for spin 1=2:

En > 0; spin 1=2; gravity; ð3:9Þ

since in the gravitational case, the gyromagnetic ratio is 2
times smaller than in the case of the electromagnetic
interaction.
For spin-1 particles in a rotating medium, we would

expect that the zero mode comes back:

Emin ¼ 0; spin 1; gravity: ð3:10Þ

Indeed, the spin is doubled and compensates for the just-
mentioned loss of the factor of 2. This zero energy is
present in the spectrum of photons, as is found by explicit
calculation in Ref. [17]. Moreover, introducing a finite
radius for the rotating cylinder shifts the lowest-level
energy to a small positive value and stabilizes the system.
For higher spins, S ≥ 3=2, the lowest energy level is to

be negative:

Emin < 0; S ≥ 3=2; gravity; ð3:11Þ

and the perturbative vacuum is apparently unstable.
A careful analysis reveals further sources of infrared

sensitivity. In particular, it turns out that the chiral vortical
current is model independent only as far as it is evaluated
on the axis of the rotation, or at the radial coordinate ρ ¼ 0.
On the other hand, as we discussed above [see Eq. (3.2)],
evaluation of the CVE assumes that the momentum tends to
zero, qi → 0. And it is only in this limit that we have gauge
invariance granted. The conditions ρ ¼ 0 and qi → 0 are at
least formally in conflict with each other.
To summarize, there are various sources of sensitivity of

the global picture to details of the dynamics in the infrared.
However, the high-temperature contribution to the CVE
might well be protected against these infrared-sensitive
effects. Indeed, there is no reason to expect that the two
regions, infrared-sensitive and high-temperature ones, give
parametrically similar results. Under this assumption, we
proceed to consider the higher-spin case.

C. Limit of large spin of massless particles

The coefficient in front of the gravitational anomaly
grows with spin S of the massless chiral particles as S3 for
large S [18–20]:

∇μK
μ
S ¼

ð−1Þ2Sð2S3 − SÞ
192π2

ffiffiffiffiffiffi−gp ϵμνρσRμνκλRρσ
κλ; ð3:12Þ

where Kμ
S is the chiral current for massless particles of spin

S, an analog of the current Kμ in the photonic case. The
current Kμ

S can explicitly be constructed in terms of the
Pauli-Lubanski pseudovector [20]. Based on the general
formula in Eq. (3.12) and following Ref. [3], we predict the
T2 term in the vortical current:

K⃗S ¼
ð−1Þ2Sð2S3 − SÞ

3
T2Ω⃗ ðgravitational anomalyÞ:

ð3:13Þ

A striking feature of the prediction (3.13) is its S3

dependence. This dependence is not reproduced by thermal
field theory in flat space, where the effective coupling S⃗ · Ω⃗
provides that the term linear inΩ also grows linearly in spin
S. In particular, according to Ref. [21], the flow of chirality
Jχ carried by the spin-S massless particles is given by

J⃗χ ¼
S · Ω⃗
π2

X
�

Z
∞

0

f�ðpÞpdp; ð3:14Þ

where the summation is over the chiral states with projec-
tion on the momentum equal to �S; f�ðpÞ are the Bose or
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Fermi distributions, whichever is relevant; and μ� is
reserved for nonvanishing chemical potentials.
The predictions (3.13) and (3.14) differ qualitatively.

The origin of the disagreement is that in flat space, the
effect is controlled primarily by the number of degrees
of freedom, which for massless particles does not grow
with their spin S. The strong S dependence in the case
of the gravitational anomaly is apparently due to a specific
gravitational interaction with spin. As is noticed in
Refs. [18,19], the S3 dependence of the gravitational
anomaly goes back to the coupling of the Riemann tensor
to the spin of the particles:

X ¼ ΣμνRμν
abΣab; ð3:15Þ

where Σμν is the spin operator. Physically, this coupling
corresponds to the interaction of the gravitational wave
with the quadrupole moment of the particle.2

To summarize, the consideration of higher spins elevates
the mismatch between the two ways of evaluating the CVE
to a qualitative effect. In the next section, we describe
briefly another formulation of the statistical approach
which provides us with a derivation of the S3 dependence.

IV. TEMPERATURE-ACCELERATION,
T ↔ a

2π, DUALITY?

A. Derivation of the Unruh temperature
within the statistical approach

Discovery of the Unruh temperature, or temperature seen
by an accelerated observer,

TU ¼ a
2π

; ð4:1Þ

established for the first time a kind of equivalence or duality
between acceleration a and the temperature T. The next
step was made in Refs. [5–10]. Here, the basic idea is that at
the horizon of the black hole there is an intrinsic right-left
asymmetry, since the particles are emitted outwards of the
horizon and absorbed inwards. The precise measure of the
particle production is provided by the quantum anomalies
in terms of the gravitational field, or acceleration on the
horizon, aH. By matching the flow of the particles far off
from the horizon to the radiation from a black body, one is
rederiving the Hawking temperature TH:

TH ¼ aH
2π

: ð4:2Þ

Finally, Ref. [3] suggested a similar construction to relate
the chiral vortical effect in flat space to the radiation from a
rotating black brane.

In all these cases, one and the same phenomenon is
described either in terms of the statistical theory as a
process in equilibrium, or in terms of quantum field theory
as a manifestation of an anomaly in the external gravita-
tional field.
There exists another systematic way to relate physics in

the equilibrium in flat space to the physics in an external
gravitational field and vice versa; for an introduction and
further references, see Ref. [22]. On the statistical side, the
crucial point is the introduction of the following density
operator ρ̂:

ρ̂ ¼ 1

Z
exp

�
−βμP̂μ þ 1

2
ϖμνĴ

μν þ ξQ̂

�
; ð4:3Þ

where ξ ¼ μ=T, P̂μ is the four-momentum, Ĵμν are gen-
erators of the Lorentz transformations, and Q̂ is a conserved
charge. Moreover,ϖμν ¼ 1=2ð∂νβμ − ∂μβνÞ is the tensor of
the thermal vorticity, and βμ ¼ uμ=T. The operator Ĵμν in
Eq. (4.3) can be rewritten as

Ĵμν ¼ uμK̂ν − uνK̂μ − ϵμνρσuρĴσ; ð4:4Þ

where K̂μ is the boost operator and Ĵν is the operator of
angular momentum. Furthermore, it is useful to introduce
the four-vectors αμ, wμ:

αμ ¼ ϖμνuν; wμ ¼ ð1=2Þϵμναβuνϖαβ: ð4:5Þ

In the rest frame, T · αi and T · wi coincide with the
standard three-vectors of acceleration a⃗ and of the angular
velocity Ω⃗, respectively.
Note that the boost operators K̂i, although conserved, do

not commute with the Hamiltonian Ĥ:

i
dK̂i

dt
¼ 0; ½K̂i; Ĥ� ¼ −iP̂i; ð4:6Þ

and the equations in Eq. (4.6) are consistent with each other
because of an explicit dependence of K̂i on time [22].
Applications of this technique have proven successful. In

particular, the Unruh temperature can be defined now [22]
in terms of the energy density T00 as a function of
acceleration a and of the temperature, T00ða; TÞ:

T00ða; TÞjT¼TU
¼ 0: ð4:7Þ

It was demonstrated in Ref. [23] that in case of massless
spin-1=2 and spin-0 particles, the condition (4.7) allows us
to determine the Unruh temperature without introducing
any parameter or subtractions.
Note that within the approach of Eq. (4.3), acceleration

and temperature are treated as independent variables. To
match this freedom on the gravitational side, one considers2We are grateful to A. I. Vainshtein for this remark.

PROKHOROV, TERYAEV, and ZAKHAROV PHYS. REV. D 102, 121702 (2020)

121702-4



[23] the Rindler space with a conical singularity and defines
the acceleration and temperature geometrically. The duality
works perfectly well [23]. One can say that the case Ω ¼
0; ða; TÞ ≠ 0 is fully understood in terms of the duality
between gravitational and statistical approaches. Here we
are considering both a and Ω to be nonvanishing, and it is a
generic feature that the formalism is becoming much more
complicated; see in particular Ref. [24].

B. Coupling of acceleration and vorticity to the spin

The density operator [Eq. (4.3)] which we are exploiting
introduces the following effective interaction, specific for
the physics of equilibrium:

δĤ ¼ −Ω⃗ · ⃗Ĵ − a⃗ · ⃗K̂: ð4:8Þ

In the nonrelativistic limit, the part with boost leads to the
energy of a particle in a constant gravitational field a [22]:

Ĥ − aK̂z ¼ mc2 þ p̂2=2m −maẑ: ð4:9Þ

More generally, the terms with boost and angular momen-
tum provide that the evolution operator generates a tran-
sition between instantaneous inertial rest frames at different
time moments, since these transformations in the presence
of acceleration are not reduced only to time translations,
and they also include Lorentz transformations [25].
In the case of the vectors Ω⃗ and a⃗ parallel to each other, it

is straightforward to evaluate the correction to the energy of
a chiral state of a spin-1=2 particle:

δE ¼ −ðΩz − iazÞσz=2: ð4:10Þ

The reason for “imaginary energy,” δE ∼ ia=2, is the lack
of a unitary representation for the boost operator in the case
of a chiral multiplet. As a result, one uses an anti-unitary
realization of the boost operator, Ki ∼ iσi, which, however,
respects commutation relations between the operators.
Thermodynamically, this imaginary energy does not make
any trouble, since the odd powers of a are canceled out.
Now, the generalization to the case of massless particles

of higher spin S is trivial:

σz=2 → Sz; δE → ðΩ⃗ − ia⃗ÞS⃗: ð4:11Þ

So, each power of a or Ω is accompanied by a factor of S,
while the temperature is “unaware” of the spin, since there
are 2 degrees of freedom for any massless particle
with S ≠ 0.
On the dimensional grounds for the chiral vortical effect,

one has

JCVE ∼ c1T2Ωþ c2a2Ω; ð4:12Þ

where the coefficients c1 and c2 are to be calculated.
Following the logic outlined above, we come to the
estimates

c1 ∼ S; c2 ∼ S3: ð4:13Þ
The S3 dependence of c2 matches the prediction of
Eq. (3.13) based on the gravitational anomaly, if we use
temperature-acceleration duality T ↔ a

2π.
To summarize, straightforward estimates within the

statistical approach based on the density operator
[Eq. (4.3)] immediately result in a S3 dependence of the
chiral vortical effect for higher-spin particles.

V. CONCLUSIONS

Two approaches have been tried to evaluate the chiral
vortical effect (CVE) for massless spin-1=2 particles, with
identical results obtained. The first approach is based on
statistical averaging of the matrix elements of the axial
current. The other one relates the CVE to the chiral
gravitational anomaly. The latter approach can immediately
be generalized to the case of the arbitrary spin of particles
interacting with an external gravitational field.
The prediction for the photonic CVE obtained in this

way can be compared with the results obtained within the
statistical approach. In particular, application of the Kubo-
type relation to evaluate the photonic CVE gives an answer
[15,16] which differs by a factor of 2 from the gravitational
approach. However, there is no consensus yet in the
literature concerning the value of the vortical conductivity
σγΩ. The source of uncertainty is apparently dependence on
the regularization procedure in the infrared. Thus, it is not
ruled out that the final result for photons would agree with
the prediction of the gravitational approach.
To have a clearer case, we turn to consideration of the

limit of large spin S of the constituents. In this case, the
predictions for the vortical conductivity differ qualitatively:
gravitational anomaly predicts S3 dependence, while ther-
mal field theory leads to linear dependence on S.
We also try an alternative statistical approach based on

the use of the density operator [Eq. (4.3)]. This version of
the statistical approach does reproduce the S3 dependence
of the vortical effect in an accelerated medium.
There are many questions left open. The main reser-

vation concerning the status of the results obtained is that
theories involving massless particle with large spin S have
intrinsic problems and difficulties.
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